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Abstract

Donggutuo (DGT) is one of the richest archaeological localities in the Nihewan Basin of

North China, thereby providing key information about the technological behaviours of early

hominins in eastern Asia. Although DGT has been subject of multiple excavations and tech-

nological studies over the past several decades, few detailed studies on the lithic assem-

blages have been published. Here we summarize and describe the DGT lithic assemblages,

examining stone tool reduction methods and technological skills. DGT dates to ca. 1.1 Ma,

close to the onset of the mid-Pleistocene climate transition (MPT), indicating that occupa-

tions at DGT coincided with increased environmental instability. During this time interval, the

DGT knappers began to apply innovative flaking methods, using free hand hard hammer

percussion (FHHP) to manufacture pre-determined core shapes, small flakes and finely

retouched tools, while occasionally using the bipolar technique, in contrast to the earlier and

nearby Nihewan site of Xiaochangliang (XCL). Evidence for some degree of planning and

predetermination in lithic reduction at DGT parallels technological developments in African

Oldowan sites, suggesting that innovations in early industries may be situational, sometimes

corresponding with adaptations to changes in environments and local conditions.

Introduction

In assessments of stone tool assemblages of Eastern Asia, archaeologists have frequently held

that there are long periods of stasis, with no significant technological changes until the upper

part of Late Pleistocene [1–3]. Yet, investigators working in Eastern Asia continue to lack a

detailed knowledge about Pleistocene lithic assemblages in the region, and there are substantial

geographic and temporal gaps in our understanding of the archaeological record across this

vast area. Though it could be argued that stone tool technologies may have remained relatively

conservative over long periods, it is difficult to imagine that hominins never altered or modi-

fied their stone-tool using behaviours in the face of unstable and changing climates in northern
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latitudes during the Early and Middle Pleistocene. Paralleling the situation in Eastern Asia,

early lithic industries with core-flake production have been typically categorised under holistic

classifications, such as Oldowan or Mode 1 [4, 5]. Some stone tool analysts, however, have

pointed out that early lithic assemblages, usually grouped as simple core-flake industries,

sometimes show substantial variability in their flaking and production strategies in African

and Eurasian contexts [6, 7]. In fact, detailed lithic analyses and refitting studies on the Lokala-

lei 2C assemblages in Kenya, showed that Late Pliocene knappers practiced considerable fore-

sight in raw material procurement and lithic manufacture [8]. At the same time, the Lokalalei

investigations indicated significant inter-site differences in Late Pliocene and Early Pleistocene

sites across Eastern Africa, thereby deconstructing the notion that the Oldowan itself was a

homogeneous and static entity over evolutionary time. Likewise, examination of the lithic

assemblages at Omo (Member F) indicated that, despite the limitations of the small quartz

clasts, early hominins knapped cores in a precise and systematic fashion, suggesting deliberate

and rational methods in obtaining flakes [9].

Such observations suggest the need to re-evaluate technological trends in Early Pleistocene

lithic industries of eastern Asia, which are often regarded as monotonous and unchanging.

The Nihewan Basin, with a series of early sites dated between the Gauss–Matuyama and

Matuyama–Brunhes geomagnetic reversals (2.58–0.78 Ma), is an ideal region to examine Early

Pleistocene archaeological sites and technological trends in eastern Asia. The DGT site, first

identified and investigated in 1981, contains thousands of lithic artefacts, representing one of

the richest localities in the Nihewan Basin. Although multiple excavations and lithic assem-

blage studies have been conducted at DGT [10–14], there has been little agreement among

researchers about the behavioural importance of the site, in part owing to the lack of a detailed

and comprehensive analysis of the lithic assemblages and its place relative to other Nihewan

sites. To rectify this situation, here we analyse the lithic assemblages of DGT, providing an

opportunity to reassess stone tool knapping methods. Moreover, given that technological

information from Xiaochangliang (XCL) was recently collected [15], inter-site trends in lithic

reduction between two Early Pleistocene sites of the Nihewan Basin are now possible.

Site setting and study history

The DGT site, situated in the eastern margin of the Nihewan Basin (40˚13’22"N, 114˚40’11"E,

Fig 1), is considered one of the most important Palaeolithic sites in China [16–18]. The Nihe-

wan Basin is a large fault-related basin, composed of the Yuxian and Yangyuan Basins (Fig

1A–1C). The basin measures ca. 150 to 200 km2, and is cross-cut by the Sanggan River, which

meanders across the area [19]. The basin is filled with Late Pliocene to Holocene lacustrine,

fluvial and aeolian deposits (in recent years the term “Nihewan Formation” has been used to

define the whole fluvio-lacustrine sequence in the basin). The DGT section is ca. 44.8 m in

thickness, and the main part consists of the Nihewan Beds with a thickness of about 37.4 m,

capped by the last glacial loess (4.5 m) and soil associated with the last interglacial (2.9 m) and

underlain by Jurassic breccia (Fig 1B, [20, 21]). The main cultural layer described here is

located in the lower part of the section, ranging over a thickness of 6.5 m.

DGT was first identified and excavated in 1981 [10]. After its initial investigation, several

excavation seasons were sponsored by the Institute of Vertebrate Paleontology and Paleoan-

thropology (IVPP) of the Chinese Academy of Sciences. A joint Sino-U.S. excavation was con-

ducted in 1991–1992, and later, between 1997 to 2001, several small-scale excavations were

conducted by the IVPP (Table 1; [22]). Thousands of lithic artefacts and mammal fossils were

collected from the excavations, and the DGT site rose to prominence, as it provided new infor-

mation about early human behaviours in China [14, 23].
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The cultural layers of DGT ranged over a thickness of 6.5 m, though the main concentration

of lithic artefacts and fossils were in the middle part of the section, at a depth interval ranging

between 41.6 to 44.8 m. According to the 2000–2001 excavations, more than 96% of the arte-

facts were from the middle part of the section [24]. Most of the recovered mammal fossils were

small fragments, without heavy weathering [25], though few fossils could be identified to spe-

cies level. Nevertheless, some vertebrate fossils from the cultural deposits could be identified as

Myospalax. fontanieri, Canis sp., Palaeoloxodon sp., Equus. sanmeniensis, Coelodonta. antiqui-
tatis, Bison sp., and Gazella sp. [10]. Preliminary faunal analyses indicated that carnivore-

Fig 1. DGT, Nihewan Basin, China. (A) The Nihewan Basin, showing the location of Early Pleistocene sites;

(B) The general stratigraphy of DGT, showing the location of the main artefact horizon; (C) The location of

DGT and other key sites (1. Xiaochangliang, 2. Cenjiawan).

https://doi.org/10.1371/journal.pone.0185101.g001
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gnawed bone and cut-marked bone each formed 1.2% of the fossil assemblage [25]. Lithic

refits, the presence of small lithic shatter (<25 mm), and fresh artefact edges indicated that the

archaeological materials did not experience significant postdepositional disturbances, but

accumulated over time [14].

One of the key debates to emerge from the various studies of the lithic industries was the

degree to which knappers controlled their flaking and the degree to which the lithic products

were planned at the outset. The original investigators working on DGT described the use of

both hard hammer percussion and the bipolar method to obtain flakes, noting the presence of

some finely retouched flakes [10]. Later studies indicated that the lithic assemblages were dom-

inated by flakes and flake fragments from casual cores, with the use of irregular preparatory

core reduction methods [11].

Hou [26] first noted and described the presence of small, prepared cores at DGT, naming

them as the “Donggutuo Shaped core”. Subsequently, Hou named this distinctive flaking

method as the “Donggutuo core”, describing the prepared cores as wedge-shaped in order to

produce small elongated flakes [12, 23, 27]. However, others were skeptical of this claim, and

argued that the so-called prepared cores from DGT were simply a variant of standard cores

[16, 28] or even a product of bipolar reduction methods [14]. Hence, although the lithic assem-

blages of DGT have been remarked upon by a number of analysts, there is little agreement

about stone tool reduction methods, and in particular whether prepared core techniques and

particular flaking products are in fact present. This situation appears to have arisen, in part, as

a consequence of limited first-hand studies and the lack of a comprehensive analysis of the

lithic assemblages from the multiple excavations.

Chronology and environmental background

Magnetostratigraphic dating of the DGT cultural layers has been conducted by several scholars

since the 1980s’ [20, 29–31]. According to the most recent magnetostratigraphic research [20,

31], the age of the DGT cultural layer is just prior to the onset of the Jaramillo normal sub-

chron, which has been dated at 1.053±0.006 Ma [32] or 1.072 Ma [33]. Wang and colleagues

[20] indicated that the short interval of possible geomagnetic excursion (E3) within the pre-

Jaramillo Matuyama reverse chron (encompassed within the DGT artefact layer) may be corre-

lated to the Punaruu geomagnetic excursion, which has a 40Ar/39Ar age determination of 1.105

±0.005 Ma [32]. This lends further support to the contention that the DGT cultural layers date

to ca. 1.1 Ma [20]. Subsequently, Li et al. [31] claimed that the DGT artefact layers occur

around the Cobb Mountain geomagnetic excursion based on investigations of magnetostrati-

graphy and sediment grain size, estimating its age to be 1.204–1.119 Ma. Considering the mag-

netochronological data together, we estimate the age of DGT as 1.1–1.2 Ma. This age is close to

the onset of the mid-Pleistocene climate transition (MPT), which began ca. 1.25 Ma [34] or ca.

1–0.8 Ma [35–37]. Based on the magnetostratigraphic data from the Nihewan Basin in general,

Table 1. Excavation field seasons at DGT.

Field season Excavation team Excavated area No. of artefacts Key publications

1981–1983 IVPP 45m2 1443–1676a [10–12, 14, 27]

1991–1992 Sino-U.S. joint team 30 m2 ? none

1997 IVPP 12 m2 702 [12, 26]

2000–2001 IVPP 12m2 974 [25]

a1443 is the number given in the 1985 publication. Later studies reported different total numbers of lithic artefacts (i.e., [11]: 1432 pieces; [12, 27]: 1571

pieces; [14] 1676 pieces).

https://doi.org/10.1371/journal.pone.0185101.t001
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the age of the DGT site is younger than that of other key archaeological sites, such as Majuan-

gou, Xiaochangliang and Banshan [17, 38, 39].

A number of palaeoenvironmental studies were conducted on the Nihewan Formation and

on the archaeological sites within the sequence [24, 40–42], including a multidisciplinary

investigation on the DGT section [24]. Investigators have reported that most of the lithic arte-

facts (88%) were from Stage II, a deposit characterized grey to greyish-yellow silt. The pollen

analysis of the Stage II horizon indicated the presence of a temperate forest and humid forest

grass steppe condition [24]. Analysis of iron oxides estimated temperature to be 7.28˚C lower

than the present average annual temperature of 7.5˚C, indicating much colder conditions [24].

Today, the Nihewan Basin is located at the northeastern edge of the Loess Plateau. DGT

roughly corresponds to the transition between the Wucheng and Lishi Formations of the

loess/palaeosol sequence [36]. Sediment grain size, rock magnetism and the pollen analyses of

these Formations [24, 43–46], indicated significant environmental changes and fluctuations in

North China, e.g., increased aridification in high-latitude areas, stepwise southerly migrations

of the Mu Us desert lying to the north of the Chinese Loess Plateau, and C4 plant expansions

in the Loess Plateau region.

Climate records indicated changes in the length and intensity of the glacial-interglacial

cycles, with the dominant periodicity of high-latitude climate oscillations changing from 41

kyr to 100 kyr [34, 35, 37, 47]. This variability was accompanied by a series of global or regional

palaeoclimatic and palaeoenvironmental changes, such as the increase in aridity and mon-

soonal intensity in Asia and Africa and decreases in sea surface temperatures in the North

Atlantic and tropical-ocean upwelling regions [34]. The DGT occupations therefore corre-

spond with a changing and unstable environment.

Results

Raw material selection

The great majority of raw materials used by the DGT knappers was chert, forming 96%

(n = 2315) of the lithic assemblage examined here. The remaining 4% of the artefacts were

made on quartz, volcanic breccia and andesite. Previous investigators working on DGT indi-

cated that the main raw materials were likely from the chert breccias in the Jurassic pyroclastic

rocks, 200–600 m from the DGT site [48]. The fractures formed by tectonic movement in the

chert breccias resulted in the production of small asymmetric and sub-angular nodules useful

for lithic reduction [48]. The available clasts from the breccia were of various qualities, includ-

ing fine-grained pieces and those which had internal flaws with retention of a significant

amount of interstitial material. Hominins heavily exploited the chert breccias at both DGT

and XCL, as both sites were within 1000 m of each other, and located close to the same raw

material source [15].

DGT lithic assemblage

In the current study, a total of 2315 lithic artefacts, stored in the IVPP, and recovered from the

field seasons conducted in the 1980s and in 1997 were analyzed, forming the majority of the

previously published information. Table 1 is a compilation of excavation data by field season,

including reports of the total number of lithic artefacts retrieved [11, 14, 27]. Unfortunately,

the 1991–92 field data were not published, and the artefacts could not be located at the time of

our analysis; moreover, the 974 lithic artefacts retrieved in the 2000–01 season were not avail-

able for our study.

As indicated in Table 1, freehand hard hammer percussion (FHHP) is the predominant

flaking method as illustrated in the cores, flakes and flake fragments across all studies. Here we
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identify 558 pieces of shatter, though this class of material was not recorded in previous studies

(Fig 2). Pieces of shatter are usually smaller than 25 mm, showing no signs of conchoidal per-

cussion features on upper or lower faces. In previous publications, the number of flakes is

much larger than the current study; for example, in the 2014 report [14], 924 flakes were iden-

tified, likely indicating that some of the broken flakes or splinters were classified as flakes.

In the original publication of DGT, Wei [10] reported the presence of bipolar products, and

later independently confirmed by Shen and colleagues [49]. Here we confirm that bipolar

cores and splinters are present, as shown by the presence of double bulbs of percussion on the

splinters or the flaked pieces and battering scars on two flaked edges (Fig 3). Though bipolar

cores and splinters are less frequent in comparison to FHHP products (Table 2), bipolar per-

cussion still forms a key reduction method at DGT.

The proportion of retouched pieces across various studies is generally high, forming ca.

10% of the lithic assemblage (Table 2) (NB: the 1991 report distinguished modified pieces

from retouched pieces, but all later studies classed these as retouched pieces or tools). The high

percentage of retouched pieces are an important characteristic of the DGT assemblage, which

will be described in more detail below.

Knapping methods

Freehand hard hammer percussion and bipolar methods identified at DGT are described

below. Though recent studies show that the two methods are sometimes difficult to distin-

guish, a combination of qualitative and quantitative methods is considered the best approach

for their categorization [50–53].

Fig 2. Shatter from DGT. Shatter is typically smaller than 25 mm. Shatter have no clear sign of conchoidal percussion and it is

often difficult to distinguish upper and lower faces.

https://doi.org/10.1371/journal.pone.0185101.g002
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Freehand reduction

DGT had a marked increase in FHHP products (i.e, cores, flakes, flake fragments), accounting

for 77.47% of the reduction system, in comparison to the lower percentage found at XCL

(43.06%, see [15]). A total of 245 cores, 380 flakes and 300 flake fragments and splinters are

identified as the product of freehand percussion methods (Table 2). Raw materials used for

artefact production include chert, volcanic breccia and quartz, though chert predominates,

representing 97.73% (n = 904) of the total FHHP assemblage.

Cores and the developed core-flake technique

The cores have an average maximum length of 37.8 mm and only four exceed 100 mm

(Table 3). Based on the number and morphology of platforms, FHHP cores were sub-divided

Fig 3. Bipolar products from DGT. No. 1–7 are splinters from bipolar percussion; No. 8–11 are bipolar cores which show

percussion or battering scars on two edges (the arrows indicate the opposed flaking scars).

https://doi.org/10.1371/journal.pone.0185101.g003
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into five main types (i.e., Unidirectional, Bidirectional, Multidirectional, Bifacial, Wedge-

shaped) (Figs 4 and 5).

Unidirectional cores exploited from a single flaking direction were the most common type

(n = 133, 70.37%). The unidirectional method was a simple flaking technique, and most cores

show natural or plain platforms (Fig 4, no. 3). Retouched platforms were exhibited on a small

number of unidirectional cores (Fig 4, no. 1, n = 14, 13.59%), and retouch scars were clearly

visible on the platforms. The Bidirectional cores were flaked from two opposite platforms,

though with no platform preparation (n = 15, 7.94% Fig 4, no. 3). The third type are Multidi-

rectional cores (n = 21, 11.11%, Fig 4, no. 2), which were often irregular in flaking patterns,

with removals showing no clear organization of the reduction process. The fourth type, Bifacial

cores, are alternately knapped along edges (n = 11, 5.82%, Fig 4, nos. 4, 5), showing that the

knappers used former flake scars as platforms to produce the follow-on flake.

The fifth type of core, the Wedge-shaped core, was previously described by Hou [26], and

later named as the “Donggutuo Core” [12, 23, 27]. A total of 9 Wedge-shaped cores were iden-

tified in this study, forming 3.67% of the core assemblage (Fig 5). The average maximum

length is of 26.7 mm, and average maximum width is 43.1 mm. The average platform thickness

is 25.9 mm. Three of the nine cores have prepared platforms, and the 6 others have plain plat-

forms. The Wedge-shaped cores typically have a single platform from which flakes were struck.

The number of visible negative flake scars on each of the core flaking surfaces range between 4

to 6. This wedge-shaped flaking method produced predictably small and elongated flakes,

which are often micro-blade-like in form (Fig 6, nos. 12, 13).

Table 2. Lithic classifications of DGT artefacts according to previous studies and the current study.

Lithic class 1991a % 2000b % 2014c % Current Studyd %

Core (Freehand) 66 4.61 142 9.04 147 8.77 245 10.58

Core (Bipolar) — — — — 4 0.24 65 2.81

Flake (Freehand) 888 62.01 364 23.17 920 54.89 380 16.41

Flake fragment — — — — — 300 12.96

Splinter (Bipolar) — — — — 5 0.3 204 8.81

Modified pieces 143 9.99 — — — — — —

Retouched pieces 10 0.70 165 10.50 230 13.73 228 9.85

Utilized flakes 41 2.86 — — — — — —

Shatter — — — — — — 558 24.11

Angular fragment 284 29.40 900 57.27 370 22.07 335 14.47

TOTAL 1432 100 1571 100 1676 100 2315 100

a [11]
b [27]
c [14]: all three studies are based upon the artefacts recovered in 1981; in each, the numbers vary slightly.
d The current study comprises 2315 lithic artefacts recovered from the 1981 and 1997 excavations.

https://doi.org/10.1371/journal.pone.0185101.t002

Table 3. DGT lithic types by number and size (mm), subdivided by reduction technique.

Technological System Main categories No. % Length Width Thickness

Mean Std.D Mean Std.D Mean Std.D

Freehand Core 245 20.52 37.80 16.43 49.53 20.29 36.18 19.97

Flake 380 31.83 26.69 11.1 26.29 11.12 8.90 4.22

Flake frag.and splinter 300 25.12 31.61 10.72 26.74 10.07 11.09 4.47

Bipolar Core 65 5.44 36.24 10.68 26.35 9.66 17.22 5.29

Splinter 204 17.09 30.25 8.43 19.70 6.82 9.94 3.22

https://doi.org/10.1371/journal.pone.0185101.t003
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Flakes

The flakes have an average maximum length of 26.69 mm (Table 3, Fig 6). Partitioning flakes

by their maximum length indicates that 34.4% average less than 20 mm and 60.0% have a max-

imum length between 21–40 mm. The platform angles on flakes are generally steep and range

between ca. 70–90˚, with a cluster around between 80–85˚ (78%). The flake butts can be

divided into four main types: plain (n = 94, 59.49%), natural (n = 40, 25.32%), facetted (n = 6,

3.8%) and linear (n = 18, 11.39%).

The DGT flakes have a high percentage of flakes without cortex (30.63%) with high negative

flake scar counts, 27.4% of flakes with more than 3 dorsal negative scars (Fig 7). The increase of

the retouched platforms and the negative flake scars indicates the development of the capacity

of core exploitation. These quantitative results reinforce previous observations which suggested

the presence of cores with platform preparation and a more complicated exploitation system.

Fig 4. Core types identified at DGT. No. 1 is a Unidirectional core with a faceted platform, showing a series of negative flake scars on a single

edge; No. 2 is a Multidirectional core; No. 3 is a bipolar exploited core with two opposed flaking directions; Nos. 4 and 5 are bifacial cores showing

alternate flaking patterns.

https://doi.org/10.1371/journal.pone.0185101.g004
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A total of 300 flake fragments and splinters were also identified as FHHP byproducts, repre-

senting a relatively high proportion of the lithic assemblage, comprising 12.96%. The broken

flakes include “siret” flakes [55], i.e., flakes with broken platforms or without platforms. Faced

with the similar sizes of the chert nodules, the DGT habitants preferred the FHHP method.

FHHP provided regular flakes and platform preparation allowed knappers to work irregular

clasts of chert in a more controlled fashion.

Bipolar reduction

Although FHHP products were frequent at DGT, bipolar reduction was an important method,

accounting for 22.53% of the lithic assemblage (Table 3). A total of 65 bipolar cores and 204

splinters were identified (Fig 3). Bipolar splinters are defined here as small pieces with crush-

ing on either the platform or the base, and always without evidence of Hertzian initiation (e.g.,

bulbs of force, eraillure scars, ripple marks) [56].

The bipolar cores have an average maximum length of 36.24 mm, slightly smaller than that of

freehand cores (Table 3). The bipolar cores often had a stable relationship between the platform

and the base, with striking typically from a single direction. The bipolar splinters have an average

maximum length of 30.25 mm (Table 2), thus somewhat larger than whole freehand flakes.

Fig 5. Wedge-shaped cores from DGT. Wedge-shaped cores were previously described and named by

Hou [12, 23, 26, 27]. The cores have single platforms which are sometimes prepared, resulting in the striking

and production of a series of small, enlongated flakes. No.1 is a heavily exploited core, with negative flakes

scars visible on every face. No. 2 is partly exploited, though showing platform preparation and the striking of

small flakes from a single platform. The two examples are similar show the reduction direction and the

morphology of the “DGT core”.

https://doi.org/10.1371/journal.pone.0185101.g005
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Retouched pieces

A total of 228 retouched artefacts were identified at DGT (Figs 8, 9 and 10), accounting for

9.85% of the lithic assemblage. The retouched pieces are generally small in size with an average

maximum length of 31.88 mm, and more than 50% are smaller than 30 mm, and 14% are

Fig 6. Freehand flakes from DGT. The freehand flakes show Hertzian initiation, i.e. waves, bulbs of force, distinct striking platforms.

https://doi.org/10.1371/journal.pone.0185101.g006

Fig 7. Comparison of DGT and XCL flake attributes. (A) Percentage of cortex on flakes according to Toth’s

types [54]; (B) Types of striking platforms on flakes; (C) Flake size ranges (in mm); (D) Number of negative

scars on dorsal faces of flakes.

https://doi.org/10.1371/journal.pone.0185101.g007
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smaller than 20 mm. The repeated location of the retouch on the same portion of the blanks

(Figs 9 and 10), their invasive depth as well as the freshness of the adjacent edges strongly sug-

gest intentional manufacture. The average maximum retouch extent was 32.07 mm, and some-

times exceeding the maximum length of the pieces, as several margins were retouched

including on a convex edge (Fig 8, nos. 2, 13), on two to three edges, and occasionally on every

edge (Fig 8, nos. 7, 11).

The DGT retouched pieces can be typed as scrapers, denticulates, notches, borers and

points. The large majority are scrapers (78%), which include straight, concave and convex

edges. A relatively high percentage of scrapers (24%) are with abrupt retouched angles (>60˚).

The notches and denticulates (Fig 8, nos. 1, 3, 4, 6) can also be considered general tool forms.

Most of the notches are made by one retouch scar, whereas there are 3 pieces with more com-

plex notches, made by applying several retouch removals. The average maximum length of the

notches is 30.06 mm, and the average depth of the notches is 7.47 mm. The denticulates can be

readily distinguished from scrapers, as they are with continuous small notches on one edge

(e.g., Fig 8, no. 4). The denticulates are somewhat larger than other retouched pieces, with an

average maximum length of 36.14 mm. In addition to these general tool types, borers with

small tips and point like tools were identified (Fig 9). Borers were retouched in order to form a

small tip (Fig 9, nos. 2–4), the average of tips measuring 7.94 mm. Only three pointed tools

were identified, the pointed tools have clear bifacial retouch on two edges, with a triangular

profile (Fig 9, no. 1). Some retouched pieces (Fig 8, no. 6) are difficult to type (i.e., unidentified

retouched pieces), and they are typically small in size and often show irregular retouch.

Comparisons between DGT and XCL

The DGT and XCL sites are located within 1000 m to each other, though DGT is about 160–

260 kyr younger in age. Though the hominins at each site predominantly used the same chert

Fig 8. Retouched pieces from DGT. No. 1, 5: notches; No. 2, 8, 9, 12, 13: Scrapers with continuous retouch

along edges; No. 3, 4: denticulates showing uneven edges with more than three retouch scars; No. 6, 7, 10,

11: pieces with retouch on multiple edges.

https://doi.org/10.1371/journal.pone.0185101.g008
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source and materials for lithic production, our comparison indicates some substantive differ-

ences in reduction, with DGT knappers applying some innovative flaking methods.

FHHP was clearly the dominant flaking strategy at DGT, forming 77.47% of the assem-

blage, while at XCL, FHHP comprised about 43.08% [15]. To analyze differences in core and

flake production between the two assemblages, we compared flake sizes, core flake size traits

and retouched tool sizes. Our comparison indicated that the DGT cores were similar in size

with those from XCL, though somewhat shorter in the average maximal length (Table 3, Fig

11A). The DGT flakes were smaller size than the ones from XCL, as more flakes in DGT were

in the 20 mm to 40 mm (60.0%) size range (Fig 7C; Fig 11B). DGT showed a significantly

higher proportion of faceted platforms in comparison to XCL (Fig 7B). The DGT flakes had a

much higher percentage of flakes without cortex (30.63%) (See Types 3 and 6 in Fig 7A), and

the negative flake scar counts are increased (Fig 7D). The increase of the retouched platforms

and the negative flake scars indicates the development of the capacity of core exploitation.

These quantitative results reinforce Hou’s previous observations which suggested that cores at

DGT have platform preparation and a more complicated exploitation system [27].

XCL had a higher percentage of bipolar cores (14.4%) in comparison to DGT (5.4%). The

bipolar cores form XCL were somewhat smaller (<20 mm) (Fig 11C) indicating more

Fig 9. Point and borers from DGT. No.1: point with retouch on ventral and dorsal faces and along two edges on both

sides to form a tip. The retouch is systematic and the length on the two converging edges are 18.7 mm and 31.1 mm

respectively; No. 2–4: borers displaying retouch to form short and rounded tips.

https://doi.org/10.1371/journal.pone.0185101.g009
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Fig 10. Profiles of finely retouched pieces from DGT. No. 1: Repeated retouch along a single working edge (the retouch is inversely

applied up to 15 mm).; No. 2: Very fine and regular retouch along a single working edge. The retouched working end is smooth and sharp.

https://doi.org/10.1371/journal.pone.0185101.g010

Fig 11. Comparison of stone artefact size distributions from DGT and XCL. (A) Size distribution of

bipolar cores from DGT and XCL, indicating that bipolar cores from DGT were larger; (B) Size distribution of

FHHP flakes from DGT and XCL, showing that more flakes in DGT were in the 20 mm to 40 mm size range;

(C) Size distribution of bipolar cores from DGT and XCL, demonstrating that DGT has more cores smaller

than 40 mm; (D) Size distribution of retouched pieces from DGT and XCL, showing that compared to XCL,

retouch was on varied sizes of pieces in DGT.

https://doi.org/10.1371/journal.pone.0185101.g011
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intensive reduction of clasts. Compared to XCL, the retouched pieces at DGT were much

more prominent, the percentage of retouched pieces increasing from 2.95% to 9.85%. The

retouch present on pieces varied in size at DGT (Fig 11D). The retouch depth and extent were

substantially increased as well, the average maximal length of retouched ends on DGT

retouched tools was 31.8 mm whereas at XCL it was smaller (25.86 mm) on average. The

retouched tools at DGT show more standardization, and typed here as scrapers, notches, den-

ticulates and borers. The pointed tools at DGT are especially noteworthy in this regard (Fig 9,

no. 1), as this type has not been previously recognised in any of the Nihewan Early Pleistocene

sites.

In sum, faced with similar sizes of chert nodules, the DGT hominins mostly applied FHHP

as opposed to the bipolar technique, used more commonly at XCL. Through FHHP, the DGT

knappers were able to produce regular and well controlled flakes. Through platform prepara-

tion and the development of wedge-shaped preparatory core methods, the DGT knappers

were able to obtain small, slender micro-blades, despite the irregular and small shape of the

chert clasts. Flakes produced by such core reduction methods were then shaped into retouched

tool types, which were likely used in a range of scraping, cutting and boring tasks.

Discussion

The Nihewan Basin is a remarkable region for understanding the behaviour of early hominins

in Eastern Asia given its wealth of archaeological discoveries in stratified and dated contexts.

Though a number of excavations have been performed, few lithic assemblages have been

examined in any level of detail, with few exceptions [15, 23, 57, 58]. Here we have evaluated

the stone tool assemblages from DGT, which has been highlighted as one of the most impor-

tant sites from the Basin given the large sample of lithics and fossils. Hou’s hypothesis [26] that

the cores from the site are ‘advanced’ has formed a debate as to its authenticity [16, 28]. Here

we have re-assessed this claim, supporting Hou’s contention that the DGT lithic assemblages

show innovations in core technology, reduction systems and tool production.

Differences in stone tool technology among Early Pleistocene sites in the Basin are

highlighted through comparison of two localities that are in close spatial proximity, i.e., XCL,

dating to ca. 1.36 Ma, and DGT, dating to ca. 1.1 Ma. Though hominins at both sites selected

and utilized small irregular chert nodules from local sources, the DGT knappers preferentially

utilized FHHP as opposed to the more frequent use of bipolar methods at XCL. Core reduction

methods at DGT showed some degree of flexibility in the wide range of flaking strategies,

including the presence of Wedge-shaped cores (the “DGT Core”). Fig 5 demonstrates that the

DGT knappers applied FHHP in a controlled manner, preparing the core platforms with pre-

determination in order to strike off a series of small flakes, in some cases forming micro-

blade-like flakes (Fig 8, no. 12, 13). In addition to both flexible and preparatory core flaking

strategies, a key development in the DGT assemblage was the presence of a large number and

percentage of retouched pieces in the lithic assemblage. Though retouched pieces were present

at XCL, retouched tools are a prominent development at DGT, accounting for nearly 10% of

the lithic assemblage (Fig 8). The retouched pieces at DGT show regular application of deep

negative scars and extensive flaking along edges, producing long and sharp edges for a variety

of tasks. Distinctive tool types were clearly produced by the DGT hominins, and the presence

of borers and points is particularly noteworthy as these are rare and unusual tools in Early

Pleistocene assemblages (Fig 9).

Given our observations at DGT, it is relevant to note that FHHP was applied on irregular

clasts and raw materials at the Nihewan site of Cenjiawan (CJW), also dating to ca. 1.1 Ma

[59]. According to published information, and recent observations by one of us (SXY), the
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lithic assemblage at CJW is dominated by FHHP, with less frequent bipolar products [58, 60–

63], thus similar to DGT. The lithic refitting study at CJW demonstrated multidirectional flak-

ing methods and the continuous rotation of cores and the removal of flakes, with efficient and

maximum utilization of the small irregular clasts [58, 62]. Both CJW and DGT therefore

appear to show some innovations in flaking methods by hominins in the Nihewan Basin at ca.

1.1 Ma.

The technological innovations at DGT has implications with respect to Early Pleistocene

hominin cognition and behaviour. At 1.1 Ma, it appears that hominins were able to adjust

their stone tool reduction methods to obtain desirable products from small clasts and poor

quality raw materials, something that is evident in earlier lithic assemblages in Africa [9]. The

alternate use of FHHP and bipolar methods shows flexibility in their approach to the small

and poor quality raw materials. Hominins at DGT were also able to maximize the number and

types of flakes from cores, including the application of preparatory techniques on cores to

obtain desired flakes. The regular and systematic production of retouched pieces, including

some very different tool forms, suggest that hominins produced items for particular activities,

such as scraping, cutting and boring.

On the whole, the technological evidence at DGT indicates that Early Pleistocene hominins

innovative abilities have been underplayed in the Nihewan Basin, and in Eastern Asia, more

broadly. While the Nihewan assemblages are often typed as the part of a “small lithic artefact

tradition” [64, 65], such classifications hide some important technological variability, indicat-

ing that Nihewan assemblages are not homogeneous and unchanging across their long dura-

tion, i.e., from 1.7 Ma to 1 Ma.

The question arises as to why there appears to be increasing technological innovations at ca.

1.2–1.1 Ma in the Nihewan. Though no clear explanation can be given, palaeoenvironmental

evidence indicates that the DGT occupations generally correspond with the onset of the mid-

Pleistocene climate transition, occurring at ca. 1.25–0.8 Ma [34, 35, 37]. In high-latitude areas

of North China, sediment grain sizes, rock magnetic and pollen data record significant envi-

ronmental fluctuations [36, 44–46]. Hence, compared to earlier occupations in the Nihewan,

such as at Majuangou and Xiaochangliang, the DGT inhabitants likely faced more unstable

environments, perhaps requiring novel adaptations, and thus leading to new technological

innovations. Dennell [66] argued that the Nihewan Basin was not inhabitable during glacials

and on a year-round basis in the Early Pleistocene owing to cold winters and highly seasonal

environments. With the onset of the MPT, and more variable and colder environments, it is

possible that Nihewan hominins were forced to innovate their toolkits even further, though

palaeoenvironmental and seasonal data are sorely needed to test this hypothesis.

Conclusion

Here we provided the most up-to-date information on the DGT lithic assemblages, one of the

richest Early Pleistocene sites in the Nihewan Basin of China. Lithic comparisons between

XCL and DGT, two systematically studied assemblages, indicate that hominins in the Nihewan

Basin, between 1.4–1.1 Ma, displayed considerable technological flexibility, utilizing both free-

hand and bipolar techniques in variable frequency. In both of these cases, the Nihewan homi-

nins were able to overcome limitations of small clast size and poor-quality materials in order

to obtain sharp-edged implements. While utilizing the same types of raw materials, the DGT

hominins demonstrate some significant changes in lithic reduction methods in comparison to

XCL, including the application of more control and preparation in conchoidal flaking meth-

ods, resulting in efficient utilization of clasts and predetermined plans for the size and shape of

the struck pieces. In addition, though XCL and DGT hominins retouched flakes in various
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ways to produce specific tool forms, the frequency of retouched pieces at DGT was greater,

with the production of rare tool types, such as borers and points. The production of frequent

and diverse tool forms at DGT signals innovations in tool production and new activity tasks at

1.1 Ma, perhaps as a consequence of adaptations to more variable environments in the high

latitudes during the MPT.

Though Early Pleistocene lithic assemblages in China are often grouped as Mode 1 or as

part of a ‘‘simple core-flake technology” [30, 67], increasing variability is evident in reduction

systems as archaeologists more closely examine early sites, both from a temporal and geo-

graphical perspective [15, 27, 58]. Evidence for core rotation and bifacial working of small

clasts in Early Pleistocene industries indicate that hominins in East Asia had the potential abil-

ity to fashion bifacial implements and large cutting tools [68–70] when the opportunity was

presented in these somewhat younger lithic assemblages. This would imply that, in some cases,

hominins present in Eastern Asia were the potential makers of Acheulean-like tools, without

necessarily requiring a dispersal of Acheulean hominins from elsewhere.

Acknowledgments

We thank Xiao-Cong GUO of the Institute of Vertebrate Paleontology and Paleoanthropology,

Chinese Academy of Sciences, for helping prepare Fig 5. MDP wishes to acknowledge the sup-

port of the Max Planck Society. We thank the Editor, Robin Dennell and an anonymous

reviewer for their assistance and insightful comments, which helped us to improve this article.

Author Contributions

Data curation: Shi-Xia Yang, Jian-Ping Yue.

Formal analysis: Jian-Ping Yue.

Funding acquisition: Shi-Xia Yang, Cheng-Long Deng, Ri-Xiang Zhu.

Project administration: Shi-Xia Yang, Michael D. Petraglia, Ya-Mei Hou, Ri-Xiang Zhu.

Resources: Ya-Mei Hou.

Writing – original draft: Shi-Xia Yang, Michael D. Petraglia.

Writing – review & editing: Shi-Xia Yang, Michael D. Petraglia, Cheng-Long Deng.

References
1. Movius HL. The Lower Paleolithic cultures of southern and eastern Asia. T Am Philos Soc. 1948; 38(4):

329–420.

2. Ikawa-Smith F. Introduction: The Early Paleolithic tradition of East Asia. In: Ikawa-Smith F, editor. Early

Paleolithic in South and East Asia. The Hague: Mouton Publishers; 1978. pp. 1–10.

3. Gao X, Norton CJ. A critique of the Chinese ‘Middle Palaeolithic’. Antiquity. 2002; 76(292): 397–412.

4. Leakey MD. Olduvai Gorge: Excavations in Beds I and II, 1960–1963. Cambridge: Cambridge Univer-

sity Press; 1971.

5. Semaw S, Rogers M, Stout D. The Oldowan-Acheulian transition: Is there a ‘developed Oldowan’ arti-

fact tradition? In: Camps M, Chauhan PR, editors. Sourcebook of Paleolithic Transitions. New York:

Springer; 2009. pp. 173–193.

6. Texier PJ. The Oldowan assemblage from NY18 site at Nyabusosi (Toro-Uganda). C R Acad Sci Paris.

1995; 320: 647–653.

7. Burdukiewicz JM. Lower Palaeolithic transitions in the northern latitudes of Eurasia. In: Camps M,

Chauhan PR, editors. Sourcebook of Paleolithic Transitions. New York: Springer; 2009. pp. 195–209.

8. Delagnes A, Roche H. Late Pliocene hominid knapping skills: The case of Lokalalei 2C, West Turkana,

Kenya. J Hum Evol. 2005; 48(5): 435–472. https://doi.org/10.1016/j.jhevol.2004.12.005 PMID:

15857650

The lithic assemblages of DGT, Nihewan basin: Knapping skills of early pleistocene hominins in North China

PLOS ONE | https://doi.org/10.1371/journal.pone.0185101 September 21, 2017 17 / 20

https://doi.org/10.1016/j.jhevol.2004.12.005
http://www.ncbi.nlm.nih.gov/pubmed/15857650
https://doi.org/10.1371/journal.pone.0185101


9. de la Torre I. Omo revisited: Evaluating the technological skills of Pliocene hominids. Curr Anthropol.

2004; 45: 439–465.

10. Wei Q, Meng H, Cheng S Q. New Paleolithic site from the Nihewan beds. Acta Anthropol Sin. 1985; 4

(3), 223–232 (In Chinese).

11. Schick KD, Toth N, Wei Q, Clark JD, Etler D. Archaeological perspectives in the Nihewan basin, China.

J Hum Evol. 1991; 21(1): 13–26.

12. Hou YM. Naming and preliminary study on the category of the ‘Donggutuo core’. Acta Anthropol Sin.

2003; 22: 279–291.

13. Liu Y, Hou YM, Ao H. Analysis of lithic technology of Lower Pleistocene sites and environmental infor-

mation in the Nihewan Basin, North China. Quatern Int. 2013; 295: 215–222.

14. Wei Q. New observations on stone artifacts from the Donggutuo site. Acta Anthropol Sin. 2014; 33(3):

254–269.

15. Yang SX, Hou YM, Yue JP, Petraglia MD, Deng CL, Zhu RX. The lithic assemblages of Xiaochangliang,

Nihewan Basin: Implications for Early Pleistocene hominin behaviour in North China. PLoS ONE. 2016;

11(5): e0155793. https://doi.org/10.1371/journal.pone.0155793 PMID: 27205881

16. Xie F, Li J, Liu LQ. Paleolithic Archeology in the Nihewan Basin. Shijiazhuang: Huashan Literature &

Arts Press; 2006. pp. 278.

17. Zhu RX, Deng CL, Pan YX. Magnetochronology of the fluviolacustrine sequences in the Nihewan basin

and implications for early human colonization of Northeast Asia. Quat Sci. 2007; 27: 922–944.

18. Deng CL, Zhu RX, Zhang R, Ao H, Pan YX. Timing of the Nihewan formation and faunas. Quaternary

Res. 2008; 69: 77–90.

19. Barbour GB. The deposits of the Sankanho Valley. Bulletin of Geological Society of China. 1925; 4:

53–55.
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