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INTRODUCTION

Ustilaginales is the largest order within the smut fungi 
(Ustilaginomycetes), including species forming a blackish 
to brownish powdery spore mass in different organs of 
monocotyledonous, and exceptionally dicotyledonous plants 
(Vánky 2012, Begerow et al. 2006). The order includes nine 
families, encompassing 54 genera. The Anthracoideaceae 
with the occurrence on Cyperaceae and Juncaceae, and 
Ustilaginaceae, with few exceptions parasitic to the Poaceae, 
are the largest families within the order. The latter contains 
the three largest smut genera, Anthracocystis, Sporisorium, 
and Ustilago. The difference between these three closely 
related genera is the almost complete lack of a plant-derived 
columella within sori formed by Ustilago species (Vánky 
2012, McTaggart et al. 2012). Within Ustilago some species 
are economically important pathogens, like corn smut 
(Ustilago maydis) or wheat smut (Ustilago nuda). Ustilago 
maydis is a species for which one of the first fungal genomes 
was sequenced (Kämper et al. 2006). Smut fungi of the 

Ustilaginales usually feature both an asexual yeast morph 
and a sexual morph infecting host plants in a biotrophic 
manner. In rare cases yeasts of the Ustilaginales could also 
be found to be affecting humans (McNeil & Palazzi 2012, 
Teo & Tay 2006). The earliest case of an invasive infection 
with an Ustilago species, possibly U. maydis, was reported 
in 1946 (Moore et al. 1946). But spores of the Ustilaginales 
potentially also cause pneumonias, allergic reactions, or 
asthma (Valverde et al. 1995).

There are several studies dealing with the phylogeny of 
Ustilaginomycotina, mostly based on the LSU or ITS locus 
and some of them include asexual morphs as well (e.g. 
Begerow et al. 2000, 2006, Stoll et al. 2005, Wang et al. 
2006, 2015, Boekhout 2011). Wang et al. (2015) link many 
asexual yeasts to their corresponding sexual morphs, an 
important step within the naming of pleomorphic fungi, as dual 
naming of sexual and asexual morphs is now discontinued 
(Hawksworth et al. 2011).

Pseudozyma has been used for species of ustilagino-
mycetous yeasts belonging to Ustilaginales which are mostly 
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believed to be apathogenic (Begerow et al. 2000, 2006). 
The genus was described in 1985, by Bandoni (1985), and 
later refined by Boekhout (1995). After Sampaio (2004) 
and finally Wang et al. (2015) established that the type 
species Pseudozyma prolifica was a synonym of Ustilago 
maydis, the name Pseudozyma should no longer be 
used. However, the phylogenetic position of some species 
referred to Pseudozyma is still unclear. Wang et al. (2015) 
suggested using the name Pseudozyma now with the 
addition “pro tempore” for five Pseudozyma species with an 
unclear phylogenetic position. In the current study we give 
Pseudozyma names with reference to the new combinations 
recently made, where possible.

To date, about 20 Pseudozyma species names were 
validly published (www.indexfungroum.org). Fifteen are 
now linked to a corresponding sexually typified genus 
(Wang et al. 2015). Of these, Pseudozyma antarctica, P. 
aphidis, P. parantarctica, and P. rugulosa were transferred to 
Moesziomyces (Wang et al. 2015).

Ustilaginalean yeasts are isolated from diverse habitats, 
for Ustilaginales, but mostly from grasses (Boekhout 1995, 
Avis et al. 2001). Some were isolated from flowers, leaves 
or fruits of other plants, but it is also possible to isolate them 
from soil or even human blood or secretory fluid (Sugita et 
al. 2003, Arendrup et al. 2014). Apart from the few clinical 
cases of Ustilago maydis infestation, it was not known until 
2003 that species referred to Pseudozyma could also infect 
humans (Sugita et al. 2003). However, such species can 
cause invasive infections, especially in immunosuppressed 
individuals (Arendrup et al. 2014). The infection risk, according 
to Prakash et al. (2014), is the same as being colonised by non-
albicans Candida infections. Furthermore, Avis et al. (2001) 
and Gafni et al. (2015) reported antifungal properties of some 
pseudozyma-like yeast species, including Moesziomyces 
aphidis, and some strains have been reported to be natural 
antagonists of powdery mildews (Erysiphales). Colonization 
of leaf surfaces by these yeasts provides a natural source of 
protection against some plant pathogenic fungi (Gafni et al. 
2015).

Of the ustilaginalean yeasts, especially Moesziomyces 
antarcticus and M. aphidis, formerly treated as Pseudozyma 
species, have been frequently isolated from various 
substrates. Moesziomyces antarcticus was isolated from 
plants and soil, but also from blood of humans (Boekhout 
2011). Moesziomyces aphidis was described in 1995 and 
first isolated from the secretion of an aphid, but it has later 
been isolated from water (Boekhout 2011) and various other 
sources, including soil and human blood. Wang et al. (2015) 
showed that these pseudozyma-like species, together with 
M. parantarcticus and M. rugulosus, belong to the genus 
Moesziomyces, which before had been generally regarded 
as monotypic (Vánky 2005).

Moesziomyces mainly differs from other smut fungi in 
having remnants of ruptured sterile cells (Vánky 1977). 
Vánky (1977) initially included four species in the genus 
Moesziomyces. Three of them, occurring on different genera 
of grasses (Leersia, Paspalum, Pennisetum) were later 
considered to be conspecific and united under the oldest 
name, M. bullatus (Vánky 1986, 2005). The other species, 
M. eriocauli (Vánky 1986), was transferred to a new genus 

Eriomoeszia, because of a thin cortex of sterile cells, which 
surrounds the spore balls (Vánky 2005). After the transfer of 
four pseudozyma-like species (M. antarcticus, M. aphidis, 
M. parantarcticus and M. rugulosus) to this genus, it now 
contains five species (Wang et al. 2015). 

Given the high host specificity observed for most 
Ustilaginales species (McTaggart et al. 2012, Escudero 
2015, Li et al. 2017), it seemed doubtful that Moesziomyces 
bullatus was parasitic to seven not closely related genera, 
suggesting that more species might be present in the genus, 
some of which might be conspecific with smuts in the past 
named in Pseudozyma. It was the aim of the current study to 
clarify the relationships of asexual and sexual morphs in the 
genus Moesziomyces.

MATERIAL AND METHODS

Fungal material
The fungal material used in this study is listed in Tables 1 and 
2. The nomenclature of the hosts is derived from the latest 
version of The International Plant Names Index (www.ipni.
org), the nomenclature of the fungi follows Vánky (2012) and 
MycoBank (www.mycobank.org). 

Yeast cultivation
Fresh material of Moesziomyces bullatus collected in 2015 
(GLM-F105817) was used for yeast cultivation. A suspension 
of spores in 2 mL water was prepared. Three tubes with 
200 µL spore suspension were exposed to three different 
conditions: (1) heating of the suspension on a thermomixer 
at 45 °C for 5 min (Shetty & Safeeulla 1979); (2) chilling the 
suspension overnight on ice; and (3) incubation for 5 min 
at room temperature (ca. 20 °C). From each tube 20 µL 
suspension was each plated on two plates of SAM (Thines lab 
Standard Agar Medium, consisting of 20 g agar, 20 g PDB, 10 
g yeast extract, 10 g malt extract, 40 mL clarified vegetable 
juice, 960 mL water) with the addition of 75 mg Rifampicin/L. 
One set of plates was incubated at 30 °C, the other set at 
room temperature. After 3 d on every plate abundant yeast 
growth was recognized. Pure cultures were produced by 
picking and transferring individual single colonies to the SAM 
medium (isolate A1–A10). To isolate pseudozyma-morphs 
associated with Albugo laibachii on Arabidopsis thaliana, A. 
laibachii spores were suspended in water and treated with 
antibiotics to remove bacteria. Subsequently, the suspension 
was plated on PDA at 20 °C and colonies were singled out 
after 7 d.

DNA extraction, PCR and sequencing
In total 5–20 mg of infected plant tissue from herbarium 
specimens and yeast colonies were disrupted in a mixer mill 
(MM2, Retsch), using two iron beads of 3 mm and 5–8 iron 
beads of 1 mm diam per sample and shaking at 25 Hz for 
5–10 min. Genomic DNA was extracted using the BioSprint 
96 DNA Plant Kit (Qiagen, Hilden) on a KingFisher Flex 
robot (Thermo Scientific, Dreieich). PCR amplification of 
the complete ITS nrDNA was performed using the M-ITS1 
forward primer (Stoll et al. 2003) and the ITS4 (White et 
al. 1990) or smITS-R1 reverse primer (Kruse et al. 2017). 
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Table 2. List of additional sequences used in the phylogenetic tree, downloaded from GenBank.

Species Source ITS GenBank acc. no. Citation
Eriomoeszia eriocauli Eriocaulon cinereum AY740041 Stoll et al. (2005)

Macalpinomyces eriachnes Eriachne helmsii AY740038 Stoll et al. (2005)

Moesziomyces bullatus Paspalum distichum AY74015)3 Stoll et al. (2005)

human preterm low birth weight infant KF926673 Okolo et al. (2015)

 - DQ831013 Matheny et al. (2006)

human preterm low birth weight infant KF926673 Okolo et al. (2015)

 - DQ831013 Matheny et al. (2006)

Pseudozyma antarctica  - JX094775 Gujjari et al. (unpublished)

 - JN942669 An (unpublished)

unpolished Japanese rice AB089360 Sugita et al. (2003)

Antarctica sediment AF294698 Avis et al. (2001)

Albizia julibrissin flower AY6415)57 Wei et al. (2005)

lake sediment AB089358 Sugita et al. (2003)

Pseudozyma aphidis Japanese pear fruit AB204896 Yasuda et al. (2007)

human pulmonary infection Q743064 Parahym et al. (2013)

Saccharum officinarum AB704889 Morita et al. (2012)

Leucaena glauca HQ662536 Wei et al. (2011)

human EU105)207 Lin et al. (2008)

human blood AB089362 Sugita et al. (2003)

human HQ848933 Xie et al. (unpublished)

Fallopia japonica KC282385 Wang & Liu (unpublished)

blood culture from hospitalized patient KM610219 Bosco-Borgeat & Taverna 
(unpublished)

Leucaena glauca HQ647299 Wei et al. (2011)

Saccharum officinarum AB704890 Morita et al. (2012)

poplar leaf KM268868 Sun & Yan (unpublished)

Forcipomia taiwana KM555221 Chen (unpublished)

seaweeds KP269028 Wang et al. (unpublished)

aphid secretion AF294699 Avis et al. (2001)

Neoreglia cruenta FN424100 Garcia et al. (unpublished)

Saccharum officinarum AB704878 Morita et al. (2012)

giant panda secrete KF973199 Li et al. (unpublished)

Camellia sinensis foliar lesions HQ832804 Li et al. (unpublished)

Echinochloa crus-galli GU390690 Hamayun & Ahmad (unpublished)

aphid secretion on Solanum pseudocapsicum JN942666 An (unpublished)

mulberry leaf KF443199 Qiu et al. (unpublished)

Citrus leaf JQ425372 Soliman (unpublished)

 - JN942667 An (unpublished)

Pseudozyma hubeiensis Magnolia denudata wilting leaf DQ008954 Wang et al. (2006)

Pseudozyma parantarctica  - JN544036 Chen (unpublished)

yam tuber steep water KF619567 Babajide et al. (2015)

 - KP132543 Irinyi et al. (2015)

human blood AB089356 Sugita et al. (2003)

 - NR 130693 An (unpublished)

Pseudozyma rugulosa mouldy Zea mays leaf AB089370 Sugita et al. (2003)

ex-leaf of corn AF294697 Avis et al. (2001)

plant leaf HE650886 Han et al. (2002)

Pseudozyma sp. Hyoscyamus muticus AB500693 Abdel-Motaal & Itu (unpublished)
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Table 2. (Continued).

Species Source ITS GenBank acc. no. Citation

Coffea arabica EU002890 Vega et al. (unpublished)

Hyoscyamus muticus AB500690 Abdel-Motaal & Itu (unpublished)

Coffea arabica DQ778919 Vega et al. (2008)

Saccharum officinarum leaves LC05)3989 Surussawadee & Limtong 
(unpublished)

shoot of tip pepper GU975792 Sim et al. (unpublished)

marine environment DQ178645 Chang et al. (2008)

Helicoverpa armigera caterpilla gut AM160637 Molnar & Prillinger (unpublished)

marine sediment KC834821 Qu et al. (unpublished)

 - KR047769 Wang et al. (unpublished)

pharmaceutical effluent KF922220 Selvi & Das (unpublished)

barley kernels and leaf HG532070 Korhola et al. (2014

Uncultured fungus Ericaceae roots HQ260042 Walker et al. (2011)

cleaned rice AB235999 Ikeda et al. (2007)

Uncultured fungus clone Axonopus compressus soil HQ436080 Kee & Chia (unpublished)

Uncultured Ustilago tomato rhizosphere KF493994 Johnston-Monje et al. 
(unpublished)

* type collections are highlighted in bold 

The reaction was performed in a thermocycler (Eppendorf 
Mastercycler 96 vapo protect, Eppendorf, Hamburg) with 
an initial denaturation at 95 °C for 4 min, 36 PCR cycles 
of denaturation at 95 °C for 40 s, annealing at 56 °C for 
40 s and elongation at 72° C for 60 s, followed by a final 
elongation at 72° C for 4 min. The resulting amplicons were 
sequenced at the Biodiversity and Climate Research Centre 
(BiK-F) laboratory using the PCR primers. Sequences were 
deposited in GenBank (NCBI, Table 1).

Phylogenetic reconstructions
The dataset included sequences of Moesziomyces species 
sexual and asexual morphs, both newly sequenced (Table 1) 
and downloaded from GenBank (Table 2). First all available 
sequences were extracted from NCBI on the basis of 
sequence similarity. Subsequently sequences were removed 
that were: (1) highly redundant with already-included ITS 
genotypes; or (2) of doubtful sequence quality, i.e. with 
mutations at positions highly conserved or with nucleotide 
changes only towards one end of the sequences.

Macalpinomyces eriachnes was selected as an outgroup, 
based on the phylogenetic tree in Shivas et al. (2013). 
Alignments were made using mafft v. 7 (Katoh & Standley 
2013) employing the Q-INS-I algorithm and removing leading 
and trailing gaps. The resulting total alignment length was 
576 bp. For phylogenetic analyses, Minimum Evolution (ME) 
analysis was done with Mega v. 6.06 (Tamura et al. 2013), 
using the Tamura-Nei substitution model, assuming partial 
deletion at a cut-off of 80 % and 1000 bootstrap replicates. 
Maximum Likelihood (ML) analysis was done using RAxML 
on the webserver TrEase (www.thines-lab.senckenberg.de/
trease) with all parameters were set to default values. For 
Bayesian analysis also the webserver TrEase was used 
for calculating 10 M tree generations on four incrementally 
heated MC chains. The first 30 % of the trees obtained this 

way were discarded to ensure sampling of the stationary 
phase. All other parameters were set to default.

Morphological examination
For light microscopy, the herbarium specimens GLM-F105814 
and GLM-F105812 were transferred to distilled water on a 
slide. Morphological examination was carried out using a 
Zeiss Imager M2 AX10 microscope (Carl Zeiss, Göttingen). 
Measurements of the spore balls and spores were performed 
at ×400. Measurements are reported as maxima and minima 
in parentheses, and the mean plus and minus the standard 
deviation of a number of measurements given in parenthesis; 
the means are given in italics (Table 3).

RESULTS

The isolated yeasts from fresh Moesziomyces bullatus 
samples from Echinochloa crus-galli and E. muricatus were 
fast-growing on SAM medium. The colour of the yeasts was 
cream to light reddish, and the shape of the colonies was 
regular and roundish.

A phylogenetic hypothesis for the sampled Moesziomyces 
species and the cultivated yeast asexual morphs is given 
in Fig. 1. The results of the Minimum Evolution, Maximum 
Likelihood and Bayesian Analyses were congruent. The clade 
comprising the type of M. aphidis also includes M. bullatus 
s. str. from Echinochloa crus-galli and E. muricata, as well 
as the sequence of the type of M. rugulosa, an isolate of 
Moesziomyces from Albugo laibachii on Arabidopsis thaliana 
and many other isolates not determined to the species 
level from various sources. While visual inspection of the 
alignments revealed that there was some sequence variation 
within the Moesziomyces bullatus clade, the relationships of 
the four subgroups was not resolved apart from the clustering 
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Table 3. Measurements from 25 spore balls and 100 teliospores for collections of Moesziomyces bullatus on Echinochloa crus-galli from two 
different clades.

Moesziomyces bullatus ex Echinochloa crus-galli, Moesziomyces bullatus ex Echinochloa crus-galli, 
GLM-F105814 GLM-F105812

sporeballs spores sporeballs spores
No. length breadth l/b length breadth l/b length breadth l/b length breadth l/b

1 148,5 100 1,49 7,5 7,5 1 120,5 76,5 1,58 8,5 7 1,21

2 111 91 1,22 8 7,5 1,07 81 68,5 1,18 8 7,5 1,07

3 79 65 1,22 7 7 1 64,5 55,5 1,16 7,5 7 1,07

4 118,5 97,5 1,22 8,5 7 1,21 58,5 53 1,1 8 7 1,14

5 58,5 58,5 1 8 6 1,33 97 53,5 1,81 7,5 7,5 1

6 100,5 83,5 1,2 8 7,5 1,07 76 61,5 1,24 8 6 1,33

7 125 113 1,11 7,5 7 1,07 94 87 1,08 7,5 6,5 1,15

8 93 89,5 1,04 7,5 7 1,07 61 44 1,39 7,5 6,5 1,15

9 95,5 59 1,62 8 6 1,33 101,5 69 1,47 7,5 6,5 1,15

10 82 61 1,34 7 7 1 101 74 1,36 8,5 6 1,42

11 102 69,5 1,47 9 7 1,29 144,5 73,5 1,97 8 6,5 1,23

12 53 41,5 1,28 9 7 1,29 84 66 1,27 9 7 1,29

13 95 78 1,22 8,5 6,5 1,31 90 69,5 1,29 8 6,5 1,23

14 53 41,5 1,28 7,5 6,5 1,15 83,5 61 1,37 8,5 6,5 1,31

15 138,5 96,5 1,44 8,5 6,5 1,31 96,5 51,5 1,87 8,5 7,5 1,13

16 93 71,5 1,3 7 7 1 111,5 78,5 1,42 7,5 6,5 1,15

17 115 91 1,26 7 6,5 1,08 91,5 68,5 1,34 7 6,5 1,08

18 71 49,5 1,43 7,5 6,5 1,15 68,5 49,5 1,38 7 5,5 1,27

19 111,5 104 1,07 7,5 7 1,07 96 82,5 1,16 8,5 7 1,21

20 117,5 95,5 1,23 7,5 7,5 1 84,5 78,5 1,08 7,5 7 1,07

21 92,5 75,5 1,23 7,5 7 1,07 86,5 62 1,4 7,5 6,5 1,15

22 80,5 68 1,18 8 7 1,14 122,5 86 1,42 8,5 7,5 1,13

23 156,5 97,5 1,61 8 7 1,14 113,5 78,5 1,45 7,5 5,5 1,36

24 58,5 53,5 1,09 8,5 7 1,21 106 105 1,01 8 6 1,33

25 52,5 52 1,01 8,5 6 1,42 105,5 84,5 1,25 7 6 1,17

26 7 6,5 1,08 7 7 1

27 7,5 7,5 1 6,5 6,5 1

28 8,5 8 1,06 6,5 5,5 1,18

29 6,5 6 1,08 8,5 7,5 1,13

30 7 6 1,17 8 6,5 1,23

31 7,5 6 1,25 8 6 1,33

32 8 7,5 1,07 7,5 6,5 1,15

33 7 6,5 1,08 7 6,5 1,08

34 7 6,5 1,08 8,5 8 1,06

35 8,5 7,5 1,13 8 7,5 1,07

36 7 6 1,17 8 7,5 1,07

37 7,5 6 1,25 8,5 7 1,21

38 7 6 1,17 8 7 1,14

39 7,5 6,5 1,15 8 6,5 1,23

40 8 6,5 1,23 6,5 6 1,08

41 6,5 6 1,08 7 7 1

42 6,5 6 1,08 8,5 6 1,42

43 8,5 6,5 1,31 7 6,5 1,08

44 8,5 7,5 1,13 7 7 1

45 7,5 6,5 1,15 8 6,5 1,23

46 8,5 7 1,21 8,5 7 1,21
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Table 3. (Continued).

Moesziomyces bullatus ex Echinochloa crus-galli, Moesziomyces bullatus ex Echinochloa crus-galli, 
GLM-F105814 GLM-F105812

sporeballs spores sporeballs spores

No. length breadth l/b length breadth l/b length breadth l/b length breadth l/b

47 7 7 1 7,5 6,5 1,15

48 7 6,5 1,08 8 7,5 1,07

49 6,5 6,5 1 8 6 1,33

50 9 7 1,29 7,5 7 1,07

51 8 6 1,33 6 5,5 1,09

52 8 6 1,33 7,5 6 1,25

53 7,5 7 1,07 7 7 1

54 7 6,5 1,08 8,5 6,5 1,31

55 7 7 1 8 8 1

56 9 7,5 1,2 8 7 1,14

57 7,5 6,5 1,15 7 6,5 1,08

58 7,5 6,5 1,15 7 7 1

59 8 6,5 1,23 7,5 6,5 1,15

60 8 6,5 1,23 7,5 7 1,07

61 7,5 6,5 1,15 7,5 6,5 1,15

62 8,5 7 1,21 8,5 7 1,21

63 8 8 1 8,5 7,5 1,13

64 8 7,5 1,07 8 6,5 1,23

65 7,5 7,5 1 9 7 1,29

66 7,5 7,5 1 9 7,5 1,2

67 7,5 7 1,07 7,5 7 1,07

68 7 5,5 1,27 7,5 5,5 1,36

69 8,5 7 1,21 7,5 6 1,25

70 7,5 7 1,07 7,5 6,5 1,15

71 8 7,5 1,07 8,5 6,5 1,31

72 8 7 1,14 8,5 6,5 1,31

73 8 6,5 1,23 9,5 7 1,36

74 7,5 7 1,07 8,5 6,5 1,31

75 7,5 7 1,07 8,5 7 1,21

76 8 7 1,14 9,5 6,5 1,46

77 7,5 7 1,07 9 7 1,29

78 8 6,5 1,23 7,5 6,5 1,15

79 8,5 6,5 1,31 9 7 1,29

80 8 6 1,33 7,5 7 1,07

81 8 5,5 1,45 9 7 1,29

82 8 5,5 1,45 8 6,5 1,23

83 7 6,5 1,08 8,5 6,5 1,31

84 7 6,5 1,08 7,5 6,5 1,15

85 8,5 7 1,21 7,5 7 1,07

86 7,5 5,5 1,36 9 7 1,29

87 9 6,5 1,38 8 8 1

88 7,5 6,5 1,15 8,5 7 1,21

89 7 6 1,17 8,5 7 1,21

90 8 8 1 7,5 7,5 1

91 9 6,5 1,38 7,5 6 1,25

92 8 7,5 1,07 8,5 6,5 1,31
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Table 3. (Continued).

Moesziomyces bullatus ex Echinochloa crus-galli, Moesziomyces bullatus ex Echinochloa crus-galli, 
GLM-F105814 GLM-F105812

sporeballs spores sporeballs spores

No. length breadth l/b length breadth l/b length breadth l/b length breadth l/b

93 8 7,5 1,07 9 6,5 1,38

94 7,5 7,5 1 7,5 6 1,25

95 7,5 6,5 1,15 6,5 6 1,08

96 8 7,5 1,07 7,5 7 1,07

97 7,5 7 1,07 8,5 7,5 1,13

98 8,5 7 1,21 7,5 6 1,25

99 10 7 1,43 7,5 6,5 1,15

100 7,5 7,5 1 8 7 1,14

of Pseudozyma aphidis and the majority of M. bullatus isolates 
with the clade containing the type of P. rugulosa. Collections 
from E. crus-galli with smut symptoms were present in two 
different clades. The morphological investigation of a sexual 
morph from each clade (GLM-F105812 and GLM-F105814) 
revealed no morphological differences. Moesziomyces 
bullatus clustering within the majority of M. aphidis had the 
following spore characteristics: sporeballs variable in shape 
and size, 52.5–156.5 x 41.5–113 µm, spores ovoid, globose, 
often irregular, pale yellow-brown, (6.5–)7–7.8–8.5(–10) 
× (5.5–)6–6.8–7.5(–8) µm, a length/breadth ratio of 1.01–
1.15–1.39 (n = 100) (Fig. 2). In comparison, the collection 
of M. bullatus clustering together with the sequence of the 
type species of M. rugulosus showed the following spore 
characteristics: sporeballs variable in shape and size, 58.5–
144.5 x 44–105 µm, spores ovoid, globose, often irregular, 
pale yellow-brown, (6–)7–7.9–8.5(–9.5) × (5.5–)6–6.7–7.5(–
8) µm, a length/breadth ratio of 1.01–1.19–1.38 (n = 100) 
(Fig. 2). The sister group to M. bullatus was formed by M. 
antarcticus. The four lineages of M. bullatus formed an 
isolated clade with high to maximum support in all analyses 
together with samples classified as M. antarcticus. 

Apart from the groups mentioned above, four additional 
distinct groups were revealed. Two of these corresponded to 
lineages formed by sexual smuts of the genus Moesziomyces 
isolated from plants with smut disease symptoms. One 
of these corresponded to M. bullatus s. lat. on Paspalum 
distichum, and the other to Eriomoeszia eriocauli. The 
remaining two lineages formed a monophyletic clade with 
high support in Minimum Evolution Analysis. One lineage 
included sequences of yeasts classified as M. parantarcticus, 
the other a sexual morph of a plant pathogenic fungus of the 
genus Moesziomyces from Pennisetum glaucum, as well 
asexual morphs isolated from symptom-free barley and a 
preterm infant.

DISCUSSION

Moesziomyces is a morphologically well-defined genus in the 
smut fungi, mainly characterised by ruptured sterile cells in 
the sori around the spores. The genus was believed to be 

monotypic by Vánky (2012), but phylogenetic investigations of 
the past decade have shown that several species previously 
assigned to the asexually typified yeast genus Pseudozyma, 
were closely related to  Moesziomyces bullatus (Begerow et 
al. 2000, 2006, Wang et al. 2006, 2015). In the latest edition 
of the International Code of Nomenclature for algae, fungi and 
plants (ICN) it is ruled that the dual naming for asexual and 
sexual morphs of fungi has been discontinued (McNeill et al. 
2012). Consequently, Wang et al. (2015) attempted to resolve 
the names of species placed in the genus Pseudozyma as far 
as possible, and combined those related to Moesziomyces 
bullatus s.lat. into Moesziomyces.

The yeast asexual morphs were, for example, found to 
live epiphytically on different hosts (Boekhout 1995), but also 
to occur on a variety of other substrates. Due to their asexual 
reproduction with pullulating and division, it is possible for 
them to colonize suitable habitats in a short period of time. 
Of these yeasts, Pseudozyma aphidis is often considered 
as a biocontrol agent for plant pathogenic fungi (Avis et 
al. 2001, Buxdorf et al. 2013). Thus it is noteworthy that 
one isolate of this species co-occurred in Albugo laibachii 
lesions on Arabidopsis thaliana, indicating only no or only 
limited antagonism against this specialised white blister rust 
species (Thines et al. 2009). It is commonly believed that 
most Pseudozyma species have lost pathogenicity, which is 
seemingly supported by recent genomic analyses (Lefebvre 
et al. 2013). However, it should be noted that if a different 
start codon is taken for translation than the one predicted, all 
Pseudozyma yeasts included by Lefebvre et al. (2013) have 
a functional copy of PEP1, a conserved effector among smut 
fungi of the Ustilaginales (Sharma et al. 2014, Hemetsberger 
et al. 2015), suggesting the possibility of a misannotation 
of the start codon. In-depth bioinformatic analyses and 
functional testing will be needed to clarify this situation.

Deducing the conspecificity of Moesziomyces bullatus 
with Pseudozyma aphidis and P. rugulosa was not possible 
for Wang et al. (2015), as they did not include sequences 
from the type host of M. bullatus, Echinochloa crus-galli, 
but only from M. verrucosus on Paspalum distichum, which 
they erroneously assumed to be conspecific with M. bullatus. 
However, the smut sexual morphs from the type host, E. crus-
galli from Germany, are placed in two of the four subclusters 
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AB204896 P. aphidis ex Japanese pear fruit
JQ743064 P. aphidis ex human pulmonary infection

AB704889 P. aphidis ex Saccharum officinarum
HQ662536 P. aphidis ex Leucaena glauca
EU105207 P. aphidis ex human
AB089362 P. aphidis ex human blood
HQ848933 P. aphidis ex human
KC282385 P. aphidis ex Fallopia japonica
KM610219 P. aphidis ex blood culture from hospitalized patient

AB500693 P. sp. ex Hyoscyamus muticus
EU002890 P. sp. ex Coffea arabica
HQ647299 P. aphidis ex Leucaena glauca
AB704890 P. aphidis ex Saccharum officinarum
KM268868 P. aphidis ex poplar leaf
KM555221 P. aphidis ex Forcipomia taiwana
KP269028 P. aphidis ex seaweeds
HQ260042 Uncultured fungus ex Ericaceae roots
AF294699 P. aphidis strain ex aphid secretion, ex-type sequence
FN424100 P. aphidis ex Neoreglia cruenta
AB704878 P. aphidis ex Saccharum officinarum
KF973199 P. aphidis ex giant panda secrete

HQ832804 P. aphidis ex Camellia sinensis foliar lesions
AB500690 P. sp. ex Hyoscyamus muticus
GU390690 P. aphidis ex Echinochloa crus-galli
JN942666 P. aphidis ex aphid secretion on Solanum pseudocapsicum
KF443199 P. aphidis ex mulberry leaf

KY930224 P. sp. ex Arabidopsis thaliana infected with Albugo laibachii
JQ425372 P. aphidis ex Citrus leaf

DQ778919 P. sp. ex Coffea arabica
KY424427 M. bullatus ex Echinochloa crus-galli isolate A3
KY424428 M. bullatus ex Echinochloa crus-galli
KY424429 M. bullatus ex Echinochloa crus-galli
KY424430 M. bullatus ex Echinochloa muricatus
KY424431 M. bullatus ex Echinochloa muricatus
KY424432 M. bullatus ex Echinochloa muricatus
KY424433 M. bullatus ex Echinochloa muricatus
KY424434 M. bullatus ex Echinochloa crus-galli
KY424435 M. bullatus ex Echinochloa crus-galli
KY424436 M. bullatus ex Echinochloa crus-galli
KY424437 M. bullatus ex Echinochloa crus-galli isolate A1
KY424438 M. bullatus ex Echinochloa crus-galli isolate A10
AB089370 P. rugulosa ex mouldy Zea mays leaf
JN942667 P. aphidis
LC053989 P. sp. ex Saccharum officinarum leaves
AF294697 P. rugulosa ex leaf of corn, ex-type sequence

GU975792 P. sp. ex shoot of tip pepper
KY424439 M. bullatus ex Echinochloa crus-galli No 1642
HE650886 P. rugulosa ex plant leaf
DQ178645 P. sp. ex marine environment
AM160637 P. sp. ex Helicoverpa armigera caterpilla gut

AB235999 Uncultured fungus ex cleaned rice
KF493994 Uncultured Ustilago ex tomato rhizosphere
KC834821 P. sp. ex marine sediment
JX094775 P. antarctica
JN942669 P. antarctica
AB089360 P. antarctica ex unpolished Japanese rice
AF294698 P. antarctica ex Antarctica sediment, ex-type sequence

KR047769 P. sp.
AY641557 P. antarctica ex Albizia julibrissin flower
AB089358 P. antarctica ex lake sediment

KF922220 P. sp. ex pharmaceutical effluent
AY740153 M. bullatus ex Paspalum distichum

AY740041 Eriomoeszia eriocauli ex Eriocaulon cinereum
JN544036 P. parantarctica
KF619567 P. parantarctica ex yam tuber steep water
KP132543 P. parantarctica

AB089356 P. parantarctica ex human blood
NR 130693 P. parantarctica, ex-type sequence
HQ436080 Uncultured fungus clone ex Axonopus compressus soil

HG532070 P. sp. ex barley kernels and leaf
KY424440 M. bullatus ex Pennisetum glaucum No 833
KF926673 Moesziomyces bullatus ex human preterm low birth weight infant
DQ831013 Moesziomyces bullatus

DQ008954 P. hubeiensis ex Magnolia denudata wilting leaf
AY740038 Macalpinomyces eriachnes ex Eriachne helmsii

71/-/-

63/-/-

0.02

81/89/0.96

63/-/0.64

99/92/0.92

98/65/0.98

97/98/1

70/67/0.91

99/97/1 -/91/0.99

-/64/0.76

64/72/0.98

99/98/1

99/97/0.82

94/92/0.99

99/95/0.96

86/-/-

76/-/0.64

Moesziomyces 
bullatus

Moesziomyces 
antarcticus

Moesziomyces verrucosus
Moesziomyces eriocauli

Moesziomyces 
parantarcticus

Moesziomyces 
penicillariae

Fig. 1. Phylogenetic tree based on Minimum Evolution analyses of nrITS sequences of Moesziomyces spp., rooted with Macalpinomyces 
eriachnes. Numbers on branches denote bootstrap support in Minimum Evolution, Maximum Likelihood and a posteriori probabilities from 
Bayesian Analyses. Values below 55 % are not shown. The bar indicates expected substitutions per site. GenBank numbers precede taxon 
names, and are followed by the name of the host or isolation source of the fungus.
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of a larger cluster, which is interpreted here as representing 
M. bullatus. It is noteworthy that three of the four subclusters 
of M. bullatus contain environmental samples from various 
sources. In conjunction with the ease of cultivation observed 
for M. bullatus from E. crus-galli, it is concluded that unlike 
the vast majority of genera of Ustilaginales, the asexual yeast 
morph plays a major role as a proliferating life-cycle stage 
in Moesziomyces and that the plant-parasitic dikaryophase 
is probably mainly important for maintaining the possibility 
of sexual recombination. As the two subclades previously 
referred to as M. aphidis and M. rugulosus are interspersed 
with the morphologically identically lineages of M. bullatus 
from E. crus-galli, they are probably better included in M. 
bullatus until more sequence data become available. It seems 
probable that, with the inclusion of additional smut samples 
from Echinochloa, additional smut-causing members of the 
subclades will be discovered. Sampling in Africa seems 
to be promising in this respect, as the species diversity of 
Echinochloa is highest on this continent. Also, the notion 
that yeasts of the subclade containing the ex-type culture 
of Pseudozyma aphidis can withstand high temperatures, 
such as the human body temperature, is suggestive of a 
subtropical to tropical origin of this lineage.

Further, our investigations show that the older name M. 
eriocauli for Eriomoeszia eriocauli, should be taken up again, 
as this species was found embedded within Moesziomyces.

With the synonymy of the generic name Eriomoeszia and 

the reappraisal of the hardly used Moesziomyces names of 
the smut fungi of Paspalum and Pennisetum, Moesziomyces 
now includes six species. It is, however, likely that additional 
species will have to be added because smut samples from 
some Poaceae genera listed as host plants for the M. bullatus 
complex in Vánky (2012) could not be included in the current 
study, such as smuts from Leersia, Panicum, Polytrias, and 
Uranthoecium. Given the apparently high host specificity of 
Moesziomyces species, it seems likely that these pathogens 
represent species independent from M. bullatus.

TAXONOMY

Based on the phylogenetic data presented here, the following 
nomenclature and taxonomic changes are made.

Moesziomyces antarcticus (Goto et al.) Q.M. Wang 
et al., Stud. Mycol. 81: 81 (2015). 

Basionym: Sporobolomyces antarcticus Goto et al., 
Mycologia 61: 759 (1969).

Synonyms: Candida antarctica (Goto et al.) Kurtzman et al., 
Yeasts: 86 (1983).

Vanrija antarctica (Goto et al.) R.T. Moore, Bibltheca Mycol. 
108: 167 (1987).

Pseudozyma antarctica (Goto et al.) Boekhout, J. Gen. Appl. 
Microbiol. 41: 364 (1995).

B

C
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µm

10 
µm

10 
µm
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B 20 µm C 10 µm

10 µmFE
20 µm

D

A

Fig. 2. Sori and spores of Moesziomyces bullatus on Echinochloa crus-galli. A, D. Sori. B, E. Teliospore balls. C, F. Teliospores. A–C 
(GLM-F105812), D–F (GLM-F105814). 
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Moesziomyces bullatus (J. Schröt.) Vánky, Bot. 
Notiser 130: 133 (1977).

Basionym: Sorosporium bullatum J. Schröt., Abh. Schles. 
Ges. Vaterl. Cult., Abth. Naturwiss. 72: 6 (1869).

Synonyms: Tolyposporium bullatum J. Schröt, in Cohn., 
Krypt. Fl. Schles. 3(1): 276 (1887).

Sterigmatomyces aphidis Henninger & Windisch, Arch. 
Microbiol. 105: 50 (1975).

Tolypoderma bullata (J. Schröt.) Thirum. & M.J. O`Brien, 
Friesia 11: 190 (1978) ["1977“].

Sporothrix rugulosa Traquair et al., Canad. J. Bot. 66: 929 
(1988).

Stephanoascus rugulosus Traquair et al., Canad. J. Bot. 66: 
929 (1988).

Pseudozyma aphidis (Henninger & Windisch) Boekhout, J. 
Gen. Appl. Microbiol. 41: 364 (1995).

Pseudozyma rugulosa (Traquair, et al.) Boekhout & Traquair, 
J. Gen. Appl. Microbiol. 41: 364 (1995).

Moesziomyces aphidis (Henninger & Windisch) Q.M. Wang 
et al., Stud. Mycol. 81: 81 (2015).

Moesziomyces rugulosus (Traquair, et al.) Q.M. Wang et al., 
Stud. Mycol. 81: 81 (2015).

Moesziomyces eriocauli (G.P. Clinton) Vánky, Nordic 
J. Bot. 6: 71 (1986).

Basionym: Tolyposporium eriocauli G.P. Clinton, Rhodora 2: 
82 (1901).

Synonyms: Dermatosorus eriocauli (G.P. Clinton) M.D. 
Whitehead & Thirum., Mycologia 64: 128 (1972).

Tolypoderma eriocauli (G.P. Clinton) Thirum., Friesia 11: 191 
(1978).

Eriomoeszia eriocauli (G.P. Clinton) Vánky, Mycol. Balcanica 
2: 106 (2005).

Moesziomyces parantarcticus (Sugita et al.) Q.M. 
Wang et al., Stud. Mycol. 81: 81 (2015).

Basionym: Pseudozyma parantarctica Sugita et al., Microbiol. 
Immun. 47: 186 (2003).

Moesziomyces verrucosus (J. Schröt.) J. Kruse & 
Thines, comb. nov. 

MycoBank MB819410
Basionym: Ustilago verrucosa J. Schröt., Hedwigia 35: 214 

(1896).
Synonyms: Tolyposporium evernium Syd., Ann. Mycol. 37: 

443 (1939).
Tolyposporium paspali Langdon, Univ. Queensland Dept. 

Biol. Pap 2(9): 4 (1948).
Moesziomyces evernius (Syd.) Vánky, Bot. Notiser 130: 135 

(1977).
Tolyposporidium evernium (Syd.) Thirum. & Neerg., Friesia 

11: 180 (1978) [“1977”].

Moesziomyces penicillariae (Bref.) Vánky, Bot. 
Notiser 130: 135 (1977).

Basionym: Tolyposporium penicillariae Bref., Unters. 
Gesammtgeb. Mykol. 12: 154 (1895). 

Synonym: Tolyposporidium penicillariae (Bref.) Thirum. & 
Neerg., Friesia 11: 181 (1978) [“1977”].
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