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SUMMARY

We previously developed a mass spectrometry-
based method, dynamic organellar maps, for the
determination of protein subcellular localization and
identification of translocation events in comparative
experiments. The use of metabolic labeling for quan-
tification (stable isotope labeling by amino acids in
cell culture [SILAC]) renders the method best suited
to cells grown in culture. Here, we have adapted the
workflow to both label-free quantification (LFQ) and
chemical labeling/multiplexing strategies (tandem
mass tagging [TMT]). Both methods are highly effec-
tive for the generation of organellar maps and capture
of protein translocations. Furthermore, application of
label-free organellar mapping to acutely isolated
mouse primary neurons provided subcellular localiza-
tion and copy-number information for over 8,000 pro-
teins, allowing a detailed analysis of organellar orga-
nization. Our study extends the scope of dynamic
organellar maps to any cell type or tissue and also
to high-throughput screening.
INTRODUCTION

Spatial proteomics is an emerging field that promises to chart the

location of all proteins within cells, allowing a systems view of

cellular organization (Boisvert et al., 2012; Christoforou et al.,

2016; Foster et al., 2006; Hesketh et al., 2017; Itzhak et al.,

2016; Jadot et al., 2017; Jean Beltran et al., 2016; Mardakheh

et al., 2016; Rhee et al., 2013; Weekes et al., 2014; reviewed in

Aebersold and Mann, 2016; Drissi et al., 2013; Jean Beltran

et al., 2017; Larance and Lamond, 2015). We have previously

developed a profiling method for the generation of highly repro-

ducible organellar maps (Itzhak et al., 2016) that also allows

dynamic mapping of induced changes in protein localization.

The method combines rapid subcellular fractionation with quan-

titative mass spectrometry (MS). Because it relies on metabolic

labeling (stable isotope labeling by amino acids in cell culture
2706 Cell Reports 20, 2706–2718, September 12, 2017 ª 2017 The A
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[SILAC]; Ong et al., 2002) for profile quantification, it is mostly

suited to cells in culture. To expand the range of applications,

here we have developed workflows for label-free quantification

using MaxLFQ (Cox et al., 2014) and tandem mass tag (TMT)-

based quantification using the MS3/multi-notch approach

(McAlister et al., 2012, 2014). We provide a comparison of the

advantages of each method for generating dynamic organellar

maps and apply the label-free workflow to neurons, deriving a

high-resolution quantitative spatial proteome from primary cells.

RESULTS AND DISCUSSION

Adaptation of the Dynamic Organellar Maps Workflow
The principle of subcellular proteomic profiling is to partially

separate organelles by biochemical means and then to quantify

the distributions of proteins across the differentially enriched

subfractions. Organelle-specific profiles are derived from the

distributions of known marker proteins, enabling subcellular

assignment of proteins without known location. Importantly,

complete isolation of individual organelles is not required; over-

lapping profiles can be de-convoluted and resolved by subse-

quent cluster analysis, provided they are sufficiently different.

In the original dynamic organellar maps workflow, cell lysate is

separated by differential centrifugation into six fractions (Itzhak

et al., 2016). Each of the five post-nuclear pellets is mixed 1:1

with a SILAC heavy ‘‘reference’’ membrane fraction, followed

by MS analysis (Figure 1A). Quantification of heavy to light ratios

in each fraction yields abundance profiles across the gradient.

For label-free quantification (LFQ) implementation, the SILAC

workflow was replicated, omitting the heavy-labeled reference

(Figure 1B, left). Profiling was then achieved by direct compari-

son of protein intensities across fractions using the MaxLFQ

algorithm for quantification (Cox et al., 2014). With a five-fraction

workflow (LFQ5), some organelles showed overlapping profiles.

Inclusion of the sixth (nuclear-enriched) fraction (LFQ6) and

re-normalization substantially enhanced the resolution of these

profiles (Figure 1B, center and right). For a chemical labeling

profiling approach, following fractionation and protein digestion,

peptides were conjugated with TMT reagent (McAlister et al.,

2012, 2014). Each tag has the same mass but, upon fragmenta-

tion, gives rise to reporter ions with different masses; these are
uthors.
commons.org/licenses/by/4.0/).
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Figure 1. Workflow for Dynamic Organellar Maps Using Fractionation Profiling

(A) In all workflows, whole-cell lysate was subjected to differential centrifugation to generate fractions enriched in different organelles. Note that the nuclear-

enriched 1K fraction also contains a proportion of non-nuclear material. For the SILAC workflow, heavy-labeled post-nuclear supernatant was subjected to a

single centrifugation step to generate a reference membrane fraction. Each of the fractions, excluding the 1K nuclear fraction, was combined 1:1 with the

(legend continued on next page)
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used to quantify the abundance of the parent peptides across

samples. For maximum accuracy, reporter ions were analyzed

with a synchronous precursor selection MS3 approach to avoid

ratio compression effects (McAlister et al., 2014).The recent

development of 10-plex TMT enabled combination of two

maps of five fractions in a singleMS run (Figure 1C).With all three

profiling strategies, median profiles of major organelles were

clearly resolved (Figure 1D). Furthermore, comparing profiles of

the same organelle across methods revealed that they were

closely matched (Figure 1E).

Evaluation of SILAC, LFQ, and TMT Map Performance
Map performance for the different quantification strategies was

assessedwith twoMS protocols, a ‘‘fast’’ method that minimizes

measuring time and a ‘‘deep’’ method that maximizes protein

coverage. These reflect run parameters we anticipate will be em-

ployed by users. The MS measurement requirements for SILAC

and LFQ5 were identical (12.5 hr/fast map, 37.5 hr/deep map),

and substantially lower for TMT (1.5 hr/fast map, 19 hr/deep

map) because of the multiplexing of samples.

It was expected that the LFQ implementation would be most

challenging because of the noisier quantification relative to

SILAC or TMT (Figure 2A); hence, the LFQ approach was opti-

mized most extensively. Six independent LFQ maps were pre-

pared from HeLa cells with the fast MS protocol. Data transfor-

mation and quality filtering were adjusted for LFQ profiles as

detailed in the Supplemental Experimental Procedures. Organel-

lar predictions were generated using supervised learning (sup-

port vector machines [SVMs]) of a set of approximately 1,000

marker proteins covering 12 subcellular localizations (Itzhak

et al., 2016). The proportion of accurately assigned markers

was scored (global prediction accuracy; Figure 2B). The average

map performance for LFQ5 (fast) was 87.3%. Inclusion of the

sixth fraction led to a consistent and substantial boost in predic-

tion accuracy, taking performance to an average of 91.1% for

LFQ6. For reference,SILAC (fast)mapsaverage�94%accuracy.

Organellar classification using the combined profiles of

several SILAC maps enhances performance (Itzhak et al.,

2016). To investigate this effect with LFQ, classification was per-

formed with one to six LFQ (fast) maps, combining them in order

of performance from worst to best (Figure 2C). Each additional

map improved the performance, plateauing at 5 maps (predic-

tion accuracy,�94% for LFQ6). Three maps of intermediate per-

formance were selected for more extensive MS analysis (deep

protocol). This revealed that two deep LFQ maps combined

had equivalent prediction accuracy as five fast maps (Figure 2C).

An equivalent analysis was performed for TMT maps (single

maps versus a combinations of maps, fast versus deep proto-
reference fraction and measured by MS. The SILAC ratios along the gradient gen

reference fraction was from cells treated to match the fractionated material.

(B) LFQworkflow. The same differential centrifugation as for SILAC light was used

of some organelles, as seen by comparing median organellar marker profiles (5 f

fraction also entails re-normalization of the profile to a sum of 1; this causes rela

(C) TMT workflow, which used identical fractions as the SILAC light workflow. Foll

mass tagging reagent and analyzed on an instrument capable of synchronous

measured in a single experiment.

(D) Median profiles for organellar marker proteins are shown for three organelles

(E) As for (D), except profiles for the same organelle obtained with the different q
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cols) as well as for SILAC (to serve as a reference; Figure S1).

In all cases, a combination of three maps provided high-accu-

racy organellar predictions (Figure 2D). Using the deep protocol,

SILAC provided the best global prediction accuracy at 97.1%;

LFQ5 and TMT maps had slightly lower accuracies (around

91%) but were still very good in absolute terms. The boost

from including the extra fraction placed LFQ6 performance close

to SILAC (94.7%). The number of profiled proteins was lowest

with SILAC (3,700), whereas that with LFQ exceeded 5,500 (Fig-

ure 2E). With TMT, 4,500 proteins were profiled; however, two of

three replicates covered more than 6,000 proteins, suggesting

that the depth should reach that of LFQ maps. The fast protocol

provided a slightly lower map accuracy in all cases, but it was

still very high for SILAC (95.8%) and LFQ6 (92.4%). TMT fast

also had good accuracy (91.3%), although this was calculated

for a smaller set of resolved clusters (Figure 2D; Figure S1G).

MS measuring time requirements were substantially lower

with TMT quantification, especially with the fast protocol (only

4.5 hr/three maps; Figure 2F).

For in-depth performance analysis of maps generated with the

different quantification methods, the predictions for individual

organellar clusters were evaluated.We calculated recall (the pro-

portion of marker proteins correctly assigned to the cluster) and

precision (the proportion of all assignments to this cluster that

are correct). A perfectly resolved cluster includes all relevant

marker proteins and no markers from any other clusters (recall

and precision = 1). The harmonic mean of recall and precision,

the F1 score, provides a single metric of cluster performance.

A comparison of the different methods revealed that some clus-

ters perform well irrespective of the MS acquisition method (Fig-

ure 2G); these included the largest clusters: plasma membrane,

mitochondrion, endoplasmic reticulum, and large protein com-

plex as well as endosome, lysosome, and actin-binding proteins.

Smaller clusters, including peroxisome, nuclear pore complex,

Golgi, and ER-Golgi intermediate compartment (ERGIC), per-

formed less well in TMT and LFQ5 compared with SILAC. The

benefit of LFQ6 relative to LFQ5 was also most evident for these

clusters. Defining an F1 score of > 0.7 as a well-resolved cluster,

both SILAC and LFQ6 resolved all 12 clusters, suggesting that

these are the preferred methods for the highest-resolution

maps; although not directly tested here, a TMT-based deep

analysis with 6 fractions would be likely to yield results similar

to LFQ6 (Figure 2G). Figures S1F–S1I show how the F1 scores

improve when using the deep protocol compared with the fast

protocol.

Organellar predictions of non-marker proteins were stratified

into four confidence classes based on SVM scores (high, me-

dium, low, and very low). Marker prediction accuracies within
erate profiles for each protein. In comparative experiments, the SILAC heavy

. Including the 1K nuclear-enriched fraction in the analysis increased separation

ractions, center, versus 6 fractions, right). Please note that inclusion of the 6th

tive shifts in all fractions.

owing protein digestion, peptides from each fraction were labeled with tandem

precursor selection-MS3 (SPS-MS3). TMT 10-plex permitted two maps to be

with the different methods: SILAC (left), LFQ (center), and TMT (right).

uantification strategies are shown.
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each class served as a proxy for the prediction accuracy of

non-markers (Figure 2H). SILAC had the greatest proportion of

high-confidence predictions, but TMT and LFQ also had high

proportions (Figure 2I). Overall, LFQ made the largest number

of high-confidence predictions because of the overall number

of proteins profiled (Figure 2J; Figures S1C–S1E show the equiv-

alent analyses for maps made with the fast protocol).

Finally, it was evaluated to what extent the organellar assign-

ments made with the different methods agree. Concordance

was calculated as the proportion of proteins with identical pre-

dictions between two quantification methods. For each compar-

ison, the SILAC (deep) set was used as reference. Importantly,

only non-maker predictions were included in the analysis. Base-

line concordance was very high in all cases (84%–87%; Fig-

ure 2K; Figure S1B). A stringency filter was then applied to

restrict comparisons to predictions above a given SVM score.

In all cases, concordance reached >96% for the majority of pre-

dictions, demonstrating that the three profiling methods yield

highly consistent results. Thus, we conclude that the SILAC,

LFQ, and TMTquantification strategies are all effective for gener-

ating accurate organellar maps.

TMT- and LFQ-Based Dynamic Organellar Maps
We next investigated the suitability of TMT and LFQ maps to

capture induced protein translocations. For optimum compari-

son, an identical set of samples, comprising three replicate ex-

periments of control cells or cells stimulated with epidermal

growth factor (EGF) for 20 min, was analyzed with all three

methods using both fast and deep protocols. These samples

were used previously to follow endocytic uptake of activated

EGF receptor (EGFR) but were analyzed only with the fast SILAC

protocol (Itzhak et al., 2016). Here, an additional deep MS

analysis was performed to determine the full capability of the

SILAC approach. To test LFQ maps for dynamic applications,
Figure 2. Performance Analysis of Organellar Maps Generated with TM

(A) To illustrate the relative precision of the different quantification methods appli

subunits, PSMA1–7, PSMB1–7, three independent measurements per protein) wa

TMT. Boxes indicate the interquartile range and whiskers 10th–90th percentile ra

(B) Organellar classification performance of six independent LFQ-based maps.

supervised learning. Performance was assessed for six-fraction profiles (LFQ6, g

(C) Combining several LFQ maps for organellar classification enhanced predicti

to highest performance. Addition of each map improved performance. Maps 3

classification.

(D) Marker prediction accuracy obtained with a combination of three replicate

predictions for only 10 of 12 clusters (see also Figure S1G).

(E) Number of profiled proteins quantified in all three replicates.

(F) MS measurement requirements (hours) for the generation of three replicate m

(G–K) In-depth analysis of the predictions obtained with a combination of three

obtained with the fast MS protocol is shown in Figures S1B–S1E).

(G) Detailed performance profiles ofmapsmadewith SILAC, LFQ5/6, and TMT. Pr

calculated as the harmonicmean of recall (true positives / [true positives + false ne

scores (> 0.7) denote clusters with a high predictive value.

(H) Stratification of non-marker organellar predictions. Each assignment was ma

defined, dividing the data into confidence classes. The prediction accuracy of ma

non-marker proteins. Generally, the first two classes had high accuracies with a

(I and J) Proportion (I) and absolute number (J) of non-marker predictions in each

(K) Concordance analysis. The predictions of non-marker proteins, obtained wi

SILAC. Concordance is the proportion of proteins with identical predictions. Res

compared maps reduces the overlapping dataset but increases concordance. In

See also Figure S1 and Table S1.
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a label-free experiment was simulated by reprocessing the

SILAC fast and deep datasets with the MaxLFQ algorithm,

ignoring any SILAC heavy-labeled peptides. For TMT dynamic

maps, peptides from the SILAC light fractions were TMT-labeled

and analyzed by MS (fast and deep protocols).

To identify proteins that show subcellular movement upon

EGF treatment, an improved version of our previously developed

outlier test was applied (Supplemental Experimental Proced-

ures). This combines metrics for movement distance (M score)

and reproducibility (R score) into an ‘‘MR’’ scatterplot analysis.

Significantly translocating proteins have both high M and R

scores. False discovery rate (FDR) control for cutoff selection

was achieved by comparison with a mock experiment (control

versus control). These plots revealed that SILAC, TMT, and

LFQ implementations of dynamic organellar maps correctly

identified the movement of EGFR together with SHC1 and

GRB2, two major binding partners of activated EGFR (Figures

3A, 3D, and 3G). The profiles of the EGFR, before and after treat-

ment with EGF (Figures 3B, 3E, and 3H), were remarkably similar

across all methods. Furthermore, when subjecting each of the

datasets to SVM analysis, all methods correctly classified

EGFR as localized to the plasma membrane in control cells

and to endosomes in EGF-treated cells (Figures 3C, 3F, and

3I). Importantly, almost identical results were obtained with the

corresponding fast analyses (Figure S2), also highlighting the

usefulness of all methods in this format.

Although all three approaches successfully identified major

translocations, they differed in the number of detected minor

movements (Figure S3). Here, SILAC performed best, identifying

a total of 66 significant translocations (with an estimated FDR <

10%). 42 of these have previously been linked to EGF signaling,

strongly supporting the high predictive value of the analysis;

the remaining proteins are hence likely candidate pathway com-

ponents or downstream targets of EGFR (see Figure S3 and
T, LFQ, and SILAC Quantification Strategies

ed in fractionation profiling, profile scatter within the 20S core proteasome (14

s analyzed (deepMS protocol). LFQmeasurements are ‘‘noisier’’ than SILAC or

nge.

Accuracy is the proportion of correctly classified organellar markers during

reen) and for the same maps with the sixth data point removed (LFQ5, yellow).

on accuracy. (Fast) maps shown in (B) were combined in the order of lowest

, 4, and 6 were then chosen for further deep MS analysis and combined for

maps by quantification strategy and MS protocol. TMT fast maps included

aps.

replicate datasets, deep MS protocol (an equivalent analysis for predictions

ediction performance was evaluated for each organellar cluster. F1 scores were

gatives]) and precision (true positives / (true positives + false positives]). High F1

de with a prediction confidence score. Four different SVM score cutoffs were

rker proteins within each class served as a proxy for the prediction accuracy of

ll methods.

confidence class.

th TMT, LFQ5, and LFQ6, were compared with the predictions obtained with

tricting the comparison to proteins with a minimum confidence score in both

all cases, over 85% of the predictions show > 90% agreement.
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Table S2 for complete annotation). TMT and LFQ maps both de-

tected sixteen movements but, in the case of LFQ, with a higher

FDR. Of note, the improved depth of LFQ maps enabled the

identification of UBASH3B movement, a protein absent from

the SILAC dataset. Conversely, TMT was the only method to

identify movement of EGF; this protein was not present in control

cells and, hence, was excluded from LFQ and SILAC analyses,

but, because of multiplexing of two maps, the TMT approach

can handle such cases.

Key metrics and characteristics for static and dynamic appli-

cations of each method are summarized in Figure 4.

Application of LFQ Organellar Maps to Mouse Neurons
The successful implementation of LFQ organellar maps opened

the possibility to investigate the spatial proteome of primary

cells. To test this, we prepared acutely isolated neurons from

embryonic mice (sacrificed at embryonic day 15 [E15]). At this

stage of development, neurons show relatively little neurite

arborization, which facilitates their isolation (Sciarretta and Mini-

chiello, 2010). In total, five independent replicates were prepared

on three separate days. Cells were lysed mechanically and sub-

jected to our standard differential centrifugation scheme (Fig-

ure 5A). In addition to the six membrane fractions (LFQ6), we

also collected the cytosol; this allowed us to capture the com-

plete spatial and quantitative proteome from a single workflow

despite very limited amounts of starting material (only 1–2 mg

of protein/preparation). Samples were analyzed with the fast

MS protocol (17.5 hr/preparation). In total, over 9,000 proteins

were identified (Table S3). The combined output from all five rep-

licates was then jointly processed to generate organellar maps;

3,894 proteins were profiled across all replicates. These were

annotated with the same set of organellar markers as for HeLa

cells, without any further cell-specific optimization (834 markers

matched across species). Application of SVM machine learning

showed a high overall marker prediction accuracy of 92.7%

(with full cross-validation; Figure 5B). For a more detailed perfor-

mance evaluation, we calculated F1 scores for each compart-

ment cluster (Figure 5C). 11 of 12 clusters showed high resolu-

tion, with the exception of the (rather minor) endoplasmic

reticulum (ER)-high curvature cluster. Stratification of the predic-

tion classes (Figure 5D) revealed a large proportion of high-con-

fidence predictions. Collectively, these data show that the per-

formance of the LFQ neuron maps is extremely similar to what

we had previously observed in HeLa cells (Figure 2; Figure S1)
Figure 3. Assessment of Dynamic Organellar Maps with Different Qua

(A) Three replicate SILAC experiments of cells left untreated or stimulated with E

resulting difference profiles were subjected to statistical analysis to identify mo

reproducibility scores for each protein are shown in an MR scatterplot; significa

contains proteins where the estimated false discovery rate (FDR) for translocatio

(B) Top: the proportion of EGFR in each fraction across the differential centrifugatio

EGF (black lines). Bottom: the difference in protein pelleting in the fractions in un

(C) Proteins in the shaded area of (A) were removed from the marker set, and all r

machine learning. The prediction scores for the plasmamembrane and endosome

in localization of the EGF receptor.

(D–F) The same as (A)–(C), respectively, but for LFQ-based (deep) experiments.

(G–I) Also the same as (A)–(C), respectively, but using data from the TMT-based

cutoffs determined for the SILAC and LFQ experiments.

See also Figures S2 and S3 and Table S2.
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and demonstrate that the LFQ protocol is suitable for application

to primary neurons.

In addition to the organellar localization data, our analysis also

provided information on the global distribution across the mem-

brane, nuclear, and cytosolic fractions for over 6,000 proteins.

These included 1,120 proteins classified as mostly nuclear,

1,471 as mostly cytosolic, and 528 as nuclear and cytosolic

(Table S4). Finally, we derived absolute protein abundances

(i.e., copy numbers and cellular concentrations) for over 9,000

proteins using the proteomic ruler approach (Wi�sniewski et al.,

2014; Figure S4). Together, these data provide a comprehensive

account of the mouse cortical neuron spatial proteome

(Table S4).

A Quantitative Comparison of Mouse Neuron and HeLa
Organellar Organization
The combined knowledge of protein abundance and subcellular

localization data allows the reconstruction of cellular anatomy,

as we have shown previously for HeLa cells (Itzhak et al., 2016).

We prepared an equivalent analysis for primary mouse neurons

(Figure 6). We derived a quantitative total proteome (Table S4),

the contribution of every organelle to the whole cell protein

mass, and also determined the protein composition of individ-

ual organelles. The availability of two spatial proteomes, HeLa

and mouse neurons, prepared with the same approach and

comparable depth of analysis, offered a unique opportunity

for a systematic comparison of two very different cell types at

the organellar level. HeLa cells are fast-growing immortal cells

derived from a cervical carcinoma and are maintained in cul-

ture, whereas the neurons were differentiated mouse primary

cells freshly isolated from the brain and had never been

exposed to culture conditions. We sought to determine to

what extent these differences are reflected at the compositional

level.

At the qualitative proteome level, 78% (6,700) of all proteins

detected in the neurons were also expressed in HeLa cells

(assuming that proteins with the same name have orthologous

functions in both organisms; Figure 6A). Our proteomic ruler

data estimated that HeLa cells were approximately six times

larger than the neurons. Factoring in relative protein abundance

(copy numbers weighted by protein molecular weight and

scaled by cell size), the composition overlap by protein mass

drops to around 61%, demonstrating that quantitative and

qualitative differences in protein expression both contribute
ntification Strategies Using the Deep MS Protocol

GF for 20 min were analyzed in a dynamic organellar maps experiment. The

ving proteins (see Experimental Procedures for details). The movement and

ntly moving proteins have high scores in both dimensions. The shaded area

n is < 10% based on a mock control experiment.

n gradient for three replicates in control cells (gray lines) or cells stimulatedwith

treated compared with EGF-treated cells for three replicates.

emaining proteins were subjected to organelle classification using SVM-based

are shown before and after treatment with EGF, correctly capturing the change

Note that the shaded area corresponds to a translocation FDR of < 20%.

(deep) experiments. Note that the shaded area is not FDR-controlled but uses
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substantially to cellular identity. Conversely, the perhaps sur-

prisingly large degree of overlap suggests that, regardless of

cell type, a considerable proportion of the proteome is relatively

invariant. Similarly, in both cell types, the 100 most abundant

proteins contribute over 30% of the total protein mass

(Figure 6B).

We next compared the relative abundance of individual organ-

elles (Figure 6C). In both cell types, mitochondria and the

ER were the predominant organelles. For mitochondria, the

contribution to total cell protein mass was almost double in

HeLa cells (6.6% versus 3.4%), perhaps reflecting their

increased need for energy to support continuous growth. In

contrast, the ER contributed very similarly in both cells (3.7%

in neurons and 4.4% in HeLa cells). The Golgi, endosomes,

and lysosomes all made relatively minor overall contributions

(all < 1%), although each of these organelles contributed �23

greater mass to HeLa cells compared with neurons. The levels

of ribosomes (approximately 5%–6%) and proteasomes

(approximately 1%–1.5%) were remarkably similar (Figure 6D).

To facilitate the analysis of individual organelles, we identified

the ten most abundant proteins in neuron organelles, which, in

each case, make up a large proportion of the total organelle

mass. We then compared the compositional overlap (by

percent protein mass) with the corresponding HeLa cell organ-

elles (Figures 6E–6I). As expected, the plasma membrane

composition was radically different, both qualitatively and

quantitatively, supporting the notion that the cell surface is a

key factor in determining cellular identity (Sharma et al.,

2015). Lysosomes also have very different compositions, but

the differences are mostly quantitative; the neuronal lysosome

is predominated by two cathepsins (Ctsb and Ctsd) that

contribute 25% of the proteome, suggesting a specialized

role for this compartment. In contrast, the ER has an almost

identical composition in both cell types, suggesting that abun-

dant ER constituents are indeed ‘‘housekeeping’’ proteins

with similar concentrations across cell types. Of note, peroxi-

somes are also extremely similar in both cell types and domi-

nated by the same protein, HSD17b4 (beta-hydroxysteroid de-

hydrogenase), which contributes 25% of the protein mass.

Mitochondria show considerable compositional overlap but

with specific metabolic adaptations (e.g., complete lack of

CPS1 in neurons, a key component of the urea cycle and a ma-

jor mitochondrial protein in HeLa cells; Itzhak et al., 2016).

Although the levels of heat shock proteins are very similar in

the ER (both approximately 20%), they are substantially lower

in the mitochondria of neurons (approximately 9% versus

14% total); this may again relate to the high biosynthetic load

imposed by rapidly growing HeLa cells. Thus, our analysis re-

veals qualitative and quantitative differences between neuronal
Figure 4. Visual Map Representation of 941 Marker Proteins Common

teristics for Both Fast and Deep MS Protocols of the SILAC, LFQ5, LFQ

Plots for the SILAC, LFQ5, and TMTmethods were generated from a single princip

one for each of the methods, and each entry had fifteen data points corresponding

for each map, an independent PCA was used to generate this plot; it was then s

similar separation and orientation of marker protein clusters, with increased cluste

cluster. Furthermore, note that each plot is a 2D representation of a 15-dimension

resolved in higher dimensions not illustrated here. TMT fast maps include predic
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and HeLa organelles but also a remarkable set of conserved

features.

Outlook
Here we have established that SILAC, LFQ, and TMT are all high-

ly effective for generating dynamic organellar maps through frac-

tionation profiling, widely extending the scope of this method

(summarized in Figure 4; Table S5). LFQ- and TMT-based

profiling allow application to primary cells and tissues. As

demonstrated formouse neurons, the LFQ6 format is particularly

useful is this regard because of its excellent prediction accuracy.

We expect that a sixth fraction would also improve the prediction

accuracy for TMT (using, for example, TMT 6-plex) but at the

expense of the ability to place two maps in a single TMT

10-plex experiment. Conversely, using the protocols illustrated

here, TMT maps required only �50% (deep) or 12% (fast) of

MS time compared with their SILAC or LFQ equivalents. Multi-

plexing is the biggest advantage of the TMT approach; with

the fast protocol, a triplicate comparative analysis can be per-

formed in as little as 9 hr of total MS measurement time, paving

the way for high-throughput spatial proteomics experiments.

For cells amenable to metabolic labeling, the SILAC approach

offers exceptional performance both for organellar classification

and for capture of translocation events. As reported previously

(Itzhak et al., 2016) and as shown here, protein copy numbers

estimated from the map data can be assigned to organellar pro-

teomes to provide global cellular anatomy; all map formats are

equally compatible with this approach.

EXPERIMENTAL PROCEDURES

Please refer to the Supplemental Experimental Procedures for complete details.

Analyzed Samples

For this study, we prepared multiple organellar maps from new samples but

also re-analyzed several previously generated samples (Itzhak et al., 2016),

either with new labeling and MS or new processing (see Supplemental Exper-

imental Procedures for a complete description).

Cortical Neuron Preparation

Mice (C57BL/6 background) were housed in a specific pathogen-free (SPF)

facility with a 12:12 hr light/dark cycle and food and water available ad libitum.

All animal experiments were performed in compliance with institutional pol-

icies approved by the government of upper Bavaria. For preparation of cortical

neurons from embryonic mice (E15), the procedure described in Meberg and

Miller (2003) was adapted. This method yields fairly pure neuronal populations

(Xu et al., 2012) because glial cells have not developed at this stage (Qian et al.,

2000). Furthermore, these neurons have not yet formed extensive dendritic or

axonal arbors and can therefore be isolated with relatively little cell damage

(Sciarretta and Minichiello, 2010). In total, five independent preparations

were analyzed by organellar mapping.
to All Triplicate Deep Datasets (Left) and Key Metrics and Charac-

6, and TMT Methods (Right)

al-component analysis, where each marker protein had three different entries,

to three replicates of five fractions. Because LFQ6 has an additional data point

caled for optimum comparison with the other methods. All maps show highly

r density of SILAC relative to other methods, most evident with the peroxisomal

al dataset (18-dimensional for LFQ6); many seemingly overlapping clusters are

tions for only 10 subcellular localizations; all other maps include 12.
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Figure 5. Application of Label-free Organellar Mapping to Mouse Neurons

(A) Schematic workflow. Cortical neurons were acutely isolated from embryonic mice, lysed mechanically, and subjected to a series of differential centrifugation

steps: 1, nuclear-enriched fraction; 2–6, membrane fractions; 7, cytosol. All fractions were analyzed by label-free quantitative mass spectrometry. Fractions 1–6

were used to generate organellar maps. Fractions 1, 2–6 combined, and 7were used to quantify proteins’ nuclear, membrane-associated, and cytosolic pools. All

fractions, 1–7 combined, were used to calculate protein copy numbers per cell.

(B) Summary of neuron map performance (combined output from five independent replicates).

(C) Detailed performance profiles of neuron maps. F1 scores were calculated as the harmonic mean of recall and precision, for each compartment, as in Figure 2G.

(D) Stratification of non-marker organellar predictions as in Figure 2H. The prediction accuracy of marker proteins within each class served as a proxy for the

prediction accuracy of non-marker proteins. The first two classes had very high accuracies. Proportion and absolute number of non-marker predictions in each

confidence class are shown in the center and on the right, respectively.

See also Figure S4 and Tables S3, S4, and S5.
Subcellular Fractionation Procedure for Label-free Organellar Maps

Cell lysis and subcellular fractionation were performed as reported previously

(Itzhak et al., 2016) and as shown in Figure 1 but omitting any steps relating to

the SILAC heavy-labeled reference sample. Each map was prepared from a

single, �70% confluent 15-cm dish of HeLa cells.

MS

Mass spectrometric analysis of LFQ and SILAC samples was performed with a

Q Exactive HF (Thermo Fisher Scientific, Germany), as described previously

(Itzhak et al., 2016). For samples in the TMT workflow, MS was performed

with an Orbitrap Lumos or an Orbitrap Fusion instrument (Thermo Fisher Sci-

entific, San Jose, CA).
Processing of MS Data

Raw files were processed with MaxQuant version 1.5 (Cox and Mann, 2008;

Tyanova et al., 2016a) using the human or mouse reference protein datasets

downloaded from UniProt (SwissProt canonical and isoforms database).

Statistical Methods

Generation of Organellar Maps

Each map experiment generated an abundance distribution profile across the

subcellular fractions for every quantified protein; typically, several thousand

proteins were profiled in an experiment. To allow cluster analysis, established

marker proteins of various subcellular compartments were then identified from

a previously defined set (Itzhak et al., 2016). For unsupervised clustering and
Cell Reports 20, 2706–2718, September 12, 2017 2715
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data visualization, profiles were subjected to principal-component analysis

(PCA) (Figure 4). For unbiased and rigorous organellar assignments, the

SVM-based supervised learning approach described in Itzhak et al. (2016), im-

plemented in Perseus software (Tyanova et al., 2016b), was then applied.

Conceptually, SVMs derive non-linear boundaries between multivariate data

clusters. The SVMs were first trained with the marker protein profiles (using

cross-validation to prevent overfitting). Non-marker proteins were then as-

signed to compartments based on the boundaries defined by the markers.

Detection of Dynamic Changes between Organellar Maps

The detection of protein translocations followed the procedure established in

Itzhak et al. (2016), with several improvements and adaptations for the LFQ

and TMT workflows (refer to the Supplemental Experimental Procedures for

complete details). Briefly, the analysis is based on a two-tiered statistical

test and fully FDR-controlled. First, for each protein, the two five-point profiles

obtained from a pair of control and EGF treatment maps are subtracted to

obtain a delta profile. All delta profiles are collected in a matrix, and for each

delta profile, the robust Mahalanobis distance to the matrix center is calcu-

lated. The Mahalanobis distance approximately follows a chi-square distribu-

tion with five degrees of freedom and can therefore be converted into a p value

(the likelihood to observe a profile as far or farther from the center). In total,

three replicate pairs of control and EGF treatments were analyzed. For each

protein, three p values for profile shifts were thus obtained. For a stringent

analysis, the highest p value from the three replicates was chosen (corre-

sponding to the smallest observed shift). This value was then cubed (because

there were three independent replicates, each with a p value smaller or equal

to the chosen one) and corrected for multiple hypothesis testing using the Ben-

jamini-Hochberg method. The negative log10 of the corrected p value was the

protein’s M score (‘‘magnitude’’ of movement). Large M scores correspond to

large profile shifts. Second, the reproducibility of profile shifts was assessed.

For each protein, the Pearson correlation between the delta profiles of repli-

cates 1 versus 2, 1 versus 3, and 2 versus 3 was calculated. Of the three ob-

tained R values, the lowest one was chosen and represents the R score

(‘‘reproducibility’’ of movement). Large R scores correspond to reproducible

profile shifts. Genuinely translocating proteins have high M and R scores.

To achieve FDR control, data from a previous ‘‘mock’’ experiment (Itzhak

et al., 2016) were used. Six control maps were split into three pairs and

analyzed as described above. No genuine translocations were expected

here. Applying the same M and R score cutoffs to the EGF treatment data

and the mock data yielded the FDR, as the number of hits observed in the

mock experiments divided by the number of hits in the EGF treatment exper-

iments (scaled by the relative sizes of the datasets).

Software for Statistical Analysis and Graphics

Statistical analyses, data transformation, and filtering were performed in

Perseus (Tyanova et al., 2016b), Prism 6 (GraphPad), and Microsoft Excel.

Principal component analysis was performed in SIMCA 14 (Umetrics/MKS).

Copy-Number Determination and Organellar Composition Analysis

Copy numbers per cell, protein concentrations, and cell volumes were esti-

mated with the proteomic ruler approach (Wi�sniewski et al., 2014), imple-
Figure 6. Comparative Organellar Anatomy of Mouse Neurons and He

(A) Full proteome overlap analysis. Top: qualitative overlap; the proportion of p

Bottom: quantitative overlap (protein IDs and abundance considered).

(B) Proteins detected in neurons (black) or HeLa cells (gray) were ordered by abun

y axis. In both cases, the 100 most abundant proteins contribute over one-third

(C) Relative contribution of individual organelles to total cell protein mass. Pleas

neurites, and, hence, parts of the plasma membrane, are lost (see Supplemen

membrane contribution (which is not shown here for this reason) but is unlikely t

(D) Abundant protein complexesmake remarkably similar contributions to the tota

TRiC.

(E–I) Compositional analysis of major organelles: (E) ER, (F) peroxisome, (G) mi

abundant proteins of the neuronal organelle were determined; the y axis show

contributions of the same proteins to the corresponding HeLa organelles are show

peroxisome), others differ qualitatively (plasma membrane) or quantitatively (i.e.

membrane, only integral membrane proteins were considered. Although many sy

observe a separate cluster corresponding to synapses.
mented in Perseus software (Tyanova et al., 2016b). Organelle composition

analysis was performed essentially as described in Itzhak et al. (2016).

Webpage

We have improved the web interface for our database of human subcellular

localization predictions (http://www.MapOfTheCell.org).

SUPPLEMENTAL INFORMATION
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