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ABSTRACT

Ad-hoc retrieval models can bene�t from considering di�erent
pa�erns in the interactions between a query and a document, e�ec-
tively assessing the relevance of a document for a given user query.
Factors to be considered in this interaction include (i) the matching
of unigrams and ngrams, (ii) the proximity of the matched query
terms, (iii) their position in the document, and (iv) how the di�erent
relevance signals are combined over di�erent query terms. While
previous work has successfully modeled some of these factors, not
all aspects have been fully explored. In this work, we close this
gap by proposing di�erent neural components and incorporating
them into a single architecture, leading to a novel neural IR model
called RE-PACRR. Extensive comparisons with established models
on Trec Web Track data con�rm that the proposed model yields
promising search results.

CCS CONCEPTS

•Information systems →Retrieval models and ranking;Web
searching and information discovery;

1 INTRODUCTION

Deep learning has enjoyed enormous success in the last few years,
completely transforming �elds such as natural language processing
and computer vision. While state-of-the-art neural models for ad
hoc information retrieval (IR) have been making signi�cant ad-
vances and now perform quite well, there have been decades of
prior research on information retrieval, and many of the resulting
domain insights are yet to be incorporated into the neural IR para-
digm. Deep learning allows us to learn powerful models that can
capture relevance matching at �ne-grained levels. For example,
when encoding local matching, the �lters in a convolutional neural
network (CNN) enable a model to learn di�erent pa�erns of match-
ing beyond exact matches as in [9, 14]. �e state-of-the-art neural
models have demonstrated the utility of such capabilities. We argue
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that, however, there is still room to further exploit such insights and
knowledge of the task in order to develop more powerful neural
models.

To close this gap, we highlight several promising aspects based
on past research within the IR community, and propose several deep
neural components to address them accordingly. �ese components
are integrated to form a novel neural model called RE-PACRR, short
for Relevance Enhanced PACRR, which builds on PACRR [9], a
state-of-the-art neural model. However, the insights we identify
and components we propose are not speci�c to PACRR, and we
expect them to be similarly relevant to other state-of-the-art neural
models, such as DUET [11], DRMM [5], and MatchPyramid [14].
An overview of RE-PACRR is given in Figure 1, incorporating the
following domain insights.

Disambiguation refers to distinguishing di�erent senses of
the same term. For retrieval models such as BM25 that rely on
exact term matching, some of the matches may actually result from
di�erent senses of the same term in a query and a document. Such
sense mismatches are incorrectly considered as relevance matches.
For example, given the query “Jaguar SUV price”, the term “Jaguar”
refers to a car brand, but the term “jaguar” could also refer to an
animal, as in the following sentence.

In a safari wild park near London, an a�ack hap-
pened when a jaguar was irritated by a horn from
a tourist SUV, which, fortunately, caused no harm.

�erefore, when evaluating the relevance between this sentence-
query pair, the exact term match of “jaguar” should not be counted
as a relevance match. Models such as DUET (in its distributed
component) may be able to account for this by encoding a query
and a document into a dense vector space. Most neural IR models
do not explicitly account for disambiguation. In this work, a context
checking module is proposed and plugged into the PACRR model,
allowing the model to consider sense matching as well as term
matching.

Proximity takes into account information about where query
terms occur in a document and how they depend on each other
– as exploited by retrieval models aware of term proximity [17].
Term proximity emphasizes the frequent co-occurrence of di�erent
query terms within a small text window, which are not necessarily
successive. Intuitively, a small text window including multiple
di�erent query terms is more likely to be relevant in the sense
that it covers more relevant information to the query. For example,
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Figure 1: �e pipeline of RE-PACRR.�e inputs include twomatrices, namely, sim |q |× |d | and querysim |d | , recording the similar-

ity of di�erent terms in a document relative to each query term and thewhole query respectively. All these similaritymatrices

are truncated/zero-padded to the dimensions governed by lq and ld . Several 2D convolutional kernels are �rst applied to the

similarity matrices, one for each lд ∈ [2, lд], and an extra one for query proximity with kernel size lq × lq . Next, max pooling is

applied to pool out the �lters, ending up with lд + 1 matrices, namely, C1 · · ·Clд ,Clq . Following this, ns -max pooling captures

the strongest ns signals on eachC, at all nc positions from cpos. In the meantime, the context similarity corresponding to each

term in top-ns from contextld is also appended, leading to Plq×lд×(2nsnc ). Finally, the query terms’ normalized IDFs are appended,

and a feedforward network is applied, a�er permuting the rows in Plq×lд×(2nsnc+1), getting a query-document relevance score

rel(q,d). In this plot, the situation when ld = 8, lq = 3, lд = 3, nc = 2, ns = 2 and cpos = [50%, 100%] is displayed.

given the query “Jaguar SUV price”, a text window including all
three terms is more likely to be relevant, since both “Jaguar SUV”
and “price” are included. To consider proximity, a model needs
to be capable of capturing local matching information beyond a
single query term. In this regard, it has been partially considered
in MatchPyramid [14] and PACRR [9], but these models do not
consider proximity of all query terms at once. In this work, we
further investigate a new building block to model proximity by
including a su�ciently large kernel to cover all query terms, which
makes it possible to fully model proximity.

�ery coverage aims at comprehensively catering to all rele-
vant concepts in the query, to avoid biasing the results towards only
individual concepts occurring in the query. Consider, for instance,
a verbose query such as the following [6]:

Provide information on all kinds of material interna-
tional support provided to either side in the Spanish
Civil War.

Relevant documents should likely mention both “Spanish” and
“civil war” in this case. More generally, a relevant document to a
query should, to some degree, cover all of the query’s most salient
concepts. Existing neural IR models satisfy query coverage when
combining the matching signals from di�erent query terms. We
argue that such a combination should be position-independent.
Put di�erently, the way to combine the relevance signals and the
weights allocated to di�erent query terms should only depend on
the inherent properties of the query terms and their relevance
signals. Such matching signals already cover both unigrams and
ngrams (e.g., in PACRR the matching signal for the term “civil”
includes both the unigram signal and bigram matching signal for
“civil war”), so the relative positions of these matching signals need
not be considered when the signals are combined. �is is especially

true when the inputs are zero-padded in the tail of a query, be-
cause a model is not supposed to learn combination weights based
on the occurrences of zeros in the tail positions. In this regard,
we argue that position-independence is not fully implemented in
established model architectures. To address this, we introduce a
random permutation phase before combining signals, removing the
position-dependent factors and thereby improving the generaliza-
tion ability of the model.
Cascade reading model. In addition to the amount of relevant in-
formation in a document, a model should also consider the density
of the relevant information. An extreme example is the comparison
between one relevant document and a pseudo-document composed
of several concatenated non-relevant documents with the same rel-
evant document appended to the end. Although the same amount
of relevance matches are included in the original relevant docu-
ment and the pseudo-document, one would expect that the original
document is preferred, due to the relevant information being pre-
sented earlier and overall more densely. Beyond this, according to
the cascade model from [2], a document’s relevance gains should
be degraded when enough relevant information has already been
observed, since a user may already stop reading a�er collecting
enough relevant information from the current document. Such
signals might be learned implicitly by a 1 × doclen kernel in the
local matching of DUET. However, to the best of our knowledge,
it has not been explicitly modeled in established neural IR models.
To address this, we propose a cascade component to model the
position of the relevant signals in addition to the total amount of
relevant signals.
Contributions. Inspired by these insights, we propose the novel
RE-PACCRR model that incorporates all of the aforementioned
building blocks: the context checking module, the term proximity



kernel, the signal combination regularizer, and the cascade compo-
nent. �e proposed model is examined through extensive experi-
ments based on relevance judgments from Trec, and compared with
multiple state-of-the-art models including MatchPyramid, DRMM,
the local model in DUET, and the PACRR model. We �nd that
RE-PACRR compares favorably against the baseline models. Re-
markably, when re-ranking the search results from a naı̈ve ranker,
namely a query-likelihood ranking model, the re-ranked runs are
ranked top-1 under both ERR20 and nDCG20 in the Web Track
2012–14, improving both evaluation measures by 100% on average.
We release our implementation of RE-PACRR to support further
comparisons.1

Organization. �e rest of this paper unfolds as follows. Section 2
recaps the basic neural-IR model PACRR, and therea�er Section 3
describes the proposed building components in detail. �e setup
and results of our extensive experimental evaluation can be found in
Section 4. We discuss related work in Section 5, before concluding
in Section 6.

2 BACKGROUND

In this section we introduce the basic PACRR model following the
notation from [9]. In general, PACRR takes a similarity matrix
between a query q and a document d as input, and the output of
the model is a scalar, namely, rel(d,q), indicating the relevance of
document d to query q. PACRR a�empts to model query-document
interactions based on these similarity matrices. At training time, the
relevance scores for one relevant and one non-relevant document,
denoted as d+ and d−, respectively, are fed into a max-margin loss
as in Eq. 1.

L(q,d+,d−;Θ) = max(0, 1 − rel(q,d+) + rel(q,d−)) (1)
At inference time, given a query, documents are ranked based on
their rel(d,q). In the following, PACRR is introduced component-
by-component.

(1) Input: the similarity matrix simlq×ld , where both lq and ld
are hyper-parameters unifying the dimensions of the input
similarity matrices. lq is set to the longest query length,
and the maximum document length hyper-parameter ld
is tuned on the validation dataset. Given the se�ings for
both lq and ld , a similarity matrix between a query and
a document is truncated if the document is too long or
zero-padded if it is too short.

(2) CNN kernels and max-pooling layers for the �lters:
multiple CNN kernels with lf �lters are introduced to cap-
ture the local matching information, like n-gram matching,
for di�erent text window lengths, namely 2, 3, · · · , lд . �e
hyper-parameters lд and lf govern the longest text window
under consideration and the number of �lters, respectively.
�ese CNN kernels are followed by a max-pooling layer
to retain the strongest signals per kernel, leading to lд
matrices, denoted as

C1
lq×ld×1 · · ·C

lд
lq×ld×1 ,

(3) k-max pooling: subsequently, the matching signals in
C1, · · · ,Clд from these kernels are further pooled with

1h�ps://github.com/khui/repacrr

ns -max pooling layers, only keeping the top-ns strongest
signals over individual query terms, ending up with

P1
lq×ns , · · · , P

lд
lq×ns ,

which are further concatenated for individual query terms,
resulting in a matrix Plq×(lдns );

(4) combinations of signals from di�erent query terms:
the signals in Plq×(lдns ), together with the inverse docu-
ment frequency for individual query terms, are fed into
an LSTM layer to generate the �nal query-document rele-
vance score rel(d,q).

Tweaks. Before moving on, we make two changes to the orig-
inal PACRR model to cater to our study. �is revised model is
employed and simply denoted as PACRR in the following sections.
First, according to our pilot experiments, the performance of the
model does not change signi�cantly when replacing the LSTM
layer with a stack of dense layers, which have been demonstrated
to be able to simulate an arbitrary function [4]. Such dense layers
can easily learn in parallel, leading to faster training [4], whereas
back-propagation through an LSTM layer is much more expensive
due to its sequential structures. From Section 4, it can be seen
that e�ciency is very important for this study, due to the huge
amount of model variants to be trained and the limited availability
of hardware at our disposal. Finally, another tweak is to switch the
max-margin loss in [9] to a cross-entropy loss as in Eq. 2, according
to [3], where it has been demonstrated that a cross-entropy loss
may lead to be�er performance.

L(q,d+,d−;Θ) = −log exp(rel(q,d+))
exp(rel(q,d+)) + exp(rel(q,d−)) (2)

3 METHOD

In this section, we describe the novel components in the RE-PACRR
model. �e architecture of this model is summarized in Figure 1.

Context checkingmodule: disambiguation of the relevance

matching. Beyond the simlq×ld from PACRR, we introduce an in-
put vector denoted as querysim |d | , encoding the similarity between
each document term and the entire query. In particular, the vector
of a query is computed by averaging the word vectors of all query
terms, and cosine similarity is computed between each term vector
in the document relative to this query vector. As in [9], we use
pre-trained word2vec2 embeddings to compute term similarities
due to its availability. In the future, one may desire to replace this
with other embeddings such as the dual embedding from [12] or
the relevance-based embedding from [18]. �erea�er, given a term
at position i , namely, querysim[i], the similarity for its context is
computed by averaging the similarity in its surrounding windows,
resulting in contextld a�er truncating or zero-padding in accor-
dance with ld . �us, for a term at position i in a document, its
context similarity context[i] is computed as

context[i] =
∑
j ∈[i−w,i+w ] querysim[i]

2 ∗w + 1 .

In the model, to avoid relevance matching due to ambiguity
as in the “jaguar” example from Section 1, intuitively, only when
2h�ps://code.google.com/archive/p/word2vec/
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both the term and its context are highly similar with a query term
(or n-gram in the query) do matching signals represent a correct
relevance match. �us, when combining the top-ns signals from
individual query terms, the corresponding similarities for these
top-ns signals from contextld are also concatenated, making the
matrices Plq×(lдns ) become Plq×(2lдns ). �is enables the aggregat-
ing model, namely, a feed-forward network, to take the ambiguity
into account when determining the ultimate score. For example, in
the “jaguar” example in Section 1, in the context of “jaguar” there
are “safari” and “wild park”, which have low similarity with query
terms such as “SUV” and “price”, e�ectively making the model un-
derstand that the two “jaguar” occurrences in the query and in the
sentence are referring to di�erent senses.

Model proximity with a larger CNN kernel. As discussed
in Section 1, we assume that proximity could be modeled over the
entire query, instead of over multiple small text pieces in the query,
as in MatchPyramid and PACRR. �us we propose to implement
an extra kernel with size lq × lq , adding it along with other CNN
kernels. �is leads to an extra matrix a�er the CNN layer, namely
C
lq
lq×ld×lf

, and ultimately an extra matrix a�er the max-pooling

of �lters, namely, Clqlq×ld×1. �erea�er, such proximity signals are
passed on to the follow-up pipeline in the model, resulting in a
matrix Plq×((lд+1)ns ) before the combination.

Cascade k-max: simulating the cascade reading approach.

As discussed in Section 1, not only the strength but also the o�sets of
relevance signals ma�er. We propose to encode such cascade factors
by conducting k-max pooling at multiple o�sets in a document,
instead of pooling only on the entire document. For example, one
could conduct multiple k-max pooling at 25%, 50%, 75%, and 100% of
a document, ending up with Plq×(4lдns ). �is corresponds to when
a user si�s through a document and evaluates its relevance a�er
�nishing the �rst, second, third, or fourth quarter of the document.
�e list of o�sets at which cascade k-max pooling is conducted is
governed by an array cpos , e.g., cpos = [25%, 50%, 75%, 100%] in the
above example, and the length of this array is denoted as nc , which
are both hyper-parameters.

Randomlypermute query terms before feed-forward layer:

improving generalization. As mentioned in Section 1, the com-
bination of relevance signals among di�erent queries is position-
independent. In light of this, we propose to randomly permute rows
in Plq×(lдns ) before aggregating them. Note that each row contains
signals for multiple n-gram lengths; permuting the rows does not
prevent the model from recognizing n-grams. We argue that, taking
advantage of this independence, the permutation can e�ectively
improve the generalization ability of the model, making the com-
putation of the relevance scores depend solely on the importance
of a query term (idf ) and the relevance signals aggregated on it.
�is should be particularly helpful when training on short queries
(|q | < lq ), where padded zeros are in the tail of simlq×ld . Without
permutation, a model might remember that the relevance signals at
the tail of a query, e.g., the several �nal rows in simlq×ld , contribute
very li�le and are mostly zero, leading to it mistakenly degrade the
contribution from terms at tail positions when inferring relevance
scores for longer queries.

4 EVALUATION

In this section, we empirically compare the proposed RE-PACRR
with multiple state-of-the-art neural IR models using manual rele-
vance judgments from six years of the Trec Web Track. Akin to [9],
the comparison is based on three benchmarks, namely, re-ranking
search results from a simple initial ranker, coined RerankSimple,
re-ranking all runs from the Trec Web Track, coined RerankALL,
and further examining the classi�cation accuracy of the neural IR
models in determining the order of document pairs, coined PairAc-
curacy.

We compare our model with multiple state-of-the-art neural IR
models including DRMM [5], DUET [11], MatchPyramid [14], and
the basic PACRR model [9]. As our focus is on the deep relevance
matching model, we only compare against DUET’s local model,
denoted as DUETL. Additionally, the Trec benchmarks contain
much less data than that used to train DUET’s distributed model
in [11].

4.1 Experimental Setup

We rely on the 2009–2014 Trec Web Track ad-hoc task bench-
marks3, which are based on the ClueWeb09 and ClueWeb12
datasets as document collections. In total, there are 300 queries and
more than 100k judgments (qrels). �ree years (2012–14) of query-
likelihood baselines (QL) (Terrier [13] version without �ltering
spam) provided by Trec4, and the search results from runs sub-
mi�ed by participants from each year are both employed as initial
rankings in the RerankSimple and RerankALL benchmarks, re-
spectively. In total, there are 71 (2009), 55 (2010), 62 (2011), 48 (2012),
50 (2013), and 27 (2014) runs. ERR@20 [1] and nDCG@20 [10] are
employed as evaluation measures, and both are computed with the
script from Trec5.
Training. Models are trained and tested in a round-robin man-
ner, using individual years as training, validation and test data.
Speci�cally, the available judgments are considered in accordance
with the individual years of the Web Track, with 50 queries per
year. Proceeding in a round-robin manner, we report test results
on one year by using combinations of every four years and the
le�-out year in the remaining years for training and validation,
respectively. Model parameters and the number of training epochs
are chosen by maximizing the ERR20 on the validation set for each
training/validation combination separately. �erea�er, the selected
model is used to make predictions on the test data. Hence, for each
test year, there are �ve di�erent predictions each from a training and
validation combination. Akin to the procedure in cross-validation,
we report the average of these �ve test results as the ultimate result
for individual test years, and conduct a Student’s t-test over them
to determine whether there is a statistically signi�cant di�erence
between di�erent methods. For example, a signi�cant di�erence
between two evaluated methods on a particular test year is claimed
if there exists a signi�cant di�erence between the two vectors with
�ve scores for individual methods. We argue that, this way, the
e�ects of the choice of training and validation data are minimized.
�is was motivated by an observation that the closeness of the

3h�p://trec.nist.gov/tracks.html
4h�ps://github.com/trec-web/trec-web-2014
5h�p://trec.nist.gov/data/web/12/gdeval.pl
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subsets for training and for validation can adversely in�uence the
model selection. For example, when using a validation set contain-
ing queries from the same Trec years as in the training set, a model
could sometimes over-�t both the training and validation sets at
the same time, leading to poor results on the test set.

Choice of the hyper-parameters. For the new components in
RE-PACRR, we �x the size of the context window as 4 on both sides,
leading to a context vector computed by averaging 9, namely, 4+4+
1, surrounding similarity values in querysim. For the cascade com-
ponent, we conduct k-max pooling with cpos = [25%, 50%, 75%, 100%].
Apart from the two modi�cations mentioned in Section 2, we �xed
the model choices for PACRR, focusing on the proposed novel model
variants. In particular, the PACRR-�rstk variant is employed, �xing
the uni�ed dimensions ld = 800 and lq = 16, the k-max pooling size
ns = 3, the maximum n-gram size lд = 3, and the number of �lters
used in convolutional layers nf = 32. Beyond that, we �x the batch
size to 16 and we train individual models to at most 150 epochs. We
train on servers with multiple CPU cores; training RE-PACRR takes
approximately 90 seconds per epoch. DRMM (DRMMLCH×IDF ),
DUETL, and MatchPyramid [14] are trained similarly. �e size of
the dense layer for DRMM is �xed to 5 following the se�ing in [5];
the document dimension for both DUETL and MatchPyramid is
also set to 800. All these methods are trained with a cross-entropy
loss as summarized in Eq. 2.

4.2 Results for RE-PACRR

RerankSimple. We �rst examine how well the proposed model
performs when re-ranking the search results from a basic initial
ranker, the query-likelihood model. �e ultimate quality of the
re-ranked search results depends on both the strength of the initial
ranker and the quality of the re-ranker. �e query-likelihood model,
as one of the most widely used retrieval models, is used due to its
e�ciency and practical availability, given that it is included in most
retrieval toolkits as a default model. �e results are summarized in
Table 1. �e absolute scores in terms of ERR@20 and nDCG@20 are
reported, together with the improvements relative to the measures
on search results from the query-likelihood model. �e ranks of the
re-ranked runs are also reported when sorting the re-ranked search
results together with other competing runs from the same year
according to ERR20 or nDCG20. �e characters in brackets indi-
cate a signi�cant di�erence compared with other methods, marked
using uppercase or lowercase characters, namely P/p for PACRR,
D/d for DRMM, L/l for DUETL and M/m for MatchPyramid, repre-
senting the two-tailed signi�cance at 95% or 90% con�dence levels,
respectively.

It can be seen that, by simply re-ranking the search results from
the query-likelihood method, the model can already achieve the
best runs in all three years. Beyond that, compared with the query-
likelihood results, the average improvement in terms of ERR@20 is
more than 99% and the average improvement in terms of nDCG@20
is 104%.

RerankALL. Given that the search results from QL only ac-
count for a small subset of all judged documents and di�erent re-
trieval models return di�erent subsets, we evaluate our re-ranker’s
performance when re-ranking all submi�ed runs from the Trec
Web Track 2009–14. �is evaluation focuses on two aspects: how

many di�erent runs we can improve upon and by how much we
improve. �e former aspect is about the adaptability of a neural IR
model, investigating whether it can make improvements based on
di�erent kinds of retrieval models, while the la�er aspect focuses on
the magnitude of improvements. Tables 2 summarizes the percent-
ages of systems that see improvements based on either ERR@20
and nDCG@20 out of the total number of systems in each year. In
Table 3, we further report the average percentage of improvements.

Table 2 demonstrates that on average more than 95% of runs
are improved by the RE-PACRR in terms of both measures. When
compared with other models, RE-PACRR signi�cantly outperforms
all baseline models on �ve years out of six in terms of ERR@20. It
is only signi�cantly be�er than the results from PACRR in 2013 and
14 when measured with nDCG@20, but outperforms the other base-
lines in all six years. Note that, compared with nDCG@20, ERR@20
emphasizes the quality of the top-ranked documents and heavily
penalizes relevant documents that are ranked lower by a model
when enough relevant documents have been observed earlier [1].
�is means that the improvement of the ERR for a model mainly
comes from improvements on queries for which search results at
the top are not good enough from an initial ranker, and hardly from
the queries where an initial ranker already performs well and a
re-ranker makes the search results even be�er by adjusting the
positions of documents in lower positions. �is could explain the
di�erences between results in terms of ERR@20 and nDCG@20,
indicating that the two measures actually re�ect di�erent types of
improvements. Furthermore, in Table 3, the average improvements
on di�erent runs are summarized, and on average the initial runs
get improved by 54% and 67% of ERR@20 and nDCG@20, respec-
tively. Under both measures, RE-PACRR performs signi�cantly
be�er than all baselines in �ve years out of six years.

PairAccuracy. Ideally, a re-ranking model should make cor-
rect decisions when ranking all documents. �erefore, we further
rely on a pairwise ranking task to compare di�erent models in this
regard. In particular, given a query and a set of documents, di�erent
models assign a score to each document according to their inferred
relevance relative to the given query. �erea�er, all pairs of docu-
ments are examined and the pairs that are ranked in concordance
with the ground-truth judgments from Trec are deemed correct,
based on which an aggregated accuracy is reported on all such
document pairs in di�erent years. For example, given query q and
two documents d1 and d2, along with their ground-truth judgments
label(d1) and label(d2), a re-ranking model provides their relevance
scores as rel(q,d1) and rel(q,d2). �e re-ranking model is correct
when it predicts these two documents in the same order as in the
ranking from the ground-truth label, e.g., rel(q,d1) > rel(q,d2) and
label(d1) > label(d2). �e relevance judgments in the Trec Web
Track include up to six relevance levels: junk pages (Junk), non-
relevant (NRel), relevant (Rel), highly relevant (HRel), key pages
(Key), and navigational pages (Nav), corresponding to six graded
levels, i.e., -2, 0, 1, 2, 3, 4. As suggested in [9], a navigational doc-
ument is di�erent from other relevant documents in terms of the
user intent it satis�es, where links to other relevant documents for
the same query are provided. �us, documents labeled with Nav
are not considered in this task. Moreover, documents labeled as
Junk and NRel, and documents labeled as HRel and Key are merged
into NRel and HRel, respectively, due to the limited number of



Table 1: Err@20 and nDCG@20 on Trec Web Track 2012–14 when re-ranking search results from QL. �e comparisons are

conducted between RE-PACRR and PACRR (P/p), DRMM (D/d), DUETL (L/l), as well asMatchPyramid (M/m). �e upper/lower-

case characters in brackets indicate a signi�cant di�erence under two-tailed paired Student’s t-tests at 95% or 90% con�dence

levels relative to the corresponding approach. In addition, the relative improvements (%) and ranks among all runs within the

respective years according to Err@20 and nDCG@20 are also reported a�er the absolute scores.

Measures Year RE-PACRR PACRR MatchPyramid DUETL DRMM

ERR@20
wt12 0.390 (p↑D↑L↑M↑) 121% 1 0.347 (d↑L↑M↑) 96% 1 0.309 (P↓L↑) 74% 5 0.218 (P↓D↓M↓) 23% 18 0.314 (p↓L↑) 78% 4
wt13 0.190 (p↑D↑L↑M↑) 89% 1 0.175 (D↑L↑M↑) 74% 3 0.135 (P↓D↓) 34% 15 0.137 (P↓D↓) 36% 14 0.155 (P↓L↑M↑) 54% 7
wt14 0.246 (P↑D↑L↑M↑) 88% 1 0.223 (D↑L↑M↑) 70% 1 0.183 (P↓) 40% 12 0.174 (P↓D↓) 33% 16 0.195 (P↓L↑) 49% 8

nDCG@20
wt12 0.281 (P↑D↑L↑M↑) 163% 1 0.248 (D↑L↑M↑) 133% 2 0.212 (P↓L↑) 99% 5 0.155 (P↓D↓M↓) 45% 18 0.205 (P↓L↑) 93% 6
wt13 0.345 (p↑D↑L↑M↑) 82% 1 0.324 (D↑L↑M↑) 70% 2 0.263 (P↓L↑) 39% 6 0.239 (P↓D↓M↓) 26% 15 0.269 (P↓L↑) 41% 6
wt14 0.385 (P↑D↑L↑M↑) 67% 1 0.352 (D↑L↑M↑) 52% 1 0.297 (P↓l↑) 29% 7 0.275 (P↓D↓m↓) 19% 11 0.302 (P↓L↑) 31% 5

Table 2: �e percentage of runs that show improvements in terms of a measure when re-ranking all runs from the TrecWeb

Track 2009–14 based on Err@20 and nDCG@20. �e comparisons are conducted in between RE-PACRR and PACRR (P/p),

DRMM (D/d), DUETL (L/l), as well as MatchPyramid (M/m). �e upper/lower-case characters in brackets indicate a signi�cant

di�erence under two-tailed paired Student’s t-tests at 95% or 90% con�dence levels relative to the corresponding approach.

Measures Year RE-PACRR PACRR MatchPyramid DUETL DRMM

ERR@20

wt09 91% (D↑L↑) 92% (D↑L↑m↑) 86% (p↓D↑l↑) 77% (P↓m↓) 72% (P↓M↓)
wt10 98% (P↑D↑L↑M↑) 95% (D↑L↑) 95% (D↑L↑) 69% (P↓D↓M↓) 91% (P↓L↑M↓)
wt11 98% (P↑D↑L↑M↑) 69% (D↑L↑M↑) 43% (P↓L↑) 26% (P↓D↓M↓) 49% (P↓L↑)
wt12 98% (P↑d↑L↑M↑) 92% (L↑) 93% (L↑) 68% (P↓D↓M↓) 95% (L↑)
wt13 94% (P↑D↑L↑M↑) 85% (L↑M↑) 64% (P↓d↓) 61% (P↓D↓) 83% (L↑m↑)
wt14 96% (P↑D↑L↑M↑) 84% (L↑M↑) 58% (P↓) 52% (P↓) 68%

nDCG@20

wt09 94% (D↑L↑M↑) 96% (D↑L↑M↑) 82% (P↓D↑L↑) 71% (P↓M↓) 68% (P↓M↓)
wt10 98% (D↑L↑M↑) 98% (D↑L↑m↑) 95% (p↓L↑) 72% (P↓D↓M↓) 94% (P↓L↑)
wt11 98% (D↑L↑M↑) 94% (D↑L↑M↑) 49% (P↓L↑) 31% (P↓D↓M↓) 56% (P↓L↑)
wt12 98% (D↑L↑M↑) 97% (D↑L↑M↑) 90% (P↓L↑) 68% (P↓D↓M↓) 92% (P↓L↑)
wt13 91% (P↑D↑L↑M↑) 88% (D↑L↑M↑) 80% (P↓L↑) 65% (P↓D↓M↓) 80% (P↓L↑)
wt14 97% (P↑D↑L↑M↑) 90% (D↑L↑M↑) 69% (P↓l↑) 59% (P↓D↓m↓) 74% (P↓L↑)

documents labeled as Junk and Key. �en, all pairs of documents
with di�erent labels are generated as test pairs. In total, these three
label pairs account for 95% of all document pairs according to the
column named “volume” in Table 4.

�e results show that signi�cant improvements relative to all
baselines are observed in three out of all six years among the three
label pairs. Compared with DUETL, MatchPyramid, and DRMM,
RE-PACRR performs be�er in all six years for labeling pairs between
HRel and NRel, as well as between Rel and NRel. As for document
pairs that are labeled as HRel and Rel, the RE-PACRR performs
relatively close to the baselines. In terms of absolute accuracy, on
average, the RE-PACRR yields correct predictions on 79.1%, 73.5%,
and 59.1% of document pairs for label pairs HRel–NRel, Rel–NRel,
and HRel–Rel, respectively, where the decreasing accuracy is due
to the increasing di�culty on these document pairs.

5 RELATEDWORK

Ad-hoc retrieval systems aim at ranking documents with respect
to their relevance relative to a given query. Recently, the promise
of deep learning as a potential driver for new advances in retrieval
quality has a�racted signi�cant a�ention. Neural IR approaches
can be categorized as semantic matching models and relevance
matching models.

�e former follows the embedding approach adopted in many
natural language processing tasks, focusing on comparing the mean-
ing of a query and a document by converting both into a low-
dimensional semantic space. For example, ARC-I and ARC-II [15]
are two such models that the authors apply to the the tasks of
sentence completion, identifying the response to a microblog post,
and performing paraphrase detection. Beyond that, Huang et al. [8]
propose Deep Structured Semantic Models (DSSM), which learn
low-dimensional representations of queries and documents in a



Table 3: �e average di�erences of the measure score for individual runs when re-ranking all runs from the TrecWeb Track

2009–14 based on ERR@20 and nDCG@20. �e comparisons are conducted between RE-PACRR and PACRR (P/p), DRMM

(D/d), DUETL (L/l), as well as MatchPyramid (M/m). �e upper/lower-case characters the brackets indicate a signi�cant di�er-

ence under two-tailed paired Student’s t-tests at 95% or 90% con�dence levels relative to the corresponding approach.

Measures Year RE-PACRR PACRR MatchPyramid DUETL DRMM

ERR@20

wt09 43% (D↑L↑M↑) 40% (D↑L↑M↑) 31% (P↓D↑L↑) 22% (P↓M↓) 20% (P↓M↓)
wt10 98% (P↑D↑L↑M↑) 74% (D↑L↑M↑) 54% (P↓d↑L↑) 23% (P↓M↓) 44% (P↓m↓)
wt11 33% (P↑D↑L↑M↑) 11% (D↑L↑M↑) -4% (P↓) -11% (P↓D↓) -0% (P↓L↑)
wt12 89% (P↑D↑L↑) 66% (L↑) 68% (L↑) 22% (P↓D↓M↓) 70% (L↑)
wt13 36% (P↑D↑L↑M↑) 27% (L↑M↑) 9% (P↓D↓) 8% (P↓D↓) 20% (L↑M↑)
wt14 29% (P↑D↑L↑M↑) 16% (d↑L↑M↑) 5% (P↓) 2% (P↓) 8% (p↓)

nDCG@20

wt09 36% (D↑L↑M↑) 35% (D↑L↑M↑) 20% (P↓D↑) 14% (P↓) 12% (P↓M↓)
wt10 125% (P↑D↑L↑M↑) 96% (D↑L↑M↑) 66% (P↓L↑) 31% (P↓M↓) 58% (P↓)
wt11 43% (P↑D↑L↑M↑) 26% (D↑L↑M↑) 0% (P↓d↓l↑) -11% (P↓D↓m↓) 7% (P↓L↑m↑)
wt12 122% (P↑D↑L↑M↑) 89% (D↑L↑m↑) 65% (p↓L↑) 21% (P↓D↓M↓) 69% (P↓L↑)
wt13 43% (P↑D↑L↑M↑) 31% (D↑L↑M↑) 16% (P↓L↑) 9% (P↓d↓M↓) 15% (P↓l↑)
wt14 31% (P↑D↑L↑M↑) 21% (D↑L↑M↑) 12% (P↓l↑) 6% (P↓D↓m↓) 11% (P↓L↑)

Table 4: Comparison among tested methods in terms of accuracy in ranking document pairs with di�erent label pairs. �e

columns “volume” and “# queries” record the occurrences of each label combination out of the total pairs, and the number of

queries that include a particular label combination among all six years, respectively. �e comparisons are conducted between

RE-PACRR and PACRR (P/p), DRMM (D/d), DUETL (L/l), as well as MatchPyramid (M/m). �e upper/lower-case characters in

brackets indicate a signi�cant di�erence under two-tailed paired Student’s t-tests at 95% or 90% con�dence levels relative to

the corresponding approaches.

Label Pair volume (%) # queries Year RE-PACRR PACRR MatchPyramid DUETL DRMM

HRel-NRel 23.1% 262

wt09 0.715 (P↑D↑L↑M↑) 0.694 (D↑L↑M↑) 0.656 (P↓D↑l↑) 0.632 (P↓D↑m↓) 0.602 (P↓L↓M↓)
wt10 0.846 (D↑L↑M↑) 0.828 (D↑L↑M↑) 0.777 (P↓D↑L↑) 0.707 (P↓M↓) 0.739 (P↓M↓)
wt11 0.837 (P↑D↑L↑M↑) 0.789 (D↑L↑M↑) 0.757 (P↓D↑L↑) 0.700 (P↓d↓M↓) 0.735 (P↓l↑M↓)
wt12 0.826 (P↑D↑L↑M↑) 0.795 (D↑L↑M↑) 0.741 (P↓D↑L↑) 0.655 (P↓d↓M↓) 0.694 (P↓l↑M↓)
wt13 0.758 (D↑L↑M↑) 0.749 (D↑L↑M↑) 0.691 (P↓D↑L↑) 0.647 (P↓M↓) 0.637 (P↓M↓)
wt14 0.766 (D↑L↑M↑) 0.772 (D↑L↑M↑) 0.672 (P↓d↑) 0.648 (P↓) 0.649 (P↓m↓)

HRel-Rel 8.4% 257

wt09 0.531 0.539 0.538 0.534 0.539
wt10 0.587 (p↑D↑L↑) 0.571 (D↑L↑) 0.581 (D↑L↑) 0.529 (P↓M↓) 0.544 (P↓M↓)
wt11 0.582 (P↑d↓L↑) 0.537 (D↓M↓) 0.608 (P↑L↑) 0.536 (D↓M↓) 0.606 (P↑L↑)
wt12 0.671 (D↑L↑M↑) 0.655 (D↑L↑M↑) 0.607 (P↓D↑L↑) 0.550 (P↓M↓) 0.549 (P↓M↓)
wt13 0.572 (D↑L↑) 0.573 (d↑L↑) 0.564 (l↑) 0.545 (P↓m↓) 0.552 (p↓)
wt14 0.602 (P↑D↑L↑M↑) 0.581 (D↑) 0.575 (D↑) 0.551 0.544 (P↓M↓)

Rel-NRel 63.5% 290

wt09 0.682 (P↑D↑L↑M↑) 0.660 (D↑L↑M↑) 0.619 (P↓D↑) 0.598 (P↓D↑) 0.565 (P↓L↓M↓)
wt10 0.799 (D↑L↑M↑) 0.788 (D↑L↑M↑) 0.718 (P↓L↑) 0.686 (P↓M↓) 0.708 (P↓)
wt11 0.782 (D↑L↑M↑) 0.771 (D↑L↑M↑) 0.651 (P↓D↑) 0.650 (P↓D↑) 0.614 (P↓L↓M↓)
wt12 0.741 (P↑D↑L↑M↑) 0.725 (D↑L↑M↑) 0.667 (P↓L↑) 0.619 (P↓D↓M↓) 0.658 (P↓L↑)
wt13 0.707 (p↑D↑L↑M↑) 0.692 (D↑L↑M↑) 0.635 (P↓D↑L↑) 0.605 (P↓d↑M↓) 0.586 (P↓l↓M↓)
wt14 0.700 (P↓D↑L↑M↑) 0.721 (D↑L↑M↑) 0.612 (P↓) 0.597 (P↓) 0.603 (P↓)



shared space. DSSM then performs ranking by comparing the co-
sine similarities between a given query’s representation and the
respective representations of documents in the collection.

As for relevance matching models, Guo et al. [5] argued that
the type of matching generally used for information retrieval dif-
fers from the type of matching generally used in NLP tasks. �at
is, ranking models are concerned with relevance matching, where
the focus is on determining whether one input text (i.e., a docu-
ment) is relevant to the other input text (i.e., a query). Methods
that perform semantic matching typically learn input representa-
tions independent of each other, whereas methods that perform
relevance matching consider the interactions between two het-
erogeneous inputs. In particular, Guo et al. proposed the Deep
Relevance Matching Model (DRMM), which takes a sequence of
�xed-length query term similarity histograms as input. Each his-
togram hj represents the matches between one query term qj in
a given query q and the terms in a given document. �e query
similarity histograms are each fed through a series of fully con-
nected layers to produce a similarity signal for each query term.
�e document’s relevance score rel(q,d) is a weighted summation
of each query term’s similarity signal. Guo et al.’s DRMM model [5]
has been reported to outperform all the aforementioned semantic
matching models by substantial margins on Trec Web Track data.
Other relevance matching models include the early MatchPyra-
mid [7, 14] and more recent PACRR [9]. Given that both aim at
the ad-hoc retrieval task, MatchPyramid and PACRR share similar
architectures: both start from similarity matrix between a query
and a document, therea�er combining max-pooling layers on top of
convolutional neural network (CNN) kernels, and use either LSTM
or several dense layers to generate a relevance score. However,
they are motivated quite di�erently, and employ di�erent CNN
structures, leading to a signi�cant di�erence in their performance,
as indicated in Section 4. As a pioneering work, MatchPyramid [14]
investigated the usefulness of a model architecture from related
work [7], the impact of di�erent kernel sizes, and the impact of
di�erent max-pooling sizes. Meanwhile, PACRR [9] exploits di�er-
ent CNN kernels for di�erent kinds of matching pa�erns, followed
by two separate max-pooling layers for the �lters and matching
pa�erns. �is se�ing is motivated by domain insights from ad-
hoc retrieval, making it di�erent from MatchPyramid and CNN
architectures in computer vision, such as in [16]. Finally, Mitra et
al. [11] propose DUET, a deep ranking model that considers both
exact matches between document and query terms (the local model)
and the similarity between low-dimensional representations of the
query and document (the distributed model). �e authors make a
distinction between retrieval models that use local representations,
which are representations in which “each term is represented by
a unique identi�er”, and distributed representations that are used
to “compare the query and the document in the latent semantic
space.” �e RE-PACRR model proposed in this work, being mainly
based on PACRR, adopts a relevance matching approach, and thus
is mainly compared with models belonging to this category.

6 CONCLUSION

In this work, a novel neural IR model named RE-PACRR is proposed,
which revisits a number of task-speci�c insights from traditional
ad-hoc retrieval, and incorporates building blocks to address them
in an integrated neural framework. Extensive experiments on Trec
Web Track data con�rm that the proposed model performs be�er
than all baseline models on three benchmarks. In our future work,
we plan to conduct an ablation study to be�er understand the
contribution of the individual novel components as well as their
interplay. Another direction is to exploit further insights from the
literature on ad-hoc retrieval and to devise suitable components to
make them accessible to a neural model.
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