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Introduction19

This supplement provides additional information for the paper ’Nonlocal effects dominate the global20

mean surface temperature response to the biogeophysical effects of deforestation’. The figures are21

numbered according to the order of their reference in the main text.22

• Text S1 explains the moving-window approach that is applied to separate local and nonlocal23

effects on surface temperature in various climate models.24

• Text S2 provides details on the observation-based datasets that are used in Fig 1 in the main25

text.26

• Text S3 explains how the warming due to deforestation-induced land carbon losses (gray bar in27

Fig. 2b in the main text) is estimated.28

• Fig. S1 shows the changes in radiometric surface temperature due to the local effects of defor-29

estation in four observation-based datasets (Methods). These maps correspond to the latitudinal30

averages in Fig. 1 in the main text.31

• Fig. S2 shows the vegetated fraction that was used in the idealized simulations in the MPI-ESM.32
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• Fig. S3 shows the maps of the local and nonlocal effects on surface temperature for a selection33

of the global mean values shown in Fig. 2 in the main text.34

• Fig. S4 shows the maps of the local and nonlocal effects on surface temperature in the simulation35

’3/4’ for the DJF and JJA seasons separately.36

• In Fig. S5, the nonlocal effects of deforestation on surface temperature are shown for deforestation37

in broad latitudinal bands. The maps correspond to the global mean values shown in Fig. 2b38

in the main text.39

• In Fig. S6, the mechanisms underlying nonlocal effects on surface temperature are analyzed sep-40

arately for deforestation and changes in surface albedo. Shown are changes in surface incoming41

radiation, split up into shortwave and longwave incoming radiation.42

• In Fig. S7, the mechanisms underlying local effects on surface temperature are analyzed sepa-43

rately for deforestation and changes in surface albedo. To this end, we decompose changes in44

the surface energy balance into changes in net available energy and changes in turbulent heat45

fluxes.46

• Fig. S8 compares the the two different methods used in this thesis for calculating the local effects47

on surface temperature in plausible LCC scenarios.48

• Fig. S9 provides maps of the simulated local plus nonlocal effects for all idealized experiments49

in the MPI-ESM and indicates where these results are statistically significant.50

• Table S1 provides an overview over the simulations in the MPI-ESM.51

• Table S2 provides an overview over the simulations used in Fig. 3 in the main text.52
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Text S1 - Moving-window approach to separate local and nonlocal effects53

in various climate models54

For separating local and nonlocal effects from existing climate model simulations, we employ the55

moving window approach as in the paper by Lejeune et al.1 In this approach, linear regressions are56

fitted between the simulated temporal changes in surface temperature and those in tree fraction within57

spatially moving windows, each of which contains 5 x 5 model grid cells. For the grid cell located in58

the center of each moving window, the local effects of deforestation on surface temperature are then59

computed by multiplying the slope of the regression by the actual temporal change in tree fraction60

over this particular grid cell. This approach assumes that the forcing that is induced by deforestation61

acts spatially heterogeneously and thus mostly affects surface temperature in each grid cell separately,62

as opposed to greenhouse gases and other climate forcings which impact surface temperature similarly63

for all grid cells within one moving window. An evaluation of this method as well as further details64

are available in their study.165

For this particular set of existing simulations (historical, RCP2.6 and RCP8.5, see Table S2), we66

then calculate the nonlocal effects as the simulated total minus local effects, which is different from67

the approach for the idealized simulations in the MPI-ESM (Methods in main text) where we first68

isolated the nonlocal effects and then used them for obtaining the local effects. We use the last 3069

years in which data are available for all models. These years are 1971 - 2000 for historical changes in70

forest cover, and 2070 - 2099 for changes in forest cover in the RCP simulations. Different numbers of71

ensemble members are available for the different models. For instance, for RCP2.6 in the MPI-ESM,72

there are 3 ensemble members with and 2 without deforestation. Thus, in Fig. 3 in the main text we73

show 3 × 2 = 6 combinations of ensemble members. For the numbers of available ensemble members74

in the respective models, see Table S2.75

Text S2 - Details on the observation-based datasets76

The observation-based datasets should be compared with care because they differ in many respects.77

For instance because the spatial coverage (coloured areas in Fig. S1) and the underlying methods78

differ strongly. In addition, while the three satellite-based datasets2–4 only employ observations un-79

der cloud-free conditions, the ground-based observations5 are free of this cloud bias. Furthermore,80

conversions between different vegetation types are analyzed in the different datasets. The dataset81

by Li et al.2 considers differences between forests and ’open land’ (grasslands and croplands). The82

dataset by Alkama et al.3 considers forest loss related to disturbances such as forest fires or wind-83

storms, but also forest clearings for agriculture or forestry. The dataset by Bright et al.5 includes84

the effects of a conversion between different forest types and grass. We average their responses to85

the replacement of different forest types by grass (their Figs. 2 d, e, f), and we weigh this average86

with the occurrence of the respective forest type in the MPI-ESM. The dataset by Duveiller et al.487

contains information on the local effects of conversions between various land covers. Here, we consider88

the conversion of forests to crops and grasslands (variable ’13’ in their datasets ’LSTday IGBPgen.nc’89

and ’LSTnight IGBPgen.nc’) and average daytime and nighttime values. Finally, the datasets differ90

in the years over which they average their local effects of potential deforestation (Li et al. 2002-2013;91

Alkama et al. 2003-2012; Bright et al. 2001-2011; Duveiller et al. 2000-2015). Because the local effects92

exclude a large share of climate variability6 we assume that the multi-year averages of the observations93

are robust with respect to the exact number of years over which the average is calculated, and thus94

the multi-year average can be compared consistently to the 200-year average in the MPI-ESM.95
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For the observational range in Fig. 1 in the main text, we average latitudinally over locations96

where values in at least one of the four datasets are available. For the dataset by Alkama et al.,397

we weighted the data for the latitudinal average with the forest loss at the respective locations. The98

corresponding Fig. S1 shows only locations where forest loss exceeds 1% in the analysis time frame99

(years 2003 - 2012).100

Text S3 - Deforestation-induced warming due to land carbon loss101

To provide a first-order estimate of the importance of biogeophysical effects to those of deforestation–102

related carbon emissions we estimate how much carbon would be released to the atmosphere by the103

deforestation applied in the ’2x historical’ simulation. For this, we scale the respective deforestation104

areas with carbon values of different forest types as used in a bookkeeping model for land-use emis-105

sions.7 The range in Fig. 2 includes an upper estimate (starting with values for primary forest of the106

default dataset used in that study) and a lower estimate (starting with values for secondary forest of107

the alternative dataset with lower carbon values). The resulting change in carbon is then converted in108

a change into global mean temperature (gray bar in Fig. 2b) using the MPI-ESM value of the transient109

response to cumulative emissions.8110
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Figure S1: Local effects of deforestation on surface temperature [K] in observation-based datasets. These
datasets comprise satellite-based observations on potential (Li et al.2 and Duveiller et al.4) and actual
deforestation (Alkama & Cescatti3), and a semi-empirical approach based on fluxnet observations (Bright et
al.5).
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Figure S2: Vegetated fraction9 that we used for the idealized scenarios in the MPI-ESM. We switch between
100% forests and 100% grasslands only on the vegetated parts of the model grid cells. Thus, we simulate no
forest cover change in desert areas such as the Sahara.

Simulation Short description
forest world Forest prescribed on all vegetated areas

1/4 Grasses replace forests in 1 out of every 4 grid cells globally
2/4 Grasses replace forests in 2 out of every 4 grid cells globally
3/4 Grasses replace forests in 3 out of every 4 grid cells globally

low lats Grasses replace forests in 3 out of every 4 grid cells between 17◦ S and 17◦ N
intermediate lats Grasses replace forests in 3 out of every 4 grid cells between

17◦and 41◦ S and between 17◦ and 41◦ N
high lats Grasses replace forests in 3 out of every 4 grid cells north of 41◦ N

2x historical Grasses replace forests near areas that were deforested since 1850 but, for
comparability, with areal extent similar to ’1/4’ (approximately twice the
extent of deforestation since 1850)

only albedo Only albedo switched from forest to grass values in 3 out of every 4 grid cells globally

Table S1: Overview of all simulations performed for this study. Details can be found in the main text
(Methods).
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Figure S3: Local and nonlocal effects of deforestation simulated by the MPI-ESM. See Methods section for
meaning of simulation names. Shown are changes in surface temperature [K] induced by deforestation (rows
1 - 4) or induced by changes in surface albedo (last row). Land grid cells where vegetation is not changed are
masked in gray. It can be seen that local and nonlocal effects of deforestation on surface temperature differ
both in the intensity (local effects stronger than nonlocal effects in many grid boxes) and spatial extent (more
grid boxes affected by nonlocal than by local effects).
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Figure S4: Seasonal values for the nonlocal effects on surface temperature [K] in the MPI-ESM. Changes
in surface temperature when simulating deforestation of three of four grid cells globally, in the northern-
hemisphere winter (DJF) and summer (JJA) and the difference between the responses in the two seasons (DJF-
JJA). Differences between the seasons are particularly pronounced for the local effects, for which deforestation
is more cooling/less warming in the northern-hemisphere and more warming/less cooling in the southern
hemisphere during DJF compared to JJA. The nonlocal effects on surface temperature seem to vary much less
with the season compared to the local effects, with more spatial heterogeneity in the difference between DJF
and JJA.
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Figure S5: Nonlocal effects on surface temperature [K] in the MPI-ESM and the contributions from deforesta-
tion in latitudinal bands. Changes in surface temperature when simulating deforestation of three of four grid
cells globally, in the high, intermediate, and low latitudes. The dashed lines denote the borders of deforesta-
tion in the respective simulations. Statistical significance of the maps of the simulated (local plus nonlocal)
effects is shown in Fig. S9. The global averages of the nonlocal effects shown here are statistically significant
for deforestation in each latitude band, see confidence intervals in Fig. 2b in the main text.
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Figure S6: Role of shortwave and longwave incoming radiation for the nonlocal effects as simulated in the
MPI-ESM. Left: Nonlocal effects due to deforestation of three out of four grid cells (simulation ’3/4’, as in
Fig. 3 and S3). Right: Nonlocal effects if only albedo is changed from forest to grass values (simulation ’only
albedo’). Top: Changes in surface temperature [K]. Bottom: Changes in the total incoming radiation [W/m2],
split further into changes in shortwave incoming radiation and longwave incoming radiation.
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Figure S7: Role of radiation and turbulent heat fluxes for the local effects as simulated in the MPI-ESM.
Left: Local effects due to deforestation of three out of four grid cells (simulation ’3/4’, as in Figs. 1 and
S3). Right: Local effects if only albedo is changed from forest to grass values (simulation ’only albedo’).
Top: Changes in surface temperature [K]. Bottom: Changes in the energy balance [W/m2], split further
into changes in radiation (longwave incoming + shortwave net radiation) and turbulent heat fluxes (latent
+ sensible heat). Even if only the albedo is changed, the resulting radiative cooling is largely compensated
locally by more surface energy that is available because of the decreased turbulent heat fluxes from the surface
to the atmosphere.
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Figure S8: Comparison of the two approaches used in the present study for isolating the local effects on surface
temperature [K] in the MPI-ESM. The local effects of RCP2.6 and RCP8.5 are calculated as in the studies
by Lejeune et al.1 and Winckler et al.,10 respectively. The spatial patterns match well, but the magnitude of
the effects differ by a factor of about two. The regression used in the first of the two approaches may lead to
an underestimation of the local effects.1 An underestimated local warming would imply an underestimated
nonlocal cooling (or overestimated nonlocal warming), so this underestimation of the local effects does not
affect our conclusion that there is a tendency towards nonlocal cooling across the models.
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Figure S9: This plot indicates which of the simulated changes in surface temperature (local plus nonlocal) are
statistically significant. The simulation names are described in the Methods section of the main text and in
Supplementary Table S1. We test for significance using a two-tailed student’s t-test accounting for temporal
lag-1 autocorrelation.11 The gray stippling indicates grid boxes where the null hypothesis cannot be rejected
and therefore the results are not statistically significant. Panels a)-c) show that the number of statistically
significant grid cells increases with the area of forest cover change. When globally averaged, the results both
for local and nonlocal effects are statistically robust also in the simulations with smaller deforestation areas (a)
and e)-h)) because the 95% confidence interval does not contain zero (Fig. 2 in the main text). This indicates
that averaging 200 simulated years is sufficient for the analysis of the global mean values that we perform in
the results section in the main text.
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