Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Buchkapitel

A Guide to Computational Methods for Predicting Mitochondrial Localization

MPG-Autoren
/persons/resource/persons213279

Sun,  Su
Habermann, Bianca / Computational Biology, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons101406

Habermann,  Bianca H.
Habermann, Bianca / Computational Biology, Max Planck Institute of Biochemistry, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Sun, S., & Habermann, B. H. (2017). A Guide to Computational Methods for Predicting Mitochondrial Localization. In D. Mokranjac, & F. Perocchi (Eds.), Mitochondria (pp. 1-14). New York, NY: Humana Press.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002E-80ED-8
Zusammenfassung
Predicting mitochondrial localization of proteins remains challenging for two main reasons: (1) Not only one but several mitochondrial localization signals exist, which primarily dictate the final destination of a protein in this organelle. However, most localization prediction algorithms rely on the presence of a so-called presequence (or N-terminal mitochondrial targeting peptide, mTP), which occurs in only similar to 70% of mitochondrial proteins. (2) The presequence is highly divergent on sequence level and therefore difficult to identify on the computer. In this chapter, we review a number of protein localization prediction programs and propose a strategy to predict mitochondrial localization. Finally, we give some helpful suggestions for bench scientists when working with mitochondrial protein candidates in silico.