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Goldstein-Kac telegraph processes with random speeds: Path probabilities, likelihoods, and
reported Lévy flights
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The Goldstein-Kac telegraph process describes the one-dimensional motion of particles with constant speed
undergoing random changes in direction. Despite its resemblance to numerous real-world phenomena, the singular
nature of the resultant spatial distribution of each particle precludes the possibility of any a posteriori empirical
validation of this random-walk model from data. Here we show that by simply allowing for random speeds,
the ballistic terms are regularized and that the diffusion component can be well-approximated via the unscented
transform. The result is a computationally efficient yet robust evaluation of the full particle path probabilities
and, hence, the parameter likelihoods of this generalized telegraph process. We demonstrate how a population
diffusing under such a model can lead to non-Gaussian asymptotic spatial distributions, thereby mimicking the
behavior of an ensemble of Lévy walkers.
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I. INTRODUCTION

The applications of random walk (RW) models are remark-
ably diverse both within and across disciplines [1,2]. From
the passive movement of biological organisms in turbulent
media to the fluctuation of stock market prices, this ubiquity
is due in part to the huge flexibility one has in augmenting
and adapting the original simple model of Brownian motion to
different contexts [3]. For instance, the common presence of
directional biases in nature (e.g., particles in a flowing river,
bacterial chemotaxis, etc.) can be modelled by incorporating
either a drift in the frame of reference or a nonisotropic
distribution for the individual steps [4]. Against the plethora
of models and aided by the increasing availability of empirical
data, there is a need for statistically robust model selection
and validation methods [5]. Often the choice of model
has nontrivial implications on, and potentially introduces
considerable biases into, our understanding of the mechanisms
underlying the phenomenological observations.

A case in point is the relatively recent interest in Lévy
flights as alternatives to “classical” RW models [6]. The
evolutionary selection pressure exerted by the superior search
efficiency from having random step-lengths with infinite
variance suggests that foraging animals, for example, are more
likely to forage along Lévy flight paths. Despite a host of
observations and experiments supporting this claim [7,8], there
are others who have argued that the data can be adequately
explained, or even better explained, by using variants of
classical RW models [9,10].

In this paper we set up a framework for performing model
selection on a class of RW models. In contrast to methods that
utilize the spatial statistics of point particles such as the mean-
squared displacement, we develop an approach based on the
space of paths. For discrete Markovian random walks the two
approaches are identical; for certain highly persistent random
walks where the spatial distribution of each particle depends on
its full path history, the former point-based approach—despite
its common usage—can be misleading.
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The class of models we consider are the Goldstein-Kac
telegraph process and its generalizations [11,12]. In its basic
form, this RW model describes a particle moving with
constant speed undergoing random changes in direction. The
two common real-world features—bias and persistence—are
naturally accommodated by the model [13]; the former can
be introduced by modifying the distribution of the direction
coordinates while the latter is already present on account
of the ballistic motion of each particle. In addition to
this close resemblance to real-world phenomena [14], there
exist closed-form expressions for the spatial distributions of
particles and, hence, exact expressions for the model parameter
likelihoods. However, in the practical context of inferring
the model parameters from data, the standard Monte Carlo
sampling or other optimization routines are ruled out due to
the δ function terms representing the ballistic particles in the
likelihood. We show how one can avoid this issue by treating
the particle speed as a random variable [15,16]. Although
the likelihood is no longer available in closed form, we are
able to propagate the introduced randomness through the
constant-speed expressions via the unscented transform [17],
thus efficiently obtaining robust approximations in their place.
On top of regularizing the pathological singular measures
in the likelihood, this generalized model has, arguably, the
fortunate advantage of being more realistic. Apart from, say,
the speed of light in certain physical applications of the model
[13], the relevant entities in potential biological and financial
applications certainly do not move at constant speeds [18].

The rest of the paper is organized as follows: In Sec. II
we begin by outlining the generalized telegraph process RW
model that we will use for the remainder of the paper. We
then set up the parameter inference framework based on path
probabilities and derive the spatial probability expressions
based on random speeds and the unscented transform. In
Sec. III we validate our results via a set of simulations and
demonstrate its use as a tool to select between different random
walk models; here we consider different models based on the
number of modes in their speeds distributions. We give an
application of the method by analyzing the historical time
series of commodities prices and show, at least in the context of
this generalized Goldstein-Kac telegraph process RW model,
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how a normally diffusing population with speed variations
can mimic the behavior of an ensemble of Lévy walkers. We
conclude in Sec. IV with a discussion.

II. A GENERALIZED TELEGRAPH PROCESS

A. Parameters of random walk model

Let x(t) ∈ Rn be the position vector of a particle at time
t . The particle moves in a straight line with constant speed
|v| ≡ |ẋ| ≡ |dx/dt | and directional angle vector φ, changing
directions according to a Poisson process with fixed rate λ,
i.e., the durations t of the ballistic segments are distributed
according to

t ∼ λe−λt . (1)

A heterogeneous population can be modelled by treating |v|
and λ as random variables.

The random directional changes are governed by a position-
specific conditional probability density function Qx(φj |φj−1),
with j being an arbitrary index for segments between direc-
tional changes. We decompose Qx as

Qx(φj |φj−1) = αP (φj − φj−1) + (1 − α)Bx(φj ), (2)

where B(·) and P (·) are the bias and persistent mixture com-
ponents, respectively, and α is the mixture weight satisfying
0 � α � 1. The localized nature of many bias sources, e.g.,
point attractors, is the reason Bx is, in general, position specific.
To keep the model simple, we assume that B is independent of
v. For isotropic random flights Bx(φ) = 1/Vn−1 with Vn−1

being the volume of the (n − 1)-dimensional sphere. The
isotropy can be broken in two ways: by adding a drift term to
the velocity v → v + vdrift or by reintroducing a φ dependence
into Bx . Persistence in the motion is naturally incorporated in
the ballistic nature of the random flight; what P (·) represents
can be loosely interpreted as imperfect or “noisy” persistence.

In summary, this random flight model is fully specified by
the set

{|v|,λ,α,P,Bx,vdrift} . (3)

In this paper we adopt the following simplifications: First we
assume noiseless persistence with P (φj − φj−1) ≡ δ(φj−1).
This is equivalent to setting

λ → λ′ = λ(1 − α),
(4)

Qx → Q′
x = Bx.

We also assume that the variation in v accounts for all the
heterogeneity, with λ fixed across the population, and that
the bias can be fully characterized by Bx with vdrift = 0. The
simplified model is now given by

� = {|v|,λ′,Bx}. (5)

In one dimension (n = 1), the model simplifies further. Here
the bias and rate of directional change can be reparametrized
as two separate switching rates—from left (L) to right (R)
moving directions, and vice versa, i.e.,

{λ′,B} → {λL→R,λR→L} . (6)

For ease of computation when employing the unscented
transform (see below), we assume that |v| is specified by a

mixture of log-normal distributions. In the case, say, of a single
distribution with mean μ|v| and variance σ 2

|v|, the random flight
is fully specified by the four-parameter set{

μ|v|,σ 2
|v|,λL→R,λR→L

}
. (7)

In the case where λL→R = λR→L and σ 2
|v| → 0 one recovers

the original Goldstein-Kac telegraph process.

B. Parameter inference framework

In this section we describe a framework for inferring the
random flight model parameters from empirical data. We adopt
a Bayesian approach where the objective is the posterior over
the parameters in Eq. (5).

Let the dataset comprise of a set of N paths {πi}Ni=1.
Without loss of generality, we assume that the corresponding
N particles are simultaneously observed at T time points
t1, . . . ,tT following an initial observation at t0, i.e., each path
is represented by the vector

πi ≡ (xi1,xi2, . . . ,xiT ) , (8)

where xia is the ath observation, at time ta , of the position of
particle i. For independent paths, the likelihood L(�) is simply
a product of the individual path probabilities q(πi) condition
on the set �, the set of initial positions {xi0}Ni=1, and the set
of prior probability distributions of the velocities {s(vi0)}Ni=1,
with the latter representing one’s uncertainty of the particle
velocities vi0 at the initial time t0. Typically, one assumes
a stationary initial state by adopting the uninformative prior
s(vi0) = δ(0). With the abbreviation �′

i ≡ {�,xi0,s(vi0)}, we
write

L (�) =
N∏

i=1

q(πi |�′
i). (9)

Each path probability can be factorized in typical fashion as

q(π |�′) ≡ q(x1,x2, . . . ,xT |�′)

= q(x1|�′)q(x2|x1,�
′) × · · ·

× q(xT |xT −1, . . . ,x1,�
′). (10)

Note that, for individual paths, for sake of clarity, we have
dropped the path indices, rewriting πi → π , xia → xa , and
via → va .

Now the conditional probability factors in Eq. (10) can
be reexpressed as follows: Beginning with the final time
observation xT , the condition on observations at all preceding
times {t1, . . . ,tT −1} and the initial conditions �′ is equivalent
to conditioning on the position xT −1 and the probability
distribution s(vT −1) at time tT −1, i.e., we have

q(xT |xT −1, . . . ,x1,�
′)

= q(xT |xT −1,s(vT −1|xT −1, . . . ,x1,�
′),�′). (11)

This equivalence is justified and highly intuitive given that
the data come from a Markov process where the state space
components are the position x and the velocity v. The
seemingly non-Markovian condition on the entire path history
(x1, . . . ,xT −1) in the probability expressions in Eq. (11) serves
only to propagate the initial velocity uncertainty at time t0 to
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the current time tT −1; schematically we write

s (v0)
via x1,x2,...,xT −2−−−−−−−−→ s (vT −1) . (12)

Similarly, the conditional velocity probability distribution
s(·) in Eq. (11) is itself conditional on observations at times
{t1, . . . ,tT −2) and can be expanded as

s(vT −1|xT −2, . . . ,x1,�
′) = s(vT −1|xT −2,s(vT −2|xT −3, . . . ,x1,�

′),�′)

= s(vT −1|xT −2,s(vT −2|xT −3,s(vT −3|xT −4, . . . ,x1,�
′),�′),�′)

...

= s(vT −1|xT −2,s(vT −2| · · · s(v2|x1,�
′) · · · ,�′),�′). (13)

Therefore, the joint probability in Eq. (10) can be deter-
mined via the iterative computation starting from the initial
position observation and velocity prior,

{Θ, x0, s(v0)} q(x1 |Θ )

s(v1 |Θ ) q(x2 |x1, Θ )

s(v2 |x1, Θ ) q(x3 |x2, x1, Θ )

...
...

x1

x2

x3

x1

x2

x3

The labels on the arrows above indicate the additional path data
required to determine the following expression in the chain.
The posterior distribution over the random walk parameters
� can be determined in the usual way once the likelihood is
obtained via Eq. (10). The task at hand is, therefore, to find
expressions for the horizontal and vertical arrows, building
up the likelihood sequentially. Note that the velocity itself is
never observed, hence the need for distributions s(v). In the
next section, we derive the expressions for s and q in the case
of one-dimensional random walks.

C. Spatial distributions

1. Constant speed spatial distributions

Our approach is to first determine the likelihood for a
deterministic constant speed, i.e., μ|v| = const. and σ|v| →
0, and then introduce the randomness via an appropriate
approximation.

Let L(x,t) and R(x,t) be the spatial distributions of “left-
moving” and “right-moving” particles at time t satisfying, by
definition,

∫ ∞
−∞ L(x,t)dx = ∫ ∞

−∞ R(x,t)dx = 1. Abbreviating
the switching rates in Eq. (7) as λ1 ≡ λL→R and λ2 ≡ λR→L,
the transport equations are

∂tR + v∂xR = λ1L − λ2R, (14)

∂tL − v∂xL = λ2R − λ1L. (15)

By using the substitution 
 := R + L and � := R − L, we
rewrite these as

∂t
 + v∂x� = 0, (16)

∂t� + v∂x
 = λ1 (
 − �) − λ2 (
 + �) . (17)

Without loss of generality, we let the initial location of the
particle be the origin x = 0, i.e.,

�(x0,t0) = cδ(0), (18)

where δ is the Dirac delta function and c the difference in
probabilities of right and left movers at time t = t0. As detailed
in the appendix, we solve the generalized telegraph equations
(16) and (17) to obtain


 (x,t) = 1

4v
e

x
2v

(λ1−λ2)− t
2 (λ1+λ2)

×
{
I0 (C1) [(λ1 + λ2) − c (λ1 − λ2)]

+ 2I1(C1)

[
λ1λ2t

C1
(1 − c) − cvC1

x − vt

]}
H(vt − x)

+ 1

2
(1 − c) e−λ1t δ (x + vt)

+ 1

2
(1 + c) e−λ2t δ (x − vt) , (19)

� (x,t) = 1

4v
e

x
2v

(λ1−λ2)− t
2 (λ1+λ2)

×
{
I0 (C1) [− (c + 1) (λ1 + λ2) + (λ1 − λ2)]

− 2vC1I1 (C1)

x − vt

}
H (vt − x)

− 1

2
(1 − c) e−λ1t δ (x + vt)

+ 1

2
(1 + c) e−λ2t δ (x − vt) , (20)

where C1 ≡ [λ1λ2(t2 − x2/v2)]1/2. I0 and I1 are the modified
Bessel functions of orders 0 and 1, respectively, H(·) is the
Heaviside step function, and δ(·) the δ function corresponding
to ballistic particles that have not changed direction in the time
interval between measurements.

In the general notation of the iteration scheme in Sec. II B,
the analytic form of the horizontal and vertical computation
arrows are given by combinations of Eqs. (19) and (20).
Specifically,

q(xa|xτ−1, . . . ,x1,�
′) ≡ 
(xa − xa−1,ta − ta−1), (21)
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and

s(va|xa−1, . . . ,x1,�
′)

≡ 1

2

[
1 + � (xa − xa−1,ta − ta−1)


 (xa − xa−1,ta − ta−1)

]
δ (|v|)

+ 1

2

[
1 − � (xa − xa−1,ta − ta−1)


 (xa − xa−1,ta − ta−1)

]
δ (−|v|) , (22)

with the value of c in the 
 and � terms evaluated at ta−1.

2. Random speeds and the unscented transform

Now we treat the speed |v| as a random variable and assume
a single log-normal distribution with mean μ|v| and variance
σ 2

|v|, i.e.,

|v| ∼ p(|v|) = 1

|v|
√

2πσ̃ 2
e
− [log(|v|)−μ̃]2

2σ̃2 , (23)

with μ̃ = ln μ|v| − 1
2 ln(σ 2

|v|/μ
2
|v| + 1) and σ̃ 2 = ln(σ 2

|v|/μ
2
|v| +

1) the respective mean and variance of the corresponding
Gaussian variable log(|v|). Other more general random speed
models (e.g., bimodal distributions) can always be approxi-
mated by mixtures of log-normal distributions (see example in
Sec. III B 2).

We propagate the uncertainty in speed through Eqs. (19)
and (20) in two steps. First, the ballistic motion δ functions
are simply replaced by the corresponding probability density
functions of the random positions, i.e.,

δ(x ± vt) → qt (x) = 1

∓x
√

2πσ̃ 2
e
− [log(∓x/t)−μ̃]2

2σ̃2 H (∓x), (24)

where we have defined the density qt (x) by imposing
qt (x)dx ≡ p(|v|)d|v|.

In the second step, we introduce the variability into the
nonsingular, diffusion terms via the unscented transform (UT)
[17]. For an arbitrary nonlinear function [e.g., Eqs. (19) and
(20)] of one or more variables (in this case, |v|), the UT is
a function that maps the uncertainty in these independent
variables onto the codomain of the nonlinear function. This
image is given in terms of values for its mean and covariance
and takes a set of deterministically selected points—the sigma
points—as inputs. Here we will only require an approximation
of the mean, which makes for a much simpler, and hence highly
efficient, implementation in Monte Carlo simulations.

Since the speed is a scalar, the minimum requirement is for
three (=2n + 1 with n = 1) sigma points. However, due to the
discontinuities introduced by the step functions in Eqs. (19)
and (20), a more robust approximation using additional sigma
points is needed. We accomplish this by combining additional
auxiliary variables with a suitable orthogonal transformation
[19]. Since the log-transformed speed is normally distributed,
we select the sigma points by first transforming the speed
variable |v| → |ṽ| ≡ log(|v|). Then, for k auxiliary variables,
we construct the (k + 1)-dimensional covariance matrix S =
σ̃ 2

|v|1k+1. The 2k + 3 sigma points are given by

|ṽ|i =
⎧⎨
⎩

e(μ̃|v|) (i = 0)
e[μ̃|v|+

√
k+1+γ (U

√
S)1i ] (i = 1, . . . ,k + 1)

e[μ̃|v|−
√

k+1+γ (U
√

S)1i ] [i = k + 2, . . . ,2(k + 1)],
(25)

with corresponding weights

wi =
{ γ

s+1+γ
(i = 0)

1
2(s+1+γ ) (i 
= 0) ,

(26)

where γ is the UT scaling parameter, and U is an orthogonal
matrix which can be chosen to ensure that the sigma points
are evenly spaced in the space of the log-transformed speeds.
Specifically, U is the solution to the set of linear equations

UUT = 1k+1, with U =
(

a 2a · · · (k + 1) a

r U ′

)
,

(27)

where a ∈ R+, r ∈ Rk−1 such that |r|2 = 1 − a2, and U ′ a
k-dimensional orthogonal matrix. For instance, we solve for a

to obtain

a = 1√
12 + 22 + · · · + (k + 1)2

=
(

6

(k + 1)(k + 2)[2(k + 1) + 1]

) 1
2

. (28)

We then replace the diffusion terms in Eqs. (19) and (20) with
the weighted sums


 →
2(k+1)∑
i=0

wi
 (|ṽ|i) , � →
2(k+1)∑
i=0

wi� (|ṽ|i) . (29)

III. VALIDATION AND APPLICATIONS

A. Spatial distributions

1. Accuracy and robustness of the UT-approximated distribution

We verify the validity of Eqs. (19) and (20) with the two
substitutions (24) and (29) for different parameter values via
a set of random walk simulations. The results are given in
Fig. 1 and we see that the analytical results are in excellent
agreement with the simulated data. We note that, apart from
the first scenario, the shapes of the distributions are nontrivial
(specifically, non-Gaussian) and do not resemble the typical
random walk mean-squared displacement distribution of an
initial stationary particle.

Next we focus on a particular extreme scenario where
the discontinuities in the diffusion terms are not masked by
the regularized ballistic contributions. We construct this by
selecting a strong bias and an initial velocity distribution that
is entirely skewed in the opposite direction so that, after some
time, the majority of the particles will have undergone just a
single change in direction. As shown in Fig. 2, we see that the
UT with auxiliary variables and equally spaced sigma points is
a good approximation for the spatial distribution with random
speeds, even in this extreme case.

2. Non-Gaussianity and observed Lévy walks

The nontrivial functional form of the example spatial
distributions in the previous section stem largely from their
being mixtures of diffusion profiles, regularized ballistic
spatial spreads and, in certain cases, highly skewed initial
conditions. Nevertheless, it is well known that, as t → ∞, the
spatial distributions for fixed speeds |v| and symmetric initial
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FIG. 1. (Color online) Validation of 1D random walk distribu-
tions via simulations. (a) Unbiased (λ1 = λ2 = 2.5, σ|v| = 0.1,c =
0), (b) Biased (λ1 = 0.5, λ2 = 0.25, σ|v| = 0.1, c = 0.95), (c) Un-
biased, highly persistent (λ1 = λ2 = 0.1, σ|v| = 0.1,c = 0), (d) Un-
biased, highly persistent, with large speed variance (λ1 = λ2 =
0.05,σ|v| = 0.3,c = 1). We set μ|v| = 1.0 throughout and represent
the respective 
 and � distributions at t = 10. The solid red lines
indicate the theoretical values from (19) and (20) and the bars and
points the simulation values from 4 × 105 particle simulations per
scenario. We have used one auxiliary variable, hence five sigma
points, in the UT approximation.

direction of motion are Gaussian distributions. However, it
is straightforward to demonstrate that, by randomising the
speed, the anomalous non-Gaussian nature of the distribution
persists even in the asymptotic limit. For instance, in Bayesian
probability theory, in the case of a Gaussian with fixed mean
and random variance with an inverse gamma prior distribution,
the conjugate posterior predictive distribution is a Student’s
t distribution (non-Gaussian). Here we provide a simple
numerical illustration by fitting a Lévy stable distribution
to the particle distributions at a fixed time point of several
simulated random walks with different magnitudes of speed
variances. As shown in Fig. 3, large variances in speed lead to
spatial distributions which are well described by Lévy stable
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FIG. 2. (Color online) Robustness of UT approximation. The
four graphs represent the simulated (histogram) and UT-
approximated analytic expressions (red solid line) for the spatial
distribution of particles. We use the parameters |v| = 1.0, λ1 = 0.05,
λ2 = 0.5, μ|v| = 1.0, σ|v| = 0.1, and c = 1.0.
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FIG. 3. (Color online) Mimicking Lévy flights. (a), (b) Fits of
Gaussian (solid red) and Lévy stable (dashed blue) density curves to
spatial distributions of particles for different relative speed variances.
We set λ1 = λ2 = 2.5 and plot the histograms for the distribution at
t = 10, i.e., the process is in its asymptotic regime with the proportion
of ballistic particles ≈1.3 × 10−10. It is clear that, for a large spread
of speeds, the non-Gaussianity reemerges. (c) The fitted α parameter
of the Lévy stable distribution for different ratios of the standard
deviation and mean of the log-normally distributed speed. We adopt
the convention 0 < α � 2 with α = 2 being the Gaussian. (d) log-log
plots of the density function vs distance from origin. The solid green
and dashed brown lines are kernel density estimates of the simulated
data in panels (a) and (b), respectively; they correspond to the circled
points in panel (c). The dotted black line shows a gradient of −3; a
Lévy walk will exhibit a tail with gradient between −3 and −1.

distributions with Lévy parameter α < 2. Given that Lévy
stable distributions generalize the conventional central limit
theorems for distributions with infinite variances [20,21], one
might conclude in cases for which a significant portion of the
tail of the log-log graph appears linear with gradient > − 3
[Fig. 3 d] that the population is undergoing a Lévy walk.
However, as is the case here for the log-normally distributed
speeds (i.e., non power law, rapidly decaying tail), the random
walk can, in fact, be entirely “classical.”

B. Parameter likelihoods and model evidence

In this section we provide three examples of applications of
the RW model and the proposed statistical inference procedure.

1. Parameter inference for unimodal speed distributions

We simulate random walks with parameters (μ|v|,σ|v|,
λ1,λ2) = (1.0,6.5,5.5,0.025) for 30 particles, taking 20
equally spaced time measurements from t = 0 to t = 10. We
perform our inference using the sequential Monte Carlo (SMC)
[22] algorithm with 10 000 particles over 50 populations
following a geometrically tempered posterior sequence. The
parameter posterior distributions are shown in Fig. 4 with the
uniform prior ranges indicated by the limits of the individual
plots. The analysis reveals the shape of the marginal posteriors
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FIG. 4. (Color online) One- and two-dimensional marginal posterior distributions of simulated one-dimensional random walk parameters.
From top left to bottom right, the parameters are μ|v|, σ|v|, λ1, and λ2. The blue crosses indicate the values of the simulated parameters.

and, in particular, the correlation structure and identifiability
of the model parameters. Note that this Monte Carlo inference
is only possible for regularized spatial distributions such as the
ones described in this paper.

2. Model selection for composite random walks

Let |v| be distributed according to an equally weighted
mixture of two log normal distributions with different means.
The resulting random walk is a composite random walk
(CRW). It has been shown that CRW can, in certain contexts,
reproduce the spatial statistics of Lévy walks. Here we show
via a set of simulations how one can determine the number
of components in the CRW by using the expressions of
the likelihood derived above. Assuming that the switching
probabilities are fixed, we aim to select between two models:
a simple random flight model with a single log-normally
distributed speed and a two-component CRW model. For this
we can, of course, also use the Bayesian SMC framework
but here we perform the model selection using maximum
likelihood estimation and the Akaike information criteria [5].
The simulated speed distributions and relative Akaike weights
are shown in Fig. 5. We see that the UT approach provides
a robust statistical approach to uncover the nature of the
underlying composition in the CRW.

3. Empirical example: Commodities prices and momentum

Modelling the stochastic behavior of stock and other asset
prices has become a classic application of one-dimensional
(1D) random walks. Here we apply our random speed telegraph
process model to the log-price of three commodities: Brent oil,
wheat, and gold. In Fig. 6, we show the opening prices over 128
consecutive trading days spanning the latter half of 2014, and
the corresponding inferred marginal posterior distributions of
the switching parameters λdown→up and λup→down. We make the
following observations: First, the λ probability distributions
are remarkably different across all three commodities, which
is not entirely expected from a cursory examination of the
time series alone. Second, there is a significant concentration
of probability mass around 5 × 103 day−1, which implies
an average of ∼5 × 103 × 2 = 104 price velocities changes
a trading day (5.5 hours), or ≈0.5 per second. Third, the
difference between the two switching parameters are relatively
small for all three commodities. In the context of this model
and the relatively high inferred switching frequencies, the
physical concept of a price “momentum”—as an economics
commentator might propose on the back of seemingly obvious
price trends—is somewhat misleading: it is less a ballistic
motion than it is a highly stochastic system with a slight
imbalance in the switching rates.
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FIG. 5. Composite random walk (CRW) model selection. Top row: distribution of speeds for three CRW models. The distributions are an
equally weighted mixture of two log-normal distributions. One component is defined with μ̃

(1)
|v| = 1.0 while the other with varying degrees

of offset, i.e., μ̃
(2)
|v| ∈ {1.1,1.15,1.3}, as shown in panels (a)–(c), respectively. Bottom row: The Akaike weights representing the conditional

probabilities of the following two models; in the first model |v| is given by a single log-normal distribution, while in the second it is given by
an equally weighted mixture of two log-normal distribution components (i.e., the “true” model).

IV. DISCUSSION AND CONCLUDING REMARKS

The results above suggest that a robust statistical analysis
of empirical observations can provide deep, and at times
unexpected, insights into the underlying physical behavior of
biological cells, asset prices, and other random walking enti-
ties. Among the examples above, perhaps the most significant
instance is the case of Lévy flights. The positive descriptive

indicators—linearity of a large segment in the log-log plot
[Fig. 3(d)], a non-Gaussian, Lévy-stable spatial distribution
[Fig. 3(a)]—might lead one to infer the reality of an underlying
Lévy flight. The actual behavior is, however, by construction
from log-normally distributed speeds, entirely classical. In
fact, the steepening gradient in the extreme tail (< − 3) of
Fig. 3(d) gives lie to this fact. Nevertheless, we note that this
classical behavior at large distances is only apparent in the
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FIG. 6. (Color online) Time series of the opening commodities prices over 128 consecutive trading days in 2014, and the corresponding
marginal posterior distributions of the switching parameters λdown→up (solid lines) and λup→down (dotted lines). The inference procedure is
similar to the one used in the simulation example in Sec. III B 1. The λ prior is the uniform distributions U (1000,6000) and is empirically
chosen to contain the bulk of probability mass.
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above example due to the size of the simulated dataset (3 × 105

particles); in real-world experiments, the quantity of data
collected is unlikely to be sufficient to quench the temptation
to draw straight lines though data points on log-log plots and
claim them as signatures of an underlying power law. From an
inverse-problem perspective this suggests that observations of
Lévy flight statistics—which are hard to obtain unambiguously
for all but the largest data sets—do not necessarily imply a
Lévy-walk behavior. Similar observations have been made by
several others on the basis of more powerful statistical tests [9]
and via proposals of alternative, and often very simple, classi-
cal models that can provide equally compelling accounts of re-
ported Lévy-flight-like statistics (see, in particular, Ref. [10]).

While it is not too difficult, at least in principle, to
propose a random walk model and perform simulations, this
inverse problem of choosing and validating such models from
empirical data has received somewhat less attention. One
of the aims of this paper is to address this imbalance, and
to do so in a way that maximally extracts the information
contained in the data (using the full path probabilities), has
an efficient implementation (using the unscented transform),
and is applicable to real-world applications. This last point
was partly what motivated the choice of this particular RW
model. The standard RW model of fixed step lengths at regular
intervals is, despite its phenomenological success, not usually
a plausible description of most natural or physical processes.
The telegraph process, on the other hand, is an arguably more
realistic mechanistic model whose parameters—the switching
rate and speed—all correspond to physical attributes, and in
biology can often be linked to molecular processes inside
the cell. Another advantage of this model is the transparent
separation of the experimental from the underlying physical
process; i.e., at no stage does one assume that observations
of each particle coincide with the particle’s changes in
direction. In other words, the number of directional changes
between measurements is itself a random variable, and our
inference procedure accurately incorporates this uncertainty
into the parameter likelihoods. For example, the level of RW
persistence inferred using our statistical treatment does not
depend on the chosen experimental sampling frequency, as it
would in methods based on auto-correlation statistics.

The ability to summarize the entire set of probable path
histories of a particle in terms of an analytic expression for the
current velocity distribution is unique to the one-dimensional
setting. In higher dimensions, these distributions are not
easily determined as the nested expressions in Eq. (13) do
not simplify, even in the unbiased model. Already in three
dimensions the constant-speed counterpart to Eq. (19), i.e.,
the spatial distribution for the particle at a fixed time point,
exists only in integral form [1]. Furthermore, the additional
complexity from incorporating nonuniform bias reorientation
kernels B precludes a simple closed-form expression for the
higher-dimensional counterparts of both Eqs. (19) and (20).
We have observed that this issue arises even if one adopts for
B standard and analytic circular statistical distributions such as
the wrapped normal or von Mises distributions. In light of these
complications, the alternative for higher dimensions is to use a
likelihood-free approach such as approximate Bayesian com-
putation (ABC) [23]. This class of methods relies on simulating
multiple RWs for a given parameter proposal and comparing

the results with empirical data via an extracted statistic and
distance metric [24]. As with other ABC applications in
general, the success of this procedure depends on selecting
a “suitably sufficient” statistic with a highly discriminative
distance measure. For RW models, typical choices include the
usual mean-squared displacement and the transition matrices
of directional angles [24]. Selecting suitable distance measures
for different statistics and technical efforts to relieve the
computation bottlenecks arising from the need for large-scale
RW simulations remain active areas of research.

APPENDIX A: SOLVING THE GENERALIZED
TELEGRAPHER’S EQUATION

We solve for 
(x,t) and �(x,t) in Eq. (16) by taking
Fourier and Laplace transforms. Let the doubly transformed

 and � be σ and δ respectively. Then we have the following
transformed versions of our random walk partial differential
equations (PDEs):

σ (q,λ) = λ + λ1 + λ2 + ivqc

λ (λ + λ1 + λ2) − ivq (ivq + λ1 − λ2)
, (A1)

δ (q,λ) = λc + ivq + λ1 − λ2

λ (λ + λ1 + λ2) − ivq (ivq + λ1 − λ2)
. (A2)

Let the inverse Fourier transform of σ and δ be J1 and J2,
respectively. With not too much effort, it can be shown that

J1 = 1

2πv2

∫ ∞

−∞

λ + λ1 + λ2 + ivqc

(q − iα1) (q − iα2)
e−iqxdq, (A3)

J2 = 1

2πv2

∫ ∞

−∞

λc + λ1 − λ2 + ivq

(q − iα1) (q − iα2)
e−iqxdq, (A4)

where

α1 = 1

2v
[(λ1 − λ2) +

√
β], (A5)

α2 = 1

2v
[(λ1 − λ2) −

√
β], (A6)

where β ≡ (λ1 − λ2)2 + 4λ(λ + λ1 + λ2). Since α1 > 0 and
α2 < 0, the poles are located in the upper- and lower-half
complex planes, respectively. Evaluating the integrals via
contour integration, we have

J1 = e
1

2v
((λ1−λ2)−√

β)x λ + λ1 + λ2 − c
2 [(λ1 − λ2) − √

β]

v
√

β
,

(A7)

J2 = e
1

2v
((λ1−λ2)−√

β)x λc + λ1 − λ2 − 1
2 [(λ1 − λ2) − √

βx]

v
√

β
.

(A8)

To take the inverse Laplace transform, we first note that
there is a branch cut between λ = − 1

2 (λ1 + λ2) ± √
λ1λ2.

Integrating around the branch cut via the change of coordinates
λ = − 1

2 (λ1 + λ2) − √
λ1λ2 sin φ, then using known integrals

of exponentials of trigonometric functions, and the identity
dI0(x)/dx ≡ I1(x), it can be shown that 
 and � reduce to
the exact expressions in Eqs. (19) and (20).
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