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Abstract
Spatial organisation is a hallmark of all living cells, and recreating it inmodel systems is a necessary
step in the creation of synthetic cells. It is therefore of both fundamental and practical interest to better
understand the basicmechanisms underlying spatial organisation in cells. In this work, we use a
continuummodel ofmembrane and protein dynamics to study the behaviour of curvature-inducing
proteins onmembranes of spherical shape, such as living cells or lipid vesicles.We show that the
interplay between curvature energy, entropic forces, and the geometric constraints on themembrane
can result in the formation of patterns of highly-curved/protein-rich andweakly-curved/protein-
poor domains on themembrane. The spontaneous formation of such patterns can be triggered either
by an increase in the average density of curvature-inducing proteins, or by a relaxation of the
geometric constraints on themembrane imposed by themembrane tension or by the tethering of the
membrane to a rigid cell wall or cortex. These parameters can also be tuned to select the size and
number of the protein-rich domains that arise upon pattern formation. The very generalmechanism
presented here could be related to protein self-organisation inmany biological processes, ranging
from (proto)cell division to the formation ofmembrane rafts.

1. Introduction

Spatial organisation into inhomogeneous patterns is an essential feature of living organisms, from the
macroscale to the cellular level. In the later case, organisation of the plasmamembrane and the cytoplasm into
specialised domains ismore commonly referred to as cell polarity [1, 2]. This spatial organisation of the cell is
necessary in order to coordinate important processes such as cell division, differentiation, or directed cell
migration.

As early as in 1952, Turing realised [3] that very simple systems that are initially in a spatially homogeneous
state can spontaneously self-organise into spatially inhomogeneous patterns.However, it is generally believed
[1, 2] that the generation of polarity in cells is the result of a tightly-controlled orchestration involving complex
signalling networks and active processes such as the reorganisation of the cellular cytoskeleton. Nevertheless,
active systems such as the cytoskeleton have been shown to undergo simple pattern formation [4], and there also
exist cells for which polarisation is presumably not generated by the cytoskeleton [5–11]. The underlying
mechanisms in these systems are however notwell understood.

Very recently, [12] a systemwas identified inwhich cell polarisation appears to be controlled by a relatively
simple pattern-formationmechanism. In the coccal bacterium Staphylococcus aureus, essential proteins
involved in lipidmetabolismwere seen to distribute in inhomogeneous spatial patterns, that could be explained
by amodel that considers the dynamics of curvature-inducing proteins on a sphericalmembrane.However, the
modelfirst introduced in [12] is very general, andwe expect that itmight be able to describe the formation of
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protein patterns on the surface of other types of cells, as well as inmodel systems consisting of lipid vesicles and
proteins. In this work, wewill explore in full generality and detail the predictions of such amodel.

The basic idea behind themodel is presented infigure 1. A closed, initially sphericalmembrane contains
proteins that impose a spontaneous curvatureCp on themembrane (in general, the proteinsmight be attached to
themembrane from the cytoplasmic or the exoplasmic sides, or theymight be transmembrane proteins
embedded in themembrane) [13, 14]. If the proteins did not induce any curvature, a random, homogeneous
distribution of proteins would be favoured by thermal fluctuations, that is, entropic forces (in the absence of
direct attractive protein–protein interactions). However, if the curvature induced by the proteins is large
enough, bending contributions to the free energy of the system can lead to an effective attraction between
proteins and to the formation of spatially inhomogeneous patterns in protein distribution andmembrane
curvature. The details ofmembrane-mediated protein–protein interactions have been thoroughly studied in the
past [15–18]. Furthermore, wewill consider the possibility of geometric constraints on themembrane, such as
the tethering of themembrane to a rigid cell wall/cortex or the existence of amembrane area reservoir at non-
zero tension. Interestingly, it was recently shown that solid particles such as proteins can sense the local
membrane curvature imposed by geometric constraints on themembrane [19].

Here, we have found that, in realistic situations, spontaneous pattern formation can be induced either by an
increase in the surface density of curvature-inducing proteins, or by a decrease in the strength of the geometric
constraints on themembrane. Furthermore, these two parameters can also control the size and number of
protein-rich (highly curved) and protein-poor (weakly curved) domains. Thesemechanisms could be exploited
by cells in order to trigger spatial organisation of the plasmamembrane on demand, and could in principle be
replicated in artificialmodel systems.

The paper is organised as follows. In section 2, we present the continuummodel for the energetics and
dynamics of the system, and examine the linear stability of the dynamical equations for the shape of the
membrane and the protein density distribution. In section 3, we explore spontaneous pattern formation in the
system as a function of all relevant parameters. Finally, in section 4we discuss the applicability and consequences
of our results in real biological or biomimetic systems.

2.Methods

2.1. Energetics
Wewill adopt a continuumelasticmodel of a closedmembrane, whichmight represent amodel vesicle or a
biological cell, and study the stability of spherical shapes to perturbations in the presence of curvature-inducing
proteins that decorate themembrane. The shape of a quasi-sphericalmembrane can bewritten in spherical
coordinates as q f q f= +( ) [ ( )] ˆR uR r, 1 , , whereR is the radius of the unperturbed sphere, q f( )u , is a scalar
function that describes the deviations from the sphere, and r̂ is the radial unit vector, see figure 2. The
distribution of proteins on themembrane can be described in a similar way, with the surface number density
r q f r y q f= +( ) [ ( )], 1 ,0 . Here, r0 is the average protein number density, i.e. r p= N R40

2 ifN is the total
number of proteins on themembrane, and the function y q f( ), represents the deviations from a homogeneous
distribution of proteins.

Wewill assume that each protein covers a patch ofmembrane of area a0, and imposes a spontaneous
curvatureCp on themembrane, see figure 1. The bending free energy of themembrane can then bewritten
within the spontaneous curvaturemodel [20–23] as

Figure 1.The proteins (yellow) impose a spontaneous curvatureCp on themembrane (blue). Depending on the interplay between
curvature, entropic, andmembrane tethering/tension forces, proteinsmight repel, resulting in a spatially homogeneous spherical
membrane (turquoise), or theymight attract, leading to the spontaneous formation of inhomogeneous patterns ofmembrane
curvature and protein density.
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ò
k

r= -[ ] ( )F A C C a C
2

d 2 , 1b
2

p 0

whereκ is the bending rigidity of themembrane, andC is the localmembrane curvature, with = +C C C1 2,
whereC1 andC2 are the two principal curvatures. The second term inside the integral represents the simplest
possible coupling between protein density and local curvature. It can also be interpreted as a position-dependent
spontaneous curvature q f r q fº( ) ( )C C a, ,0 p 0, which varies from =C 00 in the absence of proteins, with
r = 0, to =C C0 p for full coverage of proteins, with r = a1 0. The localmembrane curvature q f( )C , can be
written explicitly as a function of q f( )u , , as described in [24].

Besides the bending contributions to the free energy, we need to take into account the entropic contributions
due to themixing and density fluctuations of the proteins. To lowest order, this contribution to the free energy
can be incorporated as

òc
x y y=  +[ ( ) ] ( )F A

1

2
d . 2d

2 2 2

Here,χ and ξ are the compressibility and the correlation length of the protein density fluctuations, respectively.
Thefirst term in the integral penalises the creation of interfaces between high protein density and low protein
density regions, whereas the second termpenalises deviations from a homogeneous protein distribution.

Wewill also consider the effect of the tethering of themembrane to a cell wall or actomyosin cortex, by
including a harmonic confinement potential of the form

ò= ( )F
k R

A u
2

d , 3h
te

2
2

where kte is an effective spring constant per unit area, which in generalmay include contributions from specific
interactions (i.e. proteins that directly link themembrane to thewall/cortex) as well as non-specific interactions
such as steric repulsion, van derWaals attraction or electrostatic attraction/repulsion.Within this effective
description, the cell wall/cortex is taken to be spherical and rigid (i.e.muchmore rigid than themembrane), and
kte penalises deviations of themembrane position from the (optimal) equilibriummembrane-wall distance.

Lastly, we consider the possibility that themembrane is connected to amembrane area reservoir at constant
membrane tension. A constantmembrane tension is typical of biological cells, [25, 26] and can bemimicked in
model vesicle systems by the use ofmicropipette aspiration. The contribution of amembrane tensionσ to the
free energy is

òs= ( )F Ad . 4t

Figure 2.The shape of the almost sphericalmembrane is described by a vector function q f( )R , , whereas the protein distribution is
described by a scalar function r q f( ), represented by the colour-coding, e.g.yellow and blue could correspond to high and low
protein density, respectively.
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The total free energy can finally bewritten as the sumof these four contributions, with

ò= + + + = ( )F F F F F Ad 5b d h t

with the free energy density


k

r
c

x y y sº - +  + + +[ ] [ ( ) ] ( )C C a C
kR

u
2

2
1

2 2
. 62

p 0
2 2 2

2
2

In addition, wewill explicitly impose constraints on the volume enclosed by themembrane (representing
osmotic balance), so that

ò
p

= ( )R
V

4

3
d 7

3

aswell as on the total number of proteinsN on themembrane, so that

òr p r= = ( )N R A4 d 80
2

at all times.

2.2.Dynamics
The effective force exerted on themembrane in the radial directionwill be balanced by a frictional force, leading
to a dynamical equation for the shape of themembrane as a function of time t

q f
d

d q f
¶ = -( )

( )
( )u t L

F

u
, ,

,
, 9t u

where Lu is a transport coefficient corresponding to themembranemobility.
On the other hand, the dynamical equation describing the diffusion of the proteins on themembrane can be

written in the formof a continuity equation

y q f¶ +  =( ) · ( )t J, , 0 10t

with a current density m= - yLJ , where Lψ is another transport coefficient and m d dy q f= ( ), is the
chemical potential. Putting all together, the dynamical equation for the protein density becomes

y q f
d

dy q f
¶ = y

⎛
⎝⎜

⎞
⎠⎟( )

( )
( )t L

F
, ,

,
. 11t

2

The Laplacian operator on a sphere can bewritten as  º - L̂
R

2 1 2
2 , with the operator

q
q

q
- º ¶ ¶ + ¶q q f

ˆ ( ) ( )L
1

sin
sin

1

sin
. 122

2
2

This operator is diagonal in the basis of spherical harmonics q f( )ℓY ,m . In particular, it satisfies

q f q f= +ℓ ℓˆ ( ) ( ) ( ) ( )ℓ ℓL Y Y, 1 , . 13m m
2

2.3. Linear stability analysis
To leading order in u andψ, and taking into account the constraints (7) and (8) on the enclosed volume and total
number of proteins on themembrane, we canwrite equations (9) and (11) as

q f
k

s
k r

y¶ = - + - + + -⎜ ⎟
⎡
⎣⎢
⎛
⎝

⎞
⎠

⎤
⎦⎥( ) ˆ ( ˆ ) ( ˆ ) ( )u t L

R
L L u k R u

C a

R
L, , 2 2 14t u 2

2 2
te

2 p 0 0 2

and

y q f
c

y
c

x
y

k r
¶ = - + + -y ⎡

⎣⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥( ) ˆ ˆ ˆ ( ˆ ) ( )t

L

R
L

R
L

C a

R
L L u, ,

1 1
2 . 15t 2

2
2

2

4 p 0 0 2 2

Wecanwrite the solutions q f( )u t, , and y q f( )t, , as a sumof spherical harmonics, which provide a
complete set of orthogonal functions on the sphere, so that

å åq f q f y q f y q f= =( ) ( ) ( ) ( ) ( ) ( ) ( )
ℓ

ℓ ℓ
ℓ

ℓ ℓu t u t Y t t Y, , , and , , , , 16
m

m m
m

m m
, ,

where ℓu m and yℓm are the amplitudes of the correspondingmodes, andwe have =ℓ 0, 1, 2 ... and  ℓ∣ ∣m .
However, the constraints (7) and (8) on the enclosed volume and total number of proteins on themembrane
imply that the zero-amplitudes u00 and y00 cannot be varied independently. Explicitly imposing these
constraints results in expressions for u00 and y00 as a function of the squared amplitudes of allmodes
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åp = - ( )
ℓ

ℓu u4 , 17
m

m00
,

2

å åpy y= - + -ℓ ℓ[ ( )] ( )
ℓ

ℓ
ℓ

ℓ ℓu u4
1

2
2 1 2 . 18

m
m

m
m m00

,

2

,

Equations (17) and (18) imply that u00 and y00 are a function of the higher-order amplitudes, and furthermore,
that they are of quadratic order (they are equal to a sumof ℓu m

2 and yℓ ℓu m m terms). For this reason, the u00 and
y00 terms are negligible to linear order, andwe can rewrite (16) as

 
å åq f q f y q f y q f ( ) ( ) ( ) ( ) ( ) ( ) ( )

ℓ
ℓ ℓ

ℓ
ℓ ℓu t u t Y t t Y, , , and , , , . 19

m
m m

m
m m

1, 1,

Inserting (19) into (14) and (15), we can rewrite the dynamical equations as separate equations for each of
the ℓ 1modes. Introducing a rescaled time variable

t
k

º ⎜ ⎟⎛
⎝

⎞
⎠ ( )L

R
t 20u

2

aswell as dimensionless parameters

k
s
k

x
k c

r
kc

º º º º º ºy ( )K
k R

T
R

P
R

M
L

L
S a C R B

R
, , , , , and 21

u

te
4 2 2

2 0 0 p 2

the equations become

y-¶ = + + + - + + + -t ℓ ℓ ℓ ℓ ℓ ℓ{[ ( ) ]( )( ) } ( )( ) ( )ℓ ℓ ℓu T K u S1 2 1 2 1 22m m m

and

y y- ¶ = + + - + + + +t ℓ ℓ ℓ ℓ ℓ ℓ ℓ ℓ( ) ( )( )( ) ( )[ ( )] ( )ℓ ℓ ℓM BS u P1 1 2 1 1 1 1 . 23m m m

The solutions to (22) and (23)will have the form

t y t y= =lt lt( ) ( ) ( ) ( ) ( )ℓ ℓ ℓ ℓu u 0 e , 0 e . 24m m m m

Inserting these solutions back into (22) and (23), and setting the determinant of the coefficients to zero, we can
obtain an equation for the growth ratesλ of the characteristicmodes of the system,which reads

l l+ + = ( )b c 0 252

with coefficients

º - + + + - + + +ℓ ℓ ℓ ℓ( )[ ( )( )] ( )b K T M T MP2 1 2 1 1 26

and

º + + + + + - + + - + -ℓ ℓ ℓ ℓ ℓ ℓ ℓ ℓ ℓ ℓ( ){[ ( ( ) )( )( )][ ( )] ( ) ( ) } ( )c M K T P W1 1 2 1 1 1 2 1 272 2

wherewe have defined the parameter

kcrº = ( )W BS a C . 282
0
2

0
2

p
2

The two characteristicmodes of the system given by the solutions to (25) can finally bewritten as

l = - + - + + - + + +

 - - + - + + + - + + + -

 ℓ ℓ ℓ ℓ

ℓ ℓ ℓ ℓ ℓ ℓ ℓ ℓ

[ ( )[ ( )( )]]

[ ( )[ ( )( )]] ( )( ) ( )

( )

K T M T MP

K T M T MP MW

1

2
2 1 2 1 1

1

2
2 1 2 1 1 4 1 2 1 .

29

2 2 2

Because b in (25) always satisfies >b 0 for allmodes with ℓ 1, we know that the amplitudewith the
smaller value, l-, is always negative for allℓ-modes. On the other hand, the larger one, l+, might be positive or
negative depending on theℓ-mode and on the values of the parametersW,K,T, P, andM. It is alsoworth noting
that the stability analysis is independent of the value ofm of the spherical harmonics. This ultimately arises from
the fact that the eigenvalues of the Laplacian of a spherical harmonic are independent of itsm-value.

The physical significance of the five dimensionless parameters is the following. The parameterW represents
the protein-induced spontaneous curvature, and increases bothwith the average density r0 of proteins on the
membrane andwith the characteristic spontaneous curvatureCp of these proteins. The parameterK represents
the strength of the confinement of themembrane by its interactionwith the rigid cell wall/cortex. The
parameterT represents themagnitude of themembrane tension. The parameter P compares the correlation
length of the protein density fluctuations to the size of the cell or vesicle. Given that correlation lengths are
typically of the order of nanometers whereas cell or vesicle sizes are of the order ofmicrometers, Pwill generally
be small, andwill decrease or increase with increasing or decreasing cell/vesicle size, respectively. Finally, the
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parameterM compares the typical timescale of the changes inmembrane shape ( kR Lu
2 ) to that of changes in

protein distribution (c yR L2 ). Importantly, we note that allfive dimensionless parameters are always positive.

3. Results

Apositive value of themode amplitude l+ implies thatfluctuations of thismodewill grow instead of decaying,
and thereforemodeswith l >+ 0 are unstable. If, by small changes in one of the systemparametersW,K,T,P,
orM, one of themodes l+ switches fromhaving a negative value to having a positive value, the systemwill
exhibit spontaneous pattern formation. In the following, wewill explore the conditions under which
spontaneous pattern formation occurs.

First of all, we note that, as described above, the =ℓ 0 mode cannot vary independently as it isfixed by the
constraints on the enclosed volume and total number of proteins, see (17) and (18). Furthermore, by
substituting =ℓ 1 in (29), wefind themode amplitudes-K and- +( )M P2 1 2 , which can never be positive,
implying that the =ℓ 1mode can never become unstable. It can, however, becomemarginally stable in the
particular case ofK=0, i.e.in the absence of tethering to the cell wall. This reflects the fact that =ℓ 1
deformations of themembrane shape are equivalent to spatial translations, and that the curvature energy of the
membrane is invariant to such translations. The presence of the cell wall, however, breaks translational
invariance. All things considered, instabilities and therefore spontaneous pattern formation can occur only for
highermodes ℓ 2, whichwewill discuss below.

The larger solution l+ of (25)will be positive, with l >+ 0, if and only if <c 0. Using the definition of c in
(27), this condition can be rewritten as

>
+ + + + - + +

+ -
º

ℓ ℓ ℓ ℓ ℓ ℓ
ℓ ℓ

{ [ ( ) ]( )( )}[ ( )]
( ) ( )

( )ℓW
K T P

W
1 2 1 1 1

2 1
, 30

2 2

which serves as a definition of ℓW , the critical value of the parameterW abovewhichmodeℓ becomes unstable.
Going back to the definition ofW in (28), the inequality (30) implies that an increase in the average density r0 of
curvature-inducing proteins beyond a critical density will trigger an instability with spherical harmonicmodeℓ
in both the shape and protein distribution of themembrane. Furthermore, the critical protein density that is
needed to trigger an instability decreases with increasing protein spontaneous curvatureCp. Importantly, we
note that the critical value ℓW is independent of the parameterM, and therefore depends only on three
parameters, P,K, andT. In fact, the parameterM drops out of all relevant equations in the following, so that
pattern formation in the system turns out to be governed by only four dimensionless parameters:W,K,T, andP.
This is a consequence of the fact thatM is amobility parameter that relates the timescale of changes inmembrane
shape to that of changes in protein distribution, and as such it only affects the dynamics of the system.

Alternatively, the instability condition <c 0 can bewritten as

<
+ -

+ +
- + + + - º

ℓ ℓ
ℓ ℓ

ℓ ℓ ℓ ℓ( ) ( )
( )

[ ( ) ]( )( ) ( )ℓK
W

P
T K

2 1

1 1
1 2 1 31

2 2

or

<
+ -

+ +
-

+ -
- + º

ℓ ℓ
ℓ ℓ ℓ ℓ

ℓ ℓ( )( )
( ) ( )( )

( ) ( )ℓT
W

P

K
T

2 1

1 1 2 1
1 , 32

which define ℓK and ℓT , the critical values ofK andT, respectively, belowwhichmodeℓ becomes unstable.
Going back to the definitions ofK andT in (21), the inequalities (31) and (32) respectively imply that the shape
and protein distribution instability can also be triggered by a decrease in the tethering strength of themembrane
to the cell wall/cortex, or by a decrease in themembrane tension.Once again, we note that the critical values ℓK
and ℓT are independent of the parameterM.

As outlined in the previous two paragraphs, the parameters that could presumably be actively controlled by a
biological cell or tuned in experiments withmodel vesicles areW, i.e. the density of proteins on the cell surface,
K, i.e. the tethering strength of themembrane to the cell wall/cortex, andT, themembrane tension. The
parameter P, on the other hand, represents the correlation length of the protein density fluctuations, i.e. the
typical distance at which proteins can sense each other, andwill in general befixed for a given system. It therefore
makes sense to explore the behaviour of the systemwhenW,K, andT are varied for afixed value ofP.

Using (30), infigure 3we have plotted the lines = ( )ℓW W K for ℓ 2, usingT=0 (i.e. negligible
membrane tension) and three different values ofP, namely P= 0.1, 0.02, and 0.005. For a vesicle/cell of radius
m1 m, these values ofPwould correspond to correlation lengths of x = 320 nm, 140nm, and 70nm,

respectively. In the region of lowW and highK, depicted in grey, the spherical state with a homogeneous protein
distribution is stable. AsW is increased from low values, the systemwill hit the instability of thefirst unstable
mode, with a given value ofℓwhichwill depend on the value ofK. Alternatively, ifK is decreased fromhigh
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values, the systemwill also hit the instability of the first unstablemodewith a givenℓwhichwill depend on the
value ofW. The higher the value ofK, the higher the value ofℓ of thefirst unstablemode asW is increased.
Similarly, the higher the value ofW, the higher the value ofℓ of thefirst unstablemode asK is decreased.

There are important differences in theway inwhichW andK act to trigger pattern formation. Independently
of the value ofK, and even forK=0, a sufficiently highWwill always lead to pattern formation. On the other
hand, a decrease inK can only lead to pattern formation ifW is above the critical value =( )ℓW K 0 . Furthermore,
we note thatfigure 3 has a semilogarithmic axis: whereas the critical value ofW abovewhich pattern formation
occurs is always in the vicinity of 1, with W 1, the critical value ofK belowwhich pattern formation occurs can
vary overmany orders ofmagnitude. Pattern formation is therefore particularly sensitive toW,i.e. to the density
of curvature-inducing proteins on themembrane.

Andwhat is the effect ofP, that is, of the correlation length of the protein density fluctuations? Let us now
comparefigures 3(a)–(c). For the highest value ofP, in (a), thefirst unstablemode for increasingW at vanishing
K is =ℓ 2, whereas larger values ofK lead to the instabilities of higher-ordermodeswith >ℓ 2. AsP is
decreased, as in (b), the first unstablemode at vanishingK is now =ℓ 3: themode =ℓ 2 is not thefirst unstable
mode for any value ofK.When P is decreased even further, as in (c), =ℓ 4 becomes thefirst unstablemode at
vanishingK, and neither =ℓ 2 nor =ℓ 3 are thefirst unstablemodes for any value ofK. This trend continues
asP is decreased further, with progressively higher ordermodes becoming the first unstablemode at vanishing
K.Moreover, we note that, as P is decreased, the critical value ofW abovewhich pattern formation occursmoves
closer and closer toW=1.

Infigure 3we have explored the stability behaviour of the system as a function ofW andK, forfixed
vanishing tensionT=0. Considering afixed non-zero tension >T 0 leads to the same qualitative behaviour of
the system as a function ofW andK. Furthermore, the behaviour of the system as a function ofW andT forfixed
K is qualitatively identical to that as a function ofW andK forfixedT, leading to instability lines analogous to
those in figure 3.We thus omit these results for the sake of brevity.

As just described, in order to characterise the system, it is particularly important to identify the first unstable
modewhenW is increased, that is, themodewith smallest ℓW for given values ofP,K, andT, whichwewill
denote as *ℓW . The critical value ofW abovewhich thefirst unstablemode becomes unstable is then
* *º º ( )ℓ ℓ ℓW W Wmin

W
. The boundaries between the regions in the three-dimensional ( )P K T, , parameter

space inwhichmodesℓ and +ℓ 1are thefirst unstablemode for increasingW can be obtained from the
condition = +ℓ ℓW W 1, which can bewritten explicitly using (30) as

=
- + + + - - +

- + + + - + - - + + -
ℓ ℓ ℓ ℓ ℓ ℓ

ℓ ℓ ℓ ℓ ℓ ℓ ℓ ℓ ℓ ℓ
( ) ( )( )( ) [ ( )]

( ) ( )( ){[ ( ) ]( ) } [ ( ) ( ) ]
( )P

T K

T K

1 2 3 2 2 1 2

1 2 3 2 4 1 2 1 2 4
. 33

2 2

Infigure 4, we have used equation (33) to explore pattern formation in (a) the =( )P K T, , 0 plane and (b) the
=( )P K T, 0, plane. For any point in ( )P K T, , space, we can obtain the critical valueW* abovewhich pattern

formation occurs, using (30). This information is also colour-coded infigure 4. Several important observations
can bemade: (i) once again, we see thatK andThave qualitatively similar effects in pattern formation. (ii)Both
an increase inK orT, as well as a decrease inP lead to increasingly higher-ordermodes being the first unstable
mode. (iii) Inmost regions of the parameter space, the critical valueW* abovewhich pattern formation occurs is
very close to 1. The only exception is the region of »P 1and largeK orT, inwhichW* can bemuch larger
than one.

A particularly important case, with regards to its experimental relevance, is that of amodel lipid vesicle, for
whichwe have bothK=0 (there is nowall or cortex attached to themembrane) andT=0 (if we are

Figure 3. Instability lines = ( )ℓW W K formodes ℓ 2, vanishing tensionT=0, and three values ofP: (a)P= 0.1, (b)P= 0.02, and
(c)P= 0.005. For lowW (i.e. low number of curvature-inducing proteins) and highK (i.e. strong confinement of themembrane due
to tethering to the cell wall/cortex), the spherical homogeneous state is stable (grey region). AsW is increased orK is decreased, the
systemwill hit an instability with a given value ofℓ. IfW orK keep increasing or decreasing, respectively, theywill hit the instabilities of
furthermodes. The higher the value ofK orW, the higher the value ofℓ of thefirst unstablemode asW is increased orK is decreased.
The parameter P represents the correlation length of the protein density fluctuations.
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considering a flaccid, unstretched vesicle). This corresponds to the bottompart of of bothfigures 4(a) and (b). In
this limit case, whichmodefirst becomes unstable whenW (i.e. the number of curvature-inducing proteins on
themembrane) is increased depends only on the parameter P (i.e. the correlation length of the protein density
fluctuations), with the boundaries betweenℓ and +ℓ 1being thefirst unstablemodes given by the simple
expression

=
+ - +ℓ ℓ ℓ[ ( ) ]( )

( )P
2

2 4 1
34

2

as obtained from equation (33)with = =K T 0. Using equation (34), we predict that for a tensionless spherical
vesicle, the =ℓ 2modewill be the first unstablemode if >P 1 18, the =ℓ 3modewill be thefirst unstable
mode if > >P1 18 1 88, the =ℓ 4 mode if > >P1 88 1 250, and so on. For a typical vesicle of radius
m1 m and a typical correlation length of x = 20 nm, we have = ´ -P 4 10 4, andwefind that the =ℓ 8mode

will be thefirst unstablemode.
Alternatively, we could ask ourselves what is the first unstablemode *ℓK whenK is decreased for given values

ofP,W, andT, or equivalently, themodewith largest ℓK for givenP,W, andT. The critical value ofK below
which thefirst unstablemode becomes unstable is then * *º º ( )ℓ ℓ ℓK K Kmax

K
. The boundaries between the

regions in the three-dimensional ( )P W T, , parameter space inwhichmodesℓ and +ℓ 1are the first unstable
mode for decreasingK can be obtained from the condition = +ℓ ℓK K 1, which can bewritten explicitly using
(31). The resulting (P,W) stability diagram for the particular case ofT=0 is shown infigure 5(a). In the same
way, we can find thefirst unstablemode *ℓT whenT is decreased for given values ofP,W, andK, with a critical
value given by * *º º ( )ℓ ℓ ℓT T Tmax

T
, and boundaries in the ( )P W K, , parameter space given by = +ℓ ℓT T 1,

which can bewritten explicitly using (32). The resulting (P,W) stability diagram for the particular case ofK=0
is shown infigure 5(b).

Once again, wefind thatK (the strength of the tethering of themembrane to the cell wall/cortex) andT (the
membrane tension) behave in a qualitatively similar way. As expected from figure 3, an instability can only occur
for decreasingK (orT) ifW is sufficiently high. Thisminimumvalue ofW required for pattern formation
approachesW=1 for smallP. Indeed,figure 5 illustrates very clearly a striking feature of the system: for low
values ofP (which are themost typical given that the correlation length of protein density fluctuations ξ is
normallymuch smaller than themembrane radiusR), values ofW only slightly above 1 can lead to the instability
ofmodeswith very highℓwhenK orT are decreased. This is evidenced by the high density of boundary lines in
the region of low P 1, W 1.

4.Discussion

4.1. Estimation and control ofmodel parameters in real systems
Wehave shown above that pattern formation in a sphericalmembrane containing curvature-inducing proteins
is controlled by the four dimensionless parametersW,K,T andP, which represent the number of curvature-

Figure 4.Pattern formation triggered by an increase in the number of curvature-inducing proteins: first unstablemodes *ℓW whenW
is increased, (a) as a function of the parametersP andK forT=0; and (b) as a function of the parametersP andT forK=0. The
critical valueW* abovewhich pattern formation occurs can be calculated from (30), and is indicated by the colour-coding, which is the
same for (a) and (b). The vertical dashed lines in (a) correspond to the three particular cases P= 0.1, P= 0.02 andP= 0.005 displayed
in figure 3.
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inducing proteins on themembrane, the strength of themembrane tethering to the cell wall/cortex, the
membrane tension, and the correlation length of proteinfluctuations, respectively. An important question is
then: what are the typical values of these parameters in real systems, and towhat extent can they be controlled by
a biological cell, or tuned in experiments withmodel vesicles?

The parameter towhich the system ismost sensitive isW, see figures 3–5. Even ifK,T, andP vary across
many orders ofmagnitude, the critical valueW abovewhich pattern formation occurs always stays in the
proximity of * »W 1, except in the extreme case of very highK (orT) and »P 1 simultaneously, see figure 4.
Going back to the definition ofW in terms of the dimensionful systemparameters in (28), we see that the
requirement * »W W 1 implies that kcr a C 10

2
0
2

p
2 . Here,κ is the bending rigidity of themembrane,χ is

the compressibility of the protein density fluctuations, r0 is the average density of curvature-inducing proteins
on themembrane, a0 is the lateral area of a single protein, andCp is the protein spontaneous curvature.
Furthermore, in the limit of lowprotein density r a 10 0 , the compressibilityχ can be approximated by
c r» ( )k T1 B 0 , [27]where kB is Boltzmann’s constant andT is the temperature. In this limit, the requirement
for pattern formation thus becomes k r( )k T a C 1B 0 0

2
p
2 . In general, the protein spontaneous curvatureCp

will be of the order of the (inverse) characteristic length of the protein a0 , so thatwe can take »C a 1p
2

0 .We
finally conclude that pattern formation typically occurs for average protein densities satisfying

r k ( )a k T . 350 0 B

Here, r a0 0 is simply the dimensionless area fraction ofmembrane covered by the protein. Typical values of the
bending rigidity ofmembranes range from10 to k T100 B , leading to a critical protein coverage of the order of
r ~a 0.010 0 –0.1. Importantly, the range obtained self-consistently validates the lowprotein density assumption
made above. Furthermore, such coverages arewithin the range achievable both in biological cells as well as in
model vesicles. In this picture, a biological cell could up- or down-regulate the expression of the curvature-
inducing protein in order to switch between patterned and non-patterned conformations, see figure 4.
Furthermore, the concentration of curvature-inducing proteins on themembrane could be directly controlled
in experiments withmodel vesicles.

Let us now turn to the dimensionless parameters kºK k Rte
4 and s kºT R2 , which both act as

geometric constraints on themembrane:K represents the confinement of themembrane due to its interaction/
tethering to the cell wall or cortex, whereasT represents themembrane tension, which acts tominimise the cell
membrane area. It is interesting to note that, whilemodelmembranes such asGiantUnilamellar Vesicles show
clear shape fluctuations due to thermal excitation of bendingmodes, [28] eukaryotic cells or bacteria do not
show suchfluctuations. The latter is an indication that, in such systems,membrane confinement and tension
must overpower bending, and consequently that in these systems K 1and/or T 1, as can be confirmed by
the quantitative estimates that follow.

Estimates of the confinement strength kte of biologicalmembranes due to the interactionwith the
corresponding cell wall or cortex do not abound in the literature. In [29], the density ofmembrane-cortex
linkers in eukaryotic cells was estimated to be around r m» -100 mlink

2, whereas the spring constant of a typical
linkerwas estimated to be » -k 10link

4 Nm−1. The effective tethering strength should go as r»k kte link link,
leading to the estimate »k 10te

10 J m−4 m» ´ -k T2.5 10 m6
B

4. Considering a typical range of bending

Figure 5. (a)Pattern formation triggered by a decrease in the tethering strength of themembrane to the cell wall/cortex:first unstable
modes *ℓK whenK is decreased, as a function of the parametersP andW forT=0. The critical valueK* belowwhich pattern
formation occurs can be calculated from (31), and is indicated by the colour-code. The vertical dashed lines correspond to the three
particular cases P= 0.1, P= 0.02 and P= 0.005 displayed infigure 3. (b)Pattern formation triggered by a decrease inmembrane
tension: first unstablemodes *ℓT whenT is decreased, as a function of the parametersP andW forK=0. The critical valueT* below
which pattern formation occurs can be calculated from (32), and is indicated by the colour-code.
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rigidities k = 10– k T100 B , and a typical cell radius ranging from from =R 1 to m10 m, wefind values forK
ranging from ´2.5 104 up to ´2.5 109. Cells could then actively switch between patterned and non-patterned
conformations by down- or up-regulating the concentration of linker proteins between the plasmamembrane
and the cell wall/cortex, see figure 5(a).

The typical tension of cellularmembranes, on the other hand, has been extensivelymeasured for different
cell types, and can range from s = 3 pN μm−1 for epithelial cells up to about s = 300 pN μm−1 for keratocytes
[25, 26]. Using the range s = 3–300pN μm−1 for themembrane tension, together with the estimates
k = 10– k T100 B for the bending rigidity of themembrane andR=1– m10 m for a typical cell radius, we obtain
values ofT ranging from7 to ´7 105. Cells can actively regulate their own tension in order tomaintain
homeostasis [25]. In this way, cells could switch between patterned and non-patterned conformations by
actively decreasing or increasing the tension of their plasmamembrane, see figure 5(b). Furthermore, triggering
of pattern formation via a decrease inmembrane tension could be explored in experiments usingmodel Giant
Unilamellar Vesicles aspirated bymicropipettes, which allows direct experimental control over themembrane
tension.

Let usfinally examine the dimensionless parameter P, defined as xºP R2 2, where ξ is the correlation
length of the protein density fluctuations andR is the radius of the cell or vesicle. The correlation length ξ is a
measure of the distance at which proteins or protein clusters can sense each other, typically viamembrane-
mediated interactions in the absence of other long-ranged interactions. Previouswork [15–18] has shown that
the typical length scale ofmembrane-mediated interactions is the size of the curvature-inducing element itself,
so thatwe can use an estimate of x = 10–20nm.On the other hand, the radius of cells or cellular
compartments, as well as ofmodel vesicles, can range betweenR=100nmand m10 m.With this, wefind a
range of ~ -P 10 6–10−2. In this range of values with P 1, as described above, pattern formation is tighly
controlled by the number of curvature-inducing proteins, with an instability occurring as soon as W 1.
Moreover, the value ofP directly controls theℓ-order of the first unstable during pattern formation, and as a
consequence controls the typical size of the protein-rich, highly-curved domains. The consequences of this fact
are discussed in the following section.

4.2. Biological relevance
4.2.1. Cell division
Cell division requires polarisation of the cell, so that the spherical symmetry of the cell is broken, leading to two
identifiable poles as well as an equatorial line. Spontaneous pattern formation via an instability due to the
presence of curvature-inducing proteins, as described here, provides a simplemechanism for such a symmetry
breaking. This occurs for themode =ℓ 2 of the instability, seefigure 6(a), which can be thefirst unstablemode
as long as > P 1 18 0.056, as determined from (34) and displayed onfigures 4 and 5. For a typical cell size of

m=R 1 m, such values of Pwould correspond to a correlation length ξ for protein density fluctuations larger
than 230nm. This value appears too high for a typical protein, given that the correlation length is expected to be
of the order of the protein size, i.e.a couple of tens of nanometers. It could, however, be a plausible value for
protein clusters, composed of a few tens of proteins with lateral sizes of the order of 100nm. If such clusters arose
by a separatemechanism, a curvature-instability such as the one described here could lead to cell polarisation.

Several proteins,many of them related to cell division, are known to preferentially localise at the poles of
bacterialmembranes [30–34].We note, however, that the genericmechanism proposed here is distinct and
unrelated to thewell-studiedMin system,which serves to localise the FtsZ protein ring in rod-shaped bacteria
[10, 11]. TheMin system involves bothmembrane bound aswell as cytosolic components, and locates the
bacterial equator via an oscillatorymechanism. Themechanism proposed heremight however explainwhy FtsZ

Figure 6.Three examples of spontaneous pattern formation via shape and protein distribution instability. (a) Instability =ℓ 2,
corresponding to cell divisionwith twodistinct poles and an equatorial line. Themode =ℓ 2 can be triggered if >P 0.056, see
figures 4 and 5. (b) Instability =ℓ 10, corresponding to large-scale protein organisation such as that observed in Staphylococcus
aureus [12]. Themode =ℓ 10 can be triggered if > ´ -P 1.4 10 4. (c) Instability =ℓ 100, corresponding to the formation of nano-
sized protein-richmembrane rafts. Themode =ℓ 100 can be triggered if > ´ -P 1.9 10 8.
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proteins can spontaneously self-assemble on vesicles, even in the absence of theMin system [8, 9]. In eukaryotic
cells, cell division ismediated by the cytoskeleton, in particular by themitotic spindle and the cleavage furrow.
Themechanismunderlying the initial positioning of this cell division apparatus is however not well understood
at themolecular level [35, 36].

Even if themechanism described here did not play a direct role in cell division, it provides a generic pathway
for symmetry breaking and the initiation of division of sphericalmembranes into two equally sized daughters,
using only aminimal number of ingredients. As such, it could serve as a plausiblemechanism for the division of
protocells, as well as of synthetic cells in bottom-up synthetic biology [37–39].

4.2.2. Large-scale protein organisation
Going beyond =ℓ 2, themechanismdescribed here also predicts pattern formationwithmodes of
intermediateℓ, e.g.in the range =ℓ 5–10. Formation of such patterns would imply protein-rich, strongly-
curved clusters with sizes on the order of 1/5 to 1/10 of the cell size, see figure 6(b). Such patterns have been
observed in L-form [6, 7] bacteria, as well as in coccal bacteria [5]. The patterns formed by PlsY andCdsA
proteins (both essential to lipidmetabolism) in Staphylococcus aureus, in particular, show a striking coupling
between protein density andmembrane curvature [12]. As seen infigures 4 and 5, and determined from (34),
modeswith ℓ 10 are expected for > ´ -P 1.4 10 4 which, for a typical cell size of m=R 1 m, would
correspond to correlation lengths x > 10 nm, well within the biologically plausible range.

4.2.3. Nano-sizedmembrane rafts
The existence of protein-rich raft domains in the plasmamembranewas controversial for some time, partly due
to a conflation between themacroscale fluid–fluid phase separation observed inmodel lipidmembranes with
the observation of rafts in living cells [40]. Nevertheless, it is currently accepted that rafts are dynamic,
fluctuating assemblies of proteins with sizes on the order of tens of nanometers [40–43]. The precise physical
mechanismbehind raft formation, however, is still amatter of debate. Currently proposed theories include that
rafts are compositional fluctuations near the critical point offluid–fluid phase separation in lipidmembranes,
[44] or that the actin cortex underlying the plasmamembrane acts as a ‘picket-fence’which inhibits the lateral
diffusion of proteins and promotes the formation of nano-scale aggregates [45].

Themodel that we have presented here predicts that, under biologically reasonable parameters, curvature-
inducing proteins can spontaneously self-organise into patterns thatmay be built from spherical harmonics with
very high-orderℓ-modes, with ℓ 1. As a consequence, in such cases the typical size of the protein-rich
domains (which goes as~ ℓR )will bemuch smaller than the cell sizeR, leading to domain sizes on the order of
tens of nanometers for amicron-sized cell, see figure 6(c) for an examplewith =ℓ 100. It is therefore tempting
to speculate that themechanismpresented heremight also be connected to the existence of such nano-scale
protein-rich rafts. Indeed, let us use the quantitative estimates of parameters obtained above, with typical values
ofmembrane bending rigidity k = k T10 B , correlation length of protein density fluctuations of x = 10 nm,
tethering strength of themembrane to the cell cortex m» ´ -k k T2.5 10 mte

6
B

4, andmembrane tension
s = 30 pN μm−1. For a small cell of radius m1 m, we can calculate our dimensionless parameters as = -P 10 4,

= ´K 2.5 105, and = ´T 7 102. Using these values in equation (33), we expect thefirst unstablemode to be
»ℓ 50. This would correspond to a typical domain size »ℓR 20 nm. For a larger cell of radius m10 m, we

calculate = -P 10 6, = ´K 2.5 109, and = ´T 7 104. Using these values in (33), we find »ℓ 500 for thefirst
unstablemode, once again corresponding to a typical domain size »ℓR 20 nm.

4.3. Summary
To summarise, we have explored in detail pattern formation in sphericalmembranes that contain curvature-
inducing proteins. Pattern formation arises from the interplay betweenmembrane curvature energy, protein
density fluctuations, and geometric constraints such asmembrane tension and confinement forces due to the
tethering of themembrane to the cell wall/cortex.We have shown that pattern formation in this system is
controlled by just four dimensionless parameters,W,K,T, andP, defined in (21) and (28). These parameters
represent the number of curvature-induced proteins on themembrane, the confinement of themembrane due
to the cell wall/cortex, themembrane tension, and the correlation length of protein density fluctuations,
respectively. Inmost circumstances, pattern formation is expected to occur as the result of an increase in the
average surface density of proteins (i.e. the total number of proteins on themembrane surface), or of a relaxation
of the geometric constraints on themembrane due tomembrane tension ormembrane tethering to the cell
wall/cortex. The patterns that arise consist of protein-rich, highly-curved domains that alternate with protein-
poor, weakly-curved domains.We hypothesise that spontaneous pattern formation as described heremight be
exploited by biological cells as away to regulate their geometry in situations that require spatial organisation,
symmetry breaking or polarisation of the cell, using only aminimal number of ingredients.
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