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Abstract

Ambiguous information needs expressed in a limited number of keywords
often result in long-winded query sessions and many query reformulations.
In this work, we tackle ambiguous queries by providing automatically gen-
erated semantic aspects that can guide users to satisfying results regarding
their information needs. To generate semantic aspects, we use semantic an-
notations available in the documents and leverage models representing the
semantic relationships between annotations of the same type. The aspects in
turn provide us a foundation for representing text in a completely structured
manner, thereby allowing for a semantically-motivated organization of search
results. We evaluate our approach on a testbed of over 5,000 aspects on Web
scale document collections amounting to more than 450 million documents,
with temporal, geographic, and named entity annotations as example dimen-
sions. Our experimental results show that our general approach is Web-scale
ready and finds relevant aspects for highly ambiguous queries.
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1 Introduction

The Web has grown so vast such that precise navigational and transac-
tional queries are now served using named entities in knowledge graphs [16]
or with the help of curated knowledge panels [32]. For instance, for the
very specific query summer olympics rio 2016, commercial search engines
are able to extract and display knowledge panels informing the user about
medal tallies and other related information extracted from the Web. How-
ever, ambiguous informational queries cannot be served directly. For these
vague queries, a session of query reformulations is required to sketch the in-
formation need. According to an estimation using a query log, 46% of users
reformulate their queries [30]. Thus, there exists a challenge: guiding users
to relevant documents regarding their information needs. To answer this chal-
lenge we introduce the concept of semantic aspects.

Natural language text can be annotated with various kinds of semantic
annotations. In particular, there exist named entity recognition and dis-
ambiguation (NERD) tools (e.g., Aida [35]) that can annotate and disam-
biguate mentions of locations and other named entities to canonical entries
in knowledge graphs (e.g., Yago [45]). Also, temporal expressions in text
can be resolved using temporal taggers (e.g., HeidelTime [44]) with high
precision. These are important semantic annotations in the domain of infor-
mation retrieval as shown in many studies [27, 47]: 71% of Web queries were
found to mention named entities, while 17.1% of Web queries were found to
be implicitly temporal in nature. Thus, by looking beyond terms in text,
there exists the possibility of deeply understanding the semantics of natural
language.

2



To generate interesting semantic aspects that can guide users in search,
we leverage semantic annotations present in documents. As an example
search scenario, consider a user trying to research on the Olympic games.
An ambiguous query to convey this information need can be: olympics.
This query may refer to the different Summer Olympic, Winter Olympic or
Paralympic games. These potential semantic aspects can thus be conveyed
by different semantic annotations present in the pseudo-relevant set of docu-
ments: time intervals, e.g., 2008, 2010, 2012, 2014, or 2016; locations, e.g.,
Beijing, Vancouver, London, Sochi, or Rio de Janeiro; or named entities,
e.g., Michael Phelps, Usain Bolt, or Missy Franklin.

1.1 Challenges

Semantic aspects for ambiguous queries cannot be generated simply by count-
ing the frequency of these annotations present in pseudo-relevant documents.
Interpreting the semantics underlying the annotations is challenging: tempo-
ral expressions can be highly uncertain (e.g., 90s) and two locations or named
entities in a knowledge graph can be related by many facts, e.g., ‘Maria
Sharapova lives in US but represents Russia in sports [4]. Thus, the aspect
generation method must consider the additional complexity of modeling the
semantics underlying the annotations. Moreover, queries can signify different
kinds of ambiguities: temporal ambiguity (e.g., tokyo summer olympics —
1964 or 2020), location ambiguity (e.g., rome — many cities in US have towns
named after European cities), or entity ambiguity (e.g., spitz — Mark or
Elisa Spitz). Clearly, once the initial ambiguity associated with a query is
identified, other annotations are then useful in the aspect generation process.
For instance, for the query tokyo summer olympics various named entities
and locations can be associated with the two different Olympic games. Thus,
the aspect generation method must additionally allow for the flexibility of
analyzing the query from many different semantic dimensions. Finally, there
currently exists no benchmark for automatic evaluation of generated seman-
tic aspects for highly ambiguous queries. Thus, to close this gap, we provide
a novel curated testbed for the research community in the form of a set of
informational queries and associated ground truth semantic aspects assimi-
lated from Wikipedia.
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Figure 1.1: Aspect generation process. Given a set of documents with het-
erogeneous annotations (different colors) of different types (shapes) and se-
mantic models underlying the annotation types, aspects cover combinations
of annotations and are associated with relevant documents. The aspects can
then be used to explore the documents associated with them, e.g., a3 is as-
sociated with documents d2 & d4. Conversely, the documents can also be
structured using the aspects they generated, e.g., d1 can be structured using
a1 & a2.

1.2 Method Outline

In this work, we consider the problem of automatically generating semantic
aspects for resolving ambiguous informational queries. We solve this prob-
lem by proposing a novel partitioning algorithm that identifies interesting
aspects in the pseudo-relevant set of documents by generating factors in the
mathematical models that represent the semantics behind the annotations.
The factors are generated by factoring functions that consider the frequency
of annotations in their respective semantic models and the relevance of the
documents containing them. The partitioning algorithm also allows us to
analyze the initial ambiguity behind the query by permuting the order in
which the factor functions are applied to the initial set of pseudo-relevant
documents. The aspects generated by our algorithm thus represent unstruc-
tured text in a completely structured manner. A high-level overview of our
proposed method is sketched in Figure 1.1.
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Query: olympic medalists〈
Time: [2016,2016]

Entities:[YAGO:Ryan Lochte][YAGO:Michael Phelps][YAGO:Missy Franklin][YAGO:Conor Dwyer]

[YAGO:Katie Ledecky][YAGO:Aly Raisman][YAGO:Simone Biles][YAGO:Nathan Adrian]

[YAGO:Alexander Massialas][YAGO:Anthony Ervin][YAGO:Gabby Douglas][YAGO:Sun Yang]

Locations:[YAGO:United States][YAGO:California][YAGO:New York City][YAGO:Los Angeles]
〉

Figure 1.2: An example aspect computed for the query olympic medalists.
It shows some of the most promminent US swimmers and gymnasts who won
numerous gold medals during the 2016 Summer Olympics.

1.3 Applications

The aspects lend themselves to various applications in information retrieval.
Most importantly, they result in a structured representation of documents,
thus facilitating the organization of the documents along various aspects for
information consumption. Another direct implication of having a structured
representation of documents is search result diversification, whereby we can
obtain a subset of search results that cover the identified semantic aspects.
The semantic aspects can also act as knowledge panels for highly ambiguous
queries which current search engines do not serve very well. Exploratory
search interfaces can also benefit from the semantic aspects, which can serve
as potential search directions for users. An example aspect derived for the
query olympic medalists by our method is shown in Figure 1.2.

1.4 Contributions and Outline

The main contributions of this work and the sections where they are discussed
are as follows:

1. In Section 2.3, we describe the algorithm that generates aspects from
annotated text while considering the semantic relationships underlying
the annotations. The approach is amenable to other domains where
annotations other than time, location, and named entities are of im-
portance.

2. In Section 2.3, we also discuss a novel structured representation of
documents using the identified aspects, which can be exploited by ap-
plications beyond search.

3. In Section 3, we describe a novel testbed of informational queries con-
sisting of over 5,000 aspects derived from Wikipedia used for eval-
uating our aspect generation process on four large corpora including
ClueWeb’09 and ClueWeb’12.
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2 Background

We begin by describing the different semantic annotations and the notational
conventions we use throughout the paper. To make the discussion clear, we
use Table 2.1 as our running example.

2.1 Semantic Annotations

Our approach for generating semantic aspects from documents is generic.
For explanation and evaluation, we consider the following example dimen-
sions: temporal expressions, geographic locations, and other named entities
(e.g., persons and organizations). Alternative dimensions that could be used
to generate other types of semantic aspects in specific domains are: i. in the
biomedical domain, symptoms, drugs, and side effects in health-related doc-
ument collections or social media; ii. in the e-commerce domain, products,
features, and sentiment in texts such as reviews. For our aspect generation
process, it is only important that there are annotations of different dimen-
sions and that there is a semantic model underlying each dimension – as will
be explained below. First, we briefly describe our example dimensions for
generating aspects.

Query: olympic medalists

Id Content Score

d1 hundreds of medals up for grabs for athletes at rio olympics 2016. 0.250
d2 michael phelps career spanning ’92-’16 consists of many medals. 0.250

d3 russian medalist viktor lebedov banned from rio olympics. 0.250
d4 usain bolt has won many medals at 2008 olympics. 0.125
d5 tokyo will host 2020 olympics. 0.125

Table 2.1: Sample set of annotated documents.
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Temporal Expressions in texts can be extracted with temporal tag-
gers. They are able to identify and resolve explicit, implicit, relative, and
underspecified temporal expressions given other metadata (e.g., publication
dates) [44]. We represent time associated with each aspect as a time interval
[b, e] with begin time point b and end time point e. Temporal expressions for
documents in Table 2.1 are: 2016, ’92-’16, 2008, and 2020.

Geographic Locations and Other Named Entities in text are mod-
eled as canonical entries in a knowledge graph such as Yago [45] or Free-
base [15]. These annotations are obtained by using named entity recognition
and disambiguation (NERD) tools, e.g., Aida [35]. A NERD tool is able
to detect the mentions of named entities and further disambiguate them to
their canonical entry in a knowledge graph. We differentiate between lo-
cations and other named entities, by detecting the presence of a relation
in Freebase containing its geographic coordinates. Locations in Table 2.1
are rio and tokyo. While other named entities annotated in Table 2.1 are
michael phelps, viktor lebedov, and usain bolt.

2.2 Notation

The aspect generation process requires us to retrieve a pseudo-relevant set of
documents for a given query. We next describe the framework and notation
associated with these steps.

Retrieving Pseudo-Relevant Documents. Consider a document col-
lection,

D = {d1, d2, . . . , dN},
where each document d ∈ D contains a bag of words dW drawn from a vocab-
ulary V . Each document can be further annotated with different annotations

d = {dW , dX1 , dX2 , . . . , dXn},

where dX denote the different types of semantic annotations or dimen-
sions associated with the document. Concretely, the semantic annotations
we use are in the form of temporal expressions dT , geographic locations dG,
and other named entities dE

d = {dW , dT , dG, dE}.

Thus, d2 as an example from Table 2.1 can be represented as: {{michael
phelps career span 92 16 consist medal}, {[1992, 2016]}, {∅},
{Yago:Micheal Phelps}}.
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Given a keyword query q, a set of pseudo-relevant documents R for it
is retrieved using the method, Ir(•). We follow the notational convention
in [19] to describe a simple search system:

R = Ir(q, k,Θ,D),

Ir(•) is a retrieval method wherein the argument q specifies the query key-
words, k specifies the size of the pseudo-relevant set required, Θ ∈ Rm spec-
ifies a set of parameters relevant for Ir(•), and D specifies the document
collection. Ir(•) represents a totally ordered relation in R ⊆ D. That is,
given d, d′ ∈ R, it holds that either d � d′ or d′ � d [21], where ties are
broken arbitrarily. Internally, Ir(•) utilizes a Score(•) function to assign
relevance of documents to the given query to produce the total order,

Score(dW ,R) : {dW ∈ d | ∀d ∈ R} → R+.

A simple Score function based on word counts and Laplace smoothing can
then be designed as follows:

Score(dW ,R) =
∏
w∈q

1(w ∈ dW) + 1

|dW |+ |V|
.

However, other more sophisticated models, e.g., Okapi BM25 could also be
used. For the example query olympic medalists we obtain R = {d1, d2,
d3, d4, d5} as a pseudo-relevant set of documents ordered by their scores.

Aspect Generation. Given a set of pseudo-relevant documents R for a
query q, an ordered set of aspects A is to be determined

A = 〈a1, a2, . . . , an〉.

An aspect a ∈ A consists of factors ax• obtained by factoring func-
tions that rely on the frequently occurring annotations in their respective
semantic models and additionally the co-occurrence of the factors from dif-
ferent dimensions in some subset of R,

a = 〈ax1 , ax2 , . . . axn〉.

Specifically, for our example dimensions, an aspect reflects the salience of
the semantic relationship between a time interval, geographic locations, and
named entities by virtue of the frequency in their semantic model as well
as the frequency of their co-occurrence in some subset of R. Thus, for the
example dimensions an aspect a ∈ A is modeled as,

a = 〈a[b,e], aG, aE〉,
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where a[b,e] denotes the time interval, aG denotes the set of locations, and aE
denotes the set of other named entities. One sample aspect that could have
been determined for the example shown in Table 2.1 is: a1 = 〈[2016, 2016],
{Yago:Michael Phelps, Yago:Viktor Lebedov}, {Yago: Rio de Janerio}〉.

The aspects which are assimilated from multiple documents can then
be used to transform the semi-structured documents with annotations into
a structured representation. This structured representation of documents is
then immediately useful for applications in search tasks, such as search result
diversification and re-ranking of pseudo-relevant documents.

semi-structured

d={dW ,dT ,dG ,dE}
→ structured

d=〈a1,a2,...ak〉

2.3 Method

In this section, we first describe the mathematical models for the different
semantic annotations that we use. These semantic models are utilized for as-
sessing the relationships between annotations of the same type. Thereafter,
we describe our aspect generation method — the partitioning algorithm —
that recursively partitions the pseudo-relevant set of documents by relying
on two sets of computation operations. The first computation generates fac-
tors by counting the frequency of annotations having the same type in their
semantic models. The second computation provides us the co-occurrence
frequency of factors belonging to the different semantic annotations.

2.4 Semantic Models

Our hypothesis is that to find a set of interesting aspects A underlying the
ambiguous query, we need to consider the frequency of temporal expressions,
locations, and other named entities in their respective semantic models, along
with their co-occurrence in the documents. A factor in an aspect is deemed
interesting by virtue of its frequency. Formally, we define it as follows:

Definition 1. Interestingness. A factor (x ∈ X ) is considered interesting
if it is frequent in a mathematical model of the semantics for that dimension.

To capture the semantics of annotations is a challenging task. Key de-
sign issues that need to be kept in mind regarding semantic models for our
example dimensions are:
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1. Temporal expressions can indicate an uncertain time interval, e.g.,
1990s. In such cases, the begin and end of the time interval conveyed
is not clear.

2. Temporal expressions can be present at different levels of granularity
e.g., day, month, and year granularity.

3. Locations and other named entities may share common relationships,
e.g., Tokyo and Beijing both lie in Asia.

Time Model

Temporal expressions are inherently uncertain. An uncertain temporal ex-
pression can thus refer to infinitely many time intervals. The uncertainty in
temporal expressions can be modeled by analyzing when the time interval
could have begun and ended [11]. That is, the temporal expression 90s can
refer to any time interval that can begin (b) in [1990, 1999] and end (e) in
[1990, 1999] (with b ≤ e). In other words, b ∈ [b`, bu] and e ∈ [e`, eu] giving
the uncertainty-aware time model [11]:

T = 〈b`, bu, e`, eu〉.

We can therefore account for the uncertainty in temporal expressions by
representing them in the uncertainty-aware time model. The expression 90s

is then represented as: 〈1990, 1999, 1990, 1999〉.

Location and Named Entity Model

Each geographic location and named entity identified by Aida is linked
to its canonicalized entry in the Yago knowledge graph. Each Yago en-
tity can further be associated to its originating Wikipedia 1 article. Each
Wikipedia article further contains links to other entities’ Wikipedia arti-
cles, indicating some semantic relatedness between the entities or geographic
locations. We thus model each canonicalized Yago geographic location or
named entity by its Wikipedia article and the associated link structure to
other articles in Wikipedia. Formally, each location or entity e can be de-
scribed by the links ` its article We shares with other articles in Wikipedia
W ,

We = 〈`1, `2, . . . , `|W |〉.
1www.wikipedia.org

10
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2.5 Factor Functions

We next describe how to find interesting factors associated with each dimen-
sion in a set of documents R by using its factoring function Factor(X ,R).

Factoring Time - Factor(XT ,R)

Temporal expressions in documents can be analyzed to generate interesting
time intervals at different levels of granularity. To compute a set of interesting
time intervals for a partition of documents, say R, we use a method similar
to the one described in [28]. Interesting time intervals (factors) can be found
by first generating overlaps of the temporal expressions in the uncertainty-
aware time model. The time intervals (factors) are then scored by counting
the overlaps of temporal expressions in the uncertainty-aware time model
weighted by the score of the document containing the temporal expression:

Ŝcore([b, e],R) =
∑
d∈R

Score([b, e], dT ) · Score(dW ,R).

The function Score(dW ,R) gives the score of d with respect to q. The

mapping of the function Ŝcore([b, e],R) can be defined as:

Ŝcore([b, e],R) : {[b, e] ∈ dT | d ∈ R} → R+.

The function Score([b, e], dT ) then estimates the likelihood of generating
the time interval [b, e] from dT . Formally,

Score([b, e], dT ) =
1

|dT |
·
∑
T∈dT

1([b, e] ∈ T )

|T |
.

The cardinality of |T | indicates the number of time intervals that can be
generated from it. The characteristic function 1(•) then tests the member-
ship of [b, e] in T . Therefore, the mapping can be defined as:

Score([b, e], dT ) : {[b, e] ∈ dT } → R+.

Factoring Locations and Named Entities - Factor(XG,R)
& Factor(XE ,R)

To factor locations and other named entities we utilize the concept of se-
mantic relatedness. To compute the semantic relatedness we use the Jaccard
overlap of links shared by the Wikipedia entries of entities e and e′, formally

EESim(e, e′) =
|We ∩We′ |
|We ∪We′ |

.
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To identify the interesting sets of entities and locations, we consider the
relatedness of the entity with other entities weighted by the score of the
document that contains them. That is,

Ŝcore(e,R) =
∑
(d∈R)

Score(dW ,R) ·
∑

(e′∈dE)

EESim(e, e′).

Score of factors containing multiple entities, i.e., having relatedness be-
tween them (EESim) above a given threshold, is equal to the product of the
above individual entity scores.

Normalizing Scores

The range of unnormalized Ŝcore(•) function is R+; we use the softmax
function to normalize the scores so that a function’s range is restricted to
[0, 1] [18]:

Score({x},R) =
eŜcore({x},R)∑

{x′}∈Factor(X ,R) e
Ŝcore({x′},R)

,

where, Factor(X ,R) denotes the set of factors identified. We choose the
softmax function for normalization in order to boost the scores of those fac-
tors which have higher non-normalized scores.

2.6 Generating Aspects

Our proposed method to generate semantic aspects from a given set of
documents is inspired by the Apriori algorithm for frequent itemset min-
ing [8]. The Apriori algorithm, however, is not informed of the inherent
semantics underlying the annotations and, as such, will not capture any in-
teresting relationships amongst them.

Given the pseudo-relevant set of documents R for query q and the three
example dimensions, X ∈ {Xt,Xg,Xe}, we need to identify interesting as-
pects in the form of 〈a[b,e], aG, aE〉. Enumerating all possible combinations
of different annotations in a näıve manner is computationally intractable.
To generate these patterns, we propose the following recursive partitioning
algorithm, that iteratively partitions R using factoring functions:

a[b,e] = Factor(Xt,R),

aG = Factor(Xg,R(t)),

aE = Factor(Xe,R(t)(g)).
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Thus, the partitioning algorithm induces a new relation:

A ⊂ 2Xt×Xg×Xe .

Figure 2.1 illustrates this recursive algorithm and how the aspects are gen-
erated from this process. The general linear-recursive definition and corre-
sponding Factor methods can be defined as follows.

Definition 2. Partitioning Algorithm
Let X1 . . .Xn be dimensions and R a document set. We are asked to find

a set of interesting aspects A =
⋃
a =

⋃
{{x1}, {x2}, . . . , {xn}} that spans

across the given dimensions. The set of aspects A can be generated by:

Basis Step : {x1} = Factor(X1,R)

Inductive Step : {xk} = Factor(Xk,R(k−1)...(1))

The interestingness of an element in each aspect along a particular di-
mension is abstractly captured by the Factor method by considering a
semantic model for that dimension. Specifically, for our example dimensions
the Factor method for time captures the frequency of time intervals in a
time model that is informed of temporal uncertainty at different levels of gran-
ularity. While the Factor method for locations and other named entities
considers the frequency of their occurrence and also their relatedness to the
other locations and named entities. Formally, the Factor functions identify
interesting sets of patterns along dimension X given a set of documents R
as:

Factor(X1,R):{dX1∈d|∀d∈R}→2X1 ,

Factor(Xk,R(k−1)...(1)):{dXk
∈d|∀d∈R(k−1)...(1)}→2Xk .

Each set of interesting factors {x1}i ⊆ 2X1 is associated with a partition

R(1)
i ⊆ R that generated {x1}i. We create a partition index that keeps track

of 〈{xk}i, R(k−1)...(1)
i 〉. By concatenating the factors {x1}i, {x2}i, . . . , {xn}i

obtained from the same partition R(1)(2)...(n)
i , we can identify the aspects.

The partitioning algorithm thus identifies a set of aspects:

A ⊂ 2X1×X2×...×Xn .

The partitioning algorithm is still computationally expensive if we were
to consider every factor along each dimension. To prune the recursion tree,
we now define minimum support for our algorithm.

13



Definition 3. Minimum Support
Given a factor function Factor(X ,R), let its corresponding scoring

function Score({x},R) be defined as follows:

Score({x},R) : {{x} ∈ dX | ∀d ∈ R} → [0, 1].

Then, for a given value of minimum support σ ∈ [0, 1], a factor is deemed
interesting iff:

Score(x,R) ≥ σ.

Thus, the problem of generating the aspects for n dimensions is defined
by Partition(R,X1,X2, . . .Xn, σ). For our example dimensions, the instan-
tiation is Partition(R,Xt,Xg,Xe, σ).

Aspect Scoring

Aspects can further be ranked using the following Score function:

Score(a, d) = Score(a[b,e], d) · Score(aE , d) · Score(aG, d).

With,

Score(aE , d) =
∏

e∈aE∩dE

Score(e, d),

Score(aG, d) =
∏

g∈aG∩dG

Score(g, d).

In order to make the scores of the location and entity dimension compa-
rable with respect to the minimum support, we again normalize them using
the softmax function.

Structured Representation of Documents

For query q and its corresponding set of pseudo-relevant documents R,
we now have a set of aspects A. As mentioned earlier, each aspect a ∈
A is generated from a partition R

(k−1)...(1)
i . From this partition index, we

can obtain the inverse mapping of documents to aspects. We then have a
structured representation of documents over the aspects:

d = 〈a1, a2, . . . ak〉.

For instance, we can now represent documents d2 and d3 from Table 2.1
as: d2 = 〈a1〉 and d3 = 〈a1〉.

14



Query Pivoting

The order in which the factoring functions are applied can result in different
sets of interesting aspects. This is due to the fact that minimum support
in our algorithm is not merely counting annotations but is rather realized
by the factoring method. Therefore, given three dimensions, we can realize
six different sets of interesting aspects by permutation of the different factor
methods. This in turn provides us different ways of analyzing the initial
ambiguity underlying the query, for example:

. Temporal ambiguity e.g., tokyo summer olympics

. Geographical ambiguity e.g., rome

. Named entity related ambiguity e.g., spitz

If the sequence of factor methods is: time→ entity → geography, then the
resulting set of aspects will be denoted byAt→e→g. The other five possibilities
are: At→g→e, Ag→t→e, Ag→e→t, Ae→t→g, and Ae→g→t. Using the illustration
in Figure 2.1, these six factor sequences can be obtained by following the
different paths in the lattice (the highlighted bold path refers to At→g→e).

15



Figure 2.1: The partitioning algorithm. The lattice structure of the aspects
generated by our recursive partitioning algorithm is shown. Each element in
the lattice corresponds to the partition of documents that arises by applying
the factor function for that dimension, e.g., R(t)

• is generated by factoring
R along time. One such time factor a = 〈 ,−−,−−〉 is generated by doc-

uments {d1, d5} ∈ R(t)
• . Continuing in this recursive manner over the geo-

graphic dimension g we get a = 〈 ,�,−−〉. The sequence of factoring oper-

ations can be permutated to obtain different partitions; R(t)(g)(e)
• corresponds

to time→ geography → entity (traversing the bold edges of the lattice).
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3 Evaluation

We next describe the setup for experiments, the results obtained, and
their discussion.

3.1 Setup

Document Collections

We test our algorithm on two different types of document collections. The
first category of document collections consists of news articles. News archives
have the benefit of being accompanied by rich metadata in the form of accu-
rate publication dates and well-written text. This can aid natural language
processing tools to provide more accurate annotations. For example, tempo-
ral taggers can resolve relative temporal expressions (e.g., yesterday) and
implicit temporal expressions (e.g., good friday) with respect to the pub-
lication date. We consider two document collections in this category. One
of them is a collection of approximately two million news articles published
in the New York Times between 1987 and 2007. It is publicly available as
the New York Times Annotated Corpus [5]. The other one is a collection of
approximately four million news articles collected from various online sources
during the period of 2013 to 2016 [34], called Stics.

The second category of document collections consists of Web pages. Web
crawls unlike news articles have unreliable metadata and ill-formed language.
This hampers in obtaining high quality semantic annotations for them. For
example, we cannot resolve relative and underspecified temporal expressions,
as the document creation time for Web pages may not reflect their true
publication dates. We consider the two available Web crawls [1, 2] during
2009 and 2012, which are publicly available as ClueWeb’09 and ClueWeb’12
document collections, respectively. Statistics for the document collections
are summarized in Table 3.1.
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News Archives Web Archives

New York Times Stics ClueWeb’09 ClueWeb’12

Documents 1,679,374 4,075,720 50,220,423 408,878,432

Avg. Time 12.50 10.09 30.59 5.80

Avg. Location 8.65 5.93 9.49 5.61

Avg. Entity 16.25 10.89 8.23 7.74

Table 3.1: Document statistics for the various document collections used in
our evaluation. For the example dimensions time, location, and entities we
report the average number of annotations found in at most 10,000 documents
retrieved for each informational query in our testbed.

Annotating Documents

Semantic annotations are central to our approach. To obtain them, we utilize
publicly available annotations for the document collections or automatically
generate them using various tools. For the news archives and for ClueWeb’09,
we utilized Aida [35], which performs named entity recognition and disam-
biguation. Each disambiguated named entity is linked to its canonical entry
in the Yago knowledge graph. As a subset of these named entities, we can
obtain geographic locations. For ClueWeb’12, we utilized the Facc annota-
tions [24] provided by Google. The Facc annotations contain the offsets
of high precision entities spotted in the web pages. Temporal expressions for
all the document collections were obtained using the HeidelTime temporal
tagger [44]. In Table 3.1, we additionally report the average counts of the
three types of semantic annotations found in at most 10,000 documents re-
trieved for each query in our testbed.

Collecting Ground Truth Aspects for Queries

To evaluate our system, we extracted over 5,000 aspects from Wikipedia.
This was done considering their diversity along three dimensions of time,
locations, and other named entities for a set of twenty-five informational
queries. The broad topics of the aspects along with the specific keyword
queries and the number of aspects generated are listed in Table 3.2.

18



(Ae→t→gAe→t→gAe→t→g &&& Ae→g→tAe→g→tAe→g→t) | Achievements
[1,508]: nobel prize [114] | olympic

medalists [48] | oscars [1, 167] |
paralympic medalists [24] | space

shuttle missions [155]

(Ag→e→tAg→e→tAg→e→t &&& Ag→t→eAg→t→eAg→t→e) | Disasters [1,536]:
aircraft accidents [513] | avalanches [56]
| earthquakes [39] | epidemics [211] |
famines [133] | genocides [35] | hailstorms
[39] | landslides [85] | nuclear accidents

[26] | oil spills [140] | tsunamis [88] |
volcanic eruptions [171]

(At→e→gAt→e→gAt→e→g &&& At→g→eAt→g→eAt→g→e) | Politics [2,078]:
assassinations [130] | cold war [81] |
corporate scandals [44] | proxy wars [34]
| united states presidential elections

[57] | terror attacks [316] | treaties

[1, 057] | wars [359]

Table 3.2: Categories of query keywords with aspect counts (in brackets) and
appropriate sequence of factor operations.

For each query, we constructed a set of ground-truth aspects by consider-
ing the table of events present on the Wikipedia page corresponding to the
query [3, 12]. For the table, we considered each row consisting of time, loca-
tions, and other entities as an aspect. If no locations or named entities were
mentioned, we extracted them from the associated event page of the row,
by running Aida on the introductory paragraph of the event’s Wikipedia
page. For instance, consider the Table 3.3 as an example table of events
present on a hypothetical Wikipedia page for Olympic medalists. Treating
each row as a ground truth aspect, we look for temporal expressions, e.g.,
[2008, 2016] as a time factor; locations, e.g., Beijing, London, and Rio de
Janeiro as a location factor; and other named entities, e.g., Usain Bolt as
entity factor. Similarly, for the second row in Table 3.3, the extracted aspect
is: 〈[2004, 2016], {Yago:Athens, Yago:Beijing, Yago:London, Yago:-
Rio de Janeiro}, {Yago:Michael Phelps}〉. This testbed is made available
to the research community at the following URL:

http://resources.mpi-inf.mpg.de/dhgupta/data/aspects2017/
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Years Active Description Locations

2008 - 2016 Usain Bolt won total
of 9 Olympic medals
during the Summer
Olympic games in the
years he was active.

Beijing,
London,
and Rio de
Janeiro

2004 - 2016 Michael Phelps has won
a record number of 23
gold medals at various
Olympic games during
his career.

Athens,
Beijing,
London,
and Rio de
Janeiro

Table 3.3: An example table of events for explaining the assimilation of
ground truth for the query: olympic medalists.

Measures

Given a query and its set of pseudo-relevant documents, our algorithm out-
puts a set of interesting aspects. Two key characteristics for evaluation are
then to see if the aspects are correct with respect to a ground truth and
how novel the aspects are with respect to other aspects. These two charac-
teristics taken together ensure that our sets of aspects are meaningful and
non-redundant. We next describe the respective two measures correctness
and novelty.

Similarity computation between aspects is central to both the correctness
and novelty measure. To compute the similarity between the two aspects, a
and b, we consider their similarity dimension-wise. More specifically,

Similarity(a, b)=
1

3

(
|a[b,e] ∩ b[b,e]|
|a[b,e]|

+
|aE ∩ bE |
|aE |

+
|aG ∩ bG|
|aG|

)
,

where, for temporal similarity we coarsen the time intervals at year granu-
larity to make them comparable. The temporal overlaps are computed using
the uncertainty-aware time model [11] by converting the time intervals to
the four-tuple notation. While for the other two dimensions the similarity
is akin to computing the Jaccard similarity between bag-of-locations and
bag-of-entities, however, only with respect to the ground truth (in the de-
nominator).

Correctness. Given a set of aspects A generated by our algorithm for a
query q and the set of aspects B corresponding to the ground truth derived
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from Wikipedia page for the same query, correctness can be formalized as:

Correctness(A,B)=
1

|A|
∑
a∈A

1

|B|
∑
b∈B

Similarity(a, b).

Novelty for the set of aspects A can be intuitively thought of measuring
the dissimilarity with respect to A itself:

Novelty(A)=
1

|A|
∑
a∈A

1

|A|
∑

(a′∈A/{a})

(
1− Similarity(a, a′)

)
.

A probabilistic interpretation of the above measures can be arrived at by
considering a random draw from the set a ∈ A and another random draw
from the set b ∈ B and computing the similarity between a and b, thus giving
us the likelihood of two aspects being similar. We can additionally conform
the correctness measure to the standard information retrieval measures such
as precision and recall as follows:

Precision=
1

|A|
∑
a∈A

max
b∈B

(
Similarity(a, b)

)
,

and

Recall=
1

|B|
∑
b∈B

max
a∈A

(
Similarity(a, b)

)
.

Baselines and Systems

We consider two baselines to compare our proposed approach. As a näıve
baseline, we treated each document in the pseudo-relevant set to represent
an aspect by considering the earliest and latest time point in the document
as the aspect’s time interval and bag-of-locations and bag-of-entities to rep-
resent the other two dimensions. As a second baseline, we consider latent
Dirichlet allocation (LDA) [14] to discover k topics from the pseudo-relevant
set of documents. For each topic discovered by LDA, we then consider the
top-(k − 1) most relevant documents associated with each topic. From this
partition of top-(k − 1) documents, we derive the corresponding aspect by
considering the earliest and latest time point in the partition as the aspect’s
time interval and bag-of-entities and bag-of-locations to represent the two re-
maining dimensions. We refer to each instantiation of this baseline as LDA-
k. For our algorithm, denoted by PA, we considered the specific sequence of
factor operations that were deemed meaningful for that query (as shown in
Table 3.2) for aspect generation. For instance, since the query earthquakes

is oriented towards geographic locations we considered the factor sequence
operations Ag→e→t and Ag→t→e for aspect generation.
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Parameters

For each query in Table 3.2, we retrieve at most 10,000 documents with
disjunctive operator using Okapi BM25 as the retrieval method. We used
the standard parameters, b = 0.75 and k1 = 1.20, for its configuration.
For the LDA baseline, we followed Griffiths and Steyvers [26] for setting
its parameters. Specifically, β was set to 0.1 and α was set to 50/|topics|. We
considered three topic set sizes for LDA namely, |topics| ∈ {50, 100, 200} and
the same number of top-k documents for each topic, e.g., for |topics| = 50,
we picked top-50 documents for each topic as its generating partition. For
our proposed algorithm, we consider the following global parameters: entity-
entity relatedness greater than 0.05 to identify meaningful geographic and
other named entity factors; the top 90th percentile of the time intervals of
interest as time factors; and the minimum support was set to σ = 0.001. The
parameters were derived at by observing their effect on few sample queries
such as wars and nuclear accidents only on the news archive collections.

3.2 Results

We report the results of the experiments over the four different document
collections, including two Web collections. In addition to the measures dis-
cussed, we report the average number of aspects discovered by our algorithm
(PA) and the baselines (BM25 & LDA).

Results for News Archives

We first consider the results of the systems in terms of correctness and nov-
elty as reported in Table 3.4. For the New York Times collection, our method
identifies the most correct aspects with respect to the ground truth as com-
pared to the baselines across all possible factor sequence operations. Despite
the observation that Okapi BM25 wins in terms of novelty by considering all
pseudo-relevant documents, our method still achieves a high degree of nov-
elty, thereby identifying the most non-redundant set of aspects and is able
to partition the set of pseudo-relevant documents to the greatest degree. For
the Stics news collection, our method outperforms the baselines in terms of
correctness. Okapi BM25 achieves a higher novelty value, however, the in-
crease compared to our method is not significant. Observing both correctness
and novelty our method excels in providing both relevant and non-redundant
sets of aspects when comparing to the baselines which can only achieve high
novelty.
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New York Times Stics

Avg.
|AAA| Correctness Novelty

Avg.
|AAA| Correctness Novelty

bm25bm25bm25 3, 3379 0.008 0.4420.4420.442 3,796 0.008 0.4340.4340.434

lda-50lda-50lda-50 50 0.005 0.279 50 0.010 0.290
lda-100lda-100lda-100 100 0.004 0.228 100 0.008 0.240
lda-200lda-200lda-200 200 0.004 0.163 200 0.006 0.163

papapa 1, 638 0.0130.0130.013 0.404 480 0.0180.0180.018 0.395

Table 3.4: System results when measuring correctness and novelty on news
archives. Best performing systems for the different measures are highlighted
in bold.

Now consider precision and recall for the systems, as reported in Ta-
ble 3.5. For the New York Times, while considering precision, our system
consists of more relevant aspects compared to the baselines. With respect
to recall, it is at par with the Okapi BM25 baseline. Taking both preci-
sion and recall together, our system presents a balanced performance: high
precision and recall while the baselines achieve higher recall only. For the
Stics corpus, when considering precision and recall, our method again has
significant improvements over the baselines. Thus, by taking all the four
measures, correctness, novelty, precision, and recall, our method allows us
to distill interesting aspects which can guide the user to navigate through a
large number of documents.

New York Times Stics

Avg.
|AAA| Precision Recall

Avg.
|AAA| Precision Recall

bm25bm25bm25 3,379 0.098 0.1520.1520.152 3,796 0.072 0.113

lda-50lda-50lda-50 50 0.041 0.015 50 0.063 0.031
lda-100lda-100lda-100 100 0.034 0.010 100 0.048 0.021
lda-200lda-200lda-200 200 0.031 0.007 200 0.046 0.013

papapa 1,638 0.2640.2640.264 0.148 480 0.2290.2290.229 0.1340.1340.134

Table 3.5: System results when measuring precision and recall on news
archives. Best performing systems for the different measures are highlighted
in bold.
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Results for Web Collections

Web collections give us more challenging documents to test the effectiveness
of our approach. Particularly, since they are not well-formed, they have a
lower average number of annotations per document, the annotations in them
are prone to more errors, and the size of the Web collections is magnitudes
larger than news archives. Hence, they present a challenging real world sce-
nario to test our methods. We first consider the results for the Web collections
when measuring correctness and novelty that are reported in Table 3.6. For
ClueWeb’09, our method outperforms both baselines in terms of correctness
and novelty. In particular, for novelty our method outperforms the baselines
significantly. For ClueWeb’12 our method performs at par with baselines
in terms of correctness and novelty. When considering the measures in iso-
lation, for correctness the LDA baseline wins over our method and Okapi
BM25 baseline has higher novelty than our method. However, when con-
sidering both correctness and novelty together, our system is consistent in
providing more correct and novel aspects as opposed to the baselines.

ClueWeb’09 ClueWeb’12

Avg.
|AAA| Correctness Novelty

Avg.
|AAA| Correctness Novelty

bm25bm25bm25 9,579 0.009 0.398 9,752 0.012 0.4610.4610.461

lda-50lda-50lda-50 50 0.012 0.331 50 0.0180.0180.018 0.350
lda-100lda-100lda-100 100 0.009 0.289 100 0.012 0.306
lda-200lda-200lda-200 200 0.006 0.246 200 0.010 0.257

papapa 1,480 0.0140.0140.014 0.4310.4310.431 529 0.016 0.419

Table 3.6: System results when measuring correctness and novelty on Web
collections. Best performing systems for the different measures are highlighted
in bold.

Next, we consider the second set of experimental results for Web collec-
tions when measuring precision and recall that are reported in Table 3.7.
For ClueWeb’09, our method in terms of precision and recall outperforms
both baselines significantly. For ClueWeb’12, our method outperforms both
baselines with respect to precision. However, in terms of recall Okapi BM25
outperforms our method when considering all the pseudo-relevant documents.
Despite of this, our method provides a balanced performance with high preci-
sion and moderate recall as compared to the baselines which have high recall
but very low precision.

24



ClueWeb’09 ClueWeb’12

Avg.
|AAA| Precision Recall

Avg.
|AAA| Precision Recall

bm25bm25bm25 9,579 0.080 0.152 9,752 0.081 0.2560.2560.256

LDA-50 50 0.073 0.087 50 0.096 0.106
LDA-100 100 0.056 0.075 100 0.071 0.074
LDA-200 200 0.043 0.055 200 0.058 0.049

papapa 1,480 0.1370.1370.137 0.1780.1780.178 529 0.2340.2340.234 0.156

Table 3.7: System results when measuring precision and recall on Web col-
lections. Best performing systems for the different measures are highlighted
in bold.

Query Pivoting

The initial factoring dimension addresses the different types of dimensional
ambiguity in queries during the aspect generation process. We had parti-
tioned the testbed of queries, according to most meaningful initial factoring
dimension. We next describe few queries that had high correctness values for
the three different types of initial factoring operations to support our hypoth-
esis. For these examples, we specifically investigate the results for the news
archives as they had a higher average number of annotations per document.
For time, the queries that obtained high correctness scores were nuclear

accidents, corporate scandals, and wars. The query wars in particular
for the New York Times also had higher correctness values for entity as the
initial factoring dimension. For geographic dimension, the queries that ben-
efit by factoring this dimension were epidemics, olympic medalists, and
oil spills. For the entity dimension, the queries nobel prize, nuclear
accidents, and cold war achieved high correctness scores.

Summary

Our experiments on two large news archives show that semantic annotations
in the form of temporal expressions, locations, and other named entities can
be used to identify semantic aspects that are correct and novel for document
exploration. On Web-scale corpora, where quality annotations are few, our
methods can also identify precise aspects for information consumption. In
addition to this, our method can resolve the different types of initial ambigu-
ity behind informational queries by leveraging the semantic models behind
the different dimensions.
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4 Related Work

In this section, we discuss related works.
Structuring Text for Search. One of the seminal works in inducing a struc-

ture to text was suggested by Hearst and Plaunt [31]: TextTiling, an al-
gorithm for identifying coherent passages (subtopics) in text documents. By
leveraging more recent advances in natural language processing, Koutrika et
al. looked at a similar problem of generating reading orders [37]. Given, a
set of documents, the authors utilized LDA to identify topics in documents
for their structured representation. With this representation, documents are
hierarchically arranged in a tree, based on their topical generalization and
overlap. A path in the generated tree then gives the user a reading order
over the documents. However, both approaches were not informed of seman-
tic annotations, which we exploit to identify aspects for structuring text for
search.

Faceted Search systems allow a user to navigate document collections and
prune irrelevant documents by displaying important features about them.
Going beyond this basic model, Ben-Ytizhak et al. discussed various algo-
rithms that allowed for business intelligence aggregations and more advanced
dynamic discovery of correlated facets across multiple dimensions [10]. In
contrast to their work, our approach considers semantic models for each di-
mension during the aspect identification process to cover relations between
annotations of the same dimension. Li et al. [38] leveraged semantic meta-
data present in Wikipedia such as entities and their associated category
for automated generation of facets for exploring Wikipedia articles. While
they leveraged only collection-specific knowledge to generate the facets, our
approach is amenable to multiple dimensions for aspect generation. Specif-
ically, for applications in information retrieval, Dou et al. [23] and Kong
and Allan [36] investigated how to mine keyword lists present in pseudo-
relevant documents for aspect generation. However, in their work semantic
annotations were not considered part of their methods. Arenas et al. [25]
considered the use of named entities and their relationships in graphs for
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generating facets in DBPedia abstracts. Their approach however does not
incorporate other annotations such as temporal expressions, which we have
considered in our work.

Online Analytical Processing (OLAP) relies on using concept hierarchies
associated with data attributes to allow for various kinds of analytical ag-
gregations (e.g., drill-up and drill-down). Thus, by going one step further
than faceted search, OLAP has the potential to retrieve documents that sat-
isfy constraints over an aggregation of dimensions [22]. Zhang et al. further
structured text in an OLAP data cube by inducing and associating a topic
hierarchy using probabilistic latent semantic analysis (pLSA) [46]. This al-
lows for OLAP operations over text using the pLSA topic hierarchy. All the
OLAP methods can be considered static, i.e., they assume that the docu-
ment collection is pre-structured with respect to the annotations and their
corresponding concept hierarchy. To identify interesting insights the decision
maker is required to formulate precise queries. Our work, however, gener-
ates aspects that can be used to navigate documents in a dynamic fashion.
Since they are generated automatically, the user, need not specify any specific
operation.

Semantic Search. Rich metadata in the form of disambiguated named en-
tities has enabled retrieval systems to tap into power of curated knowledge
graphs such as Freebase [15] and Yago [45]. Bast and Buchhold [9] ad-
dressed the problem of jointly indexing text and the contextual knowledge
graph entities with their relations. Hoffart et al. [33, 34] demonstrated a
semantic search system that offers the capability to retrieve documents and
perform analytics via queries composed of keywords, named entities, and
their semantic types. All these approaches, however, do not aim at mining
insightful aspects for document exploration.

Event Search. Time, locations, and entities naturally lend themselves
for meaningful representation of events. Spitz and Gertz [43] discussed an
approach for graph construction using time points, locations, and named
entities for cross-document event summarization. However, their approach
analyzed textual proximity between annotations and was not informed of the
inherent semantics conveyed by the annotations. On the other hand, the
method proposed by Gupta et al. [29] also considers semantic annotations,
but is not amenable to Web scale. Also, in their approach there is no provi-
sion to analyze the dependence between annotations with respect to initial
ambiguity of the query. For example, an entity-oriented query (e.g., clinton)
and a time-oriented query (e.g., olympics) cannot be differentiated with re-
spect to the initial ambiguity.
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Exploratory Search. Exploratory Search systems such as proposed in [17]
and [40] address interface design issues that users face when navigating large
document collections. Ruotsalo et al. describe a visualization consisting of a
radar on which keywords can be followed to change the focus of search [40].
Bozzon et al. describe a query-by-example interface where search directions
are manually input for various dimensions pertinent to the domain [17]. In
contrast to these approaches, our work automatically identifies search direc-
tions in the form of semantic aspects.

Search Result Diversification. Diversifying search results is an established
way of alleviating the problems associated with ambiguous queries. By diver-
sifying search results, the user is presented with a novel and non-redundant
subset of documents distilled from the initial set of pseudo-relevant docu-
ments. Existing diversification approaches such as maximum marginal rel-
evance (MMR) [19] and PM-2 [20] utilize implicit text to identify a diverse
subset of documents. On the other hand, IA-Select [7] and xQuAD [41] rely
on an explicitly specified taxonomy of categories or aspects mined from query
suggestions to diversify search results. For implicit diversification, resolving
ambiguity is limited to utilizing textual cues. On the other hand, for ex-
plicit diversification, alleviating ambiguity relies on document aspects (e.g.,
query suggestions) to be provided from an external resource. Our generated
semantic aspects thus serve as novel topics that are useful for diversification
of documents.

Entity Linking and Entity-Oriented Search. Linking named entities in queries
to the document text in which they occur and subsequently leveraging the
context and co-occurring entities has received ample attention in the infor-
mation retrieval community. Reinanda et al. [39] proposed how to leverage
search engine query logs to mine and suggest entities of relevance given entity-
oriented query. The authors consider metadata associated with the queries
in the query log for their approach e.g., user clicks, user sessions, and query
issue timestamps. Their proposed method however does not tap into the doc-
ument contents for aspect generation. Blanco et al. [13] propose how to con-
nect named entities in queries with their mentions in the documents in which
they occur in an efficient manner. Similarly, Schuhmacher et al. [42] propose
a method for recommending related entities for entity-centric queries using
pseudo-relevance feedback form retrieved documents and knowledge graphs.
Our work in contrast, is not limited to named entities and we additionally
consider temporal expressions in the document contents. As discussed, tem-
poral expressions in document contents pose several challenges such as being
uncertain and being present at several granularities. Prior approaches how-
ever do not take into account other dimensions for aspect discovery e.g.,
temporal expressions.
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5 Conclusions

In this work, we discussed a novel partitioning algorithm that leverages se-
mantic annotations such as temporal expressions, geographic locations, and
other named entities to generate semantic aspects. The algorithm consists of
factor functions which realize the mathematical models behind the semantic
annotations to compute their interestingness. Further, the factor functions
can be applied in different orders to identify the most relevant set of as-
pects and to disambiguate the different types of ambiguities underlying the
query. The set of aspects identified can then lend themselves to a structured
representation of documents. Hence, building a foundation for further re-
trieval techniques such as search result diversification to be carried out. Our
framework is generic and can accommodate different types of factor functions
for other domains such as e-commerce or the medical domain. Our experi-
ments on different types of document collections, including ClueWeb’09 and
ClueWeb’12, show that our approach to the problem allows the user to navi-
gate through messy unstructured data in a structured manner at Web scale.
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