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Abstract

Spatial organisation is a hallmark of all living cells, and recreating it in model systems is a necessary
step in the creation of synthetic cells. It is therefore of both fundamental and practical interest to better
understand the basic mechanisms underlying spatial organisation in cells. In this work, we use a
continuum model of membrane and protein dynamics to study the behaviour of curvature-inducing
proteins on membranes of spherical shape, such as living cells or lipid vesicles. We show that the
interplay between curvature energy, entropic forces, and the geometric constraints on the membrane
can result in the formation of patterns of highly-curved/protein-rich and weakly-curved/protein-
poor domains on the membrane. The spontaneous formation of such patterns can be triggered either
by an increase in the average density of curvature-inducing proteins, or by a relaxation of the
geometric constraints on the membrane imposed by the membrane tension or by the tethering of the
membrane to a rigid cell wall or cortex. These parameters can also be tuned to select the size and
number of the protein-rich domains that arise upon pattern formation. The very general mechanism
presented here could be related to protein self-organisation in many biological processes, ranging
from (proto)cell division to the formation of membrane rafts.

1. Introduction

Spatial organisation into inhomogeneous patterns is an essential feature of living organisms, from the
macroscale to the cellular level. In the later case, organisation of the plasma membrane and the cytoplasm into
specialised domains is more commonly referred to as cell polarity [1, 2]. This spatial organisation of the cell is
necessary in order to coordinate important processes such as cell division, differentiation, or directed cell
migration.

As earlyasin 1952, Turing realised [3] that very simple systems that are initially in a spatially homogeneous
state can spontaneously self-organise into spatially inhomogeneous patterns. However, it is generally believed
[1, 2] that the generation of polarity in cells is the result of a tightly-controlled orchestration involving complex
signalling networks and active processes such as the reorganisation of the cellular cytoskeleton. Nevertheless,
active systems such as the cytoskeleton have been shown to undergo simple pattern formation [4], and there also
exist cells for which polarisation is presumably not generated by the cytoskeleton [5-11]. The underlying
mechanisms in these systems are however not well understood.

Very recently, [12] a system was identified in which cell polarisation appears to be controlled by a relatively
simple pattern-formation mechanism. In the coccal bacterium Staphylococcus aureus, essential proteins
involved in lipid metabolism were seen to distribute in inhomogeneous spatial patterns, that could be explained
by a model that considers the dynamics of curvature-inducing proteins on a spherical membrane. However, the
model first introduced in [12] is very general, and we expect that it might be able to describe the formation of
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Figure 1. The proteins (yellow) impose a spontaneous curvature C, on the membrane (blue). Depending on the interplay between
curvature, entropic, and membrane tethering/tension forces, proteins might repel, resulting in a spatially homogeneous spherical
membrane (turquoise), or they might attract, leading to the spontaneous formation of inhomogeneous patterns of membrane
curvature and protein density.

protein patterns on the surface of other types of cells, as well as in model systems consisting of lipid vesicles and
proteins. In this work, we will explore in full generality and detail the predictions of such a model.

The basic idea behind the model is presented in figure 1. A closed, initially spherical membrane contains
proteins that impose a spontaneous curvature C, on the membrane (in general, the proteins might be attached to
the membrane from the cytoplasmic or the exoplasmic sides, or they might be transmembrane proteins
embedded in the membrane) [13, 14]. If the proteins did not induce any curvature, a random, homogeneous
distribution of proteins would be favoured by thermal fluctuations, that is, entropic forces (in the absence of
direct attractive protein—protein interactions). However, if the curvature induced by the proteins is large
enough, bending contributions to the free energy of the system can lead to an effective attraction between
proteins and to the formation of spatially inhomogeneous patterns in protein distribution and membrane
curvature. The details of membrane-mediated protein—protein interactions have been thoroughly studied in the
past [15—18]. Furthermore, we will consider the possibility of geometric constraints on the membrane, such as
the tethering of the membrane to a rigid cell wall/cortex or the existence of a membrane area reservoir at non-
zero tension. Interestingly, it was recently shown that solid particles such as proteins can sense the local
membrane curvature imposed by geometric constraints on the membrane [19].

Here, we have found that, in realistic situations, spontaneous pattern formation can be induced either by an
increase in the surface density of curvature-inducing proteins, or by a decrease in the strength of the geometric
constraints on the membrane. Furthermore, these two parameters can also control the size and number of
protein-rich (highly curved) and protein-poor (weakly curved) domains. These mechanisms could be exploited
by cells in order to trigger spatial organisation of the plasma membrane on demand, and could in principle be
replicated in artificial model systems.

The paper is organised as follows. In section 2, we present the continuum model for the energetics and
dynamics of the system, and examine the linear stability of the dynamical equations for the shape of the
membrane and the protein density distribution. In section 3, we explore spontaneous pattern formation in the
system as a function of all relevant parameters. Finally, in section 4 we discuss the applicability and consequences
of our results in real biological or biomimetic systems.

2. Methods

2.1. Energetics
We will adopt a continuum elastic model of a closed membrane, which might represent a model vesicle or a
biological cell, and study the stability of spherical shapes to perturbations in the presence of curvature-inducing
proteins that decorate the membrane. The shape of a quasi-spherical membrane can be written in spherical
coordinatesas R(#, ¢) = R[1 + u(0, ¢)]f, where Ris the radius of the unperturbed sphere, 1 (6, ¢)isascalar
function that describes the deviations from the sphere, and f is the radial unit vector, see figure 2. The
distribution of proteins on the membrane can be described in a similar way, with the surface number density
p0, ¢) = py[1 + (8, ¢)]. Here, p, is the average protein number density, i.e. p, = N / 47R%if Nis the total
number of proteins on the membrane, and the function (8, ¢) represents the deviations from a homogeneous
distribution of proteins.

We will assume that each protein covers a patch of membrane of area a,, and imposes a spontaneous
curvature C,, on the membrane, see figure 1. The bending free energy of the membrane can then be written
within the spontaneous curvature model [20-23] as

2



IOP Publishing NewJ. Phys. 19 (2017) 125013 J Agudo-Canalejo and R Golestanian

Figure 2. The shape of the almost spherical membrane is described by a vector function R(6, ¢), whereas the protein distribution is
described by a scalar function p (6, ¢) represented by the colour-coding, e.g. yellow and blue could correspond to high and low
protein density, respectively.

K
Fy, = EfdA [C? — 2C,ppaoCl, (1

where £ is the bending rigidity of the membrane, and Cis the local membrane curvature, with C = G, + G,
where C; and C, are the two principal curvatures. The second term inside the integral represents the simplest
possible coupling between protein density and local curvature. It can also be interpreted as a position-dependent
spontaneous curvature Cy (0, ¢) = C,p(0, ¢)ag, which varies from Cy = 0 in the absence of proteins, with
p = 0,to Cy = C, for full coverage of proteins, with p = 1/a,. The local membrane curvature C (6, ¢) canbe
written explicitly as a function of u (6, ¢), as described in [24].

Besides the bending contributions to the free energy, we need to take into account the entropic contributions
due to the mixing and density fluctuations of the proteins. To lowest order, this contribution to the free energy
can be incorporated as

_L 2 2 2
o A S @

Here, x and € are the compressibility and the correlation length of the protein density fluctuations, respectively.
The first term in the integral penalises the creation of interfaces between high protein density and low protein
density regions, whereas the second term penalises deviations from a homogeneous protein distribution.

We will also consider the effect of the tethering of the membrane to a cell wall or actomyosin cortex, by
including a harmonic confinement potential of the form

_ keR? 2
Fh—deAu, 3)

where ki, is an effective spring constant per unit area, which in general may include contributions from specific
interactions (i.e. proteins that directly link the membrane to the wall/cortex) as well as non-specific interactions
such as steric repulsion, van der Waals attraction or electrostatic attraction/repulsion. Within this effective
description, the cell wall /cortex is taken to be spherical and rigid (i.e. much more rigid than the membrane), and
k¢ penalises deviations of the membrane position from the (optimal) equilibrium membrane-wall distance.

Lastly, we consider the possibility that the membrane is connected to a membrane area reservoir at constant
membrane tension. A constant membrane tension is typical of biological cells, [25, 26] and can be mimicked in
model vesicle systems by the use of micropipette aspiration. The contribution of a membrane tension o to the
free energy is

Ft:afdA. 4)
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The total free energy can finally be written as the sum of these four contributions, with
F:Fb+Fd+Fh+Ft:fdA}" (5)

with the free energy density

— K2 [ e 2 2 kR*
F= E[C — ZCppaQC] + 2—[§ V)> + 7] + Tu + o. (6)
X

In addition, we will explicitly impose constraints on the volume enclosed by the membrane (representing
osmotic balance), so that

3
4R _ f qv )
3
as well as on the total number of proteins N on the membrane, so that
N = py4nR? = fdA p (8)
atall times.
2.2. Dynamics

The effective force exerted on the membrane in the radial direction will be balanced by a frictional force, leading
to a dynamical equation for the shape of the membrane as a function of time ¢

6F

6tu(6a ¢)a t) = _Lum:

©
where L, is a transport coefficient corresponding to the membrane mobility.

On the other hand, the dynamical equation describing the diffusion of the proteins on the membrane can be
written in the form of a continuity equation

oYB, p, ) +V-J=0 (10)

with a current density ] = —L,, V , where L, is another transport coefficientand p = 6§ F/61 (0, ¢)isthe
chemical potential. Putting all together, the dynamical equation for the protein density becomes

OF
o, ¢, t) = Ld,,Vz(—). (11)
’ 56, )
The Laplacian operator on a sphere can be writtenas V2 = — %l’:z, with the operator
A 1 1
—[* = ——0y(sinfdy) + ——02. 12
sinfl o 2 sin2 ° (12)

This operator is diagonal in the basis of spherical harmonics Yz, (6, ¢). In particular, it satisfies

L*Ym(0, ¢) = (¢ + 1) Y (0, @) (13)

2.3. Linear stability analysis
To leading order in u and 1, and taking into account the constraints (7) and (8) on the enclosed volume and total
number of proteins on the membrane, we can write equations (9) and (11) as

~ ~ C ~
O (0, ¢, 1) = —LM[(%L2 + a)(L2 — Du + ko Ru 4 —=220P0 2 2)¢] (14)
and
Lyl 1 22 1 52)% KCpaoPg »1 2
o, ¢, t) = —| —LY + —| =LY + ——L°(L" — Du|. 15
W0, 6, 1) Rz[x ¥ X(Rz v SRR~ 2y (15)

We can write the solutions u (6, ¢, t)and (0, ¢, t)asasum of spherical harmonics, which provide a
complete set of orthogonal functions on the sphere, so that

u(, ¢, t) = Z uem(t) Yem(0, @) and (0, ¢, t) = Z Yem () Yo (0, ¢), (16)
[ Z,m

where uy,, and 1)y, are the amplitudes of the corresponding modes, and wehave # = 0, 1, 2...and |m| < 7.
However, the constraints (7) and (8) on the enclosed volume and total number of proteins on the membrane
imply that the zero-amplitudes 14, and gy cannot be varied independently. Explicitly imposing these
constraints results in expressions for 1y, and g as a function of the squared amplitudes of all modes
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NATug = —Z u;m, (17)
£,m

NZz %Z[z — 2+ Dy — 23 temtlem (18)
tm ,m

Equations (17) and (18) imply that 1y and 1) are a function of the higher-order amplitudes, and furthermore,
that they are of quadratic order (they are equal to a sum of u2,, and t,,1z,, terms). For this reason, the 1, and
oo terms are negligible to linear order, and we can rewrite (16) as
u@, ¢, 0= Y () Yem(0, ) and (0, ¢, 1) = D Yeu(t) Yem(0, ). (19)
£>1,m £>1,m
Inserting (19) into (14) and (15), we can rewrite the dynamical equations as separate equations for each of
the # > 1 modes. Introducing a rescaled time variable

T= (/;Lz")t (20)
as well as dimensionless parameters
gz kel R &y b oo panCuR, and B = BX (21)
K K R? kL, X R?
the equations become
—Orupm ={[£(€ + D)+ TIZ + 2)(¢ — 1) + K}ugm + S(€ + 2)(Z — Dibem (22)
and
—(1/M)0:Ypm = BSC(€ + )& + 2)(€ — Dugm + £(€ + D[1 + PE(C + D]em (23)

The solutions to (22) and (23) will have the form
uem(T) = Uen(0)e™N, Ypu(T) = thpm(0)e. (24)

Inserting these solutions back into (22) and (23), and setting the determinant of the coefficients to zero, we can
obtain an equation for the growth rates A of the characteristic modes of the system, which reads

N+bA+c=0 (25)
with coefficients
b=K-2T+ ¢ +DIM+T-2+ & + 1H(MP + 1)] (26)
and
c=MEE + DK+ @@+ 1)+ T)E+2)(€ — DI+ PEE + D] — W + 22 - 1D*} (27)
where we have defined the parameter
W = BS? = kxpga; Cy. (28)

The two characteristic modes of the system given by the solutions to (25) can finally be written as

A = %[—K+ T — (6 + DM+ T—2+ £ + DHMP + D]

i%\/[K —2T - + DM —T+2+ & + 1)(MP — D] + 4MWZE(Z + 1)(€ + 2)2(¢€ — 1)2.
(29)

Because b in (25) always satisfies b > 0 for all modes with # > 1, we know that the amplitude with the
smaller value, A_, is always negative for all #-modes. On the other hand, the larger one, A, mightbe positive or
negative depending on the #-mode and on the values of the parameters W, K, T, P, and M. It is also worth noting
that the stability analysis is independent of the value of 1 of the spherical harmonics. This ultimately arises from
the fact that the eigenvalues of the Laplacian of a spherical harmonic are independent of its m-value.

The physical significance of the five dimensionless parameters is the following. The parameter W represents
the protein-induced spontaneous curvature, and increases both with the average density p, of proteins on the
membrane and with the characteristic spontaneous curvature C, of these proteins. The parameter K represents
the strength of the confinement of the membrane by its interaction with the rigid cell wall/cortex. The
parameter T represents the magnitude of the membrane tension. The parameter P compares the correlation
length of the protein density fluctuations to the size of the cell or vesicle. Given that correlation lengths are
typically of the order of nanometers whereas cell or vesicle sizes are of the order of micrometers, P will generally
be small, and will decrease or increase with increasing or decreasing cell /vesicle size, respectively. Finally, the
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parameter M compares the typical timescale of the changes in membrane shape (R?/L,, %) to that of changes in
protein distribution (yR?/L,). Importantly, we note that all five dimensionless parameters are always positive.

3. Results

A positive value of the mode amplitude A, implies that fluctuations of this mode will grow instead of decaying,
and therefore modes with Ay > 0 are unstable. If, by small changes in one of the system parameters W, K, T, P,
or M, one of the modes A switches from having a negative value to having a positive value, the system will
exhibit spontaneous pattern formation. In the following, we will explore the conditions under which
spontaneous pattern formation occurs.

First of all, we note that, as described above, the # = 0 mode cannot vary independently as it is fixed by the
constraints on the enclosed volume and total number of proteins, see (17) and (18). Furthermore, by
substituting £ = 1in (29), we find the mode amplitudes —K and —2M (1 + 2P), which can never be positive,
implying that the # = 1 mode can never become unstable. It can, however, become marginally stable in the
particular case of K = 0, i.e. in the absence of tethering to the cell wall. This reflects the fact that £ = 1
deformations of the membrane shape are equivalent to spatial translations, and that the curvature energy of the
membrane is invariant to such translations. The presence of the cell wall, however, breaks translational
invariance. All things considered, instabilities and therefore spontaneous pattern formation can occur only for
higher modes # > 2, which we will discuss below.

The larger solution A of (25) will be positive, with A, > 0,ifand onlyif ¢ < 0. Using the definition of cin
(27), this condition can be rewritten as

S (K+[Z2« + 1)+ TIZ +2)( — D} + PE(C + 1)]
(¢ + 2)%(¢ — 1)?

which serves as a definition of Wy, the critical value of the parameter W above which mode £ becomes unstable.
Goingback to the definition of Win (28), the inequality (30) implies that an increase in the average density p, of
curvature-inducing proteins beyond a critical density will trigger an instability with spherical harmonic mode #
in both the shape and protein distribution of the membrane. Furthermore, the critical protein density thatis
needed to trigger an instability decreases with increasing protein spontaneous curvature C,. Importantly, we
note that the critical value W, is independent of the parameter M, and therefore depends only on three
parameters, P, K, and T. In fact, the parameter M drops out of all relevant equations in the following, so that
pattern formation in the system turns out to be governed by only four dimensionless parameters: W, K, T, and P.
This is a consequence of the fact that M is a mobility parameter that relates the timescale of changes in membrane
shape to that of changes in protein distribution, and as such it only affects the dynamics of the system.
Alternatively, the instability condition ¢ < 0 can be written as

W (& + 2)X(f — 1)?
1+ PEE+ 1)

w = W, (30)

— [+ D+ TIE+2D(E — 1) =Ky 31)

or

WE+¢ -1 K
1+ P+ 1) (£ +2)(& - 1)

—fC+ 1) =T, (32)

which define K, and T, the critical values of K'and T, respectively, below which mode # becomes unstable.
Goingback to the definitions of Kand T'in (21), the inequalities (31) and (32) respectively imply that the shape
and protein distribution instability can also be triggered by a decrease in the tethering strength of the membrane
to the cell wall/cortex, or by a decrease in the membrane tension. Once again, we note that the critical values K,
and T, are independent of the parameter M.

As outlined in the previous two paragraphs, the parameters that could presumably be actively controlled by a
biological cell or tuned in experiments with model vesicles are W, i.e. the density of proteins on the cell surface,
K, i.e. the tethering strength of the membrane to the cell wall/cortex, and T, the membrane tension. The
parameter P, on the other hand, represents the correlation length of the protein density fluctuations, i.e. the
typical distance at which proteins can sense each other, and will in general be fixed for a given system. It therefore
makes sense to explore the behaviour of the system when W, K, and T are varied for a fixed value of P.

Using (30), in figure 3 we have plotted the lines W = W, (K) for £ > 2,using T = 0 (i.e. negligible
membrane tension) and three different values of P, namely P=0.1, 0.02, and 0.005. For a vesicle/ cell of radius
1 pm, these values of Pwould correspond to correlation lengths of ¢ = 320 nm, 140 nm, and 70 nm,
respectively. In the region of low Wand high K, depicted in grey, the spherical state with a homogeneous protein
distribution is stable. As Wis increased from low values, the system will hit the instability of the first unstable
mode, with a given value of £ which will depend on the value of K. Alternatively, if K is decreased from high
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Figure 3. Instability lines W = W, (K) for modes £ > 2, vanishing tension T = 0, and three values of P: (a) P= 0.1, (b) P=0.02, and
(c) P=0.005. For low W (i.e. low number of curvature-inducing proteins) and high K (i.e. strong confinement of the membrane due
to tethering to the cell wall/cortex), the spherical homogeneous state is stable (grey region). As Wis increased or K is decreased, the
system will hit an instability with a given value of £. If W or K keep increasing or decreasing, respectively, they will hit the instabilities of
further modes. The higher the value of K or W, the higher the value of # of the first unstable mode as Wis increased or K is decreased.
The parameter P represents the correlation length of the protein density fluctuations.

values, the system will also hit the instability of the first unstable mode with a given # which will depend on the
value of W. The higher the value of K, the higher the value of # of the first unstable mode as Wis increased.
Similarly, the higher the value of W, the higher the value of £ of the first unstable mode as K is decreased.

There are important differences in the way in which Wand K act to trigger pattern formation. Independently
of the value of K, and even for K = 0, a sufficiently high W will always lead to pattern formation. On the other
hand, a decrease in K can only lead to pattern formation if Wis above the critical value W; (K = 0). Furthermore,
we note that figure 3 has a semilogarithmic axis: whereas the critical value of Wabove which pattern formation
occurs is always in the vicinity of 1, with W 2> 1, the critical value of K below which pattern formation occurs can
vary over many orders of magnitude. Pattern formation is therefore particularly sensitive to W, i.e. to the density
of curvature-inducing proteins on the membrane.

And what is the effect of P, that is, of the correlation length of the protein density fluctuations? Let us now
compare figures 3(a)—(c). For the highest value of P, in (a), the first unstable mode for increasing W at vanishing
Kis ¢ = 2, whereas larger values of K lead to the instabilities of higher-order modes with £ > 2. As Pis
decreased, as in (b), the first unstable mode at vanishing Kis now ¢ = 3:the mode ¢ = 2 is not the first unstable
mode for any value of K. When Pis decreased even further, asin (c), £ = 4 becomes the first unstable mode at
vanishing K, and neither # = 2 nor # = 3 are the first unstable modes for any value of K. This trend continues
as Pis decreased further, with progressively higher order modes becoming the first unstable mode at vanishing
K. Moreover, we note that, as Pis decreased, the critical value of W above which pattern formation occurs moves
closerand closerto W = 1.

In figure 3 we have explored the stability behaviour of the system as a function of Wand K, for fixed
vanishing tension T = 0. Considering a fixed non-zero tension T' > 0 leads to the same qualitative behaviour of
the system as a function of Wand K. Furthermore, the behaviour of the system as a function of Wand T for fixed
Kis qualitatively identical to that as a function of Wand K for fixed T, leading to instability lines analogous to
those in figure 3. We thus omit these results for the sake of brevity.

As just described, in order to characterise the system, it is particularly important to identify the first unstable
mode when Wis increased, that is, the mode with smallest W for given values of P, K, and T, which we will
denote as ;. The critical value of W above which the first unstable mode becomes unstable is then
wW* = Wy = ming(Wp). The boundaries between the regions in the three-dimensional (P, K, T') parameter
space in which modes # and # + 1are the first unstable mode for increasing W can be obtained from the
condition Wy = Wy, |, which can be written explicitly using (30) as

p— (-DC+DE +3)Q+T) - 2K[1 - £(Z + 2)] (33)
(¢ — DEWC + 2)(€ + & +2) — 4(€ + 1)> — 2T} — K[£(€ + D€ +2) — 4]

In figure 4, we have used equation (33) to explore pattern formation in (a) the (P, K, T = 0) plane and (b) the
(P, K = 0, T)plane. For any pointin (P, K, T) space, we can obtain the critical value W* above which pattern
formation occurs, using (30). This information is also colour-coded in figure 4. Several important observations
can be made: (i) once again, we see that K and T have qualitatively similar effects in pattern formation. (ii) Both
anincrease in K or T, as well as a decrease in Plead to increasingly higher-order modes being the first unstable
mode. (iii) In most regions of the parameter space, the critical value W* above which pattern formation occurs is
very close to 1. The only exception is the region of P a2 1and large K or T, in which W* can be much larger
than one.

A particularly important case, with regards to its experimental relevance, is that of a model lipid vesicle, for
which we have both K = 0 (there is no wall or cortex attached to the membrane) and T = 0 (if we are
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Figure 4. Pattern formation triggered by an increase in the number of curvature-inducing proteins: first unstable modes #;, when W
is increased, (a) as a function of the parameters Pand K for T = 0; and (b) as a function of the parameters Pand T for K = 0. The
critical value W* above which pattern formation occurs can be calculated from (30), and is indicated by the colour-coding, which is the
same for (a) and (b). The vertical dashed lines in (a) correspond to the three particular cases P=0.1, P=0.02 and P = 0.005 displayed
in figure 3.

considering a flaccid, unstretched vesicle). This corresponds to the bottom part of of both figures 4(a) and (b). In
this limit case, which mode first becomes unstable when W (i.e. the number of curvature-inducing proteins on
the membrane) is increased depends only on the parameter P (i.e. the correlation length of the protein density
fluctuations), with the boundaries between £ and £ + 1being the first unstable modes given by the simple
expression

p_ 2
[£(€ +2) — 4](Z + 1)?

(34)

as obtained from equation (33) with K = T = 0. Using equation (34), we predict that for a tensionless spherical
vesicle, the # = 2 mode will be the first unstable mode if P > 1/18, the # = 3 mode will be the first unstable
modeif1/18 > P > 1/88,the # = 4 modeif1/88 > P > 1/250, and so on. For a typical vesicle of radius

1 pm and a typical correlation length of £ = 20 nm, wehave P = 4 x 10~*,and we find that the # = 8 mode
will be the first unstable mode.

Alternatively, we could ask ourselves what is the first unstable mode #; when K is decreased for given values
of P, W, and T, or equivalently, the mode with largest K, for given P, W, and T. The critical value of K below
which the first unstable mode becomes unstable is then K* = K 7 = maxy(Kp). The boundaries between the
regions in the three-dimensional (P, W, T) parameter space in which modes # and ¢ + 1 are the first unstable
mode for decreasing K can be obtained from the condition Ky = Ky, 1, which can be written explicitly using
(31). The resulting (P, W) stability diagram for the particular case of T = 0 is shown in figure 5(a). In the same
way, we can find the first unstable mode f{f when T'is decreased for given values of P, W, and K, with a critical
value given by T* = T, = max,(1;),and boundaries in the (P, W, K) parameter space givenby T, = Ty 1,
which can be written explicitly using (32). The resulting (P, W) stability diagram for the particular case of K = 0
is shown in figure 5(b).

Once again, we find that K (the strength of the tethering of the membrane to the cell wall/cortex) and T (the
membrane tension) behave in a qualitatively similar way. As expected from figure 3, an instability can only occur
for decreasing K (or T) if Wis sufficiently high. This minimum value of W required for pattern formation
approaches W = 1 for small P. Indeed, figure 5 illustrates very clearly a striking feature of the system: for low
values of P (which are the most typical given that the correlation length of protein density fluctuations £ is
normally much smaller than the membrane radius R), values of W only slightly above 1 can lead to the instability
of modes with very high # when K or T'are decreased. This is evidenced by the high density of boundarylines in
theregionoflow P < 1, W 2 1.

4. Discussion

4.1. Estimation and control of model parameters in real systems
We have shown above that pattern formation in a spherical membrane containing curvature-inducing proteins
is controlled by the four dimensionless parameters W, K, T'and P, which represent the number of curvature-
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Figure 5. (a) Pattern formation triggered by a decrease in the tethering strength of the membrane to the cell wall/cortex: first unstable
modes £§ when Kis decreased, as a function of the parameters Pand W for T = 0. The critical value K* below which pattern
formation occurs can be calculated from (31), and is indicated by the colour-code. The vertical dashed lines correspond to the three
particular cases P=0.1, P=0.02 and P = 0.005 displayed in figure 3. (b) Pattern formation triggered by a decrease in membrane
tension: first unstable modes £ when T'is decreased, as a function of the parameters Pand W for K = 0. The critical value T* below
which pattern formation occurs can be calculated from (32), and is indicated by the colour-code.

inducing proteins on the membrane, the strength of the membrane tethering to the cell wall/cortex, the
membrane tension, and the correlation length of protein fluctuations, respectively. An important question is
then: what are the typical values of these parameters in real systems, and to what extent can they be controlled by
abiological cell, or tuned in experiments with model vesicles?

The parameter to which the system is most sensitive is W, see figures 3—-5. Even if K, T, and P vary across
many orders of magnitude, the critical value Wabove which pattern formation occurs always stays in the
proximity of W* =~ 1, except in the extreme case of very high K (or T) and P =~ 1 simultaneously, see figure 4.
Going back to the definition of Win terms of the dimensionful system parameters in (28), we see that the
requirement W > W* =~ limplies that xx pé ag le 2 1.Here, & is the bending rigidity of the membrane, y is
the compressibility of the protein density fluctuations, p, is the average density of curvature-inducing proteins
on the membrane, a, is the lateral area of a single protein, and C, is the protein spontaneous curvature.
Furthermore, in the limit of low protein density pya, < 1, the compressibility y can be approximated by
X =~ 1/(kgTp,), [27] where kg is Boltzmann’s constant and T'is the temperature. In this limit, the requirement
for pattern formation thus becomes (x / ks T) pyag Cﬁ 2 1.In general, the protein spontaneous curvature C,

will be of the order of the (inverse) characteristic length of the protein /ay, so that we can take C; ap ~ 1.We
finally conclude that pattern formation typically occurs for average protein densities satisfying

Podo 2 ke T/ k. (35)

Here, p,ay is simply the dimensionless area fraction of membrane covered by the protein. Typical values of the
bending rigidity of membranes range from 10 to 100 kg T, leading to a critical protein coverage of the order of
Podo ~ 0.01-0.1. Importantly, the range obtained self-consistently validates the low protein density assumption
made above. Furthermore, such coverages are within the range achievable both in biological cells as well as in
model vesicles. In this picture, a biological cell could up- or down-regulate the expression of the curvature-
inducing protein in order to switch between patterned and non-patterned conformations, see figure 4.
Furthermore, the concentration of curvature-inducing proteins on the membrane could be directly controlled
in experiments with model vesicles.

Let us now turn to the dimensionless parameters K = k.R*/x and T = oR?/k, which both actas
geometric constraints on the membrane: K represents the confinement of the membrane due to its interaction/
tethering to the cell wall or cortex, whereas T'represents the membrane tension, which acts to minimise the cell
membrane area. It is interesting to note that, while model membranes such as Giant Unilamellar Vesicles show
clear shape fluctuations due to thermal excitation of bending modes, [28] eukaryotic cells or bacteria do not
show such fluctuations. The latter is an indication that, in such systems, membrane confinement and tension
must overpower bending, and consequently that in these systems K >> 1and/or T >> 1, as can be confirmed by
the quantitative estimates that follow.

Estimates of the confinement strength k.. of biological membranes due to the interaction with the
corresponding cell wall or cortex do not abound in the literature. In [29], the density of membrane-cortex
linkers in eukaryotic cells was estimated to be around p;;,, ~ 100 zm~2, whereas the spring constant of a typical
linker was estimated to be kjy,; & 1074 N m™'. The effective tethering strength should go as k(. ~ P} Kiink>
leading to the estimate ki ~ 10 Jm * ~ 2.5 x 10° kg T um~*. Considering a typical range of bending
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Figure 6. Three examples of spontaneous pattern formation via shape and protein distribution instability. (a) Instability £ = 2,
corresponding to cell division with two distinct poles and an equatorial line. The mode £ = 2 can be triggered if P > 0.056, see
figures 4 and 5. (b) Instability # = 10, corresponding to large-scale protein organisation such as that observed in Staphylococcus
aureus[12]. Themode # = 10 can be triggered if P > 1.4 x 10~*. (c) Instability # = 100, corresponding to the formation of nano-
sized protein-rich membrane rafts. The mode £ = 100 can be triggered if P > 1.9 x 1078,

rigidities kK = 10-100 kg T', and a typical cell radius ranging from from R = 1to 10 um, we find values for K
ranging from 2.5 X 10*upto 2.5 x 10°. Cells could then actively switch between patterned and non-patterned
conformations by down- or up-regulating the concentration of linker proteins between the plasma membrane
and the cell wall/cortex, see figure 5(a).

The typical tension of cellular membranes, on the other hand, has been extensively measured for different
cell types, and can range from o = 3 pN um ™' for epithelial cells up to about ¢ = 300 pN um ™" for keratocytes
[25,26]. Using the range o = 3-300 pN ym ™' for the membrane tension, together with the estimates
k = 10-100kg T for the bending rigidity of the membraneand R = 1-10 pm for a typical cell radius, we obtain
values of Tranging from 7 to 7 X 10°. Cells can actively regulate their own tension in order to maintain
homeostasis [25]. In this way, cells could switch between patterned and non-patterned conformations by
actively decreasing or increasing the tension of their plasma membrane, see figure 5(b). Furthermore, triggering
of pattern formation via a decrease in membrane tension could be explored in experiments using model Giant
Unilamellar Vesicles aspirated by micropipettes, which allows direct experimental control over the membrane
tension.

Let us finally examine the dimensionless parameter P, defined as P = £2/R?, where £ is the correlation
length of the protein density fluctuations and R is the radius of the cell or vesicle. The correlation length £isa
measure of the distance at which proteins or protein clusters can sense each other, typically via membrane-
mediated interactions in the absence of other long-ranged interactions. Previous work [15—18] has shown that
the typical length scale of membrane-mediated interactions is the size of the curvature-inducing element itself,
so that we can use an estimate of £ = 10-20 nm. On the other hand, the radius of cells or cellular
compartments, as well as of model vesicles, can range between R = 100 nm and 10m. With this, we find a
range of P ~ 1076~10" 2 In this range of values with P < 1, as described above, pattern formation is tighly
controlled by the number of curvature-inducing proteins, with an instability occurring as soonas W 2 1.
Moreover, the value of P directly controls the £-order of the first unstable during pattern formation, and as a
consequence controls the typical size of the protein-rich, highly-curved domains. The consequences of this fact
are discussed in the following section.

4.2. Biological relevance
4.2.1. Cell division
Cell division requires polarisation of the cell, so that the spherical symmetry of the cell is broken, leading to two
identifiable poles as well as an equatorial line. Spontaneous pattern formation via an instability due to the
presence of curvature-inducing proteins, as described here, provides a simple mechanism for such a symmetry
breaking. This occurs for the mode # = 2 of the instability, see figure 6(a), which can be the first unstable mode
aslongas P > 1/18 =~ 0.056, as determined from (34) and displayed on figures 4 and 5. For a typical cell size of
R =1 pm, such values of Pwould correspond to a correlation length & for protein density fluctuations larger
than 230 nm. This value appears too high for a typical protein, given that the correlation length is expected to be
of the order of the protein size, i.e. a couple of tens of nanometers. It could, however, be a plausible value for
protein clusters, composed of a few tens of proteins with lateral sizes of the order of 100 nm. If such clusters arose
by a separate mechanism, a curvature-instability such as the one described here could lead to cell polarisation.
Several proteins, many of them related to cell division, are known to preferentially localise at the poles of
bacterial membranes [30-34]. We note, however, that the generic mechanism proposed here is distinct and
unrelated to the well-studied Min system, which serves to localise the FtsZ protein ring in rod-shaped bacteria
[10, 11]. The Min system involves both membrane bound as well as cytosolic components, and locates the
bacterial equator via an oscillatory mechanism. The mechanism proposed here might however explain why FtsZ
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proteins can spontaneously self-assemble on vesicles, even in the absence of the Min system [8, 9]. In eukaryotic
cells, cell division is mediated by the cytoskeleton, in particular by the mitotic spindle and the cleavage furrow.
The mechanism underlying the initial positioning of this cell division apparatus is however not well understood
at the molecular level [35, 36].

Even if the mechanism described here did not play a direct role in cell division, it provides a generic pathway
for symmetry breaking and the initiation of division of spherical membranes into two equally sized daughters,
using only a minimal number of ingredients. As such, it could serve as a plausible mechanism for the division of
protocells, as well as of synthetic cells in bottom-up synthetic biology [37-39].

4.2.2. Large-scale protein organisation

Goingbeyond # = 2, the mechanism described here also predicts pattern formation with modes of
intermediate £, e.g. in the range £ = 5-10. Formation of such patterns would imply protein-rich, strongly-
curved clusters with sizes on the order of 1/5 to 1/10 of the cell size, see figure 6(b). Such patterns have been
observed in L-form [6, 7] bacteria, as well as in coccal bacteria [5]. The patterns formed by PlsY and CdsA
proteins (both essential to lipid metabolism) in Staphylococcus aureus, in particular, show a striking coupling
between protein density and membrane curvature [12]. As seen in figures 4 and 5, and determined from (34),
modes with # < 10 are expected for P > 1.4 x 10~* which, for a typical cell size of R = 1m, would
correspond to correlation lengths £ > 10 nm, well within the biologically plausible range.

4.2.3. Nano-sized membrane rafts

The existence of protein-rich raft domains in the plasma membrane was controversial for some time, partly due
to a conflation between the macroscale fluid—fluid phase separation observed in model lipid membranes with
the observation of rafts in living cells [40]. Nevertheless, it is currently accepted that rafts are dynamic,
fluctuating assemblies of proteins with sizes on the order of tens of nanometers [40—43]. The precise physical
mechanism behind raft formation, however, is still a matter of debate. Currently proposed theories include that
rafts are compositional fluctuations near the critical point of fluid—fluid phase separation in lipid membranes,
[44] or that the actin cortex underlying the plasma membrane acts as a ‘picket-fence’ which inhibits the lateral
diffusion of proteins and promotes the formation of nano-scale aggregates [45].

The model that we have presented here predicts that, under biologically reasonable parameters, curvature-
inducing proteins can spontaneously self-organise into patterns that may be built from spherical harmonics with
very high-order Z-modes, with £ > 1. Asa consequence, in such cases the typical size of the protein-rich
domains (which goes as ~R/Z) will be much smaller than the cell size R, leading to domain sizes on the order of
tens of nanometers for a micron-sized cell, see figure 6(c) for an example with £ = 100. It is therefore tempting
to speculate that the mechanism presented here might also be connected to the existence of such nano-scale
protein-rich rafts. Indeed, let us use the quantitative estimates of parameters obtained above, with typical values
of membrane bending rigidity k = 10 kg T', correlation length of protein density fluctuations of £ = 10 nm,
tethering strength of the membrane to the cell cortex ki ~ 2.5 x 10° kg T pm~*, and membrane tension
o = 30 pN pum ™. For asmall cell of radius 1 ;zm, we can calculate our dimensionless parametersas P = 1074,
K =25 x 10°,and T = 7 x 102. Using these values in equation (33), we expect the first unstable mode to be
¢ ~ 50. This would correspond to a typical domain size R/# = 20 nm. For alarger cell of radius 10 pm, we
calculate P = 1079, K = 2.5 x 10%,and T = 7 x 10%. Using these valuesin (33), we find # ~ 500 for the first
unstable mode, once again corresponding to a typical domain size R/¢ =~ 20 nm.

4.3. Summary

To summarise, we have explored in detail pattern formation in spherical membranes that contain curvature-
inducing proteins. Pattern formation arises from the interplay between membrane curvature energy, protein
density fluctuations, and geometric constraints such as membrane tension and confinement forces due to the
tethering of the membrane to the cell wall/cortex. We have shown that pattern formation in this system is
controlled by just four dimensionless parameters, W, K, T, and P, defined in (21) and (28). These parameters
represent the number of curvature-induced proteins on the membrane, the confinement of the membrane due
to the cell wall/cortex, the membrane tension, and the correlation length of protein density fluctuations,
respectively. In most circumstances, pattern formation is expected to occur as the result of an increase in the
average surface density of proteins (i.e. the total number of proteins on the membrane surface), or of a relaxation
of the geometric constraints on the membrane due to membrane tension or membrane tethering to the cell
wall/cortex. The patterns that arise consist of protein-rich, highly-curved domains that alternate with protein-
poor, weakly-curved domains. We hypothesise that spontaneous pattern formation as described here might be
exploited by biological cells as a way to regulate their geometry in situations that require spatial organisation,
symmetry breaking or polarisation of the cell, using only a minimal number of ingredients.

11



10P Publishing

NewJ. Phys. 19 (2017) 125013 J Agudo-Canalejo and R Golestanian

Acknowledgments

We would like to acknowledge fruitful discussions with ] Garcia-Laraand S Foster. This work was supported by
the Human Frontiers Science Program (HFSP) RGP0061,/2013. JA-C acknowledges support from the Federal
Ministry of Education and Research (BMBF, Germany) via the consortium MaxSynBio; National Science
Foundation: DMR-1420620, as well as from the Penn State MRSEC Center for Nanoscale Science, under the
award NSF DMR-1420620.

ORCIDiDs

Ramin Golestanian © https:/orcid.org/0000-0002-3149-4002

References

[1] Drubin D G and Nelson W ] 1996 Origins of cell polarity Cell 84 335-44
[2] Nelson W] 2003 Adaptation of core mechanisms to generate cell polarity Nature 422 766—74
[3] Turing A M 1952 The chemical basis of morphogenesis Phil. Trans. R. Soc. B 237 37-72
[4] ThampiSP, Golestanian R and Yeomans ] M 2014 Instabilities and topological defects in active nematics Europhys. Lett. 105 18001
[5] Zapun A, Vernet T and Pinho M G 2008 The different shapes of cocci FEMS Microbiol. Rev. 32 345-60
[6] Leaver M, Dominguez-Cuevas P, Coxhead ] M, Daniel R A and Errington J 2009 Life without a wall or division machine in Bacillus
subtilis Nature 460 538
[7] Mercier R, Kawai Y and Errington J 2014 General principles for the formation and proliferation of a wall-free (L-form) state in bacteria
eLife3 e04629
[8] Osawa M, Anderson D E and Erickson H P 2008 Reconstitution of contractile FtsZ rings in liposomes Science 320 792—4
[9] Shlomovitz R and Gov N S 2009 Membrane-mediated interactions drive the condensation and coalescence of FtsZ rings Phys. Biol. 6
046017
[10] Schweizer J, Loose M, Bonny M, Kruse K, Monch I and Schwille P 2012 Geometry sensing by self-organized protein patterns Proc. Natl
Acad. Sci. 109 152838
[11] Petrasek Z and Schwille P 2015 Simple membrane-based model of the Min oscillator New J. Phys. 17 043023
[12] Garcia-Lara], Weihs F, Ma X, Walker L, Chaudhuri R R, Kasturiarachchi J, Crossley H, Golestanian R and Foster $J 2015
Supramolecular structure in the membrane of Staphylococcus aureus Proc. Natl Acad. Sci. USA 112 15725-30
[13] McMahon H T and Gallop J L2005 Membrane curvature and mechanisms of dynamic cell membrane remodelling Nature 438 590—6
[14] Zimmerberg] and Kozlov M M 2006 How proteins produce cellular membrane curvature Nat. Rev. Mol. Cell Biol. 7 9—19
[15] Golestanian R, Goulian M and Kardar M 1996 Fluctuation-induced interactions between rods on membranes and interfaces Europhys.
Lett. 33241-6
[16] Golestanian R, Goulian M and Kardar M 1996 Fluctuation-induced interactions between rods on a membrane Phys. Rev. E 54 6725-34
[17] Weikl T R, Kozlov M M and Helfrich W 1998 Interaction of conical membrane inclusions: effect of lateral tension Phys. Rev. E57 10
[18] Reynwar BJand Deserno M 2011 Membrane-mediated interactions between circular particles in the strongly curved regime Soft
Matter7 8567
[19] Agudo-Canalejo J and Lipowsky R 2017 Uniform and Janus-like nanoparticles in contact with vesicles: energy landscapes and
curvature-induced forces Soft Matter 13 2155-73
[20] Helfrich W 1973 Elastic properties of lipid bilayers: theory and possible experiments Z. Nat.forsch. C28 693703
[21] Leibler S 1986 Curvature instability in membranes J. Phys. 47 507-16
[22] Seifert U, Berndl K and Lipowsky R 1991 Shape transformations of vesicles: phase diagram for spontaneous-curvature and bilayer-
coupling models Phys. Rev. A 44 1182202
[23] Ramaswamy S, Toner ] and Prost ] 2000 Nonequilibrium fluctuations, traveling waves, and instabilities in active membranes Phys. Rev.
Lett. 84 34947
[24] Helfrich W 1986 Size distributions of vesicles: the role of the effective rigidity of membranes J. Phys. 47 321-9
[25] Morris C E and Homann U 2001 Cell surface area regulation and membrane tension J. Membr. Biol. 179 79-102
[26] Sens P and Plastino J 2015 Membrane tension and cytoskeleton organization in cell motility J. Phys.: Condens. Matter 27 273103
[27] CaiW and Lubensky T C 1995 Hydrodynamics and dynamic fluctuations of fluid membranes Phys. Rev. E 52 4251-66
[28] DimovaR, Aranda S, Bezlyepkina N, Nikolov V, Riske K A and Lipowsky R 2006 A practical guide to giant vesicles. Probing the
membrane nanoregime via optical microscopy J. Phys.: Condens. Matter 18 S1151-76
[29] AlertR, Casademunt J, Brugués J and Sens P 2015 Model for probing membrane-cortex adhesion by micropipette aspiration and
fluctuation spectroscopy Biophys. J. 108 1878-86
[30] Shapiro L, Mcadams H H and Losick R 2002 Generating and exploiting polarity in bacteria Science 298 19426
[31] LaiE-M, Nair U, Phadke N D and Maddock J R 2004 Proteomic screening and identification of differentially distributed membrane
proteins in Escherichia coli Mol. Microbiol. 52 102944
[32] Thiem S, Kentner D and Sourjik V 2007 Positioning of chemosensory clusters in E. coli and its relation to cell division EMBO J. 26
1615-23
[33] Bowman G R, Comolli LR, ZhuJ, Eckart M, Koenig M, Downing K H, Moerner W E, Earnest T and Shapiro L 2008 A polymeric
protein anchors the chromosomal origin/ParB complex at a bacterial cell pole Cell 134 945-55
[34] Ebersbach G, Briegel A, Jensen G J and Jacobs-Wagner C 2008 A self-associating protein critical for chromosome attachment, division,
and polar organization in caulobacter Cell 134 95668
[35] Glotzer M 2004 Cleavage furrow positioning J. Cell Biol. 164 347-51
[36] Barr F A and Gruneberg U 2007 Cytokinesis: placing and making the final cut Cell 131 847-60
[37] Hanczyc M M, Fujikawa S M and Szostak ] W 2003 Experimental models of primitive cellular compartments: encapsulation, growth,
and division Science 302 618-22
[38] Zhu T Fand Szostak ] W 2009 Coupled growth and division of model protocell membranes J. Am. Chem. Soc. 131 5705-13

12


https://orcid.org/0000-0002-3149-4002
https://orcid.org/0000-0002-3149-4002
https://orcid.org/0000-0002-3149-4002
https://orcid.org/0000-0002-3149-4002
https://doi.org/10.1016/S0092-8674(00)81278-7
https://doi.org/10.1016/S0092-8674(00)81278-7
https://doi.org/10.1016/S0092-8674(00)81278-7
https://doi.org/10.1038/nature01602
https://doi.org/10.1038/nature01602
https://doi.org/10.1038/nature01602
https://doi.org/10.1098/rstb.1952.0012
https://doi.org/10.1098/rstb.1952.0012
https://doi.org/10.1098/rstb.1952.0012
https://doi.org/10.1209/0295-5075/105/18001
https://doi.org/10.1111/j.1574-6976.2007.00098.x
https://doi.org/10.1111/j.1574-6976.2007.00098.x
https://doi.org/10.1111/j.1574-6976.2007.00098.x
https://doi.org/10.1038/nature08232
https://doi.org/10.7554/eLife.04629
https://doi.org/10.1126/science.1154520
https://doi.org/10.1126/science.1154520
https://doi.org/10.1126/science.1154520
https://doi.org/10.1088/1478-3975/6/4/046017
https://doi.org/10.1088/1478-3975/6/4/046017
https://doi.org/10.1073/pnas.1206953109
https://doi.org/10.1073/pnas.1206953109
https://doi.org/10.1073/pnas.1206953109
https://doi.org/10.1088/1367-2630/17/4/043023
https://doi.org/10.1073/pnas.1509557112
https://doi.org/10.1073/pnas.1509557112
https://doi.org/10.1073/pnas.1509557112
https://doi.org/10.1038/nature04396
https://doi.org/10.1038/nature04396
https://doi.org/10.1038/nature04396
https://doi.org/10.1038/nrm1784
https://doi.org/10.1038/nrm1784
https://doi.org/10.1038/nrm1784
https://doi.org/10.1209/epl/i1996-00327-4
https://doi.org/10.1209/epl/i1996-00327-4
https://doi.org/10.1209/epl/i1996-00327-4
https://doi.org/10.1103/PhysRevE.54.6725
https://doi.org/10.1103/PhysRevE.54.6725
https://doi.org/10.1103/PhysRevE.54.6725
https://doi.org/10.1103/PhysRevE.57.6988
https://doi.org/10.1039/c1sm05358b
https://doi.org/10.1039/C6SM02796B
https://doi.org/10.1039/C6SM02796B
https://doi.org/10.1039/C6SM02796B
https://doi.org/10.1515/znc-1973-11-1209
https://doi.org/10.1515/znc-1973-11-1209
https://doi.org/10.1515/znc-1973-11-1209
https://doi.org/10.1051/jphys:01986004703050700
https://doi.org/10.1051/jphys:01986004703050700
https://doi.org/10.1051/jphys:01986004703050700
https://doi.org/10.1103/PhysRevA.44.1182
https://doi.org/10.1103/PhysRevA.44.1182
https://doi.org/10.1103/PhysRevA.44.1182
https://doi.org/10.1103/PhysRevLett.84.3494
https://doi.org/10.1103/PhysRevLett.84.3494
https://doi.org/10.1103/PhysRevLett.84.3494
https://doi.org/10.1051/jphys:01986004702032100
https://doi.org/10.1051/jphys:01986004702032100
https://doi.org/10.1051/jphys:01986004702032100
https://doi.org/10.1007/s002320010040
https://doi.org/10.1007/s002320010040
https://doi.org/10.1007/s002320010040
https://doi.org/10.1088/0953-8984/27/27/273103
https://doi.org/10.1103/PhysRevE.52.4251
https://doi.org/10.1103/PhysRevE.52.4251
https://doi.org/10.1103/PhysRevE.52.4251
https://doi.org/10.1088/0953-8984/18/28/S04
https://doi.org/10.1088/0953-8984/18/28/S04
https://doi.org/10.1088/0953-8984/18/28/S04
https://doi.org/10.1016/j.bpj.2015.02.027
https://doi.org/10.1016/j.bpj.2015.02.027
https://doi.org/10.1016/j.bpj.2015.02.027
https://doi.org/10.1126/science.1072163
https://doi.org/10.1126/science.1072163
https://doi.org/10.1126/science.1072163
https://doi.org/10.1111/j.1365-2958.2004.04040.x
https://doi.org/10.1111/j.1365-2958.2004.04040.x
https://doi.org/10.1111/j.1365-2958.2004.04040.x
https://doi.org/10.1038/sj.emboj.7601610
https://doi.org/10.1038/sj.emboj.7601610
https://doi.org/10.1038/sj.emboj.7601610
https://doi.org/10.1038/sj.emboj.7601610
https://doi.org/10.1016/j.cell.2008.07.015
https://doi.org/10.1016/j.cell.2008.07.015
https://doi.org/10.1016/j.cell.2008.07.015
https://doi.org/10.1016/j.cell.2008.07.016
https://doi.org/10.1016/j.cell.2008.07.016
https://doi.org/10.1016/j.cell.2008.07.016
https://doi.org/10.1083/jcb.200310112
https://doi.org/10.1083/jcb.200310112
https://doi.org/10.1083/jcb.200310112
https://doi.org/10.1016/j.cell.2007.11.011
https://doi.org/10.1016/j.cell.2007.11.011
https://doi.org/10.1016/j.cell.2007.11.011
https://doi.org/10.1126/science.1089904
https://doi.org/10.1126/science.1089904
https://doi.org/10.1126/science.1089904
https://doi.org/10.1021/ja900919c
https://doi.org/10.1021/ja900919c
https://doi.org/10.1021/ja900919c

IOP Publishing NewJ. Phys. 19 (2017) 125013 J Agudo-Canalejo and R Golestanian

[39] Zwicker D, Seyboldt R, Weber C A, Hyman A A and Jiilicher F 2016 Growth and division of active droplets provides a model for
protocells Nat. Phys. 13 408-13

[40] Jacobson K, Mouritsen O G and Anderson R G 2007 Lipid rafts: at a crossroad between cell biology and physics Nat. Cell Biol. 9 7-14

[41] Lingwood D and Simons K 2010 Lipid rafts as a membrane-organizing principle Science 327 46—50

[42] Simons K and Gerl M ] 2010 Revitalizing membrane rafts: new tools and insights Nat. Rev. Mol. Cell Biol. 11 688-99

[43] Sezgin E, Levental I, Mayor S and Eggeling C 2017 The mystery of membrane organization: composition, regulation and roles of lipid
rafts Nat. Rev. Mol. Cell Biol. 18 361-74

[44] Veatch SL, Cicuta P, Sengupta P, Honerkamp-Smith A, Holowka D and Baird B 2008 Critical fluctuations in plasma membrane
vesicles ACS Chem. Biol. 3 287-93

[45] Ritchie K, Iino R, Fujiwara T, Murase K and Kusumi A 2003 The fence and picket structure of the plasma membrane of live cells as
revealed by single molecule techniques (review) Mol. Membr. Biol. 20 13-8

13


https://doi.org/10.1038/nphys3984
https://doi.org/10.1038/nphys3984
https://doi.org/10.1038/nphys3984
https://doi.org/10.1038/ncb0107-7
https://doi.org/10.1038/ncb0107-7
https://doi.org/10.1038/ncb0107-7
https://doi.org/10.1126/science.1174621
https://doi.org/10.1126/science.1174621
https://doi.org/10.1126/science.1174621
https://doi.org/10.1038/nrm2977
https://doi.org/10.1038/nrm2977
https://doi.org/10.1038/nrm2977
https://doi.org/10.1038/nrm.2017.16
https://doi.org/10.1038/nrm.2017.16
https://doi.org/10.1038/nrm.2017.16
https://doi.org/10.1021/cb800012x
https://doi.org/10.1021/cb800012x
https://doi.org/10.1021/cb800012x
https://doi.org/10.1080/0968768021000055698
https://doi.org/10.1080/0968768021000055698
https://doi.org/10.1080/0968768021000055698

	1. Introduction
	2. Methods
	2.1. Energetics
	2.2. Dynamics
	2.3. Linear stability analysis

	3. Results
	4. Discussion
	4.1. Estimation and control of model parameters in real systems
	4.2. Biological relevance
	4.2.1. Cell division
	4.2.2. Large-scale protein organisation
	4.2.3. Nano-sized membrane rafts

	4.3. Summary

	Acknowledgments
	References



