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ABSTRACT

With the increasing sensitivity of advanced gravitational wave detectors, the first joint detection of an electro-

magnetic and gravitational wave signal from a compact binary merger will hopefully happen within this decade.

However, current gravitational-wave likelihood sky areas span ∼ 100− 1000 deg2, and thus it is a challenging task to

identify which, if any, transient corresponds to the gravitational-wave event. In this study, we make a comparison

between recent kilonovae/macronovae lightcurve models for the purpose of assessing potential lightcurve templates for

counterpart identification. We show that recent analytical and parametrized models for these counterparts result in

qualitative agreement with more complicated radiative transfer simulations. Our analysis suggests that with improved

lightcurve models with smaller uncertainties, it will become possible to extract information about ejecta properties and

binary parameters directly from the lightcurve measurement. Even tighter constraints are obtained in cases for which

gravitational-wave and kilonovae parameter estimation results are combined. However, to be prepared for upcoming

detections, more realistic kilonovae models are needed. These will require numerical relativity with more detailed

microphysics, better radiative transfer simulations, and a better understanding of the underlying nuclear physics.
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1. INTRODUCTION

The recent discovery of compact binary black hole

systems (Abbott et al. 2016a,b, 2017) has initiated the

era of gravitational-wave (GW) astronomy and even en-

hanced the interest in the combined observation of an

electromagnetic (EM) and a GW signal (Abbott et al.

2016c). Currently, GW skymaps contain likelihood sky

areas spanning ≈ 100−1000 deg2 (Fairhurst 2009, 2011;

Grover et al. 2014; Wen & Chen 2010; Sidery et al. 2014;

Singer et al. 2014; Berry et al. 2015); thus, it is essen-

tial to be able to differentiate transients associated with

GW events from other transients. Models for poten-

tial EM emission from compact binary mergers remain

highly uncertain, but emission timescales ranging from

seconds to months and wavelengths from X-ray to radio

can be expected (Nakar 2007; Metzger & Berger 2012).

Due to the large uncertainties in the sky localiza-

tions from the GW detectors, wide-field survey tele-

scopes are needed to enable an EM follow-up study.

Examples of current and future wide-field telescopes

are the Panoramic Survey Telescope and Rapid Re-

sponse System (Pan-STARRS) (Morgan et al. 2012),

Asteroid Terrestrial-impact Last Alert System (ATLAS)

(Tonry 2011), the intermediate Palomar Transient Fac-

tory (PTF) (Rau et al. 2009), what will become the

Zwicky Transient Facility (ZTF), and the Large Synop-

tic Survey Telescope (LSST) (Ivezic et al. 2008).

There are a variety of automatic schemes in surveys

such as iPTF/ZTF (Kasliwal et al. 2016) and Pan-

STARRS (Smartt et al. 2016a) trying to determine

which transients are unassociated with the GW trigger.

For example, asteroids, variable stars, and active galac-

tic nuclei are all objects that form the background for

these searches, and, therefore, have to be removed Cow-

perthwaite & Berger (2015). In general, background

supernovae are the transients that remain after these

cuts. To further reduce the number of candidates, tran-

sients with host galaxies beyond the reach of the GW

detectors are also removed. In addition, photometric

evolution can be used to discriminate recent transients

from old supernovae. After spectra are taken, they are

cross-matched against a library of supernovae, where

they can be classified as Type Ia supernovae (SN Ia),

two hydrogen-rich core-collapse supernovae (SN II), ac-

tive galactic nuclei, etc. The remaining transients which

could not be identified might then be connected to the

GW trigger.

A variety of potential EM counterparts have been the-

orized to accompany the GW detection of a compact

binary containing at least one neutron star, e.g. short

gamma ray bursts, kilonovae or radio burst. Among the

most promising “smoking guns” of GW detections are

kilonovae (also called macronovae) Metzger & Berger

(2012). Kilonovae are produced during the merger of

a binary neutron star (BNS) or a black hole-neutron

star (BHNS) system. They last over a week, peak in

the near-infrared with luminosities ≈ 1040 − 1041 ergs/s

(Metzger et al. 2015; Barnes & Kasen 2013) and are pow-

ered by the decay of radioactive r-process nuclei in the

ejected material produced during the compact binary

merger, see Metzger (2017); Tanaka (2016) for recent re-

views (see also Rosswog (2015) for a review about multi-

messenger astronomy). Some studies point out that the

electromagnetic emissions similar to kilonovae can also

be produced in the different mechanism Kyutoku et al.

(2014); Kisaka et al. (2015). Material is ejected be-

cause of processes such as torque inside the tidal tails

of the neutron stars, high thermal pressure produced by

shocks created during the collision of two neutron stars,

as well as neutrino or magnetic-field-driven winds. In

reality, different ejecta mechanisms act simultaneously

producing unbound material with complex morphology

and composition.

To model kilonovae properties as realistically as pos-

sible, full numerical relativity (NR) simulations and ra-

diative transfer simulations have to be combined. NR

simulations are needed to study the merger process and

the different ejecta mechanisms. However, because those

simulations only cover about a few hundred millisec-

onds around the compact binary merger, our knowledge

about ejecta mechanisms acting on a longer timescale,

due to magnetic field driven winds etc., is still limited,

e.g. Siegel & Metzger (2017). Once the ejecta properties

(ejecta mass, velocity, composition, morphology) are ex-

tracted from full NR simulations, this information can

be used to set up radiative transfer simulations from

which the lightcurve of the kilonova can be computed.

However, because of the complexity of NR and radiative

transfer simulations, and due to our ignorance of astro-

physical processes acting during the merger and post-

merger of two compact objects, a variety of kilonovae

approximants exist.

In this paper, we shortly review some of the existing

kilonovae models. In particular, we will compare the pa-

rameterized models of Kawaguchi et al. (2016) and Diet-

rich & Ujevic (2017) against themselves and other kilo-

novae/macronovae models and radiative transfer simu-

lations (Barnes et al. 2016; Rosswog et al. 2017; Tanaka

et al. 2014). We ask the question of how much the mod-

els vary in their own parameters, using parameter esti-

mation techniques to show plausible posteriors in case

of a counterpart detection. We will study how robust

they are in terms of approximating other lightcurves

and briefly compare the parameterized models to an ex-
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ample of a background contaminant, SN Ia using the

SALT2 spectro-photometric empirical model (Guy et al.

2007). We explore the parameter degeneracies that arise

from measurement of ejecta mass and velocity, Mej and

vej, including the interplay between the measurement of

masses and neutron star compactness. We then consider

the potential benefits of joint GW and EM parameter

estimation.

2. MOTIVATION

It is reasonable to question the purpose of param-

eter estimation of lightcurves with models which still

might miss important astrophysical processes and which

have systematic errors. Let us envision that we have a

lightcurve from a transient consistent with both the time

of the GW trigger and the skymap. There have been

a number of cases where transients have been identi-

fied with these parameters, and it was necessary to de-

termine their potential association with the GW event

(Smartt et al. 2016a,b; Stalder et al. 2017). In this way,

there is a significant benefit to be able to show consis-

tency between a measured lightcurve and an expected

model to lend credibility to the association between the

GW and EM trigger.

This is similar to the case of the first GW detection

(which did not have an identified EM counterpart),

where parameter estimation did not play a leading role

in the assessment of the significance, but was important

for verification that the detection was indeed real.

Furthermore, for the ideal case in which a well-

sampled lightcurve, mass posteriors from LIGO mea-

surements, as well as a distance estimate from a host

galaxy are available, we can use the distance from the

host and convert apparent into absolute magnitudes.

For such a case and with the availability of trustworthy

models we do not need to allow for any zeropoint or time

offset and would be able to place stringent constraints

on the binary parameters directly from the kilonova

measurement.

Finally, with significantly improved kilonovae mod-

els based on more accurate NR and radiative transfer

simulations, including improved knowledge about nu-

clear physical properties, it might become possible to

directly extract information of the compact binary from

a well-sampled lightcurve from a kilonova counterpart

measured in multiple bands, e.g. by a telescope such as

Pan-STARRS. This would allow for access to the prop-

erties of individual compact binary mergers even in the

case where no GW signal or only a single detector trigger

was present.

3. MODELS

3.1. Kilonova Models

As pointed out, to perform accurate NR and radia-

tive transfer simulations remains a challenging task and

further work including a better microphysical treatment

is needed to allow a detailed understanding of ejecta,

r-processes, and EM emission. However, in addition to

the numerical work, a handful of analytical models have

also been developed with the purpose of approximating

kilonovae lightcurves. In the following, we give a brief

overview about some approaches without guarantee of

completeness.

One kilonovae model in which radioactively-powered

transients are produced by accretion disk winds after

the compact object merger was proposed by Kasen et al.

(2015). In this model, the lightcurves contain two dis-

tinct components consisting of a ≈ 2 day blue optical

transient and ≈ 10 day infrared transient. For this

model, mergers resulting in a longer-lived neutron star

or a more rapidly spinning black hole result in a brighter

and bluer transient.

Another model driven by the merger of two neutron

stars, where material ejected during or following the

merger assembles into heavy elements by the r-process,

is given in Kasen et al. (2013). EM emission then

occurs during the radioactive decay of the resulting nu-

clei. Barnes et al. (2016) explore the emission profiles

of the radioactive decay products, which include non-

thermal β-particles, α-particles, fission fragments, and

γ-rays, and the efficiency with which their kinetic en-

ergy is absorbed by the ejecta. By determining the net

thermalization efficiency for each particle type and im-

plementing the results into detailed radiation transport

simulations, they provide kilonova light curve predic-

tions. Metzger et al. (2015) also explore the β-decay of

the ejecta mass powering a “precursor” to the main kilo-

nova emission, which peaks on a timescale of a few hours

in the blue. Rosswog et al. (2017) use semi-analytical

models based on nuclear network simulations studying

in detail the effect of the nuclear heating rate and ejecta

electron fraction. The work of Rosswog et al. (2017)

shows in detail how lightcurve predictions change sig-

nificantly for different nuclear physics parameters, e.g.,

the usage of different mass models.

Based on NR simulations, Kawaguchi et al. (2016)

derive fitting formulas for the mass and the velocity

of ejecta from a generic BHNS merger and combine

this with an analytic model of the kilonova lightcurve

based on the radiative Monte-Carlo (MC) simulations of

Tanaka et al. (2014). Dietrich & Ujevic (2017) expand

this work by using a large set of NR simulations to ex-
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plore the EM signals from BNSs. The NR fit estimating

the ejecta mass, velocity and morphology is extended

by an analytical model also based on the radiative MC

simulations of Tanaka et al. (2014).

Parametrized models as proposed in Kawaguchi et al.

(2016) and Dietrich & Ujevic (2017) directly tie GW pa-

rameters to expectations about the potential kilonova

counterpart. They do not require NR and radiative

transfer simulations to be completed, which is an impos-

sible task over the few days of observations. Assump-

tions about the EOS of neutron stars, as well as mea-

surement of the mass of the compact objects involved,

allow the computation of the luminosity and lightcurves

of kilonovae.

3.2. Luminosity predictions

Because the ejecta morphology, the thermalization ef-

ficiency, and the opacity are not well constrained, it is

advantageous to use a variety of models that estimate

these quantities in different ways. In general, the lumi-

nosity will depend on the thickness of the ejecta, which

is one of the main differences between BNS and BHNS

systems. The thinner the ejecta becomes, the higher

the density and temperature become. This affects the

color temperature of the spectrum and consequently has

a large impact on the detected lightcurve.

There are two limiting cases, (i) the ejecta are geo-

metrically thick and approximately spherical and (ii)

the ejecta are geometrically thin. In general, due to

shock driven ejecta, BNS mergers correspond mostly to

the former and BHNS systems to the latter case, how-

ever, a clear distinction is impossible. The morphology

of ejecta affects the diffusion time scale and change the

evolution of the lightcurve before the system becomes

optically thin. When the system is optically thin, the

difference in morphology may not be important for the

lightcurve evolution anymore. Since information about

ejecta velocity is primarily contained in the lightcurve

during the optically thick phase, modeling of this phase

is important to constraint ejecta velocity.

As a first comparison between different models, we

consider a spherical ejecta with Mej ≈ 5×10−3 and vej ≈
0.2, see Barnes et al. (2016). Here and in the following,

we will give vej in fractions of the speed of light and

masses in fractions of the mass of the sun M�. For the

non-spherical parametrized models of Kawaguchi et al.

(2016) and Dietrich & Ujevic (2017), we further assume

θ = 0.2 rad. From Rosswog et al. (2017), we include a

model with Mej = 0.0079 and vej = 0.12, which is closest

to our fiducial model.

Additionally, we include the approximant of Metzger

et al. (2015), which focused on the blue transient pro-

duced at a time around merger, which uses a neutron

mass cut mn = 10−4, opacity of κ = 30 cm2g−1, and

electron fraction Ye = 0.05.

Figure 1 shows the bolometric luminosity and the

lightcurves in the g- (dashed) and i- (solid) bands. The

kilonovae models have significant short-term dynamics,

with changes of more than a magnitude in less than a

day. Both the Kawaguchi et al. (2016) and Dietrich &

Ujevic (2017) models are based on the MC simulations

of Tanaka et al. (2014) for which a constant thermal

efficiency is assumed (εth = 0.5).

The model of Barnes et al. (2016) includes a time de-

pendent efficiency, which leads to a faster decay of the

bolometric luminosity and magnitude because after a

few days after the merger the thermalization efficiency

drops below the constant thermalization efficiency em-

ployed in the Tanaka et al. (2014) simulations. Ross-

wog et al. (2017) employ both time dependent and con-

stant efficiencies and use a more complex density profile.

The model picked from Rosswog et al. (2017) shows a

smaller bolometric luminosity than other models, no-

tice, however, that as shown in Rosswog et al. (2017)

the usage of different mass models effects the luminos-

ity by about ≈ 600%, i.e., all presented models come

with large uncertainties and crucially depent on nuclear

physics assumptions. The model of Metzger et al. (2015)

describes the blue transient arising from a small fraction

of the ejected mass which expands sufficiently rapidly

such that the neutrons are not captured and instead

β-decay, giving rise to a clear peak in the bolometric

luminosity visible around the time of merger.

Comparing Dietrich & Ujevic (2017) and Kawaguchi

et al. (2016) we see a clear difference in the g-band. This

has already been pointed out in Tanaka et al. (2014).

The main difference seems to arise from the difference

of employed bolometric corrections, which itself will de-

pend on the ejecta morphology. Since BHNS ejecta are

much more non-spherical and are concentrated in the

equatorial plane, they have higher temperatures which

make the spectrum bluer than BNS ejecta with the same

mass.

We can take the opportunity of having a variety of

kilonova models accessible to compare the lightcurve

colors. It is common in dedicated searches for kilono-

vae to make color cuts (Doctor et al. 2017). Figure 2

shows the difference between the g- and i-bands for the

models presented in Figure 1. As expected, all of the

kilonova models show differences of at least 2 mag, espe-

cially on later time scales. For this reason, independent
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Figure 1. We show the bolometric luminosity (left) and the lightcurves in the g- (dashed) and i- (solid) bands (right). The
parameterized models of Kawaguchi et al. (2016) and Dietrich & Ujevic (2017) use Mej ≈ 5× 10−3, vej ≈ 0.2, and θ = 0.2 rad.
Barnes et al. (2016) uses a model with Mej ≈ 5× 10−3 and vej ≈ 0.2. We use the fiducial model of Metzger et al. (2015), which
uses a neutron mass cut mn = 10−4, opacity of κ = 30 cm2g−1, and electron fraction Ye = 0.05. From Rosswog et al. (2017), we
include a model with Mej = 0.0079 and vej = 0.12 which is the closest available to our fiducial model.
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Figure 2. Difference between the g- and i-bands for the
models presented in Figure 1.

of the employed kilonova model, the proposed analysis

will optimize the strategy for the detection of GW opti-

cal counterparts. Given the relative consistency in color

among the models, imaging the transients in both the

blue/green and the near-infrared can help differentiate

from other transients. Due to the high opacities of r-

process nuclei, most models predict emission in the near

infrared wavelengths. These observations are required

within the first few days due to the faint magnitudes

involved. As explained above, the significant changes in

magnitude over day time-scales can also help differenti-

ate them as compared to possible background transients

such as SN Ia.

3.3. Dependence of the bolometric lightcurve on the

density profile, morphology, and thermal efficiency

As shown in Figure 1 (left panel), the bolometric lu-

minosity of the models from Kawaguchi et al. (2016),

Dietrich & Ujevic (2017), Barnes et al. (2016), and

Rosswog et al. (2017) can be significantly different (we

do not include the blue transient proposed in Metzger

et al. (2015) in the following analysis since it is pow-

ered by a different mechanism). While similar ejecta

masses, velocities, and energy deposition rates are em-

ployed, the models use different density profiles, mor-

phology, and thermalization efficiency. The models of

Kawaguchi et al. (2016) and Dietrich & Ujevic (2017)

assume ρ ∝ r−2 for the density profile, non-spherical ge-

ometry, and a constant thermalization efficiency (εth ≈
0.5). The model of Barnes et al. (2016) assumes spher-

ical ejecta with ρ ∝ r−1 for the density profile and

the time-(mass)-dependent thermalization efficiency is

taken into account. The model of Rosswog et al. (2017)

also assumes spherical ejecta with an homogeneously ex-

panding density profile and time-(mass)-dependent ther-

malization efficiency with the FRDM model.

To check how these differences affect the bolometric

lightcurves, we perform a simple radiation transfer sim-

ulation varying the density profile, ejecta morphology,

and thermalization efficiency. In this calculation, we as-

sume the flux limited diffusion approximation of the ra-

diative transfer (Levermore & Pomraning 1981), a con-
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density profile, spherical geometry, and a constant thermal-
ization efficiency (εth ≈ 0.5). The green line is similar to
the purple curve but with non-spherical ejecta with θej = 0.2
and ϕ = π [the same morphology employed in Kawaguchi
et al. (2016), Dietrich & Ujevic (2017), and Barnes et al.
(2016)]. The blue curve is similar to the purple curve but
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to the blue one but with time-(mass)-dependent thermaliza-
tion efficiency of Barnes et al. (2016). The yellow curve is
similar to the blue curve but we employed a constant ther-
malization efficiency (εth = 1) and multiplied afterwards by
the time-(mass)-dependent thermalization efficiency given in
Barnes et al. (2016). The red curve denotes the bolometric
lightcurve employing Mej = 0.0079 and vej = 0.12, and the
same density profile as in Rosswog et al. (2017).

stant gray opacity with 10 cm2g−1, and the heating rate

that is employed in Kawaguchi et al. (2016) and Dietrich

& Ujevic (2017).

Figure 3 compares the bolometric luminosity for vari-

ous setups. The figure clearly shows that different ejecta

morphologies and thermalization efficiencies change the

bolometric luminosity by about a factor of ≈ 2. This

explains qualitatively the difference in the bolometric

luminosity and lightcurves in Figure 1. The difference

in the model of Rosswog et al. (2017) is also explained

by the difference in the ejecta mass, ejecta velocity, and

thermalization efficiencies. On the other hand, a differ-

ent density profile has only a minor effect.

These results indicate that for future development

of analytical kilonovae approximants the focus should

be put on modeling the ejecta morphology and the

time-dependent thermalization efficiency. We also find

that considering a constant thermalization efficiency

of εth = 1 and then multiplying with εth(t) (given in

Barnes et al. (2016)) or directly employing a time de-

pendent thermal efficiency leads only to differences of

≈ 40%. This suggests that, at least for the bolometric

luminosity, the time-dependency of the thermalization

efficiency can be approximately taken into account just

by multiplying its function to the luminosity obtained

by the constant efficiency. This is of particular im-

portance for further improvement of the parametrized

models which, at the current stage, are based on simu-

lations employing a constant thermalization efficiency.

In addition to the discussed effects further uncertain-

ties exist, which make a modeling and prediction of

kilonovae luminosities difficult. Rosswog et al. (2017)

point out that the electron fraction and heating rate are

main uncertainties in the current modeling of kilonovae

lightcurves. They find that by using two different mass

models (Duflo & Zuker (1995) (DZ31) and Finite Range

Droplet Model (Moller et al. 1995)) the bolometric lu-

minosity can be different up to ≈ 600%. This is caused

by the fact that the nuclear heating rate enters linearly

into the bolometric luminosity.

4. MODEL COMPARISONS AND PARAMETER

ESTIMATION

In this section, we perform parameter estimation and

model comparisons. We will use the Kawaguchi et al.

(2016) and Dietrich & Ujevic (2017) models to com-

pare both to other models and against themselves. As

described, there are two parts to each of these models:

the ejecta fitting formulas and the kilonovae lightcurves.

Avoiding the ejecta fitting formulas, we can improve ef-

ficiency and accuracy by directly sampling the ejecta

mass Mej and velocity vej, and later employ the corre-

lations between the ejecta mass properties, e.g. ejecta

mass Mej and velocity vej, and the binary parameters

(see Section 5). Furthermore, we sample over the lati-

tudinal and longitudinal opening angles, denoted as θej

and φej, respectively. Opacity, κ = 10 cm2g−1, heating

rate coefficient ε0 = 1.58×1010 erg g−1 s−1, heating rate

α = 1.2, and thermalization efficiency εth = 0.5 are held

fixed.

In this analysis, we will use a version of Multinest

(Feroz et al. 2009b) commonly used in GW data analy-

sis (Feroz et al. 2009a), and wrapped in python (Buchner

et al. 2014). This algorithm has the benefit of comput-

ing the Bayesian evidence for a given set of parameters,

which can be used to assign relative probabilities to dif-

ferent models. The likelihood evaluation proceeds as

follows. For each parameter set sampled, lightcurves

in griz bands are computed. We use linear extrapola-

tion of the magnitudes to extend the lightcurves in cases

where the model does not predict the full time covered

by the target lightcurve. In addition to the parameters
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above, we also allow the lightcurves to shift in time by

an offset T0, which allows for a measurement of the ini-

tial time of the kilonovae and therefore gives important

evidence for a potential counterpart, and in magnitude

by a color-independent zeropoint offset ZP, which com-

pensates for our ignorance about the distance to the

source. A χ2 distribution is then calculated between

the lightcurve produced from the model and the target

lightcurve. The likelihood is then simply that from a

χ2 distribution. The priors used in the analyses are as

follows: −5 ≤ T0 ≤ 5 days, −50.0 ≤ ZP ≤ 50.0 mag,

−5 ≤ log10(Mej) ≤ 0, 0 ≤ vej ≤ 1, 0 ≤ θ ≤ π/2 rad,

and 0 ≤ φ ≤ 2π rad. The priors are flat over the stated

ranges.

4.1. Self-consistency check of parametrized models

As a first test of the numerical method, we use

lightcurves produced by the parametrized models for

BNS and BHNS and also recover the ejecta proper-

ties with the same models. The top row of Figure 4

shows lightcurves of such a comparison, where we as-

sume uncertainties of the models of 1 mag as stated in

Dietrich & Ujevic (2017) and Kawaguchi et al. (2016).

The top row shows that the injected lightcurves are re-

covered properly. We quantify the level of overlap be-

tween parameters with “corner” plots (Foreman-Mackey

2016), shown in the bottom row of Figure 4. Shown

are 1- and 2-D posteriors marginalized over the rest of

the parameters. In general, there are a few key fea-

tures. First, with the ≈ 1 mag uncertainty associated to

these models, a large number of lightcurves computed

with the parametrized models are consistent with the

injected/baseline lightcurve we took. This means that

no strict parameter constraints can be obtained. But,

although the models have stated ≈ 1 mag uncertainty,

we can study a possible scenario with models having

smaller uncertainties, e.g. ≈ 0.2 mag or even 0.04 mag,

which approximate the characteristic uncertainty for ob-

servations. In Figure 5, we show histograms for Mej for

the case where the uncertainties are varied. The figure

demonstrates that Mej constraints are significantly im-

proved when the assigned error to the model is small. In

particular for an uncertainty of 0.2 mag the ejecta mass

can be determined up to log10Mej ≈ ±0.5, and in cases

where the uncertainty would be limited by the obser-

vation (uncertainty of 0.04 mag) the ejecta mass could

be determined to log10Mej ≈ ±0.1. This motivates the

need for further improved parametrized models of kilo-

novae lightcurves.

In contrast to the ejecta mass, the ejecta velocity

is poorly constrained in our analysis. This is because

the analytic models do not include times t . 1 day,

where the ejecta are optically thick. However, the de-

pendence on the ejecta velocity is only significant dur-

ing this stage. Afterwards, the lightcurves is primarily

determined by the ejecta mass. Therefore, to improve

the estimation of the ejecta velocity, extension of the

lightcurve models to earlier times is required.

4.2. Comparison with Tanaka et al.

We now perform a comparison between the parameter-

ized models and results from Tanaka et al. (2014). For

this analysis, we distinguish between BNS and BHNS.

The BNS setups of Tanaka et al. (2014) are compared

to the Dietrich & Ujevic (2017) model and the BHNS

lightcurves are compared to the Kawaguchi et al. (2016)

model. In Figure 6, we show histograms for Mej for

uncertainties of 1 mag (dash-dotted lines), which corre-

sponds to the error stated in Kawaguchi et al. (2016)

and Dietrich & Ujevic (2017). The ejecta mass corre-

sponding to the lightcurves of Tanaka et al. (2014) (ver-

tical dashed lines) is always within the posteriors of the

models for the 1 mag posteriors (dash-dotted). We find

that for 0.2 mag (solid lines) uncertainties some of the

true values for BNS systems lie outside the estimated

posteriors, which is to be expected because the uncer-

tainties in Dietrich & Ujevic (2017) and Kawaguchi et al.

(2016) are 1 mag. But, even for an assigned uncertainty

of 0.2 mag, the posteriors of the BHNS setups are consis-

tent with the injected values, which suggests that recov-

ering smaller ejecta masses is in general less accurate.

This might be caused by inaccuracies in the employed

bolometric corrections and is already visible in Figure 9

of Dietrich & Ujevic (2017).

4.3. Comparison with other kilonova models

We now perform a comparison between the parametric

models and Barnes et al. (2016); Rosswog et al. (2017).

In Figure 7, we take the Barnes et al. (2016) (top panel)

model rpft m005 v2 and the NS14B7 model of Rosswog

et al. (2017) (bottom panel), and use the Dietrich &

Ujevic (2017) model for recovery. One finds that the

relative magnitudes between the bands is mostly con-

sistent across the models. However, the models are not

able to reproduce the lightcurves as accurately as for

Tanaka et al. (2014). We find that multiple parame-

ters, including the ejecta mass, cannot be constrained.

Furthermore, for Rosswog et al. (2017) the parameter

estimation pipeline leads to a T0 estimate of the order

of a few days, which suggests that follow up searches

using the current parametrized models would not cor-

rectly detect transients with lightcurves similar to those

given in Rosswog et al. (2017).

The origin of the difference between the parameter-

ized models and Barnes et al. (2016); Rosswog et al.
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Figure 4. The top row shows lightcurves for Dietrich & Ujevic (2017) (left) and Kawaguchi et al. (2016) (right). We use
lightcurves with Mej = 5× 10−3, vej = 0.2, θej = 0.2 rad, and φej = 3.14 rad for the lightcurve computation. We also perform a
maximum likelihood χ2 fit to each lightcurve using the same models for comparison. The lines with error bars show the injected
lightcurve with the assumed 1 mag error budget. The dashed black lines show the best fit lightcurve to that model, including
the linear extrapolation. The bottom row shows the corresponding corner plots.
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(2017) is that Dietrich & Ujevic (2017) was built us-

ing the lightcurves of Tanaka et al. (2014). It can be

expected that parametrized models approximating the

results of Barnes et al. (2016) and Rosswog et al. (2017)

can be obtained as well. This shows that for future de-

velopment, it is urgently required to provide lightcurves

using full radiative transfer simulations that are as re-

alistic as possible, i.e. including different ejecta com-

ponents, time dependent efficiency, and complex ejecta

morphologies.

4.4. Comparison with other models

We also compare to a few non-kilonova models in Fig-

ure 8. Considering the different origin of the EM signal,

we expect that the kilonova models cannot capture the

injected lightcurves. We use the Metzger et al. (2015)

fiducial model (top panel of Figure 8) describing the

blue kilonovae precursor and a SN Ia model from Guy

et al. (2007) (bottom panel). Metzger et al. (2015) does

have an initially higher blue component. The best fit

curve from Dietrich & Ujevic (2017) is capable of pro-

ducing time dependent lightcurve approximants. For

the SN Ia it was not possible to compute time depen-

dent lightcurves with the parametrized models which
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Figure 7. Lightcurves for Barnes et al. (2016) (top) and
Rosswog et al. (2017) (bottom) with the same parameters as
from Figure 1. We also perform a maximum likelihood chi-
squared fit to each lightcurve using the Dietrich & Ujevic
(2017) model for comparison.

approximate the SN Ia lightcurve. This shows that the

parametrized models can also help to distinguish tran-

sients with different origins.

5. EXTRACTING THE BINARY PARAMETERS

Our previous study focused on the question how

we can use parametrized models to obtain informa-

tion about the mass, velocity, and morphology of the

ejecta. At least as important for astrophysical consid-

erations is the question whether measured lightcurves

can be used to directly constrain the binary properties:

masses, spins, and possibly also the unknown EOS. To

achieve this goal, phenomenological models connecting

the ejecta properties as well as the binary parameters
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Figure 8. Lightcurves for Metzger et al. (2015) (top), with
the same parameters as from Figure 1, and a SN Ia from Guy
et al. (2007) (bottom). We also perform a maximum likeli-
hood chi-squared fit to each lightcurve using the Dietrich &
Ujevic (2017) model for comparison.

have to be employed. Such models based on large sets

of NR simulations are given in Kawaguchi et al. (2016)

for BHNS systems and in Dietrich & Ujevic (2017) for

BNS systems. Because of the large uncertainties in the

determination of the ejecta mass in full general rela-

tivistic simulations, current parametrized models can

only be seen as a starting point to more accurate mod-

els. Longer simulations with detailed microphysics are

needed to properly model all the ejecta components.

5.1. Possible Degeneracies

In addition to the large uncertainty of the NR data,
the models also contain degeneracies which do not allow
the simultaneous extraction of all binary parameters.



11

Figure 9. Binary parameters of a BHNS systems, Equa-
tion 1 and Equation 2, which lead to Mej = 10−2 (red sur-
faces) and vej = 0.28 (blue surface) under the assumption
of different compactnesses C = 0.13, 0.15, 0.17 (from left to
right). Because of the degeneracies between the binary pa-
rameters and the ejecta properties an unambiguous measure-
ment of q,M∗

NS, χeff , C is not possible if only Mej and vej are
measured.

The ejecta mass and velocity as functions of the binary
parameters for BHNS can be approximated by:

Mej

MNS,∗
= Max

{
a1q

n1
1− 2C

C
− a2 q

n2 r̃ISCO(χeff) (1)

+ a3

(
1− MNS

M∗
NS

)
+ a4, 0

}
,

vej = b1 q + b2. (2)

with χeff = χ cos itilt, where itilt is the angle between
the dimensionless spin of the black hole χ and the or-
bital angular momentum and r̃ISCO is the radius of the
innermost stable circular orbit normalized by the black
hole mass. a1, a2, a3, a4, n1, n2, b1, b2 are fitting parame-
ters which are determined by comparison to a large set
of NR data, see Kawaguchi et al. (2016). For BNS se-

tups, the ejecta properties are approximated by

Mfit
ej = 10−3

[{
a

(
M2

M1

)1/3(
1− 2C1

C1

)
+ b

(
M2

M1

)n
(3)

+ c

(
1− M1

M∗
1

)}
M∗

1 + (1↔ 2) + d

]
,

vej =
√
v2
ρ + v2

z , (4)

vρ,z =

[
aρ,z

(
M1

M2

)
(1 + cρ,z C1)

]
+ (1↔ 2) + bρ,z, (5)

θej =
24/3v2

ρ − 22/3(v2
ρ(3vz +

√
9v2
z + 4v2

ρ))2/3

(v5
ρ(3vz +

√
9v2
z + 4v2

ρ))1/3
, (6)

φej = 4θej +
π

2
, (7)

with the fitting parameters a, b, c, d, aρ, az, bρ, bz, cρ, cz, n

given in Dietrich & Ujevic (2017).

As can be concluded from the Equations 1-7, the

BHNS model depends on: the mass ratio q, the “ef-

fective” spin of the black hole χeff , the baryonic mass of

the neutron star M∗
NS, the quotient of the neutron star’s

gravitational mass MNS and baryonic mass M∗
NS, and

its compactness C, i.e., five parameters. For the case

of BNS systems, the number increases to six: the grav-

itational masses M1,M2, the baryonic masses M∗
1 ,M

∗
2 ,

and the compactnesses C1, C2 of the neutron stars.

As an example to visualize possible degeneracies in

Equations 1-7, let us suppose that the ejecta mass and

the ejecta velocity was measured for a BHNS setup. In

Figure 9, we show as red surfaces the allowed binary

parameters for whichMej = 10−2 under the assumptions

of C = 0.13, 0.15, 0.17. In addition, we make use of

the quasi-universal relation Equation 8 to connect the

gravitational and baryonic mass to the compactness, see

discussion in the next subsection. As a blue surface,

we mark the binary parameters for which vej = 0.28.

According to Equation 2, the measurement of vej would

determine the mass ratio of the system q but leave the

other parameters unconstrained.

Figure 9 shows that even if Mej and vej are accu-

rately known, the binary parameters cannot be deter-

mined. The intersections between the red and blue sur-

faces mark all the allowed regions for which the ejecta

properties are consistent with the estimated Mej, vej un-

der the assumption of a given compactness C. Conse-

quently, an accurate measurement of the binary proper-

ties is only possible for cases for which more parameters

than Mej, vej are determined, e.g. θej and φej, or for cases

where due to a simultaneous detection of GWs some bi-

nary parameters are known.

5.2. Quasi-universal properties
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Due to the large number of unknown binary param-

eters in Equations 1-7, several degeneracies exist and

binary parameters cannot be constrained uniquely. To

reduce this effect, we substitute some parameters with

the help of quasi-universal relations. Quasi-universal

properties for single neutron stars have been first found

by Yagi & Yunes (2013) and were consequently studied

for a variety of parameters, see e.g. Maselli et al. (2013);

Pappas & Apostolatos (2014); Yagi et al. (2014); even

in BNS systems quasi-universal relations are present,

e.g. Bernuzzi et al. (2014). We propose a relation be-

tween the quotient of baryonic and gravitational mass

M∗/M and the compactness C of a single neutron star.

To construct this relation, we use the EOSs employed

for the dataset studied in Dietrich & Ujevic (2017), but

only consider EOSs which allow non-rotating NS masses

above 1.9, which lies even below the highest measured

NS mass of ≈ 2.01. Figure 10 shows M∗/M as a func-

tion of the compactness C for all EOSs. We find that

only a small spread is caused by the EOSs. Except for

GlendNH3, all curves stay close together.

We fit all data with an approximant of the form

M∗

M
= 1 + a Cn, (8)

the free fitting parameters are a = 0.8858 and n =

1.2082. The fit is included as a black dashed line in

the top panel of Figure 10. By construction, we ob-

tain for C → 0 the correct limit of M∗/M → 1. The

residuals of the fit is shown in the bottom panel of

Figure 10. Absolute errors within the compactness in-

terval of C ∈ [0.05, 0.24] are within ±0.01, except for

GlendNH3. This leads to fractional errors of . 10%

for the term 1 − M∗/M which enters directly in the

ejecta mass computation for BHNS and BNS systems.

On average fractional errors are . 3%. Considering the

large uncertainty of Equations 1-7, we expect that the

error caused by Equation (8) is negligible. But by in-

troducing this relation, the number of free parameters

for the BHNS model is reduced by one and for the BNS

model reduced by two. This allows for significantly bet-

ter extraction of the binary parameters from the ejecta

properties.

5.3. Extraction of binary parameters

In the following, we use a similar scheme as in Sec. 4

to explore how binary parameters can be recovered

from a kilonovae detection. We explore the situation

where we have made a measurement of Mej and vej. We

calculate the likelihood using a kernel density estima-

tor commonly used in GW data analysis (Singer et al.

2014). This technique is useful for cases where the mea-

surements of those distributions arise from parameter

estimation with potentially highly correlated estimates

amongst the variables, as is common in GW data anal-

ysis. The priors used in the analyses are as follows: For

Kawaguchi et al. (2016), 3 ≤ q ≤ 9, 0 ≤ χeff ≤ 0.75,

1 ≤ MNS ≤ 3, and 0.1 ≤ C ≤ 0.2, while for Diet-

rich & Ujevic (2017), 1 ≤ M1 ≤ 3, 1 ≤ M2 ≤ 3,

0.08 ≤ C1 ≤ 0.24, and 0.08 ≤ C2 ≤ 0.24. The dif-

ferences in compactness prior ranges are due to the

differences in compactness used in the simulations the
models used. The priors are flat over the stated ranges.

For this reason, significant structure in the 1D and 2D

contours arise from the posterior.

To begin, we explore the correlation between the vari-

ables by employing the very optimistic assumption of 1%

Gaussian errorbars on the measurement, which essen-

tially inverts the equations in the previous section. We

show in Figure 11 the parameters consistent with two

different choices of Mej and vej. For the BNS case (left

panel), we choose Mej = 5×10−3 and vej = 0.25, for the

BHNS case (right panel), we choose Mej = 5×10−2 and

vej = 0.25. In general, for the BNS systems, the con-

straints are not strong given the relatively wide variety

of parameters that support non-zero ejecta masses and

velocities. We choose to plot mass ratio (q = M1/M2)

and chirp mass [Mc = (M1M2)3/5(M1 + M2)−1/5] in-
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Figure 11. On the left is the corner plot for the model fits for the Dietrich & Ujevic (2017) model with Mej = 5 × 10−3,
vej = 0.25 and an optimistic 1% Gaussian errorbar on the measurement. On the right is the same for the Kawaguchi et al.
(2016) model with Mej = 5× 10−2 and vej = 0.25 for comparison with the same error bars.

stead of M1 and M2, due to the clearer peaks in this

parameterization. We clearly see in the 2D corner plots

degeneracies between Mc and q as well as between C1

and C2, which are similar to those described in the pre-

vious subsection. These indicate the fundamental lim-

itations of EM-only observations in the measurements

of these quantities. For the BHNS systems, the main

constraint is on q, which has some correlation with com-

pactness. Due to the significant correlations between q,

χeff , and C, it will be difficult to constrain those param-

eters without measurements from other quantities.

Figure 12 shows more realistic levels of parameter

estimates using the Mej and vej contours sampled from

a lightcurve with Mej ≈ 5 × 10−3 and vej ≈ 0.2 with

model uncertainties of 0.2 mag. The main difference in

these results and the optimistic assumptions above is

the relatively poor constraints on vej. For the BNS sys-

tem (left panel), because the constraints on mass ratio

are tied to vej, most values of mass ratio are allowed in

this particular case. There are only minimal constraints

on Mc, C1, and C2. For the BHNS system (right panel),

the only structure visible is the correlation between q,

χeff , and C. In case of precise measurement of the mass

ratio and effective spin by GW parameter estimation,

constraints on the neutron star compactness of C ± 0.2

is possible.

As a final comparison, we perform parameter esti-

mation for the Dietrich & Ujevic (2017) model with

0.2 mag uncertainty, but instead of sampling in Mej and

vej, we sample directly in the system parameters making

use of Equations 3-7. Figure 13 shows the corner plots

for this scenario. We find that the individual binary

parameters are almost undetermined, only in the 2D

M1-M2 or, as shown in the figure, Mc-q plane a clear

contour is visible. According to the 1D posteriors of q it

seems that high mass ratios are ruled out. Additionally,

C1, C2 are almost unconstrained, but there seems to

be a small preference for larger compactnesses for the

shown example.

Although we have only discussed the extraction of bi-

nary parameters for BNS configurations similar results

are obtained for BHNS systems.

6. SYNERGY OF ELECTROMAGNETIC AND

GRAVITATIONAL WAVE OBSERVATIONS

As described in the previous section, the constraints

on Mc and q from EM observations alone are limited.

On the other hand, GW parameter estimation provides

direct constraints on these quantities as well. In partic-

ular, Mc is strongly constrained (Abbott et al. 2016a,b,

2017). Previously, the idea of using EM transients as

triggers in searches for GWs from compact binary merg-

ers was proposed (Kelley et al. 2013). Also, the possibil-

ity of combining host galaxy identification with GW pa-
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Figure 12. On the left is the corner plot for the model fits for the Dietrich & Ujevic (2017) model for Mej and vej contours
sampled from a lightcurve with Mej ≈ 5 × 10−3, vej ≈ 0.2 (similar to Figure 11) and model uncertainties of 0.2 mag. On the
right is the same for the Kawaguchi et al. (2016) model for comparison.
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Figure 13. Corner plots for lightcurves withMej = 5×10−3

vej = 0.2, θej = 0.2 rad, and φej = 3.14 rad using the Dietrich
& Ujevic (2017) model with 0.2 mag uncertainty.

rameter estimation to yield improved constraints on bi-

nary inclination have been mentioned before (Fan et al.

2014). Additionally, we can use information from the

GW parameter estimation combined with constraints

from the EM parameter estimation to improve limits

on the ejecta properties.

To demonstrate the benefits of this kind, we take an

example from Singer et al. (2014), which includes both

GW skymaps and posteriors from the parameter esti-

mation of BNS signals. We take one such example and

generate a lightcurve using the Dietrich & Ujevic (2017)

model corresponding to the mean of the mass posteriors

with compactnesses of C1,2 = 0.147, and use the quasi-

universal relation, Equation 8, to compute the baryonic

masses. The true values are Mej = 0.006 and vej = 0.2.

We use magnitude uncertainties of 1.0 mag and 0.2 mag.

We perform the same parameter estimation technique

as in the previous sections to derive EM-only constraints

on Mej and vej. We then use the GW parameter estima-

tion posteriors of M1 and M2 to derive GW-only con-

straints on Mej and vej. This is accomplished by using a

kernel density estimator on the GW posteriors ofM1 and

M2 and allowing C1 and C2 to vary using the same priors

as with the EM parameter estimation. Combining these

posteriors is performed straightforwardly by multiplying

the probabilities derived from both the GW-only and

the EM-only posteriors, but note that because we are

multiplying 2-D probabilities from correlated variables,

the marginalized posteriors from the combined analysis

can look different from multiplying the 1-D marginalized

distributions.
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Figure 14. Histograms of Mej (top left), vej (top right), Mc (bottom left), and q (bottom right) for EM-only, GW-only
and combined EM-GW constraints on a simulated BNS with GW parameter estimation from Singer et al. (2014). Parameter
estimation using a simulated lightcurve from the Dietrich & Ujevic (2017) model consistent with this simulated BNS was used
to generate the EM constraints. For this analysis we assume 0.2 mag (solid lines) and 1 mag (dash-dotted lines) uncertainties
of the kilonova model. The injected (true) value is marked as a vertical dashed line. In the case of Mc, the GW-only line lies
directly below the GW-EM line.

In Figure 14, we show histograms for Mej, vej, Mc,

and q for EM-only (green), GW-only (blue) and com-

bined EM-GW (red) constraints. The figure demon-

strates that significant improvements are possible with

joint EM- and GW-parameter estimation. For exam-

ple, whereas there are almost no limits on vej with EM-

only, constraints from GW parameter estimation create

a clear peak in the posterior and the ejecta velocity can

be determined up to vej ≈ ±0.15. The limits on Mej

show the true synergy between potential EM and GW

parameter estimation. The broad posteriors of the EM-

only and GW-only are narrowed when combined, e.g.,

for an uncertainty of 1.0 mag the uncertainty decreases

from log10Mej ≈ ±0.75 to log10Mej ≈ ±0.4. In the case

where a magnitude uncertainty of 0.2 mag is employed,

the constraints on velocity are still dominated by the

GW parameter estimation, but the Mej determination

is dominated from the EM measurement.

Considering the binary parameters, we find that for

0.2 mag and 1.0 mag the chirp mass Mc is purely con-

strained by the GW parameter estimation. On the other

hand, while for a magnitude uncertainty of 1 mag, the

mass ratio is mostly determined by GW parameter esti-

mation with only minor improvement once EM parame-

ter estimation is also considered, one finds that for mag-

nitude uncertainty of 0.2 mag, constraints are improved
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and decrease from q ≈ ±0.25 to q ≈ ±0.2. Due to

the minimal correlation between Mc, q and the com-

pactnesses, improved constraints on the compactnesses

is not expected.

It is important to note that there is no bias in the mea-

surement of q in the GW-EM case. The 1-D posterior

for q shifts left as the EM error bars are reduced due to

the significant correlation between Mc and q from the

parameter estimation, as can be seen from the left of

Figure 12.

In summary, Mc and vej can be constrained by GW

parameter estimation, with little improvement from the

inclusion of EM results. On the other hand, with the

uncertainty budgets of current kilonova models and re-

lations between binary parameters and ejecta properties,

combined GW-EM parameter estimation improves pos-

sible constraints for both Mej and q. While it is true that

in a future where kilonova models have improved such

that their uncertainties are at the order of observation

level, the EM observations will dominate the Mej and q

constraints and therefore a combined analysis would not

be useful, however, it is unlikely that such big improve-

ments can be made in the near future. This motivates

the importance for coordination between GW and EM

parameter estimation in the event of a kilonova counter-

part detection.

7. CONCLUSION

In this article, we compared different lightcurve mod-

els, outlined differences and similarities, and checked the

consistency amongst the models. We showed how pa-

rameter estimation based on the kilonovae lightcurves

depends on the uncertainty of the employed models.

We found that the parametrized models of Kawaguchi

et al. (2016) and Dietrich & Ujevic (2017) are able to

recover the lightcurves and parameters of the radia-

tive transfer simulations of Tanaka et al. (2014). As

we have shown in Figures 5 and 6, the ejecta proper-

ties can be determined accurately once the models have

small uncertainty, e.g., an estimate of the ejecta mass

of log10Mej ≈ ±0.5 could be obtained once the model’s

uncertainty is below 0.2 mag. We find that currently

both the Kawaguchi et al. (2016) and Dietrich & Ujevic

(2017) models are consistent with their stated uncertain-

ties (and Kawaguchi et al. (2016) perhaps even better

than that), and that there are significant gains in pa-

rameter estimation to be made when these uncertainties

decrease. We hypothesize that for updated simulations

using more detailed microphysical descriptions, in par-

ticular a better treatment of weak interaction, i.e. neu-

trino physics, it would also be possible to produce ana-

lytic models for the results of NR and radiative transfer

simulations. With a model that both describes the im-

proved simulations and has smaller inherent uncertain-

ties in hand, it is in principle possible to make precision

measurements of ejecta mass with results limited only

by observation.

To improve the parameter estimation and allow for

an extraction of the binary properties, we introduced a

quasi-universal relations between the quotient of bary-

onic and gravitational mass M∗/M and the compact-

ness C of a single neutron star. This relation reduced

the number of free parameters for the parameter es-

timation and consequently improved the extraction of

the individual binary parameters. We also compared

the parametrized models with other kilonova models

and lightcurves of other transients. As expected, the

lightcurves of a blue kilonovae precursor and a SN Ia

cannot be approximated by the models, which shows

that the parametrized models could also be used to rule

out some of the possible measured transients. We also

found that other kilonovae lightcurves, Barnes et al.

(2016) and Rosswog et al. (2017), are not accurately

described as well. This is caused by the difference in

the underlying radiative transfer simulations on which

the models are built, which emphasizes again the need

to improve and update kilonova models in the future.

We also showed how to include the posterior sam-

ples from GW signals from a binary-neutron star or

black hole-neutron star to give further constraints on

parameters for the lightcurves. We showed improved

constraints on the ejecta properties Mej, vej and the bi-

nary parameters Mc, q using a combination of GW and

EM observations. This motivates combined analysis in

the case of a kilonovae detection coincident with a GW

trigger.

However, a number of hurdles remain. Mostly due to

the large uncertainties in the ejecta mass, velocity, den-

sity profile, the effect of thermal efficiency, and the es-

timated opacity in the ejected material, there are large

biases and parameter estimation with the current ex-

isting models is hampered. To overcome these issues,

improvements have to be made in numerical relativity

by performing longer simulations which include addi-

tional physics such as other ejecta components from

magnetic driven winds or neutrino outflows, see e.g. Sur-

man et al. (2008); Metzger et al. (2008); Dessart et al.

(2009); Perego et al. (2014). Additionally, improved ra-

diative simulations will be needed. Based on those sim-

ulations, new parametrized models could be developed

in the future.

For future application, it will also be useful to con-

sider how to implement a search strategy in existing

data sets when the lightcurves are not necessarily well
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sampled. This would optimize the tiling and time alloca-

tion strategies of existing searches for GW counterparts

with telescopes with wide fields of view.

A code to produce the results in this paper is available

at https://github.com/mcoughlin/gwemlightcurves

for public download. Required for analysis are text files

of lightcurves from models of interest in magnitudes,

typically available from groups developing kilonova

models. Furthermore, the kilonovae model of Kawaguchi

et al. (2016) can be found online on www2.yukawa.

kyoto-u.ac.jp/~kyohei.kawaguchi/kn_calc/main.

html and the model of Dietrich & Ujevic (2017) on

www.aei.mpg.de/~tdietrich/kn/main.html.
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