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SUMMARY

Spatially resolved analysis of a multitude of compound classes has become feasible with the rapid advance-

ment in mass spectrometry imaging strategies. In this study, we present a protocol that combines high lat-

eral resolution time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging with a multivariate data

analysis (MVA) approach to probe the complex leaf surface chemistry of Populus trichocarpa. Here, epicutic-

ular waxes (EWs) found on the adaxial leaf surface of P. trichocarpa were blotted on silicon wafers and

imaged using TOF-SIMS at 10 lm and 1 lm lateral resolution. Intense M+● and M�● molecular ions were

clearly visible, which made it possible to resolve the individual compound classes present in EWs. Series of

long-chain aliphatic saturated alcohols (C21–C30), hydrocarbons (C25–C33) and wax esters (WEs; C44–C48) were

clearly observed. These data correlated with the 7Li-chelation matrix-assisted laser desorption/ionization

time-of-flight mass spectrometry (MALDI-TOF MS) analysis, which yielded mostly molecular adduct ions of

the analyzed compounds. Subsequently, MVA was used to interrogate the TOF-SIMS dataset for identifying

hidden patterns on the leaf’s surface based on its chemical profile. After the application of principal compo-

nent analysis (PCA), a small number of principal components (PCs) were found to be sufficient to explain

maximum variance in the data. To further confirm the contributions from pure components, a five-factor

multivariate curve resolution (MCR) model was applied. Two distinct patterns of small islets, here termed

‘crystals’, were apparent from the resulting score plots. Based on PCA and MCR results, the crystals were

found to be formed by C23 or C29 alcohols. Other less obvious patterns observed in the PCs revealed that

the adaxial leaf surface is coated with a relatively homogenous layer of alcohols, hydrocarbons and WEs.

The ultra-high-resolution TOF-SIMS imaging combined with the MVA approach helped to highlight the

diverse patterns underlying the leaf’s surface. Currently, the methods available to analyze the surface chem-

istry of waxes in conjunction with the spatial information related to the distribution of compounds are lim-

ited. This study uses tools that may provide important biological insights into the composition of the wax

layer, how this layer is repaired after mechanical damage or insect feeding, and which transport mecha-

nisms are involved in deploying wax constituents to specific regions on the leaf surface.

Keywords: SIMS imaging, multivariate analysis, data analysis, leaf surface, Populus trichocarpa, secondary

ion mass spectrometry, co-localization, leaf surface compounds.
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INTRODUCTION

The physicochemical properties of plant surfaces have

been the subject of many studies (Koch et al., 2008;

Samuels et al., 2008; Koch and Barthlott, 2009). Leaf sur-

faces are composed of cuticular waxes, in which spatial

differentiation exists (Haas and Rentschler, 1984), and con-

tain an inner layer that is composed of intracuticular

waxes, and an outer layer that is composed of epicuticular

waxes (EWs; Figure 1a). These possess considerable ultra-

structural and chemical diversity (Koch et al., 2009).

Mass spectrometry imaging (MSI) has emerged as one

of the leading spatial analysis technologies whose use can

unveil the complexity of the underlying surface chemistry

and organization of such biological surfaces (Boughton

and Hamilton, 2017). MSI strategies have the potential to

analyze a variety of analytes across a wide range of

masses with diverse molecular specificity and high sensi-

tivity, as compared with other existing imaging modalities.

Although matrix-assisted laser desorption/ionization mass

spectrometry imaging (MALDI-MSI), a widely applied MSI

method, provides chemical information with high spatial

resolution and has been successfully employed in plant

science (Vrkoslav et al., 2010), the lateral resolution does

not exceed tens of micrometers (Svato�s, 2010). Time-

of-flight secondary ion mass spectrometry (TOF-SIMS)

overcomes this limitation and has acquired increasing

importance over the past few years. It has emerged as a

powerful technique due to its sub-micrometer lateral reso-

lution, high mass resolution, wide mass range and high

sensitivity (Biesinger et al., 2002). Traditionally used in

material sciences to analyze semi-conductors and poly-

mers, TOF-SIMS has the potential to become more com-

mon in the study of biological samples, especially the

detection of small biomolecules (Winograd, 2005; Fletcher

et al., 2011). The advantages of TOF-SIMS (Touboul and

Brunelle, 2016) make it possible to study the localization of

compounds present on plant surfaces at a lateral resolu-

tion of 1 lm or better.

The strength of surface analysis using TOF-SIMS imag-

ing can be fully understood only when the huge wealth of

information generated by a single experiment is inter-

preted correctly. A TOF-SIMS experiment usually generates

a large data cube with two spatial dimensions and one m/z

dimension. Depending on the biological question, if one is

interested in observing the spatial distribution of only a

few specific ions of interest individually, then the data cube

can generate two-dimensional (2-D) molecular ion intensity

maps. A 2-D ion intensity map for a specific mass of inter-

est is generated using the intensities of that particular

mass peak across all pixels. It is also possible to visualize

the spectral features corresponding to a known region of

interest using the data cube and then further correlate

these with the histological features observed using classi-

cal microscopy (Chaurand et al., 2004; R€ompp et al., 2010).

However, if the goal is to understand the overall chemical

composition of the sample or to analyze correlations

between regions and study multiple analytes, then a differ-

ent approach is necessary.

As a first step, a mean spectrum of the data is usually

generated to identify major peaks. However, the mean

spectrum at times under-represents mass peaks that are

present in only a small portion of the spectra and, as a

result, peaks that are biologically significant may be over-

looked (Alexandrov et al., 2010a). It becomes important to

perform exploratory analyses of the spatial distribution

and co-localization patterns of several compounds by gen-

erating hundreds of ion intensity maps. Such an analysis is

extremely tedious to carry out as well as difficult to draw

inferences from when performed manually. The total num-

ber of TOF-SIMS spectra acquired – where each spectrum

corresponds to a pixel – makes interpretation difficult,
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Figure 1. (a) Cross-section of cuticle layers and upper epidermis (EWs, epicuticular waxes; IWs, intracuticular waxes; CP, cuticle proper; CL, cuticle layer; P,

pectinaceous layer and middle lamella; CW, cell wall; EC, epidermal cell), modified from Jeffree (1996) and Jetter et al. (2000). (b) Scanning electron micrograph

of EWs from the surface of adaxial leaves of Populus trichocarpa isolated using the cryo-adhesive tape embedding method.
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leading to the possibility that much significant information

related to hundreds of mass peaks remains hidden (Hook

et al., 2015). It has also been observed that within a typical

TOF-SIMS spectrum, multiple peaks are generated from

the same surface molecules, and their relative yields are

often related.

Owing to the complex nature of the data, multivariate

data analysis (MVA) approaches. such as principal com-

ponent analysis (PCA), multivariate curve resolution

(MCR), exploratory factor analysis, neural networks and

mixture models are useful for identifying chemically sig-

nificant areas on 2-D ion intensity maps (Tyler, 2003; Gra-

ham et al., 2006; Tyler et al., 2007; Park et al., 2009;

Graham and Castner, 2012). MVA and cluster analysis

techniques have been used extensively to distinguish

spatial structures and establish correlation patterns for

data obtained from the SIMS imaging of several biologi-

cal samples (Boxer et al., 2009). These include proteins

(Aoyagi et al., 2004), lipids (Biesinger et al., 2006; Brulet

et al., 2010), biomaterials (Tyler et al., 2007) and single

cells (Colliver et al., 1997).

In this study, we apply TOF-SIMS imaging followed by

MVA to investigate the chemistry of EWs present on the

leaf surface of Populus trichocarpa. Black cottonwood,

P. trichocarpa (Torr. & A. Gray), is an economically and

ecologically relevant tree and the first woody plant whose

genome has been sequenced (Wullschleger et al., 2002).

Nowadays, P. trichocarpa is considered a model for long-

lived trees (Bradshaw et al., 2000; Taylor, 2002; Brunner

et al., 2004). However, knowledge is still lacking regarding

how much of its leaf surface is represented by EWs, as well

as the chemical characterization of EWs and how they

interact with herbivorous insects. The crystallization of

EWs on leaf surfaces is also not fully understood. From the

literature, we know that after the crystallization of EWs,

properties of the leaf’s surface appear to be dramatically

modified in comparison to properties of an amorphous EW

layer (Jeffree, 1996; Post-Beittenmiller, 1996). Crystalliza-

tion may be initiated as a mono-layer self-assembly, later

rising above the original layer and supported by an under-

flow of EWs at the center. The crystallization of EWs has

also been studied for pure compounds, as well as for iso-

lated and partially purified EW mixtures (Jetter and

Sch€affer, 2001). Crystals, which tend to form diverse geo-

metric shapes, have been shown to manage the water flow

and minimize the droplet adhesion on the surface (lotus

effect) or to act as plant defenses against herbivory

(Alfaro-Tapia et al., 2007).

To study the crystallization of EWs, the acquired TOF-

SIMS imaging data were preprocessed and then analyzed

using MVA and clustering approaches. This data analysis

pipeline helped to distinguish spatial structures as well as

to establish the distribution and covariance patterns of

ions of interest on the leaf surface.

Principal components analysis was applied to the pre-

processed data to identify discriminating factors and detect

underlying structures based on similarities or differences

among the mass spectra. Because PCA results can be diffi-

cult to interpret, an MCR model was applied to the prepro-

cessed data to directly correlate the discriminating factors

with the SIMS spectra and identify important interactions

among multiple compounds.

We also applied unsupervised classification approaches,

such as hierarchical clustering analysis (HCA), in order to

group ions based on their spatial distribution patterns and

partitioning approaches – for example, divisive cluster

analysis (DCA) and spatial segmentation; we hoped to find

sets of spectrally related pixels. Using this approach, we

established the spatial distribution of selected alcohols

(Alc), alkanes (Alk) and wax esters (WEs; Dost, 2015), and

identified the elements responsible for distinct crystal for-

mation patterns.

It should be noted that the approach discussed in this

work is applied to a subset of the data that contains only a

few selected ions of interest (often referred to as ‘targeted

analysis’; Dunn et al., 2011). When there is no prior knowl-

edge about the surface chemistry of the analyzed sample,

then the full spectrum data have to be used. In either case,

our approach should be equally adaptable for exploratory/

untargeted analyses. The MVA methods applied here con-

sider all the peak intensities that help reveal salient chemi-

cal patterns and different correlations on the surface –
patterns that at times can remain hidden – when a targeted

analysis is performed. However, selecting robust prepro-

cessing approaches that address acquisition artifacts in the

full mass range and provide a good signal-to-noise separa-

tion ratio is crucial.

As the TOF-SIMS method is now widely available and

several institutes are running SIMS service centers, imple-

menting this state-of-the art method in plant sciences is

increasingly feasible. The approach may help shed light on

several crucial biological mechanisms in plants, such as

mapping the flow of cuticular lipids arising from the anti-

clinal walls, and many more. The aim of this work is to pre-

sent the applicability of high-resolution TOF-SIMS imaging

in plants and to show how various bioinformatics

approaches can be combined to precisely analyze the

resulting high-dimensional data.

RESULTS

Prior to TOF-SIMS imaging, the composition of blotted

EWs was studied using MALDI-TOF MS. Positive ion mode

MALDI-TOF MS spectra [M + Li]+ from the adaxial surface

of P. trichocarpa leaves showed three characteristic series

(Figure 2). Ions within each series were separated by 14 Da

(CH2), indicating the presence of consecutive homologs

within the group. Their masses were compared with stan-

dards and previously published data (Cva�cka and Svato�s,
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2003; Vrkoslav et al., 2010). The first series observed was

assigned to C29–C31 hydrocarbons; the next series, with an

increment of 28 or 14 Da, was assigned to C24–C33

alcohols; and the third series was assigned to long-chain

C40–C54 saturated WEs. The observed intensities in the

MALDI-TOF spectrum might have been influenced by the

fact that WEs will bind Li+ ions strongly to hydrocarbons

(Cva�cka and Svato�s, 2003), and therefore the intensities of

WEs might be biased. Within this series, additional signals

with a decrement of 2 Da were observed and assigned to

unsaturated esters (Table S1).

Later, an extensive TOF-SIMS imaging analysis using

two lateral resolutions of 10 lm and 1 lm in both positive

and negative ion modes was performed to validate MALDI-

TOF MS data. Molecular ions M+● and M�● for the 19

selected compounds of interest, including 11 alcohols, four

hydrocarbons and four WEs, are shown in Table 1. Here,

some signal intensities were biased, and the low abun-

dance of WEs observed could be explained by their low

stability under SIMS experimental conditions. On the other

hand, Alk and Alc series were well represented but had

higher intensities of the corresponding ions in MALDI-TOF

MS spectra (Figure 2; Table S1).

MVA captures co-aggregation patterns on the surface of

Populus trichocarpa leaves

PCA. After mean centering and Poisson scaling the raw

TOF-SIMS imaging data, we performed PCA on the prepro-

cessed data. For this study, we selected six principal com-

ponents (PCs) based on the total variance captured

(Figure S1). PC 1 captures 42% of the total variation, while

PCs 2–6 capture a total of 36%, making a total of 78% vari-

ance captured by the selected PCs. Details related to the

percentage of contribution by selected PCs are provided in

Table 2. The variance captured by each factor decreases

quickly for factors that contain chemical features, and then

reaches a gently declining slope for factors that describe

noise variations. As PCs higher than 6 do not provide any

additional information and do not seem to contain any

clear systematic structure, it is appropriate to consider

them as reflecting noise. The typical computation time is

less than 5 sec due to the small size of the data matrix. The

score and loading plots for all the selected PCs are shown

in Figure 3.

The score plot for PC 1 (Figure 3a) captures the overall

variation in intensity arising from the topography of the

Figure 2. Matrix-assisted laser desorption/ioniza-

tion time-of-flight mass spectroscopy (MALDI-TOF

MS) spectrum of epicuticular waxes (EWs) isolated

from the surface of adaxial leaves of Populus

trichocarpa using the cryo-adhesive isolation

method. Alk, alkanes; Alc, alcohols; WEs, wax

esters.

Table 1 Selected ions of interest for multivariate and classification
analysis from TOF-SIMS imaging data

Chemical class Chemical formula Monoisotopic mass (Da)

Alcohol (Alc) C21H44O 312.3392
Alc C22H46O 326.3548
Alc C23H48O 340.3705
Alkane (Alk) C25H52 352.4069
Alc C24H50O 354.3861
Alc C25H52O 368.4018
Alc C27H56O 396.4331
Alk C29H60 408.4695
Alc C28H58O 410.4487
Alk C30H62 422.4852
Alc C29H60O 424.4644
Alk C31H64 436.5008
Alc C30H62O 438.4800
Alc C31H64O 452.4957
Alc C33H68O 480.5270
Wax ester (WE) C44H88O2 648.6784
WE C46H92O2 676.7097
WE C47H94O2 690.7253
WE C48H96O2 704.7410
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leaf surface. Such topography includes the lateral leaf vein,

background and small islets (here, ‘crystals’), and repre-

sents the largest source of variance in the data. The load-

ing plot, which indicates the contribution of each ion to PC

1 (Figure 3b), shows high positive loadings for penta-

cosanol C25-Alc, m/z 368, and C23-Alc, m/z 340, with nega-

tive loadings for C21-Alc, m/z 312, and C22-Alc, m/z 326.

The score plot for PC 2 (Figure 3c) shows an enhanced

chemical contrast between the leaf surface background

and certain localized pixels (‘crystals’). The high-contrast

yellow regions in the score plot can be mainly attributed to

the increased contribution from C29-Alc; for m/z 424, on the

other hand, the pixels in black can be correlated with the

high negative loadings exhibited by C23-Alc, m/z 340, as

shown in the loading plot (Figure 3d).

The score plot for PC 3 (Figure 3e) mainly highlights the

other crystal-forming regions (shown in yellow) on the leaf

surface. These can be attributed to increased C23-Alc, m/z

340, in loadings for PC 3 (Figure 3f). The sharp negative

loadings for C25-Alc, m/z 368, can be attributed to the black

pixels in the upper right corner of each leaf’s surface area

in its corresponding score plot. The individual crystal pat-

terns from PC 2 and PC 3 show different spatial organiza-

tion accompanied by distinct chemistry. On calculating the

distance in pixels for the crystal patterns observed for con-

tribution of C29-Alc, m/z 424, in PC 2, and C23-Alc, m/z 340,

in PC3, it was found that the distance among the crystals

in the two patterns differs distinctly (about 10 lm versus

25 lm, as seen in Figure S2).

The score plot for PC 4 (Figure 3g) does not highlight

any crystal patterns but shows increased contributions

Table 2 Percent variance captured by PCA performed on the pre-
processed data obtained from TOF-SIMS of Populus trichocarpa
leaf surface

PC Eigenvalue
Variance captured
by PC (%)

Cumulative
variance (%)

1 1.83e + 01 42.02 42.02
2 7.93e + 00 18.23 60.25
3 2.36e + 00 5.43 65.68
4 2.11e + 00 4.85 70.53
5 1.80e + 00 4.14 74.67
6 1.28e + 00 2.94 77.61

PC, principal component.
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Figure 3. Principal component analysis (PCA) results for data obtained using negative mode time-of-flight secondary ion mass spectroscopy (TOF-SIMS) imag-

ing of the surface of Populus trichocarpa leaves at 1 lm step-size. (a,b) Score (left) and loading (right) plots corresponding to principal component (PC) 1. (c,d)

Score and loading plots corresponding to PC 2. (e,f) Score and loading plots corresponding to PC 3. (g,h) Score and loading plots corresponding to PC 4. (i,j)

Score and loading plots corresponding to PC 5. (k,l) Score and loading plots corresponding to PC 6. PCs 1–6 are the six selected principal components. Scores

are plotted using a standard ‘hot’ color gradient scale where black represents high negative loadings; movement from red, yellow to white represents high posi-

tive loadings.
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from C21-Alc, m/z 312, and C22-Alc, m/z 326, as is evident

from the corresponding loading plot (Figure 3h).

The loadings for PC 5 (Figure 3j) again highlight the

slightly increased contributions from C23-Alc, m/z 340, and

C29-Alc, m/z 424, and these are also reflected in the score

plot with evident crystal patterns (Figure 3i). The score and

loading plot for PC 6 do not provide any information

related to crystal formation; however, the score plot (Fig-

ure 3k) highlights the background of each leaf’s surface,

and this background can be correlated with sharp

increases in the loadings for triacontane C30-Alk, m/z 422;

C28-Alc, m/z 410; and C30-Alc, m/z 438.

MCR. The same preprocessed data were then subjected

to MCR analysis. The chemical contrast in the score plots

improved visibly after Poisson scaling was applied to the

raw data. For this study, we selected five factors for the

MCR model. This selection was based on an estimate of

the number of chemical species present in the dataset and

also on the number of PCs that explained most of the vari-

ance in the data, as shown previously.

The score and loading plots obtained after applying the

MCR model are shown in Figure 4. Details related to the

percentage of contribution by each factor in the five-factor

MCR model are provided in Table 3. The loading plots of

MCR analysis, unlike those of PCA, were interpreted as

normal spectra by applying non-negativity constraints.

Because these spectral responses show only positively cor-

related species, interpretation is made easier.

The score plot for factor 1 (Figure 4a) does not provide

much insight into the crystal formation patterns or help

find which pure components are responsible for the pat-

tern. The corresponding loading plot (Figure 4b) shows

high contributions from C31-Alk, m/z 436; C30-Alk, m/z 422;

and C30-Alc, m/z 438. These may contribute solely to the

background chemical composition of each leaf’s surface.

Score plots for factors 2 and 4 (Figure 4c,g) mainly show

the distinct patterns of crystal formation. Their respective

loading plots (Figure 4d,h) show an increased contribution

from C23-Alc, m/z 340, in loadings for factor 2, and from

C29-Alc, m/z 424, in loadings for factor 4. Figure S4 clearly

represents the two crystal patterns observed in a two-color

image overlay of score plots for factor 2 (pixels in red) and

factor 4 (pixels in green). The loading plots corresponding

to these factors have also been overlaid to identify the dis-

tinct chemical contribution. The score plot for factor 3 (Fig-

ure 4e) highlights the curved region at the upper right

corner parallel to the lateral leaf vein; this curve can be

attributed to the strong presence of C25-Alc, m/z 368, in the

loading plot (Figure 4f). The results from the MCR analysis

confirm the previously described results of PCA.

The two crystal patterns as observed in factors 2 and 4

(Figure 4c,g) mainly exhibit differences in the number of

crystals as well as the distance among them. These figures

also display a common pattern: some crystals are aligned

on parallel lines and some cross each other at an angle of

about 60° or �90°. A study was also performed on the size

of the observed crystals. As shown in Figure S3b, the

pseudo-colored plot displays the approximate radius of all

the regions observed on the leaf surface, based on the

intensity signals originating from the groups of pixels that

are creating the structural pattern. The color scale indicates

the size of such individual structures in terms of number of

pixels (1 pixel = 1 lm) in an increasing order, starting from

blue to yellow on the scale. The corresponding histogram

(Figure S3c) showing a region-wise count displays that

most crystal structures mainly fall in the range of 3–7 lm.

Cluster analysis. As with PCA and MCR, clustering was

performed using the mean-centered and Poisson-scaled

data. First, HCA was applied to the 19 variables in order to

group them. The dendrogram and heatmap representing

the HCA results were constructed using the Ward’s linkage

method, and are shown in Figure 5a. The dendrogram

reveals the relationship between the ions of interest, based

on the spectral differences/similarities among them. Each

row in the heatmap corresponds to an individual ion of

interest, and each column corresponds to a spatial coordi-

nate position (x, y) on the leaf’s surface. The color of each

cell in the heatmap represents the Z-score, a number that

measures the distance, in terms of the number of standard

deviations (SD), between that cell and the mean of all cells

in that column. The mean for each column (corresponding

to a single coordinate position) in the heatmap is calcu-

lated by averaging the intensity values for all the 19

selected masses at that coordinate position. The mean is

indicated as 0 on the Z-score scale. A positive Z-score indi-

cates how many SD units above the mean the intensity

value for a specific mass is, and a negative Z-score indi-

cates the number of units below the mean. The Z-score

can be particularly useful to distinguish features with high

intensity distributions reflecting stronger contributions at a

specific spatial location.

As seen in Figure 5a, the dendrogram consists of four

major clusters. The first cluster is represented by a single

ion forming the characteristic curved pattern on each leaf’s

surface (C25-Alc, m/z 368). The second cluster consists of

ions that belong to the Alc and Alk class, and is dominated

by those that exhibit a distinct crystal formation pattern.

However, one can see that the ion intensity maps of m/z

452 and m/z 436 do not display any crystal formation pat-

tern. Similarly, the third cluster also consists of ions that

belong to the Alc and Alk class, but is dominated by ions

that do not display crystal patterns. However, ion intensity

maps of m/z 408 and m/z 401 do show crystal formation

patterns. One explanation for this inconsistency could be

the distance measure used for HCA, which may group ions

based on the intensities at individual pixels without
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Figure 4. Multivariate curve resolution (MCR)

results for data obtained using negative mode

time-of-flight secondary ion mass spectroscopy

(TOF-SIMS) imaging of the surface of Populus

trichocarpa leaves at 1 lm step-size. (a,b) Score

(left) and loading (right) plots corresponding to fac-

tor 1. (c,d) Score and loading plots corresponding

to factor 2. (e,f) Score and loading plots corre-

sponding to factor 3. (g,h) Score and loading plots

corresponding to factor 4. (i,j) Score and loading

plots corresponding to factor 5.
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considering their spatial context. The last cluster in the

dendrogram is formed of non-crystal-forming ions, mainly

WEs.

Results for DCA using k-means are shown in Figure 5b

as a palette of pseudo-colored images (I–IV) representing

the partitioning into three, four, five and six clusters. The

three-class clustering (Figure 5b.I) broadly distinguishes

the background structures of the leaf’s surface without

offering much information about the location of the crys-

tals. The four-class clustering (Figure 5b.II) distinguishes

some of the crystal-forming regions, shown in red; the

curved region on the leaf surface in the upper right corner,

shown in turquoise; and the leaf background, shown in

blue and green regions. The five-class clustering (Fig-

ure 5b.III) shows the crystal-forming regions more pre-

cisely in red; the leaf background mainly in blue, with

irregular regions of green and turquoise; and the upper

right curved region of the leaf in pink. The six-class cluster-

ing (Figure 5b.IV) shows the location of crystal-forming

regions in red; the region of the leaf’s vein as well as some

Table 3 Results of MCR analysis performed on the preprocessed
data obtained from TOF-SIMS of Populus trichocarpa leaf surface

Factor Fit (% X) Cumulative fit (% X)

1 28.99 28.99
2 26.68 55.67
3 24.12 79.78
4 9.62 89.40
5 5.98 95.39

(I) 3 clusters (II) 4 clusters

(b) Divisive cluster analysis (c) Spatially-aware k-means clustering (r = 3)

Group 1

Group 2

Group 3

Group 4

Group 5

(I) 2 clusters (II) 3 clusters

(III) 4 clusters (IV) 5 clusters
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676.68
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Figure 5. Cluster analysis on time-of-flight secondary ion mass spectroscopy (TOF-SIMS) imaging data. (a) Results for hierarchical clustering analysis (HCA)

showing three main cluster groups as seen in the dendrogram. Each row in the heatmap represents a selected mass peak of interest, and each column repre-

sents the deviation of the spectral information at each coordinate position (x, y). The heatmap is color-coded based on the Z-score, where red represents a high

positive deviation from the mean and blue represents a high negative deviation from the mean. White represents no deviation from the mean value. (b) Results

for divisive cluster analysis (DCA) using k-means algorithm performed on data obtained using TOF-SIMS imaging of the surface of Populus trichocarpa leaves.

(I) Clustering with k = 3. (II) Clustering with k = 4. (III) Clustering with k = 5. (IV) Clustering with k = 6. (c) Results for spatially aware k-means clustering with pixel

neighborhood radius, r = 3. (I) Clustering with k = 2. (II) Clustering with k = 3. (III) Clustering with k = 4. (IV) Clustering with k = 5.
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regions of each leaf’s background in gold; the curved

region of the leaf’s upper right corner in pink; and the

background of each leaf’s surface in green, blue and

turquoise.

Because HCA as well as DCA using k-means treats inten-

sities from pixels independently, we also applied spatially

aware k-means clustering. Results for spatially aware

k-means clustering using pixel neighborhood radius r = 3

are shown in Figure 5c. The clustering results are in the

form of a palette of pseudo-colored images (I–IV) repre-

senting the spatially aware partitioning into two, three,

four and five clusters. As can be seen, the five-class clus-

tering (Figure 5c.IV) broadly distinguishes the localization

of the crystal-forming regions, the region of the leaf vein

and the background structures, as well as the characteristic

curved structure in the upper right corner of the leaf

surface.

The results from the cluster analysis also point to the

localization of crystals with distinct chemical specificity.

DISCUSSION

Understanding the chemical composition of plant EWs on

the scale of micrometers is arduous. The sensitivity and

the lateral resolution required are feasible only when TOF-

SIMS imaging is used due to the tightly focused ion beams

used for compound desorption/ionization. Here we present

TOF-SIMS imaging data acquired at 1 lm step size and a

large volume of information harvested using bioinformat-

ics tools.

Employing a bi-cluster ion beam provided richly infor-

mative MS spectra in which individual molecular ions in

both positive and negative ion modes were easily recog-

nized. Nineteen compounds were identified, including

alcohols, hydrocarbons and WEs, all of which formed radi-

cal cations or anions depending on the ion mode used.

Molecular ions for aliphatic hydrocarbons, alcohols and

WEs were obtained using identical experimental conditions

during the TOF-SIMS imaging of EWs on the surface of

Kalanchoe daigremontiana leaves (Jetter and Sodhi, 2011).

The SIMS MS analysis of EWs on myrtle berries using
69 Ga+ ions also provided rich MS spectra of intact com-

pounds. However, [M + H]+ or [M � H]� were detected in

positive and negative ion modes, respectively (Piras et al.,

2009). The TOF-SIMS imaging data correlate well with

MALDI-TOF MS spectra measured using a 7LiDHB matrix.

Quantification using internal standards has not been per-

formed; however, the relative intensities may represent the

actual proportion of the compounds on EWs. The reason is

that all long-chain compounds are expected to have similar

ionization potentials, as the chemical properties of the

local environment on the imaged leaf surface are the same.

However, this scenario may be changed if the imaged tis-

sue surface has chemical properties other than what was

expected and is non-homogenous.

For technical reasons, we were not able to measure the

samples after TOF-SIMS imaging using scanning electron

microscopy (SEM). Nevertheless, the crystals observed in

TOF-SIMS imaging data resemble the spheroidal grains

seen on the SEM image (Figure 1b) obtained indepen-

dently. Similarly, in SEM published for P. trichocarpa,

structures of about 3 lm in diameter are clearly visible

(Alfaro-Tapia et al., 2007). Additionally, large crystal clus-

ters resembling the structure in the upper corner parallel

to the lateral leaf vein in Figure 4e were also recognized.

The distances among the crystals are much smaller than

the distances among the trichomes (about 150 lm) or stig-

mata (about 100 lm); however, the observed distances

could be related to the size of epidermal cells. The period-

icity of the observed crystals (about 25 lm) may be related

to the transport of EWs from epidermal cells. As observed

from MVA and clustering results, the chemical composi-

tion of the crystals differs clearly from the chemical com-

position of other areas. The crystals with smaller distances

are formed mostly by C23-Alc, and those with larger dis-

tances by C29-Alc, findings that are fully congruent with

previous findings on the uniform composition of crystals

in EWs (Ensikat et al., 2006). The uniformity is likely related

to the process of molecular self-assembly that occurs dur-

ing crystallization. The chemical composition of other EWs

is extremely diverse. The presence of a mixture of hydro-

carbons (C30, C31) and aliphatic alcohols (C30, C31), and the

virtual absence of WEs, is characteristic for the score and

loading plot for MCR factor 1 in Figure 4a and b. In con-

trast, the score plot for MCR factor 5 in Figure 4i and j

shows the presence of alcohols (C21–C23) and WEs. To bet-

ter visualize and classify EW areas with distinct chemical

composition, the application of DCA and spatially aware

k-means clustering proved to be particularly useful. Images

generated for cluster groups k = 5 and k = 6 (Figure 5b.III

and b.IV) in DCA, and k = 5 (Figure 5c.IV) in spatially aware

k-means clustering illustrate the highly heterogeneous

chemical composition of the relatively small leaf area.

Based on this analysis, the MVA approach applied here

for identifying regions of specific chemical composition

and their classification based on distinct patterns using

cluster analysis is recommended for analyzing TOF-SIMS

imaging data. This analysis provides the chemical compo-

sition of areas showing distinct segregation/co-localization.

In addition, this methodology could be easily expanded to

other MSI datasets.

EXPERIMENTAL PROCEDURES

Plant material and growth conditions

Populus trichocarpa Torr. & Gray (clone 600-25) was cultivated in
a growth chamber at 23°C day and 18°C night with 50% relative
humidity, light intensity of 30% (Osram De Luxe 36W Natura), and
a diurnal cycle of 12 h light and 12 h dark. Cuttings were kept at
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12°C. After 8 weeks, when they had reached 15–20 cm in length,
plants were transferred to 2-L pots. Standard substrate (Klas-
mann-Deilmann GmbH, Postfach D-49744 Geeste, Germany,
www.klasmann-deilmann.com/) was used as soil and, beginning
4 weeks after transfer, plants were fertilized with 1% of
10:15:10 N:P:K supplement (Ferty�, PLANTA D€ungemittel GmbH,
Regenstauf D-93128, Germany, www.plantafert.com) every second
week. Plants were grown under controlled conditions and not
treated with any pesticides to prevent the potential chemical mod-
ification of the leaf’s surface. Plant leaves used for all experiments
were 4–5 months old.

Blotting of leaf cuticle

Epicuticular waxes were isolated using the cryo-adhesive method
(Jetter et al., 2000) with water as a transfer medium. Populus tri-
chocarpa leaves were rinsed briefly with distilled water to remove
any contaminants. Leaf tissues were cut into rectangle-shaped
pieces with dimensions slightly larger than the solid substrate
support [a metallic MALDI plate for MALDI-TOF MS, and a p-type
(100) orientation silicon wafer for TOF-SIMS]. Each leaf cutting
was placed onto the cleaned substrate holding four-five evenly
distributed droplets (double-distilled water, 3 ll each). Afterwards,
a glass slide was placed on top of the substrate/leaf stack and
gently pressed, creating a sandwich. The leaf was homogeneously
moistened with a very thin film of water. Tweezers were used to
dip the whole leaf in liquid nitrogen for 30 sec. Water droplets
served as a medium to transfer the wax layer from the leaf to the
substrate. The second glass slide enabled slight force to be put on
the tissue without direct contact, allowing the EWs to be isolated
without disturbing the other cuticle layers. The metal plate or sili-
con wafer was detached from the plant tissue and kept in a desic-
cator prior to analysis. This protocol results in a very flat EW
transfer layer on conductive substrates, representing an ideal
sample for TOF-SIMS imaging, one that can achieve the best mass
and lateral resolution.

MALDI-TOF MS

The spectra were acquired using a MALDI micro MXTM mass spec-
trometer (Waters/Micromass, Manchester, UK, www.waters.com)
operating in reflectron mode and positive polarity. EW com-
pounds were ionized and desorbed with a nitrogen UV laser
(337 nm, 4 ns laser pulse, firing rate 10 Hz, max 280 lJ per laser
pulse, 10 shots per spectrum). Ions were recorded from m/z 200 to
m/z 1500, matrix ions (below m/z 200) were suppressed and 70
scans were co-added. Data acquisition was done using MassL-
ynxTM V4.0 software package (Waters, Manchester, UK, www.wate
rs.com). Stainless-steel MALDI plate (Waters/Micromass, Manch-
ester, UK, www.waters.com) served as targets and were cleaned
by sonication in MeOH and subsequently in Me2CO, hexane and
CH2Cl2 before each usage. For external calibration of the mass
spectrometer, a mixture of PEG 600 and 1000 (1 lg ml�1 in
Me2CO; Sigma-Aldrich�, Germany, www.sigmaaldrich.com) was
used. 7LiDHB prepared from DHB (Sigma-Aldrich�, Germany,
www.sigmaaldrich.com) and lithium 7Li hydroxide (Sigma-
Aldrich�, Germany, www.sigmaaldrich.com) according to the pro-
tocol (Cvacka et al., 2006) was applied as a matrix (10 mg ml�1) in
Me2CO for calibration and in CH2Cl2: Me2CO (1:1) for sample anal-
ysis. All compounds were detected as lithiated (7Li) adducts. Sam-
ples in CH2Cl2 were spotted on a target using different sampling
techniques (mix technique, Sa/Ma, Ma/Sa, Ma/Sa/Ma); the best
results were obtained using the ‘sandwich’ technique: matrix,
sample, matrix (0.8 ll of 10 mg ml�1 each). Six parallel spots were
made for each sample and subsequently measured.

TOF-SIMS imaging

Time-of-flight-SIMS imaging was performed on a standard com-
mercial TOF-SIMS 5 instrument (ION-TOF GmbH, M€unster, Ger-
many, www.iontof.com). The spectrometer was equipped with a
Bi-cluster primary ion source and a reflectron-type TOF analyzer.
The UHV base pressure was <5 9 10�9 mbar. For high mass reso-
lution, the Bi source was operated in the ‘high current bunched’
mode providing short Bi+ or Bi3

+ primary ion pulses at 25 keV
energy and a lateral resolution of about 4 lm. The pulse length of
1.1–1.3 ns allowed high mass resolution. The primary ion beam
was rastered across 700 9 700 lm2, 500 9 500 lm2 and
100 9 100 lm2 sample area, and 700 9 700, 128 9 128 and
100 9 100 data points were recorded. Images larger than the max-
imum deflection range of the primary ion gun were obtained
using the manipulator stage scan mode with a lateral resolution
of 100 pixel mm�1. Primary ion doses were kept below 1011 ions
cm�2 (static SIMS limit). Spectra were calibrated on C�, C2

�, C3
�

peaks for the negative ion mode, and on C+, CH+, CH2
+ and CH3

+

peaks for the positive ion mode. Based on these datasets, the
chemical assignments for characteristic fragments were deter-
mined. The experiments were performed with five biological and
two technical replicates for a 700 9 700 lm2 area, one biological
replicate for a 500 9 500 lm2 area, and three biological replicates
for a 100 9 100 lm2 area. The following standards were imple-
mented: hexacosanoic acid, ethyl stearate, methyl tricosanoate,
1-hexacosanol, tetracosane (Sigma-Aldrich�, Germany, www.sig
maaldrich.com). The data acquisition and processing software
were IonSpec and IonImage (ION-TOF GmbH, M€unster, Germany,
www.iontof.com). Negative ion mode data at 1 lm lateral resolu-
tion were used for the data analysis. The molecular compositions
corresponding to measured m/z values were enumerated within
100-ppm windows using C, H and O atoms for calculations.

SEM

For SEM, EW imprints were prepared on silicon wafer sample tar-
get. EW imprints from the surface of adaxial leaves of P. tri-
chocarpa were isolated using the cryo-adhesive tape embedding
method. The sample targets with EW imprints were mounted on
the aluminum holders, sputter-coated with about 10 nm of gold
(Bal-Tec SCD005 sputter coater; 60 mA, 10 sec) and examined by
SEM (LEO Gemini 1530, Zeiss, Oberkochen, Germany) at 1.5 kV.

Data processing and MVA

For preliminary inspection of the TOF-SIMS imaging data,
pseudo-colored ion intensity maps were generated using Sur-
faceLab 6.3 software (ION-TOF GmbH, M€unster, Germany, www.
iontof.com). A total of 19 peaks of interest (shown in Table 1)
composed of alcohols, hydrocarbons (alkanes) and WEs in the m/z
range 200–800 were selected to be used in MVA and classification
studies.

Spectral data for these 19 peaks were extracted and converted
from the vendor file format, then exported in individual text files,
using SurfaceLab 6.3 software (ION-TOF GmbH, M€unster, Ger-
many, www.iontof.com). The data for these 19 peaks were
arranged in the form of a [n 9 m] matrix, where the rows (n) are
‘samples’, which denote the spectra acquired at every single coor-
dinate position (x, y), and the columns (m) are ‘variables’, which
denote the mass peaks of interest [the terminology used here is
consistent with ISO standard ISO 18115 Surface Chemical Analysis
– vocabulary, part 1: general terms and terms used in spec-
troscopy (Anon, n.d.)]. For the 100 9 100 lm2 TOF-SIMS imaging
dataset, this matrix had a dimension of [10 000 9 24]. The
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complete data analysis was performed on a Macintosh operating
system (version 10.10.5) with 8 GB of RAM, using 3.1 GHz Intel
Core i7 processor. Steps related to preprocessing and MVA were
carried out using the chemometrics software Solo+MIA (Eigenvec-
tor, Research, Wenatchee, WA, USA, www.eigenvector.com).

Preprocessing TOF-SIMS imaging data. Data preprocessing
is extremely important before MVA. Because these techniques
describe the underlying structure of the data, they are very sensi-
tive to data scaling and transformations. It is crucial to select the
appropriate preprocessing methods and to make judgments based
on the nature as well as the significance of sources of variance in
the data (Keenan and Kotula, 2004b; Wagner et al., 2006).

Because this specific dataset suffered from low signal-to-noise
ratio, data preprocessing steps consisted of first, mean centering
the variables. In mean centering, each variable is centered by the
subtraction of its mean value across all samples. This is typically
done so that the differences among the peak variances are empha-
sized over the differences in the peak area means. Additionally,
we also scaled the data to account for Poisson noise (Cochran and
Horne, 1977; Keenan and Kotula, 2004a; Henderson et al., 2009;
Teng, 2013). Data from TOF-SIMS instruments are collected in a
pulse-counted manner and subject to uncertainty that is explained
by Poisson statistics. This uncertainty is equal to the mean of the
signal intensity. MVA approaches such as PCA are designed to
account for variance in the data, and non-normalized variables
with large variance have stronger weights and are more likely to
be addressed in the modeling than are low variance variables.
Because TOF-SIMS data usually has variance, which is related to
the signal intensity, these approaches perform sub-optimally.
Poisson scaling (also called square root mean scaling) scales each
variable by the square root of the mean value so that the esti-
mated variance due to counting statistics is equal on all variables.
The application of Poisson scaling to the dataset provided greater
noise reduction and improved the sample separation in the PCA
model.

One important scaling method often necessary for MSI data,
irrespective of the ionization method used, is normalization. This
technique helps in identifying and removing sources of system-
atic variation among pixels in the dataset, which in turn is bene-
ficial to minimize inter-spectra variance. Normalization is usually
performed by multiplying a single mass spectrum in the dataset
with an intensity-scaling factor in order to make all spectra com-
parable. There have been many methods proposed for normal-
ization, the most common being total ion current normalization
(Deininger et al., 2011; Fonville et al., 2012; Veselkov et al.,
2014). We applied normalization to this dataset; however, it led
to the loss of contrast and distinct biological features on the
sampled leaf surface, and hence was not included as a part of
data preprocessing.

PCA. Principal component analysis is a popular factor analysis
method in which the data are described using a small number of
selected factors to highlight the useful properties of the dataset.
PCA looks at the variance pattern within a dataset to find the
direction of greatest variance and transform related variables to a
smaller set of orthogonal factors, called PCs. PCs are linear combi-
nations of all of the original variables and, therefore, capture more
information than do any of the original variables considered indi-
vidually. Not all PCs generated provide valuable information, and
it is preferable to discard higher PCA factors. This step is often
referred to as ‘factor compression’. The number of PCs can be
deduced by inspecting the eigenvalue plot, also known as the

‘scree plot’ (Zwick and Velicer, 1982), and the percentage of total
variance captured by first N PCs.

Principal component analysis creates three new matrices: the
scores, the loadings and the residuals. The scores describe the
relationship among the samples. The loadings define the contribu-
tions of the original variables to the new PCs and describe which
variables are responsible for the differences seen within the sam-
ples. The residual matrix describes the random variations not
described by the new PC axis and represents noise in the data.
This makes PCA a first step in the evaluation of complex TOF-
SIMS imaging datasets (Piras et al., 2009; Kalegowda and Harmer,
2012).

Principal components analysis was applied to the preprocessed
TOF-SIMS imaging dataset. Score plots show the values for each
coordinate position (pixel) on the associated PC axis. The pseudo-
color scale indicates the level of contribution of each pixel to the
axis. Pixels that correspond to the same histochemical structure
(i.e. pixels showing similar mass spectra) are expected to make a
similar contribution to different PCs, and these pixels appear with
the same color. Loading plots show the positive and negative cor-
relations of each original variable with the respective PC. The
score plots, loadings and the observed correlation of individual
peaks are discussed in the Results section.

MCR. While techniques such as PCA calculate factors based on
mathematical properties (for example, capturing maximum vari-
ance), these are often difficult to interpret because they are not
directly related to chemical properties. For example, PCA loadings
of a dataset of measured spectra are not generally spectra of pure
components. Instead, the loadings are typically linear combina-
tions of pure analyte spectra that have positive and negative inten-
sities.

Multivariate curve resolution (also indicated as alternating least
squares regression, or MCR-ALS) offers a way to decompose a
hyperspectral data matrix and is designed to identify pure compo-
nents from a multi-component mixture (Lawton and Sylvestre,
1971; Lee et al., 2008). This bilinear decomposition is usually per-
formed by the repeated application of multiple least squares
regression. The technique extracts chemically meaningful infor-
mation in the form of factors that resemble the spectra of chemi-
cal components and contributions. Applying MCR to multivariate
images yields information about which analytes are present and
where in the image they are located (Gallagher et al., 2004). MCR
assumes a linear combination of chemical spectra (MCR loadings)
and contributions (MCR scores) to describe each spectrum. MCR
factors are not required to be mutually orthogonal; therefore, by
applying non-negativity constraints to the loadings and scores
matrices during optimization, MCR components are directly inter-
pretable as spectra of pure compounds, as they have positive val-
ues (Lee et al., 2009; Wehrens, 2011; Jaumot and Tauler, 2015).

As in PCA, it is important to determine the number of factors or
components in MCR. An estimate of the number of components
to select for MCR can be made based on the number of chemical
species present. The first indication of the number of chemical
species present in a dataset can be obtained directly from the rank
of the data matrix or from the number of significant singular val-
ues associated with the data matrix (Tauler et al., 1995). The sin-
gular values that are related to chemical species are usually larger
than the noise, systematic errors or baseline values. The initial
number of components can also be roughly estimated based on
the number of components in PCA or singular value decomposi-
tion that can explain the data variance, i.e., by selecting the num-
ber of eigenvalues higher than those associated with the noise
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level (Malik et al., 2015; Rodrı́guez-Rodrı́guez et al., 2007). Because
this method works well when homocedastic noise is uniformly dis-
tributed but fails when this noise is dstriuted non-uniformly, it is
important to clean the data for any baseline and instrumental con-
tributions and apply suitable preprocessing steps (Mendieta et al.,
1998). A different approach to identifying the number of compo-
nents was applied by Motegi et al. (2015). They compared the con-
centration profiles generated from MCR results obtained by
sequentially changing the number of components for a single data-
set, and observed that similar components emerged repeatedly.
This observation suggested that reliable components behave simi-
larly, irrespective of the number of components selected, whereas
unreliable components emerged only once or just a few times.
These reliable components were considered to be informative.

To obtain initial estimates of the spectral profiles, a straight-
forward approach is to choose pure spectra from the original
data matrix. The SIMPLISMA (Windig and Guilment, 1991)
method is also a popular approach for selecting pure spectral
variables as initial estimates. To determine the initial estimates
for concentration profiles, methods such as evolving factor anal-
ysis and evolving window factor analysis are used (Budevska
et al., 2003).

Multivariate curve resolution was applied to the preprocessed
TOF-SIMS imaging dataset, score plots revealed the distribution
of the components of interest on the surface. These score plots
are represented using pseudo-colors, which display the level of
contribution of each component. The MCR loadings on each factor
resemble an actual SIMS spectrum of the component and show
its characteristic peaks. The score plots, the loadings and the
observed correlation of individual peaks are discussed in the
Results section.

Cluster analysis. Clustering is also an important statistical tool
for finding unknown patterns. It is a class of unsupervised meth-
ods that allows the classification and grouping of objects based
on their similarity (or difference). There are two main categories
(also known as segmentation methods): agglomerative and parti-
tional. Agglomerative methods such as HCA begin with each
object being its own cluster and progress by combining existing
clusters into larger ones. Segmentation methods, such as DCA,
start with a single cluster containing all objects and progress by
dividing existing clusters into smaller clusters or segments based
on their similarities or homogeneous composition (Zhao and Kar-
ypis, 2003; McCombie et al., 2005; Kaufman and Rousseeuw,
2008; Jones et al., 2012).

In this work, HCA has been applied to group the selected ions
of interest based on their spatial patterns (specifically, the localiza-
tion of crystals on the leaf surface). In HCA, a series of metric-
based calculations is performed to measure the distance between
samples and group them into clusters. This analysis uses Ward
linkage (Joe and Ward, 1963; Yu et al., 2008) as a metric to per-
form the distance-based calculations. Results from HCA can be
represented in the form of a dendrogram as well as a heatmap.

DCA was performed using the k-means algorithm; this algo-
rithm starts with k objects (clusters), in which k is specified by the
user a priori. During each cycle of this clustering method, the
remaining objects are assigned to one of these clusters based on
their distance from each of the k targets. New cluster targets are
then calculated as the means of the objects in each cluster, and
the procedure is repeated until no objects are re-assigned after
the updated mean calculations. For the TOF-SIMS imaging
data, the algorithm classifies each pixel into one of the k clusters
either by minimizing the sum of distances from their respective

centers or by maximizing interclass distance, which leads to the
most distinct clusters possible.

It can be difficult to estimate the optimal number of clusters in
advance. Selecting this number requires a combination of statisti-
cal reasoning [such as the use of a silhouette plot (Rousseeuw,
1987) to study the separation between the resulting k clusters],
some knowledge about the sample data being used and also
human judgment. In practice, k-means clustering is performed by
using different values of k to obtain a series of solutions. The final
choice of k is made based on qualitative criteria of the clusters
obtained (Bratchell, 1989).

One major disadvantage of applying HCA and k-means to MSI
data is that these methods treat each pixel independently and
ignore similarities of spectra acquired from spatially proximate
locations, i.e. they do not take into account any spatial relation-
ships (Jones et al., 2012; Bemis et al., 2016). The result can
adversely affect the quality of segmentation.

To address this disadvantage, spatially aware segmentation
approaches have been developed. Spatially aware segmentation
was performed using the approach proposed by Alexandrov et al.
(Alexandrov et al., 2010b; Alexandrov and Kobarg, 2011), which
incorporates spatial relations between pixels so that pixels are
clustered together with their neighbors. In this distance-based
clustering approach, the distance between spectra, obtained from
two pixels in the dataset, depends on the neighbors of the two
selected pixels. This method is based on the assumption that
mass spectra acquired from neighboring pixels in a morphologi-
cally defined region on a biological sample most likely represent
pixels with similar biochemical composition and so should be
similar. As in the k-means approach, the number of clusters has to
be provided a priori. Also, an additional parameter, the pixel
neighborhood radius r, has to be specified in advance. Different
values of r can be used to obtain a series of solutions, and the
final choice of an optimal radius can be made based on observa-
tions of the segmentation results.

The dendrogram plot and heatmap representing the HCA were
generated using the functions hclust and heatmap.2 within the
gplots package in R version 3.2.3 (2015-12-10, R Foundation for
Statistical Computing, www.r-project.org). DCA was performed
using multiple k values to obtain the pattern that best correlates
the PCA and MCR results. DCA results were generated using
Solo+MIA software (Eigenvector, Research, Wenatchee, WA, USA,
www.eigenvector.com). Spatially aware segmentation was per-
formed using the spatial k-means function, and results were gen-
erated using the plot function implemented in the CARDINAL
package (Bemis et al., 2015) in R version 3.2.3 (2015-12-10, R Foun-
dation for Statistical Computing, www.r-project.org).
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