
ar
X

iv
:1

70
9.

00
90

0v
1

 [
cs

.C
C

]
 4

 S
ep

 2
01

7

Reductions for Frequency-Based Data Mining

Problems

Stefan Neumann∗1 and Pauli Miettinen2

1University of Vienna, Faculty of Computer Science, Vienna, Austria
stefan.neumann@univie.ac.at

2Max Planck Institute for Informatics, Saarland Informatics Campus, Germany
pauli.miettinen@mpi-inf.mpg.de

Abstract

Studying the computational complexity of problems is one of the – if
not the – fundamental questions in computer science. Yet, surprisingly
little is known about the computational complexity of many central prob-
lems in data mining. In this paper we study frequency-based problems and
propose a new type of reduction that allows us to compare the complexi-
ties of the maximal frequent pattern mining problems in different domains
(e.g. graphs or sequences). Our results extend those of Kimelfeld and Ko-
laitis [ACM TODS, 2014] to a broader range of data mining problems.
Our results show that, by allowing constraints in the pattern space, the
complexities of many maximal frequent pattern mining problems collapse.
These problems include maximal frequent subgraphs in labelled graphs,
maximal frequent itemsets, and maximal frequent subsequences with no
repetitions. In addition to theoretical interest, our results might yield
more efficient algorithms for the studied problems.

1 Introduction

Computational complexity is a fundamental concept in computer science, with
the P vs. NP question being the most famous open problem in the field. Yet,
outside some NP- and #P-hardness proofs, computational complexity of the
central data mining problems is surprisingly little studied. This is perhaps even
more true for the frequency-based problems, that is, for problems where the goal
is to enumerate all sufficiently frequent patterns (that admit other possible con-
straints). Problems such as frequent itemset mining, frequent subgraph mining,
and frequent subsequence mining all belong to this family of problems. Often

∗The first author gratefully acknowledges the financial support from the Doctoral Pro-
gramme “Vienna Graduate School on Computational Optimization” which is funded by the
Austrian Science Fund (FWF, project no. W1260-N35).

1

http://arxiv.org/abs/1709.00900v1

the only computational complexity argument for these problems is the observa-
tion that the output can be exponentially large with respect to the input, and
hence any algorithm might need exponential time to enumerate the results.

We argue that this view is too limited for two reasons. First, there are more
fine-grained models of complexity than just the running time. In particular, for
enumeration problems we can use the framework of Johnson et al. [18]: in short,
instead of studying the total running time with respect to the input size, we
can consider it as a function of the total size of input and output, or study the
time it takes to create a new pattern when a set of patterns is already known
(see Section 2.2 for more details). This framework allows us to argue about the
time complexity of enumeration problems with potentially exponential output
sizes. Another approach is the counting complexity framework of Valiant [30]
(see Section 2.3).

The second reason why we argue that the “output is exponential” is a too
limited view for the computational complexity is that a significant question in
computational complexity is the relationships between the problems, that is,
questions like “can we solve problem X efficiently if we can solve problem Y

efficiently?” The main tool for answering these kinds of questions are reduc-
tions between problems. In this work, we introduce a new type of reduction
between frequency-based problems called maximality-preserving reduction (see
Section 4). Our reduction maps the maximal patterns of one problem to the
maximal patterns of the other problem, thus allowing us to study questions like
“can we find the maximal frequent subgraphs on labelled graphs using maximal
frequent itemset mining algorithms?” Surprisingly, the answer to this question
turns out to be positive, although it requires that we consider specially con-
strained maximal frequent pattern mining problems; we call the general class of
such problems feasible frequency-based problems (see Section 5).

Our Contributions. We study a number of maximal pattern mining
problems, including maximal subgraph mining in labelled graphs (and in more
restricted structures), maximal frequent itemset mining, and maximal subse-
quence mining with no repetitions (see Section 2.4 for definitions of all of these
problems). We summarize our results in Figure 1: the arrows show which
problem can be reduced to which other problem either using non-constraining
reductions (black and red lines), or with possible constraints on the feasible solu-
tions (dashed lines). As can be seen in Figure 1, all problems can be reduced to
each other (potentially with constraints). Given that the constrained reductions
are transitive (Lemma 10), we can state our main result:

Theorem 1 (Informal). Maximal subgraph mining in labelled graphs (and in
more restricted structures), maximal frequent itemset mining, and maximal sub-
sequence mining with no repetitions are equally hard problems when we are al-
lowed to constrain the pattern space.

In some sense, our results unify all existing hardness results for frequency-
based problems by putting them into a general framework using maximality-
preserving reductions. These reductions preserve all interesting theoretical as-
pects like NP- or #P-hardness, but are also restricted enough to maintain the

2

MaxFS(G)

MaxFS(BDG3)

MaxFS(PLN)

-extendible〈k〉 is

NP-hard for k > 2

MaxFS(BTW2)

MaxFS(T)
-extendible〈k〉 ∈ P

for all k

MaxFIS
-extendible〈k〉 ∈ P

for all k

MaxSQS MaxFS(DAG)

MaxFS(DirG)

Trivial or known reduction

Maximality-preserving reduction

Reduction for feasible frequency-
based problems

Figure 1: The hierarchy of maximal frequency-based problems with the results
from this paper. Arrows point from the “easier” to the “harder” problem. See
Section 2.4 for the abbreviated problem names used in the picture. Maximality-
preserving reductions are defined in Section 4 and feasible frequency-based prob-
lems are defined in Section 5.

special properties of the transactions.
In fact, from a practical point of view, our reductions show that if we have

an algorithm that can effectively find, say, the maximal frequent itemsets that
admit the constraints from the reductions, we can use that algorithm to solve
maximal frequent subgraph mining and maximal frequent subsequence mining
problems efficiently. Luckily, as we will see in Section 6, the constrained maximal
patterns are indeed easy to mine in practice. Alternatively, the reductions can
be used to guide how ideas from algorithms for one set of problems can be
transferred to algorithms for the other set of problems (e.g. from frequent
subsequence mining to frequent subgraph mining or vice versa).

This paper is an extended version of our conference paper [23]. It contains
all omitted proofs, and experimental evaluation.

Outline of the Paper. We will cover the basic definitions and frame-
works used in this paper in Section 2, where we will also formally define the
problems we are working with. Section 3 presents related work and existing
hardness results for the problems we consider. We introduce the (unconstrained)
maximality-preserving reductions in Section 4. In particular, the reductions cor-
responding to the solid red lines in Figure 1 are presented in Section 4.2. The fea-
sible frequency-based problems, and the corresponding constrained reductions
(dashed red lines in Figure 1) and related results are presented in Section 5. In
Section 6 we show that our reductions can be used in practice and yield efficient
algorithms.

3

2 Preliminaries

In this section we quickly cover the basic definitions of frequency-based problems,
enumeration problems, and counting complexity. In addition, we present the
definitions of the problems we consider in the paper.

2.1 Frequency-based Problems

A frequency-based problem P consists of1:

• A set of labels L; for example, L = {1, . . . , n}.

• A set transactions(P) consisting of possible transactions over the labels
L.

• A set patterns(P) ⊆ transactions(P) of possible patterns over the labels
L.

• A partial order ⊑ over transactions(P).

Given a frequency-based problem P , a database DP is a finite multiset of
elements from transactions(P). For a database DP and a support threshold τ ,
a pattern p ∈ patterns(P) is called τ -frequent if

supp(p,DP) := |{t ∈ DP : p ⊑ t}| ≥ τ.

In other words, a pattern p is frequent if it appears in at least τ transactions
of the database. When τ is clear from the context, we will call p only frequent.
A pattern p ∈ patterns(P) is a maximal frequent pattern if p is frequent and
all patterns q ∈ patterns(P) with p ⊏ q are not frequent. Given a database
DP , we denote the set of all maximal frequent patterns by Max(DP , τ), i.e.,
Max(DP , τ) = {p ∈ patterns(P) : p is a maximal τ -frequent pattern in DP}.

When the parameter τ is not part of the input but fixed to some integer, we
write Pτ to denote the resulting problem.

2.2 Enumeration Problems

An enumeration relation R is a set of strings R = {(x, y)} ⊂ {0, 1}∗ × {0, 1}∗

such that

R(x) := {y ∈ {0, 1}∗ : (x, y) ∈ R}

is finite for every x. A string y ∈ R(x) is called a witness for x. We call
R an NP-relation if (1) there exists a polynomial p such that |y| ≤ p(|x|) for
all (x, y) ∈ R, and (2) there exists a polynomial-time algorithm deciding if
(x, y) ∈ R for any given pair (x, y).

Following [21], we define the following problems for an enumeration relation
R:

1A similar definition was given in Gunopulos et al. [12].

4

• R-enumerate: The input is a string x. The task is to output the set
R(x) without repetitions.

• R-extend: The input is a string x and a set Y ⊆ R(x). The task is
to compute a string y such that y ∈ R(x) \ Y or to output that no such
element exists.

• R-extendible: The input is a string x and a set Y ⊆ R(x). The task is
to decide whether R(x) \ Y 6= ∅.

• R-extendible〈k〉: The input is a string x and a set Y ⊆ R(x) with the
restriction that |Y | < k. The task is to decide whether R(x) \ Y 6= ∅.

The problem R-extend can be viewed as the decision version of R-extend.
Note that by repeatedly running an algorithm for R-extend, one can solve
R-enumerate. Further observe that any algorithm solving R-extend can be
used to solve R-extendible.

Enumeration Complexity. Johnson et al. [18] introduced different no-
tions for the complexity of enumeration problems. Let R be an enumeration
relation. An algorithm solving R-enumerate is called an enumeration algo-
rithm.

For enumeration problems it might be the case that the output R(x) is
exponentially larger than the input x. Due to this, measuring the running time
of an enumeration algorithm only as a function of |x| can be too restrictive;
instead, one can include the size of R(x) in the complexity analysis. Then the
running time of an algorithm is measured as function of |x| + |R(x)|. This
consideration gives rise to the following definitions:

• An enumeration algorithm runs in total polynomial time if its running
time is polynomial in |x|+ |R(x)|.

• An enumeration algorithm has polynomial delay if the time spent between
outputting two consecutive witnesses of R(x) is always polynomial in |x|.

• An enumeration algorithm runs in incremental polynomial time if on input
x and after outputting a set Y ⊆ R(x) it takes time polynomial in |x|+|Y |
to produce the next witness from R(x) \ Y .

We note that R-enumerate is in incremental polynomial time if and only
if R-extend is in polynomial time. Additionally, observe that a polynomial
total time algorithm can be used to decide if R(x) 6= ∅.

Relationship to Frequency-Based Problems. We note that frequency-
based problems are special cases of enumeration problems. Let P be a frequency-
based problem. We define the enumeration relation R corresponding to P by
setting

R = {(x, y) : x = (DP , τ), y ∈ Max(DP , τ)},

i.e., R consists of all possible databases DP , support thresholds τ and all maxi-
mal frequent patterns y for the tuples (DP , τ).

5

Observe that R(x) = R(DP , τ) = Max(DP , τ) and, hence, the problem
R-enumerate is exactly the same problem as outputting all maximal frequent
patterns in Max(DP , τ). The problem R-extend is to output a maximal fre-
quent pattern in Max(DP , τ) \ Y for a given set of maximal patterns Y . The
problems R-extendible and R-extendible〈k〉 are the corresponding decision
versions of the problems.

Since R and P yield the same enumeration problems, we will also write
P-enumerate, P-extendible, P-extend, P-extendible〈k〉. Often we will
write P to denote the problem P-enumerate.

2.3 Counting Complexity

For a given enumeration relation R, the function #R : {0, 1}∗ → N returns the
number of witnesses for a given string, i.e., #R(x) = |R(x)| for x ∈ {0, 1}∗.
The complexity class #P (pronounced “sharp P”) contains all functions #R
for which R is an NP-relation; it was introduced by Valiant [30]. A function
F : {0, 1}∗ → N is #P-hard if there exists a Turing reduction from every
function in #P to F .

For two NP-relationsR,Q : {0, 1}∗ → N, a parsimonious reduction from #R
to #Q is a polynomial-time computable function f : {0, 1}∗ → {0, 1}∗ such that
#R(x) = #Q(f(x)) for all x ∈ {0, 1}∗. Note that a parsimonious reduction
from a #P-hard problem R to a problem Q implies that Q is #P-hard.

An example for a #P-hard problem is counting the number of satisfying as-
signments of a SAT formula. Note that such an algorithm can decide if the given
formula is satisfiable or not (by checking if the number of satisfying assignments
is larger than 0). Hence, #P is a superset of NP.

In fact, Toda and Ogiwara [28] showed that all problems in the polynomial-
time hierarchy can be solved in polynomial-time when one has access to an
oracle for a #P-hard function.

Observe that an algorithm solving R-enumerate can solve #R by counting
the number of witnesses in its output.

2.4 Problems Considered in This Paper

All problems considered in this paper are frequency-based problems. For the
sake of brevity, we only define L, transactions(·), patterns(·), and ⊑ for each
problem (see, e.g., [1] for more thorough definitions).

Themaximal frequent itemset mining problem, denoted asMaxFIS, is as fol-
lows: We have n labels L = {1, . . . , n}; transactions(MaxFIS) and patterns(MaxFIS)
are given by 2L; ⊑ is the standard subset relationship ⊆.

The maximal frequent subsequence mining problem, denoted as MaxSQS,
is as follows: L = {1, . . . , n} is the set of labels. A sequence S = 〈S1, . . . , Sm〉
of length m consists of m events Si with Si ∈ L; we require that each la-
bel appears at most once per sequence. The sets transactions(MaxSQS) and
patterns(MaxSQS) are the sets consisting of all sequences of arbitrary lengths.
For two sequences S = 〈S1, . . . Sr〉 and T = 〈T1, . . . , Tk〉, we have T ⊑ S if

6

k ≤ r and there exist indices 1 ≤ i1 ≤ · · · ≤ ik ≤ r such that Tj = Sij for each
j = 1, . . . , k.

Let G be a class of vertex-labelled graphs, which contain each label at most
once. The maximal frequent subgraph mining problem, MaxFS(G), is as follows:
We have n labels L = {1, . . . , n}; transactions(MaxFS(G)) and patterns(MaxFS(G))
are given by all labelled graphs in G with labels from L; ⊑ is the standard sub-
graph relationship for labelled graphs (i.e., we consider arbitrary subgraphs, not
necessarily induced subgraphs).

In the remainder of the paper, we will consider the following graph classes,
all of which are labelled and connected:

• T — undirected trees,

• BDGb — undirected graphs of bounded degree at most b,

• BTWw — undirected graphs of bounded treewidth at most w,

• PLN — undirected planar graphs,

• G — general undirected graphs,

• DAG — directed acyclic graphs,

• DirG — directed graphs.

Throughout the paper we will only consider labelled graphs in which each
label appears at most once. In this restricted setting, the subgraph isomorphism
problem can be solved in polynomial-time. This a necessary condition for our
reductions to work since Kimelfeld and Kolaitis [20, Prop. 3.4] showed that for
certain unlabelled graph classes G, MaxFS(G) is not an NP-relation.

3 Related Work

Counting Complexity. The study of counting problems was initiated
when Valiant [30] introduced #P. Provan and Ball [26] showed #P-hardness
for many graph problems such as counting the number of maximal independent
sets in bipartite graphs. Later, more #P-hardness results were obtained for
even more restricted graph classes [17, 29].

Johnson et al. [18] introduced the notions of polynomial total time, polyno-
mial delay, and incremental polynomial time to obtain a better understanding
of the computational complexity of enumeration problems.

Computational Complexity of Data Mining Problems. Gunopulos
et al. [12] introduced a general class of problems similar to frequency-based
problems. For this class of problems, they proved #P-hardness for mining
frequent sets, and provided an algorithm to mine maximal frequent sets.

Yang [32] proved #P-hardness for determining the number of maximal fre-
quent itemsets and other problems.

7

Theorem 2 (Yang [32]). The following problems are #P-complete: MaxFIS,
MaxFS(T), MaxFS(G), MaxSQS.

Boros et al. [7] showed that given a set of maximal frequent itemsets Y , it is
NP-complete to decide whether there exists another maximal frequent itemset
that is not contained in Y .

Theorem 3 (Boros et al. [7]). MaxFIS-extendible and MaxFIS-extend

are NP-complete.

Kimelfeld and Kolaitis [20] proved structural results on mining frequent sub-
graphs of certain graph classes. Their results allow to distinguish the computa-
tional complexities of MaxFS(T) and MaxFS(G) where G is either G, PLN,
BDGb with b > 2, or BTWw with w > 1. This is also depicted in Figure 1.

Theorem 4 (Kimelfeld and Kolaitis [21]). For every fixed k, the problem MaxFS(T)-extendible〈k〉
can be solved in polynomial time.

For every fixed τ , the problem MaxFSτ (G)-enumerate can be solved in
polynomial time for any class of graphs G from Section 2.4.

The following problems are NP-complete:

• MaxFS(G)-extendible for G ∈ {G,PLN,BDGb,BTWw} with w ≥ 1
and b ≥ 3.

• MaxFS(G)-extendible〈k〉 for G ∈ {G,PLN,BDGb,BTWw} with w >

1 and b > 2 and for every k > 2.

In the journal version [21] of their paper [20], Kimelfeld and Kolaitis give
computational hardness results for subgraph mining problems in which the set
patterns() is more restricted than transactions(). For example, they consider
the computational complexity of mining maximal subtrees from planar graphs.
They also consider mining unlabelled maximal subgraphs.

Mining Maximal Frequent Patterns. Many algorithms were proposed
to mine maximal frequent patterns from different types of data such as item-
sets [8,16,19], subsequences [3], trees [31,33], and general graphs [22]. However,
the main focus of those papers was not to investigate the computational com-
plexity of these problems. See (for example) the book by Aggarwal [1] for many
more references to algorithms for efficiently computing maximal frequent pat-
terns.

Constraint-based Pattern Mining. Many algorithms were proposed to
mine frequent patterns with constraints on the structure of the patterns [4–6,
9, 10, 24, 25]. Due to lack of space we cannot review all of them, but refer to
Han et al. [15] for references to many papers on constrained pattern mining.
Greco et al. [11] presented techniques for mining taxonomies of process models
which can also be viewed as constraint-based pattern mining. The work on
constraint programming for itemset mining by Raedt et al. [27] and follow-up
work (e.g. [14]) can also be used to mine itemsets or other frequency-based
problems with constraints.

8

4 Maximality-Preserving Reductions

In this section, we introduce maximality-preserving reductions and state some
of their properties in Section 4.1. In Section 4.2, we prove reductions between
the problems MaxFIS, MaxSQS, and MaxFS(G) for G ∈ {T,BDG3,G}.
Combining our reductions with the statements from Section 3, we arrive at the
following theorem.

Theorem 5. Our reductions imply the following hardness results:

1. For any fixed k, MaxFIS-extendible〈k〉 can be solved in polynomial
time.

2. For any fixed τ , MaxFISτ -enumerate can be solved in polynomial time.

3. The problems MaxFS(G) and MaxFS(BDG3) exhibit exactly the same
hardness w.r.t. the notions of Sections 2.2 and 2.3. More concretely, let
P be MaxFS(G) or MaxFS(BDG3). Then the following statements are
true:

• P-enumerate is #P-hard.

• P-extendible is NP-hard.

• For k > 2, the problem P-extendible〈k〉 is NP-hard.

• For fixed τ , the problem Pτ -enumerate is solvable in polynomial
time.

The proof of the theorem follows from our reductions later in this section
and the theorems from Section 3.

4.1 Definition and Properties

We formally define maximality-preserving reductions to make explicit which
properties are required by reductions in order to be useful for understanding
the complexity of frequency-based problems w.r.t. to the notions of Sections 2.2
and 2.3.

Definition 1. Let P and Q be two frequency-based problems, let DP be a
database for P , and let τ be a support threshold. A maximality-preserving
reduction from P to Q defines an instance (DQ, τ) using a polynomial-time
computable injective function f : transactions(P) → transactions(Q) with the
following properties:

1. f(patterns(P)) ⊆ patterns(Q).

2. For all p, p′ ∈ transactions(P), p ⊑P p′ if and only if f(p) ⊑Q f(p′).

3. The inverse f−1 : transactions(Q) → transactions(P) of f can be com-
puted in polynomial time.

9

4. p ∈ Max(DP , τ) if and only if f(p) ∈ Max(DQ, τ), where DQ = f(DP) =
{f(t) : t ∈ DP}. Additionally, for all q ∈ Max(DQ, τ) the preimage f−1(q)
exists.

Intuitively, the properties can be interpreted as follows: Property 1 asserts
that f maps valid patterns from patterns(P) to valid patterns in patterns(Q);
this condition is necessary if patterns(Q) (transactions(Q). Property 2 asserts
that f maintains subset properties. Property 3 will be necessary to recover
patterns in P from those found in Q. Property 4 requires that the maximal
frequent patterns in DP are the same as those in DQ under the mapping f ;
here, the database DQ is given by applying the function f to each transaction
in DP .

Properties. Observe that Property 4 implies that there exists a bijective
relationship between the maximal frequent patterns in DP and in DQ. Hence,
we have |Max(DP , τ)| = |Max(DQ, τ)|. This shows that maximality-preserving
reductions are special cases of parsimonious reductions and that they preserve
#P-hardness.

In fact, maximality-preserving reductions are slightly stronger than parsimo-
nious reductions. They do not only preserve the number of maximal frequent
patterns in both databases, but they enable us to recover the maximal frequent
patterns in DP from those in DQ: By injectivity of f and due to Property 4,
we can reconstruct Max(DP , τ) in polynomial time from Max(DQ, τ). Hence,
maximality-preserving reductions can be used to argue about the complexity of
extendibility problems as discussed in Section 2.2.

Further, note that by choice of DQ in Property 4, DQ has the same number
of transactions as DP , and that no dependency within different transactions
is created by the mapping f . Additionally, by Property 2, the support of a
pattern p in DP is a lower bound on the support of f(p) in DQ (since for each
transaction t ∈ DP with p ⊑ t, f(p) ⊑ f(t)).

However, although the number of transactions and maximal frequent pat-
terns in both databases remains the same, the number of frequent patterns in
DQ might be exponentially larger than the number of frequent patterns in DP .
For example, this is the case in the reduction in Lemma 8.

4.2 Reductions

In this section, we present three maximality-preserving reductions. Reduc-
tions similar to ones in Lemmas 6 and 7 were already presented by Yang [32],
Kimelfeld and Kolaitis [21] and other authors. We only prove Property 4 of
maximality-preserving reductions. The proofs of Properties 1–3 are straight-
forward and follow from the definitions of the mapping f .

Reduction from MaxFIS to MaxFS(T). We show how to mine maxi-
mal itemsets by mining maximal subtrees.

Lemma 6. There exists a maximality-preserving reduction from MaxFIS to
MaxFS(T).

10

Proof. Consider MaxFIS with labels L = {1, . . . , n}. We construct trees over
labels from the alphabet L′ = {r, 1, . . . , n}, where r is the label of the root nodes
in the trees. For simplicity, we do not distinguish between vertices and their
labels.

Construction of f . An itemset {i1, . . . , ik} ∈ transactions(MaxFIS) is
mapped to a tree of depth 1 with root r and children i1, . . . , ik, i.e., the tree has
an edge (r, ij) for all j = 1, . . . , k.

Maximality-preserving. Observe that there exists a bijection between item-
sets I ⊆ L and trees f(I). Further note that for two itemsets I and J , I ⊆ J if
and only if f(I) ⊆ f(J). It follows that an itemset I and a tree f(I) must have
the same supports in DMaxFIS and in DMaxFS(T), respectively. The maximality
then follows from the subset-property we observed.

From MaxFIS to MaxSQS. We show how to mine maximal itemsets by
mining maximal subsequences.

Lemma 7. There exists a maximality-preserving reduction from MaxFIS to
MaxSQS.

Proof. Construction of f . Consider MaxFIS with labels L = {1, . . . , n} and
assume the labels are ordered w.r.t. to some arbitrary, but fixed, order ≺. Let
I = {i1, . . . , im} ⊆ L be any itemset with m items. Assume w.l.o.g. that the
items in I are ordered w.r.t. the fixed order, i.e., ij ≺ ij+1. Then I is mapped
to the sequence 〈i1, . . . , im〉 of length m.

Maximality-preserving. Observe that there exists a bijection between item-
sets I ⊆ L and sequences f(I) (under the fixed order). Further observe that
for two itemsets I and J , I ⊆ J if and only if f(I) ⊑ f(J). It follows that an
itemset I and a sequence f(I) must have the same supports in DMaxFIS and in
DMaxSQS, respectively. The maximality then follows from the subset-property
we observed.

From MaxFS(G) to MaxFS(BDG3). We show that mining maximal
frequent subgraphs in graphs with degrees bounded by 3 can be used to mine
maximal frequent subgraphs in general undirected graphs. Note that this is the
tightest result we could hope for, since graphs with degree bounded by 2 are
simply cycles or line graphs.

Lemma 8. There exists a maximality-preserving reduction from MaxFS(G) to
MaxFS(BDG3).

Proof. Construction of f . Let G = (V,E) be a graph with unbounded degree
of the vertices over labels L = {1, . . . , n}. Denote the label of a vertex v ∈ V by
label(v). We construct a graph G′ = (V ′, E′) with bounded degree 3 over the
set of labels L′ = {1, . . . , n}2.

Intuitively, the construction of f is picked such that every original vertex
v ∈ V is split into a line graph consisting of n vertices vi, where each vi has an
additional non-line-graph-edge in G′ iff vertices v and i share an edge in G.

11

Formally, for each vertex v ∈ V , we insert vertices v1, . . . , vn into V ′ with
edges (vi, vi+1) for i = 1, . . . , n − 1. Each vertex vi is labeled by (label(v), i).
For each edge (u, v) ∈ E, we insert an edge (ulabel(v), vlabel(u)) into G′.

Observe that the resulting graph G′ = f(G) indeed has bounded degree 3:
Consider any vertex vi ∈ V ′. The vertex has at most 2 neighbors from the line
graph (v1, . . . , vn). The only additional edge it could have is to vertex ilabel(v).

Maximality-preserving. Let p ∈ Max(DMaxFS(G), τ). We need to show that
f(p) ∈ Max(DMaxFS(BDG3), τ). By construction of f , we have that supp(f(p), DMaxFS(BDG3)) =
supp(p,DMaxFS(G)); hence, f(p) is frequent in DMaxFS(BDG3). We need to show
that f(p) is also maximal. For the sake of contradiction, suppose there exists
a maximal frequent pattern q with f(p) ⊏ q in DMaxFS(BDG3). Then q must
contain an edge (ui, vj) with i = label(v), j = label(u), which is not contained
in f(p).

Case 1: ui ∈ f(p) and vj ∈ f(p). Consider the graph q′ = f(p) ∪ (ui, vj).
Then f−1(q′) exists and must be frequent in DMaxFS(G) by Property 2. This
contradicts the maximality of p.

Case 2: W.l.o.g. assume that ui ∈ f(p) and vj 6∈ f(p). Then since q is
maximal and by construction of f and DMaxFS(BDG3), q must contain the line
graph L with vertices v1, . . . , vn. Consider the graph q′ = f(p) ∪ (ui, vj) ∪ L.
Again by construction of f and DMaxFS(BDG3), q

′ has a preimage p′ = f−1(q′)
which is frequent and satisfies p ⊏ p′. This is a contradiction to the maximality
of p.

Case 3: ui 6∈ f(p) and vj 6∈ f(p). Since q is connected and f(p) ⊏ q, we only
need to consider the first two cases.

Observe that the second part of Property 4 is implied by the previous three
case distinctions. Proving that f(p) ∈ Max(DMaxFS(BDG3), τ) implies p ∈
Max(DMaxFS(G), τ) can be done similarly to above.

5 Constraining the Set of Patterns

In this section, we generalize frequency-based problems by allowing to con-
strain the set of patterns using a feasibility function. We introduce maximality-
preserving reductions for this class of problems and prove that all problems
discussed in this paper exhibit exactly the same hardness after introducing the
feasibility function.

5.1 Feasible Frequency-Based Problems

A feasible frequency-based problem (ffbp) P is a frequency-based problem with
an additional polynomial-time computable operation φ : patterns(P) → {0, 1}
which can be described using constant space. Note that the operation φ is part
of the input for the problem; this is the reason for restricting the description
length of the function to constant size (otherwise, the description length of the
function might be larger than the database for the problem). We call φ the
feasibility function.

12

Given a feasible frequency-based problem P , a pattern p ∈ patterns(P) is
a feasible frequent pattern (ffp) if p is frequent and φ(p) = 1. The goal is to
find all maximal ffp s; we denote the set of all ffp s by Max(DP , τ, φP). We
define MaxFFIS, MaxFSQS, and MaxFFS(G) for a graph class G as before
for maximal frequency-based problems.

Note that ffbp s are generalizations of frequency-based problems since
setting φP to the function which is identical to 1, we obtain the underlying
frequency-based problem.

The main result of this section is given in the following theorem.

Theorem 9. The ffbp-version of all problems discussed in this paper exhibit
exactly the same hardness w.r.t. the notions of Sections 2.2 and 2.3. More con-
cretely, let P be any ffbp-problem discussed in this paper. Then the following
statements are true:

• P-enumerate is #P-hard.

• P-extendible is NP-hard.

• For k > 2, the problem P-extendible〈k〉 is NP-hard.

• For fixed τ , the problem Pτ -enumerate is solvable in polynomial time.

Theorem 9 shows that the hierarchy given in Figure 1 for frequency-based
problems completely collapses when a feasibility function is introduced to the
problem. Note that many practical algorithms (like the Apriori algorithm)
for finding maximal frequent patterns allow to add such a feasibility function.
Hence, our reductions give a theoretical justification why many of these algo-
rithms can be extended to a broader range of problems.

The proof of the theorem follows from the reductions presented later in this
section and the theorems from Section 3.

5.2 Maximality-Preserving Reductions for FFPPs

We start by defining maximality-preserving reductions between two ffbp s P
and Q.

Definition 2. Let P and Q be two ffbp s. Let DP be a database for P , let
φP be the feasibility function for P , and let τ be a support threshold.

Amaximality-preserving reduction from P toQ defines an instance (DQ, τ, φQ)
using a polynomial-time computable injective function f : transactions(P) →
transactions(Q) with the following properties:

1. f(patterns(P)) ⊆ patterns(Q).

2. For all p, p′ ∈ transactions(P), p ⊑P p′ if and only if f(p) ⊑Q f(p′).

3. The inverse f−1 : transactions(Q) → transactions(P) of f can be com-
puted in polynomial time.

13

4. p ∈ Max(DP , τ, φP) if and only if f(p) ∈ Max(DQ, τ, φQ), where DQ =
f(DP) = {f(t) : t ∈ DP}. Additionally, for all q ∈ Max(DQ, τ, φQ) the
preimage f−1(q) exists.

Note that compared to Definition 1, we only had to change Property 4 to
assert that the maximal patterns are feasible. Further observe that in general
the function φQ = φQ(φP , f, f

−1) constructed in the reduction will depend on
φP , f and f−1.

Properties. The rest of this subsection is devoted to proving properties of
maximality-preserving reductions for ffbp s. First, we show that maximality-
preserving reductions are transitive, which is the crucial property to argue that
one can use multiple reductions in a row. Second, we show that maximality-
preserving reductions for frequency-based problems imply maximality-preserving
reductions for ffbp s.

The following lemma shows that maximality-preserving reductions for ffbp
s are transitive. The main challenge will be the construction of the feasibility
function.

Lemma 10. Let P ,Q,R be ffbp s. Assume there exist maximality-preserving
reductions from P to Q via a function g and φQ, and from Q to R via a function
h and φR. Then there exists a maximality-preserving reduction from P to R.

Proof. Let DP and φP be an instance for P . We construct an instance (D∗, φ∗)
for R: We set f : transactions(P) → transactions(R) to f(p) = h(g(p)) for
p ∈ transactions(P). For a pattern r ∈ patterns(R), we set φ∗(r) = 1 if and
only if the following four conditions are satisfied: (1) h−1(r) and f−1(r) exist;
(2) φR(r) = 1; (3) φQ(h

−1(r)) = 1; and (4) φP (f
−1(r)) = 1.

We check the properties from Definition 2. Property 1 and Property 2 are
satisfied since f is the composition g and h. Property 3 holds since f−1 =
g−1 ◦ h−1 and both g−1 and h−1 can be computed in polynomial time.

The rest of the proof is devoted to proving Property 4.
Let p ∈ Max(DP , τ, φP). Then p is feasible w.r.t. φP . By the reduction

from P to Q, g(p) ∈ Max(DQ, τ, φQ), where DQ = g(DP). Note that g(p) is
feasible w.r.t. φQ. Using the reduction from Q to R, we obtain r := h(g(p)) ∈
Max(DR, τ, φR), where DR = h(DQ); additionally, r is feasible w.r.t. φR. Now
observe that r = f(p) and that r is feasible w.r.t. the operation φ∗ defined above.
Note that r is frequent in D∗ since for each transaction t ∈ DP with p ⊑P t,
r = f(p) ⊑R f(t) by Property 2 of f . To prove that r ∈ Max(D∗, τ, φ∗), it
remains to show that r is maximal. Suppose not. Then there exists a pattern
r′ ∈ Max(D∗, τ, φ∗) such that r ⊏R r′. Since r′ is feasible, let p′ = f−1(r′). By
Property 2 of f , we have that p ⊏P p′ and that p′ is frequent since p′ ⊏P t for
t ∈ DP if and only if f(p′) = r′ ⊏R f(t). This contradicts the maximality of p.
Hence, we proved that r ∈ Max(D∗, τ, φ∗).

Let r ∈ Max(D∗, τ, φ∗). Since r is feasible w.r.t. φ∗, there exists p =
f−1(r) ∈ patterns(P) that is feasible w.r.t. φP . By Property 2, p is frequent in
DP . It remains to show that p is maximal. We argue by contradiction. Suppose
there exists a frequent pattern p′ with p ⊏ p′. Then f(p′) ∈ Max(D∗, τ, φ∗) by

14

the previous paragraph, and r ⊏ f(p′) by Property 2 of f . This contradicts the
maximality of r. Hence, p ∈ Max(DP , τ, φP).

The next lemma shows that if for two frequency-based problems P and Q
there exists a maximality-preserving reduction from P to Q, then there also
exists a reduction between the ffbp-version of these problems.

Lemma 11. Let P and Q be two frequency-based problems, and let P ′ and
Q′ be the ffbp-versions of those problems. Suppose there exists a maximality-
preserving reduction from P to Q via a mapping g.

Then there exists a maximality-preserving reduction from P ′ to Q′.

Proof. Construction of f . We set f ≡ g. Given a pattern q ∈ patterns(Q), we
set φQ′ (q) = 1 iff f−1(q) exists and φP′(f−1(q)) = 1.

Maximality-preserving. Note that Properties 1–3 of maximality-preserving
reductions for f are satisfied since they are satisfied for g. We prove Property 4
of f .

Let p ∈ Max(DP , τ, φP). We show that f(p) ∈ Max(DQ, τ, φQ). Observe
that f(p) is feasible w.r.t. φQ since f−1(f(p)) = p is feasible w.r.t. φP . Note
that f(p) is frequent in DQ by Property 2 of f . We need to argue that f(p)
is also maximal. Suppose this is not the case. Then there exists a pattern
q ∈ Max(DQ, τ, φQ) such that f(p) ⊏ q. Since q is feasible, there exists a
feasible pattern p′ = f−1(q) ∈ patterns(P). By Property 2, we have p ⊏ p′.
Additionally, the pattern p′ is frequent in DP : for each transaction t ∈ DQ

with q ⊏Q t, p′ ⊏P f−1(t) (by Property 2 of f and definition of DQ). This
contradicts the maximality of p.

Let q ∈ Max(DQ, τ, φQ). Since q is feasible, p = f−1(q) exists and is
feasible w.r.t. φP . We show that p ∈ Max(DP , τ, φP). Note that p is frequent
in DP by Property 2 of f . We prove the maximality of p by contradiction.
Suppose there exists a pattern p′ ∈ Max(DP , τ, φP) with p ⊏ p′. Then by the
previous paragraph the pattern f(p′) is a feasible frequent pattern in DQ with
q = f(p) ⊏ f(p′). This contradicts the maximality of q.

5.3 Reductions

From graphs to feasible frequent itemsets. We show that any algo-
rithm solving the MaxFFIS-problem can be used to mine maximal frequent
subgraphs in general graphs.

Lemma 12. There exists a maximality-preserving reduction from MaxFFS(G)
to MaxFFIS.

Proof. Let DMaxFFS(G) be a database consisting of labelled graphs from G with
labels from {1, . . . , n}, let τ be a support threshold, let φMaxFFS(G) be a feasi-
bility function.

Construction of f . For MaxFFIS we use the labels L = {1, . . . , n}2. Let
G = (V,E) be a graph from DMaxFFS(G). We construct an itemset I(G) := f(G)

15

by mapping the graph onto the labels of its edges, i.e., we construct an itemset
I(G) = {(label(u), label(v)) : (u, v) ∈ E}.

Given an itemset I ∈ patterns(MaxFFIS), we set φMaxFFIS(I) = 1 iff (1)
f−1(I) exists and φMaxFFS(G)(f

−1(I)) = 1, and (2) for each pair of tuples
(a, b), (c, d) ∈ I there exists a sequence (a, b) = (e1, e

′
1), . . . , (ek, e

′
k) = (c, d) of

tuples (ei, e
′
i) ∈ I with the following property: For each pair of consecutive

tuples (ei, e
′
i) and (ei+1, e

′
i+1), there exists some ℓ ∈ {1, . . . , n} with ℓ ∈ {ei, e′i}

and ℓ ∈ {ei+1, e
′
i+1}. Intuitively, condition (2) of φMaxFFIS asserts that the

graphs corresponding to the itemset I must be connected.
Maximality-preserving. Note that any feasible frequent itemset in DMaxFFIS

corresponds to a frequent connected graph in DMaxFFS(G) due to the choice of
φMaxFFIS. Observe that there exists a bijection between connected subgraphs
G and feasible itemsets I(G) ⊆ L′. Further observe that for two frequent
subgraphs G and H , G ⊆ H if and only if f(G) ⊆ f(H). It follows that a
graph G and an itemset I must have the same supports in DMaxFFS(G) and
DMaxFIS, respectively. The maximality then follows from the subset-property
we observed.

Note that the reduction simplifies when φMaxFFS(G) ≡ 1, i.e., when we
consider the reduction from frequency-based problem MaxFS(G) to the ffbp

MaxFFIS. Then the mapping f stays the same and φMaxFFIS only needs to
check condition (2). We believe that many algorithms for mining itemsets can
be augmented with this choice of φMaxFFIS function to mine graph patterns as
we will discuss further in Section 6.

Observe that while condition (2) looks rather technical, it can be easily
implemented using a graph traversal. Additionally, when computing the union
of two feasible patterns, an algorithm only needs to check if both patterns share
any label.

Note also that the reduction above works as well for directed graphs (we just
need to distinguish between edge labels (label(u), label(v)) and (label(v), label(u))).
This immediately gives us the following lemma.

Lemma 13. There exists a maximality-preserving reduction from MaxFFS(DirG)
to MaxFFIS.

From sequences to feasible DAGs. To finish the hierarchy of Figure 1,
we need one more reduction, from MaxFSQS to MaxFFS(DAG).

Lemma 14. There exists a maximality-preserving reduction from MaxFSQS

to MaxFFS(DAG).

Proof. Let DMaxFSQS be a database of sequences over labels from L, let τ be
a support threshold, and let φMaxFSQS be a feasibility function. Recall that a
sequence contains each label at most once.

Construction of f . ForMaxFFS(DAG) we use the same labels L. Consider
a sequence S ∈ Lr of length r such that Si 6= Sj for all i 6= j. This sequence

16

is mapped to the graph G(S) with vertices V (S) = {S1, . . . , Sr}, where each
vertex Si is labelled by label(Si). The graph contains the edges

E(S) = {(Si, Sj) : i ∈ {1, . . . , k − 1}, j > i}.

Given a DAG p ∈ patterns(MaxFFS(DAG)), we set φMaxFFS(DAG)(p) = 1
iff f−1(p) exists and φMaxFSQS(f

−1(p)) = 1.
Maximality-preserving. Note that Properties 1–3 of maximality-preserving

reductions for f are trivially satisfied. We prove Property 4.
Let S be sequence from Max(DMaxFSQS, τ, φMaxFSQS) of length r. We show

that G := f(S) ∈ Max(DMaxFFS(DAG), τ, φMaxFFS(DAG)). By construction of
DMaxFFS(DAG) and due to Property 2, G is frequent in DMaxFFS(DAG). We
need to argue that G is also maximal; we do this by contradiction. Suppose
there exists a feasible graph H such that G ⊂ H . Observe that adding any edge
to G would introduce a cycle. Hence, H must contain more vertices than G.
Since H is also feasible, it corresponds to a sequence S′ = f−1(H) of length at
least r + 1. By Property 2, S′ is frequent and S ⊏ S′. This contradicts the
maximality of S.

Consider any maximal feasible frequent DAG G = (V,E) in DMaxFFS(DAG).
Since G is feasible, let S = f−1(G). Then the sequence S = 〈v1, . . . , vr〉 must be
frequent in DMaxFSQS by the choice of f and the construction of DMaxFFS(DAG).
Additionally, S must be maximal. Assume it is not. Then there exists a maximal
sequence T with S ⊏ T . By the argument of the previous paragraph, the graph
H = f(T) is maximal and frequent. But then we also have G = f(S) ⊏ f(T) =
H , which contradicts the maximality of G.

6 Algorithms and Experiments

In this section, we discuss the practical consequences of our reductions and show
that the reductions can be used to develop efficient real-world algorithms.

6.1 Reductions as Algorithms

In addition to providing us the theoretical understanding of the relationships
between the problems, the reductions also provide us a direct way to solve a
maximal frequent pattern mining problem in one domain by using a solver from
the other domain. As an example, consider the reduction from the frequency-
based problem MaxFS(G) to the ffbp MaxFFIS (Lemma 12) and let DG be
the graph database for an instance of MaxFS(G) and DT be the transaction
database built by the reduction.

The mapping of patterns f is straight forward, as we only need to generate
a transaction for each graph, and an item for each unique edge label. The
crux of the reduction lies in the feasibility function φ: it has to ensure that the
returned frequent itemsets correspond to connected frequent subgraphs in the
original problem. As the feasible frequent itemsets are a strict subset of all of

17

the frequent subsets,2 we could simply prune out the results at the very end.
A näıve algoritm for solving MaxFS(G) could then work as follows: (1) build
DT following Lemma 12; (2) compute all frequent itemsets from DT ; (3) prune
out the non-feasible frequent itemsets; (4) prune out the non-maximal feasible
frequent itemsets.

More efficient implementations are possible, however. In particular, we can
add the feasibility constraint in the mining process, thus reducing the number
of candidates to consider in each iteration. The connectedness constraint is not
monotone, though: it is possible that two itemsets A and B do not correspond
to connected subgraphs, while their union does (e.g., A = {(a, b), (c, d)} and
B = {(b, c), (d, e)}). On the other hand, if C is a feasible (connected) frequent
itemset in DT , then it can be split into subsets of any size that are frequent
and feasible. This means that we can prune all infeasible itemsets at the same
time when we prune away all infrequent itemsets. In other words, we can in
fact work with less candidates (or at least with no more) than if we would be
doing standard frequent itemset mining.

The final question in our example is how to implement the feasibility check
efficiently. Let us abuse the notation slightly and denote by label(A) the set of
unique (vertex) labels in an itemset A, that is label(A) = {l : edge (l, ·) or (·, l) is an item in A}.
Then A ∪ B is a connected (i.e., feasible) itemset if and only if label(A) ∩
label(B) 6= ∅ and both A and B are connected (i.e., feasible). Hence, if we
store the sets label(A) together with the candidate itemsets, we only need to
test the disjointness of these two sets to test the feasibility of A ∪B.

The above example should make clear that the reductions we present in this
paper can yield practical algorithms, and it is not too hard to see that similarly
efficient algorithm can be designed following the reduction of Lemma 14. How-
ever, note that in this reduction it would not be a good idea to add single edges
during the candidate generation; an efficient implementation would ensure that
whole nodes with edges to all over vertices are added. This ensures that the
preimage of the reduction exists at all times and that fewer infeasible candidates
are generated.

To further validate our approach, we present some experimental evaluation of
the above algorithm in the next subsection. Before that, let us however discuss
a bit on the general approaches for using the maximality-preserving reductions.

The first observation is that the type of the feasibility constraint obviously
has a big impact on the efficiency of the final algorithm. The study of con-
strained frequent pattern mining is well established (see, e.g., [15] or Section 3),
and that research gives characterizations of constraints that can be implemented
efficiently in standard algorithms. Similarly, the constraint-programming algo-
rithms for data analysis can often be easily adapted for the feasibility constraints
used in frequency-based reductions.

The second observation concerns the number of (non-maximal) frequent item-
sets. Our reductions are only guaranteed to preserve the maximality, and can,

2Note, however, that the feasible maximal itemsets are not necessarily a subset of all
maximal itemsets.

18

in principle, yield an exponentially larger number of non-maximal frequent (and
feasible) itemsets. This would, naturally, make it practically infeasible to use the
reductions together with standard frequent pattern mining algorithms. There
are a few possible solutions to this. First, many reductions do not grow the
number of feasible frequent patterns. This is, for example, the case with the
reductions in Lemmas 6, 7, and 12. Second, a clever implementation of a reduc-
tion would only generate candidates which may be generated by the mapping
from the reduction. This can dramatically decrease the number of possible can-
didates. In fact, if the implementation manages not to generate any candidates
which have no preimage under the mapping from the reduction, then the number
of possible candidates will not increase at all. We believe that this is possible
for all reductions we present in this paper. Third, the maximal frequent pat-
terns can also be found by first finding all the maximal frequent and minimal
infrequent patterns [13]. Unfortunately for this approach, we do not yet know
the behaviour of minimal infrequent patterns under our reductions. We leave
further studies in this for future work.

6.2 Experimental Evaluation

For the experimental evaluation, we implemented the reduction fromMaxFS(G)
to MaxFIS (Lemma 12) in a custom version of the Apriori algorithm [2]. The
constraint on the feasible patterns was straight forward to implement, as dis-
cussed above.3

We tested our approach on a discussion forum data from the StackExchange
forums.4 The data contains 161 different question-answering forums (we ex-
cluded the meta-forums). We concentrated on the most recent year’s activity,
and constructed one graph for each forum where the users are the vertices
and there is an edge between two users if one has answered or commented to
the other’s question or answer. The vertices are labelled uniquely using the
global user-id. The data has 1 627 946 different users, and in total 8 264 675
uniquely-labelled edges. Hence, the dataset does not pose a significant problem
for frequent itemset mining algorithms.

We wanted to study the effects the constraint has for the number of candi-
dates. Recall that the constraint is used to enforce that we find only connected
subgraphs. In Figure 2, we show the number of frequent itemsets and feasible
frequent itemsets of different sizes with minimum frequency 3.

As can be seen from Figure 2, the total number of frequent itemsets is
approximately ten times the number of feasible candidates, indicating that the
feasibility constraint allows us to prune significant amounts of candidates (there
are no feasible candidates of size 17 or 18). In total, the data has 265 111
frequent itemsets, of which 29 752 were feasible and 549 were maximal feasible
itemsets.

The number of maximal frequent itemsets and maximal feasible frequent
itemsets with respect to different minimum thresholds is presented in Figure 3.

3The code and sample data are available from https://people.mpi-inf.mpg.de/~pmiettin/frequency-based-reductions/.
4https://archive.org/details/stackexchange

19

https://people.mpi-inf.mpg.de/~pmiettin/frequency-based-reductions/
 https://archive.org/details/stackexchange

0 5 10 15

100

101

102

103

104

105

Itemset size

N
u
m
b
er

o
f
it
em

se
ts

All frequent
Only feasible

Figure 2: The number of frequent itemsets and feasible frequent itemsets when
solving the MaxFS(G) problem using MaxFIS algorithms. The y-axis is in
logarithmic scale.

We can see that their numbers are mostly aligned, with the number of maximal
itemsets dropping almost exponentially as the minimum threshold increases. No
pattern has support higher than 9.

7 Conclusion

We showed that when considering a generalized version of frequency-based prob-
lems, ffbp, the computational hardness of many frequency-based problems col-
lapses. Hence, our reductions provide a unifying framework for the existing
computational hardness results of fundamental data mining problems. Addi-
tionally, our reductions give a formal explanation why algorithms similar to the
Apriori algorithm can be used for such a wide range of problems by only slightly
adjusting the candidate generation.

In the future it will be interesting to study the computational complexity of
frequency-based problems in which labels can appear multiple times. A daunt-
ing question is whether the following two problems exhibit the same hardness:
Mining subsequences without the restriction that each label appears only once,
and mining graphs with possibly multiple vertices of the same label.

The reductions we provide hint that many practical algorithms for frequency-
based problems can be augmented to solve more complicated problems. We
provided such an example in Section 6. It will be interesting to see if our
insights can lead to more efficient algorithms for the problems we considered or
to algorithms which can solve a wider range of problems.

20

3 4 5 6 7 8 9

0

200

400

600

Minimum frequency

N
u
m
b
er

o
f
m
a
x
im

a
l
it
em

se
ts

All itemsets
Only feasible

Figure 3: The number of maximal feasible frequent itemsets with different min-
imum support thresholds.

References

[1] Charu C. Aggarwal. Data Mining - The Textbook. Springer, 2015.

[2] Rakesh Agrawal, Heikki Mannila, Srikant Ramakrishnan, Hannu Toivonen,
and A Inkeri Verkamo. Fast discovery of association rules. In Advances in
Knowledge Discovery and Data Mining, pages 307–328. MIT Press, 1996.

[3] Rakesh Agrawal and Ramakrishnan Srikant. Mining sequential patterns.
In ICDE, pages 3–14, 1995.

[4] Francesco Bonchi, Fosca Giannotti, Claudio Lucchese, Salvatore Orlando,
Raffaele Perego, and Roberto Trasarti. A constraint-based querying system
for exploratory pattern discovery. Inf. Syst., 34(1):3–27, 2009.

[5] Francesco Bonchi, Fosca Giannotti, Alessio Mazzanti, and Dino Pedreschi.
Exante: Anticipated data reduction in constrained pattern mining. In
PKDD, pages 59–70, 2003.

[6] Francesco Bonchi and Claudio Lucchese. On closed constrained frequent
pattern mining. In ICDM, pages 35–42, 2004.

[7] Endre Boros, Vladimir Gurvich, Leonid Khachiyan, and Kazuhisa Makino.
On maximal frequent and minimal infrequent sets in binary matrices. Ann.
Math. Artif. Intell., 39(3):211–221, 2003.

21

[8] Douglas Burdick, Manuel Calimlim, Jason Flannick, Johannes Gehrke, and
Tomi Yiu. MAFIA: A maximal frequent itemset algorithm. IEEE Trans.
Knowl. Data Eng., 17(11):1490–1504, 2005.

[9] Minos N. Garofalakis, Rajeev Rastogi, and Kyuseok Shim. SPIRIT: sequen-
tial pattern mining with regular expression constraints. In VLDB, pages
223–234, 1999.

[10] Gösta Grahne, Laks V. S. Lakshmanan, and Xiaohong Wang. Efficient
mining of constrained correlated sets. In ICDE, pages 512–521, 2000.

[11] Gianluigi Greco, Antonella Guzzo, and Luigi Pontieri. Mining taxonomies
of process models. Data Knowl. Eng., 67(1):74–102, 2008.

[12] Dimitrios Gunopulos, Roni Khardon, Heikki Mannila, Sanjeev Saluja,
Hannu Toivonen, and Ram Sewak Sharm. Discovering all most specific
sentences. ACM Trans. Database Syst., 28(2):140–174, 2003.

[13] Dimitrios Gunopulos, Heikki Mannila, Roni Khardon, and Hannu Toivonen.
Data mining, hypergraph transversals, and machine learning. In PODS ’97,
pages 209–216, 1997.

[14] Tias Guns, Siegfried Nijssen, and Luc De Raedt. k-pattern set mining
under constraints. IEEE Trans. Knowl. Data Eng., 25(2):402–418, 2013.

[15] Jiawei Han, Hong Cheng, Dong Xin, and Xifeng Yan. Frequent pattern
mining: current status and future directions. Data Min. Knowl. Discov.,
15(1):55–86, 2007.

[16] Jiawei Han, Jian Pei, Yiwen Yin, and Runying Mao. Mining frequent
patterns without candidate generation: A frequent-pattern tree approach.
Data Min. Knowl. Discov., 8(1):53–87, 2004.

[17] Harry B. Hunt, III, Madhav V. Marathe, Venkatesh Radhakrishnan, and
Richard Edwin Stearns. The complexity of planar counting problems.
SIAM J. Comput., 27(4):1142–1167, 1998.

[18] David S Johnson, Mihalis Yannakakis, and Christos H Papadimitriou. On
generating all maximal independent sets. Inf. Proc. Lett., 27(3):119–123,
1988.

[19] Roberto J. Bayardo Jr. Efficiently mining long patterns from databases. In
SIGMOD, pages 85–93, 1998.

[20] Benny Kimelfeld and Phokion G. Kolaitis. The complexity of mining max-
imal frequent subgraphs. In PODS, pages 13–24, 2013.

[21] Benny Kimelfeld and Phokion G. Kolaitis. The complexity of mining max-
imal frequent subgraphs. ACM Trans. Database Syst., 39(4):32:1–32:33,
2014.

22

[22] Michihiro Kuramochi and George Karypis. Frequent subgraph discovery.
In ICDM, pages 313–320, 2001.

[23] Stefan Neumann and Pauli Miettinen. Reductions for frequency-based data
mining problems. In ICDM ’17, 2017. To appear.

[24] Raymond T. Ng, Laks V. S. Lakshmanan, Jiawei Han, and Alex Pang.
Exploratory mining and pruning optimizations of constrained association
rules. In SIGMOD, pages 13–24, 1998.

[25] Jian Pei, Jiawei Han, and Wei Wang. Mining sequential patterns with
constraints in large databases. In CIKM, pages 18–25, 2002.

[26] J. Scott Provan and Michael O. Ball. The complexity of counting cuts and
of computing the probability that a graph is connected. SIAM J. Comput.,
12(4):777–788, 1983.

[27] Luc De Raedt, Tias Guns, and Siegfried Nijssen. Constraint programming
for itemset mining. In KDD, pages 204–212, 2008.

[28] Seinosuke Toda and Mitsunori Ogiwara. Counting classes are at least as
hard as the polynomial-time hierarchy. SIAM J. Comput., 21(2):316–328,
1992.

[29] Salil P. Vadhan. The complexity of counting in sparse, regular, and planar
graphs. SIAM J. Comput., 31(2):398–427, 2001.

[30] Leslie G. Valiant. The complexity of computing the permanent. Theor.
Comput. Sci., 8:189–201, 1979.

[31] Yongqiao Xiao, Jenq-Foung Yao, Zhigang Li, and Margaret H. Dunham.
Efficient data mining for maximal frequent subtrees. In ICDM, pages 379–
386, 2003.

[32] Guizhen Yang. The complexity of mining maximal frequent itemsets and
maximal frequent patterns. In KDD, pages 344–353, 2004.

[33] Mohammed Javeed Zaki. Efficiently mining frequent trees in a forest: Algo-
rithms and applications. IEEE Trans. Knowl. Data Eng., 17(8):1021–1035,
2005.

23

	1 Introduction
	2 Preliminaries
	2.1 Frequency-based Problems
	2.2 Enumeration Problems
	2.3 Counting Complexity
	2.4 Problems Considered in This Paper

	3 Related Work
	4 Maximality-Preserving Reductions
	4.1 Definition and Properties
	4.2 Reductions

	5 Constraining the Set of Patterns
	5.1 Feasible Frequency-Based Problems
	5.2 Maximality-Preserving Reductions for FFPPs
	5.3 Reductions

	6 Algorithms and Experiments
	6.1 Reductions as Algorithms
	6.2 Experimental Evaluation

	7 Conclusion

