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Particle-based membrane model for mesoscopic simulation of cellular
dynamics
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We present a simple and computationally efficient coarse-grained and solvent-free model for simulating lipid
bilayer membranes. In order to be used in concert with particle-based reaction-diffusion simulations, the model
is purely based on interacting and reacting particles, each representing a coarse patch of a lipid monolayer.
Particle interactions include nearest-neighbor bond-stretching and angle-bending, and are parameterized so
as to reproduce the local membrane mechanics given by the Helfrich energy density over a range of relevant
curvatures. In-plane fluidity is implemented with Monte Carlo bond-flipping moves. The physical accuracy
of the model is verified by four tests: (i) Power spectrum analysis of equilibrium thermal undulations is used
to verify that the particle-based representation correctly captures the dynamics predicted by the continuum
model of fluid membranes. (ii) It is verified that the input bending stiffness, against which the potential
parameters are optimized, is accurately recovered. (iii) Simulation of two-dimensional shear flow under a
gravity force is employed to measure the effective in-plane viscosity of the membrane model, and show the
possibility of modeling membranes with specified viscosities. (iv) Interaction of the bilayer membrane with
a spherical nanoparticle is modeled as a test case for large membrane deformations and budding involved in
cellular processes such as endocytosis. The results are shown to coincide well with the predicted behavior of
continuum models, and the membrane model successfully mimics the expected budding behavior. We expect
our model to be of high practical usability for ultra coarse-grained molecular dynamics or particle-based
reaction-diffusion simulations of biological systems.

I. INTRODUCTION

Lipid bilayer membranes are integral parts of the ma-
chinery of living cells. Apart from the obvious role of
providing a mechanical and chemical barrier for the cell,
they form the boundary of nearly all the organelles in-
side the eukaryotic cells and also take part in cellular
functions such as signal transduction®. Biologically rel-
evant processes at membranes, such as protein recruit-
ment and insertion, assembly of protein scaffold at mem-
branes, and membrane remodeling often involve spa-
tial scales from tens to hundreds of nanometers, and
time scales from milliseconds to minutes’. As an ex-
ample, consider endocytosis and exocytosis at plasma
membranes?. While all-atom molecular simulations are
extremely successful for the study of individual macro-
molecules and small complexes®® and can reach ther-
modynamics and kinetics at very long timescales with
the aid of enhanced sampling methods and Markov state
modeling!¥ they have severe limitations in terms of
system sizes that can be sampled exhaustively?Y. Even
for the simple case of equilibrating micron-sized biomem-
branes, a blind scale up in all-atom molecular dynam-
ics would be out of reach of computational power for

decades to come?l. To fill this computational gap,
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and gain insights into cellular processes, the develop-
ment and application of coarse-grained models is an im-
portant aspect of computer simulation. A particularly
promising framework to model cellular signaling pro-
cesses at membranes, involving space exclusions and spe-
cific geometries found at membrane scaffolds is particle-
based reaction-diffusion (PBRD) simulation®#*2 espe-
cially the so-called interacting-particle reaction-diffusion
(iPRD) models that include interaction forces between
particles29 80, The particles in such models typically rep-
resent entire proteins, protein domains or metabolites,
and thus represent a spatial resolution of a few nanome-
ters. Despite the success of such models in simulating
cellular signal transduction processes2?31'33 these ap-
proaches are missing membrane mechanics in order to
be able to model signaling at biomembranes. In spite
of the extensive research on membrane models, there
is arguably no readily usable model at the same scale,
that is suited to be integrated into such a particle-based
reaction-diffusion framework. Especially when it is re-
quired that the model be easily tunable, robust, and yet
computationally efficient.

Bilayer membranes have been the subject of computer
simulations for more than three decades®#7. Apart
from all-atom simulations based on general purpose>®
or specifically developed force-fields3?, a vast variety of
coarse-grained computational models developed for bi-
layer membranes exist (see”**% and references therein for
an overview). While we don’t aim to provide a compre-
hensive review of all coarse-grained membrane models,
it is useful to look at important modeling approaches
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and categorize them based on the level of coarse-graining
achieved. This way, it becomes clear where the proposed
model fits, and how it provides features suitable for its
integration in iPRD simulations.

The first level of coarse-graining is achieved through
grouping a specific set of atoms in lipid molecules into
interaction centers and building effective force-fields*L.
The well-known MARTINI force-field falls into this
category?2 44 Though considerably reducing the num-
ber of particles, this approach is still only suitable for
simulating relatively small scale processes®. More re-
cently, Srivastava and Voth devised a general approach
for developing similar coarse-grained models for mem-
branes composed of specific lipid molecules or lipid mix-
tures. Their approach consists of calibrating the interac-
tion potentials to result in desired macroscopic mechanics
and structural properties?®. Simunovic et al employed
this model to successfully simulate membrane remodel-
ing by curvature-inducing proteins?*” %%, The next step
in coarse-graining is to develop “bead” models, in which
various lipid molecules are represented not by interac-
tion groups pertaining to their atomistic representations,
but by a small chain of generic particles?®®2 A major
challenge with these models is the choice of interaction
potentials®?. A higher level of coarse-graining pertains to
one-particle-thick models in which the curvature elastic-
ity is recovered through orientation-dependent pairwise
interactions®¥"63. Drouffe et al. pioneered this approach,
and showed that through these orientation-dependent in-
teractions, stable membranes and vesicles can form®Y;
though with the side-effect of predicting considerably
low bending rigidities. To control the bending rigidity,
Kohyama proposed a model in which local curvature of
the membrane affects the particle-particle interactions®.
Ayton and Voth developed a systematic approach for pa-
rameterizing the interaction potential in their EM-DPD,
and later, EM2 membrane models®*”. They performed
detailed atomistic simulations, and employed energy
equivalence in bending and bulk expansion/contraction
modes to obtain optimal parameters for the mesoscopic
model. They further applied these models in the study
of membrane remodelingf™8, From a different perspec-
tive, one-particle-thick models are also approached as dis-
cretized continuum models. Triangulated-surface models
developed by Gompper and Kroll"?'™ and Noguchi and
Gompper% follow such an approach, and instead of re-
lying on pairwise orientation-dependent potentials, uses
angle-bending potentials between neighboring triangles
to directly reproduce the curvature elasticity in a dis-
cretized model. Bahrami et al. used a similar model to
study interaction of nanoparticles with membranes >
and formation of membrane tubules™. Atilgan and Sun
also incorporated the effect of transmembrane proteins
into a triangulated model™. As the dimensions and areas
of triangular elements in these models can fluctuate, it
is common practice with triangulated-surface models to
utilize additional area-preserving constraints to control
the surface area of the membrane. Another approach

is to include the elasticity of an underlying continuous
membrane into a particle-based description through po-
tentials that depend on local surface fitting™. Finally,
the continuum description with curvature elasticity can
also be solved numerically through available finite ele-
ment methods developed for thin shell mechanics®?. In
effect, these approaches substitute particles with compu-

tational nodes of a discretized continuum model.

In this paper, we introduce a novel coarse-grained
membrane model which employs a two-particle-thick de-
scription of the bilayer membrane, with each particle ef-
fectively representing a patch of lipids on each leaflet.
This is a minimal structure that allows for flexibility
in modeling interactions of biomolecules with the mem-
branes. The model relies on simple bond-stretching
and angle-bending potentials in a dynamically updated
bonded network, and thus, provides enhanced compu-
tational efficiency through the exclusion of non-bonded
pairwise interactions. The proposed model is essen-
tially an elastic membrane model, comparable to tri-
angulated models, with the difference that the desired
elastic properties are reproduced through simple bonded
interactions in contrast to complicated orientation- or
curvature-dependent potentials. Through a parameter-
space optimization scheme, these interactions are easily
tuned to reproduce membranes with desired elastic prop-
erties. The ultimate aim of developing such a model is to
include it in large-scale simulations of cellular dynamics,
and to specifically use it for studying cellular signal trans-
duction using iPRD models. The computer experiments
laid out in the following are designed to show that, de-
spite its relative simplicity, inexpensive simulations done
with the model very well reproduce expected behavior
in terms of thermal undulations, in-plane viscosity, and
budding under the influence of external forces.

Il. THE MODEL

As shown in Fig. [lh, two close-packed lattices of
particles correspondingly represent the two leaflets of
the membrane in this model. The elastic energy den-
sity contributed to the membrane is usually expressed
in terms of the local curvature of the mid-surface of the
bilayer. We aim to avoid computing complex potential
functions based on numerically obtained local curvature
values. Thus, only bond-stretching and angle-bending
interactions amongst nearest neighbor particles are con-
sidered. Considering an arbitrarily curved membrane,
and based on its local surface geometry, relative configu-
ration of particles, and the resulting bond lengths and an-
gles are obtained. An effective energy density pertaining
to bonded interactions is thus calculated, and compared
with the curvature elasticity modeled via the Helfrich en-
ergy density to parameterize the interaction potentials.
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Figure 1: (a) Snapshot of the proposed membrane
model with particles forming top and bottom leaflets in
red and cyan color, respectively. (b) Local surface
geometry of the mid-surface in an arbitrary state of
deformation (blue surface) with a collection of particle
dimers whose positions are dictated by the mid-surface
geometry. Distances and angles between these particles
are used in order to probe the local curvature and relate
between the particle model and continuum description
of membrane mechanics.

A. Curvature elasticity of the bilayer membrane

The Helfrich energy density of a curved fluid bilayer
membrane is expressed a;

fu =2x(H — Hy)* + kG (1)

in which the constant x is the bending rigidity or splay
modulus of the membrane and & is its Gaussian curvature
rigidity or saddle-splay modulus. H and G represent the
mean and Gaussian curvatures, respectively, which are
defined based on the principal curvatures, ¢; and cg, as
H = (c1 +¢2) /2 and G = ¢1¢9. Hp is the spontaneous
mean curvature of the membrane, corresponding to a lo-
cal curvature that is induced in the membrane not by
external forces, but by internal effects such as the geom-
etry of phospholipid molecules®?.

B. Differential geometry of the particle-based membrane
model

In this model, in which the membrane is effectively
composed of “particle dimers”, i.e. pairs of particles be-
longing to the top and bottom leaflets, a hypothetical
mid-surface is assumed to lie halfway between the par-

ticle dimers. Inspired by classical continuum shell theo-
ries, we assume that bending of the double layer deforms
it such that a normal vector originating from a point p
on the mid-surface, pointing to a particle P on the upper
or lower layer, remains perpendicular to the mid-surface,
independent of the state of deformation (see Fig. [Ib).
Thus, the position of the particle P is always given as
rp =r, + %n, where n is the normal vector of the mid-
surface at point p, ¢ is the thickness of the membrane,
and the plus and minus signs correspond to particles on
the top or bottom leaflets, respectively. Without loss of
generality, we focus on particles positioned on the top
leaflet for the following derivations. For two neighboring
particles P and Q, corresponding mid-surface projections
are considered to be p and g, given by local coordinates,
r, = (0,0) and rq = (u',u?), respectively (Fig. )
Thus, the set of coordinates, ! and u?, provide a lo-
cal parametrization of the mid-surface in the vicinity of
point p. For point q, this description can be approxi-
mated through a second-order Taylor expansion:
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where e, = J,,r are the base vectors for the tangent space
at point p, I'),, = e, , - € are the Christoffel symbols of
the second kind and b, = e, , -n are the components of
the second fundamental form tensor®. It is to be noted
that summation convention between a pair of upper and
lower indices is used here. Similarly, another Taylor ex-
pansion can be used to approximate the normal vector
at point q, making it possible to express the position of
particle Q with respect to particle P as:

rrQ =TrqQ —Irp
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in which g¢,, = e, - e, is the metric tensor and we
have ¢"?¢or, = guog°” = 6F with 6% being the Kro-
necker’s delta. For the purpose of calculating partial
derivatives of the normal vector, the Weingarten’s for-
mula, n, = —bZe,, = —bu,g"" e, has been used®, Tt is
noteworthy to mention that first order partial derivatives
of the normal vector contain second order derivatives of
the position vector, r, through the inclusion of the b,
tensor components, effectively making the two approx-
imations of the same order. The length of the vector
rpq as well as the angle it makes with the normal vector
at point p, are obtained by forming the following inner



products,

rpql® = rpq - rpq
t2
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and

1
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where,

I(u) = g utu”

I(u) = by, uru”

(6)

are the first and second fundamental forms. The remain-
ing parameters in eq. are defined as follows:

Ci =T eutu’u’
Oy = I‘;‘wb(mu’*u”u7 (7)
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where I',6 = I, 90 are the Christoffel symbols of the
first kind®?. Up to this point, the derived equations hold
in all local coordinate systems at point p. A smart choice
of the coordinate system can simplify the equations con-
siderably. A perfect candidate is the locally tangent co-
ordinate system, with the following implicit definition:

w’ =y’ — %quu*#u*y (8)
in which (u*l, u*Q) are the new coordinates with the same
origin at point p, and the Christoffel symbols are calcu-
lated in the old coordinate system at point p. It can be
shown that in this coordinate system, Christoffel symbols
vanish identically, and yet, because (Qu*/0u*) = o¥,
first order length differentials as well as the first and sec-
ond fundamental forms remain unchanged.

C. Parameter-space optimization of interaction potentials

Now that we have obtained equations describing the
relative configuration of model particles in an arbitrarily
curved membrane (Egs. and , we can select inter-
action potentials which are functions of |rpg| and 6,pq,
and calculate effective energy densities corresponding to
arbitrary curvature states. In effect, we seek to obtain
numerical values of the energy density arising from a spe-
cific set of interaction potentials, as a function of mid-
surface curvature, prior to running an actual simulation
with these potentials. As a simple choice, we assume
that nearest neighbor particles on both top and bottom
leaflets are connected via lateral bonds. Also, an angle-
bending potential is assumed to exist for out-of-plane ro-
tations of such bonds. These two bonded interactions

are handled respectively with the following Morse-type
bond-stretching and harmonic angle-bending potentials:

Ustreten (T) =D, (1 - eia(erQ‘ia))2

. (©)

Ubend (0) = Ky (9pPQ - 5)

where a denotes the lattice parameter (or equilibrium
separation of particles on each leaflet) and the equilib-
rium angle is chosen to be 7/2, which corresponds to
angle-bending with respect to a flat membrane. It is to be
noted that this choice of bonded interactions, and the po-
tentials to handle them, is by no means unique. The gen-
eral procedure laid out here can be applied to many other
choices, with the condition that geometric information
can be extracted uniquely from the curvature of the mid-
surface. In order to calculate the effective energy density,
an area element on the mid-surface corresponding to a set
of interactions has to be defined. We propose Voronoi
tessellation be used to do so in a systematic way. In the
simple case of a hexagonal close-packed lattice of parti-
cles, Voronoi tessellation simply yields hexagons centered
at particles’ projections on the mid-surface. Though in
general, the shape and area of elements corresponding
to particle projections is a function of their coordination
number. Especially considering the fact that the num-
ber of neighboring particles changes due to bond-flipping
Monte Carlo moves that will be discussed in Sec.
With such a definition for area elements, half of each
lateral bond emanating from a particle P, plus all the
out-of-plane angles having it as the vertex, are included
in one area element around particle P. But without per-
forming the simulation, we don’t have a priori knowledge
of the in-plane angle, v, that this star-shaped construct
around each particle makes with the principal directions
of the curvature of the mid-surface. Thus, in general,
the calculated effective energy density depends on this
in-plane angle. To compensate for this ambiguity, and
avoid directional bias, the effective energy density is nu-
merically averaged out over possible values of . This
way, the effective potential energy density is defined as:

1 Z Us retch + Z Ubendin
feH:<2 A g> (10)
P

where the summations are carried out for all interactions
corresponding to one particle and AA denotes the area
element. The same procedure applies to the pair particle,
P’, which lies on the bottom leaflet, and the correspond-
ing energy density is simply added to feg.

The chosen interaction potentials given in eq. [9] con-
tain a set of parameters, D., o, and K. In order to
obtain optimal values for these parameters, a dimension-
less error measure is defined as

. Jder [dey (fer — fu)”
del deQ fI%I

in which the integration is carried out in the mid-surface
curvature space spanned by its principal curvatures, c;

(11)



and cs. The integration range is arbitrary, and corre-
sponds to the range of curvatures that have practical rel-
evance. Minimizing this error measure with respect to
potential parameters yields their optimal values.

D. Bond-flipping moves

The membrane model developed so far is based on a
fixed topology of bonded interactions, and thus, pertains
to a two-dimensional solid. In contrast, lipid bilayer
membranes are two-dimensional fluids in which lipid
molecules can freely diffuse laterally, and this fluidity is
essential for membrane remodeling®®. Following a scheme
commonly used in triangulated membrane models™ 3,
the in-plane fluidity is introduced to the model via bond-
flipping Monte Carlo moves. In a quadrilateral formed by
four neighboring particles (e.g. PRQS in Fig. ), swap-
ping of one diagonal bond (PQ) with the other (RS) is
proposed with a frequency ¢ during the simulation. This
proposed move is accepted with the Metropolis-Hastings
probability of exp (—f (Fnew — Fola)) where FEoq and
FE\ew are the corresponding potential energies of the sys-
tem in the old and new topologies, and 8 = 1/kT with
k being the Boltzmann constant and 7' the temperature.
Introduction of these Monte Carlo moves, which favor
flipping bonds under tension to lower energy ones, results
in a net energy loss. In a simulation in the canonical en-
semble, this lost energy will be compensated by the ther-
mostat, which is the same as extracting work and adding
equal amount of heat to the system. Thus, in effect, this
is an entropy production mechanism comparable to vis-
cous loss.

The frequency, ¢, with which the bond-flipping moves
are proposed, acts as a control parameter for the model.
The in-plane dynamics of model particles, which deter-
mines kinetic properties such as the effective in-plane dif-
fusion and surface viscosity of the membrane, can be ma-
nipulated via the frequency of bond-flipping moves. We
expect the membrane to assume more fluidity and faster
in-plane dynamics with increasing values of ¢. This as-
sumption will be put to quantitative test in Sec. [V B}

I11. SIMULATION DETAILS
A. Parametrization

In order to implement the parameter-space optimiza-
tion procedure explained in the previous section, it is nec-
essary to have elastic constants of a bilayer membrane,
namely x and R, as input. Experimental determination
of the bending rigidity, x, is based on the two general
approaches of monitoring fluctuations or by pulling out
tethers and measuring the forces involved®X88, As ex-
pected, the value of the bending rigidity depends on
temperature, as well as the composition of the bilayer
membrane. The range 10 to 40kT is usually quoted®28s,
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Figure 2: Comparison between the Helfrich (fy) and
the fitted effective energy density of the proposed model
(forr) with the optimal parameters for a hexagonal
membrane model with the lattice parameter of 10 nm.

Since we are presently not focusing on simulating a mem-
brane with a specific composition, the value of 20kT is
chosen for the bending rigidity®®. On the other hand,
the saddle-splay or Gaussian curvature modulus has been
elusive to experimental determination. This is a di-
rect consequence of the Gauss-Bonnet theorem which
limits changes in the integral of the saddle-splay en-
ergy term to cases where the topology of the membrane
changes. Methods based on membrane buckling have
been proposed to calculate Gaussian curvature modu-
lus in simulations?® but they are not experimentally
applicable. In order to obtain a realistic value for our
simulations, the typical ratio #/x = —0.8 is used to ob-
tain the Gaussian curvature modulus of —16kT8%20, We
have used the quasi-Newton BFGS algorithm®? from the
SciPy optimize package for numerical minimization of the
error measure defined in eq. [II] The resultant potential
parameters are used to calculate the effective energy den-
sity as a function of mid-surface curvature. Fig. [2| shows
a comparison between the Helfrich energy density and
the optimized effective energy density in the curvature
space, for the case of a model with the lattice parame-
ter of 10nm. Indeed, the presently parametrized poten-
tial agrees well with the Helfrich energy density over a
relatively wide curvature range. It is to be noted that
the elastic constants chosen here serve as an example to
illustrate the applicability of the model, where the gen-
eral procedure of calculating the effective energy density
and parameter space-optimization (Sec. [II C|) can be ap-
plied with any choice of k and % values. This offers the



flexibility of modeling different membranes via the same
parameterizing process.

In addition to the potentials governing bond-stretching
and angle-bending between nearest-neighbor particles, a
harmonic potential with the strength of 4.0 kT /nm?, and
the equilibrium distance of 4.0 nm, is also added between
particles in each dimer. This gives rise to a 4.0 nm thick
membrane. The potential strength is chosen high enough
to preserve the thickness variations within a reasonable
range, and also to prevent the thermal motion of the
particles to cause them to flip between the leaflets. Note
that this potential may also be calibrated with respect
to the actual stiffness of bilayer membranes across their
thickness.

Finally, the masses of the representative particles in
the model are determined based on the effective surface
density of bilayer membranes in equilibrium. For the
simulations presented here, the case of a DPPC bilayer
membrane is chosen, for which area per lipid is deter-
mined through atomistic simulations® to be 0.640 nm?.
This value results in a surface density of 380.9 ng cm™2
and individual particle mass of 0.165 ag. A quick calcula-
tion shows that each of the representative particles in the
model with the lattice parameter of 10 nm thus accounts
for about 140 DPPC molecules.

B. Time integration

In order to simulate tensionless membranes in thermal
equilibrium, an extended systems dynamics approach
is used to derive equations of motion and devise the
proper numerical integration scheme. The systematic
approach developed by Martyna et al. (the so-called
MTXK integrator) based on sequential application of dis-
cretized Liouville operators proved to be a robust way
to achieve proper thermostatting and barostatting?# 26l
Thermostatting is achieved through Nosé-Hoover chains,
and isotropic cell fluctuations are used for barosttating
to achieve zero in-plane tension. With the mass chosen
for individual particles and based on the optimized val-
ues calculated for potential parameters, the time step for
the explicit integrator is chosen to be 20 ps.

It is to be noted that while the model developed so
far has a well-defined physical length scale pertaining to
the thickness of the membrane, attributing a singular
time scale to it is not as straightforward. It is reason-
able to assume that the motion of membrane particles is
governed by two decoupled dynamics, respectively in the
in-plane and out-of-plane directions. As was discussed in
Sec. [[TD] and as the results given in Sec. [V B]will show,
the in-plane dynamics of the model can be manipulated
via changing the frequency of bond-flipping moves, and
can thus be calibrated by comparing a resultant kinetic
property, such as surface viscosity, with its respective ex-
perimental value. On the other hand, in the absence of
any solvent effects, and with the deterministic MTK in-
tegrator used here, the out-of-plane dynamics is solely

determined by the particle masses and the stiffness of
the forcefield developed based on the scheme introduced
in Sec. Ml As the forcefield is the outcome of the
parameter-space optimization aiming to reproduce the
desired membrane elasticity, the only remaining param-
eter is the mass of model particles. Choosing the deter-
ministic MTK integrator has the advantage of putting
the robustness of the model to the test where no pre-
scribed damping is present, but has the side-effect of pro-
ducing very fast out-of-plane dynamics with the current
choice of surface density (see Sec. . While the value
of membrane surface density and the resulting particle
mass can in principle be manipulated to control the time
scale, doing so does not correspond to a meaningful phys-
ical setup. Achieving physically relevant out-of-plane dy-
namics pertaining to membrane patches suspended in a
solvent is only possible through either implementing a
suitable stochastic integrator, or including solvent effects
explicitly or implicitly. This will be addressed in future
applications of the model.

C. Simulation code and visualization

Mainly due to the fact that the implementation of
bond-flipping Monte Carlo moves in available molecular
dynamics software packages proved impractical, an in-
house C++ code has been developed to handle the sim-
ulations. Visualization is done via the Visual Molecular
Dynamics (VMD) software package””.

IV. RESULTS AND DISCUSSION

A. Thermal undulations

A lipid bilayer patch in thermal equilibrium undergoes
significant out-of-plane thermal undulations®®. These
undulations can be studied from an statistical mechan-
ics point of view to obtain energy distribution between
different vibration modes. Considering a square mem-
brane patch of side length L. Its mid-surface can be
parametrized as r = (x,y, h (z,y)), where h is the height
function (the so-called Monge description). Assuming
that this membrane patch has periodic boundary condi-
tions in the z and y directions, the height function can
be expressed as a discrete Fourier series:

h= Z B (Qm.n) €xp (i Q- T) (12)

m,n

in which qp,,,, = 2% (m,n) is the wave vector. It can be
shown that based on the Helfrich expression (Eq. [1)) the
energy corresponding to each vibration mode is given by
%RL2q4 h(q) h*(q), and thus, application of the equipar-
tition theorem yields the power spectrum of the thermal
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Figure 3: Power spectrum of thermal undulations of
membrane patches with the lattice parameter of 10 nm
and different bond-flipping frequencies. All patches
have the same lateral size of ~1 pm and are equilibrated
at 298 K. Dashed lines are fits of the function C (¢L)"
to the data, whereas the solid black line is the
prediction of the continuum model with the bending
rigidity of 20kT, the same value used as an input for
parameterizing the interaction potentials.

undulations as:
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The ¢~* power law is used as a test to observe if the
particle-based model reproduces the continuum behavior
dictated by the Helfrich energy density correctly. Also,
fitting eq. [I3]to the results yields the value of the bending
rigidity, .

As a first experiment, membrane patches of approxi-
mately 1pm in size with the lattice parameter of 10 nm
are simulated at constant temperature of 298 K. To en-
sure that the membrane patches have been indeed equili-
brated, an estimate of the relaxation time of the system
is required. Following Farago®!, two methods are used
for gaining this estimate:

e Measuring the time it takes for the potential energy
of the membrane to settle to fluctuations about an
equilibrium value,

e Measuring the relaxation time of the longest wave-
length in thermal undulations.

Both measures give values in the 100 ns range, which sig-
nifies a rather fast out-of-plane dynamics. Thus, a total
time of 10% ns are used for each simulation, out of which
the second half is used for sampling observables. The
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Figure 4: Similar to Fig. [3| for thermal undulations of
membrane patches with various lattice parameters and
lateral dimensions. All patches are simulated with the

same bond-flipping frequency of 50 ns~!.

resulting equilibrium trajectories are used to calculate
a discrete height function defined on a constant spatial
grid, and fast Fourier transform is used to extract its av-
erage power spectrum. This process is repeated for mod-
els with different bond-flipping frequencies, which is ex-
pected to vary the in-plane fluidity of the membrane. The
results are depicted in Fig. |3 The solid black line shows
the prediction of the continuum model for the bending
rigidity of 20kT. Our model reproduces the continuum
behavior quite accurately, and also the bending rigidity
is recovered very well. To further verify this, two sets
of equations, C (¢L)", and (1/k) (¢L)™* are fitted to the

first 8 values of <B(q) B*(q)>/L2. It is to be noted that

the expected continuum behavior only applies to high
wavelength undulations and separation from the ¢~ be-
havior is to be expected at short wavelengths. The pa-
rameters for these fits are given in Tab. [[ It is evident
that for all cases, the n = —4 behavior of a continuum
model is very well reproduced. Also, from the second
fit, the magnitude of the effective bending rigidity of the
membrane, x, is obtained, and can be compared with the
input value of 20kT with good accuracy.

As the second test, the power spectrum of thermal un-
dulations for models with different lattice parameters of
10, 15 and 20 nm and the same bond-flipping frequency of
¢ = 50ns~! are studied. To do a proper comparison, for
lattice parameters other than 10nm, two cases are sim-
ulated. First, a square membrane patch with the same
lateral dimension of 1 pm is spanned with fewer particles
at larger separations, and second, the same number of
particles are used, which form larger patches. The results



are depicted in Fig. ] It is observed that increasing the
lattice parameter in general has little effect on the ability
of the model to reproduce continuum behavior at large
wavelengths. Tab . 1] gives the results of similar C (qL)"
and (1/k) (qL)™* fits to these data. Again, the expected
n = —4 and k = 20kT behavior is very well reproduced
by the model. Comparing the results for the two different
membrane patches simulated in the case of larger lattice
parameters also shows no significant finite-size effect.

Table I: Parameters of the least sgluares fitting of
functions C (¢L)" and (1/k) (¢L)™" to the thermal

undulations power spectrum, <h( )h*(q )>/L2, for

membrane patches with the lattice parameter of 10 nm,
the same lateral size of ~1 pm, and different
bond-flipping frequencies, ¢ (data points presented in

Fig. 3).

#(ns™ ") n & (kT)
0.0 -3.97 £0.08 21.62 + 0.83
10.0  -3.99 £ 0.07 19.74 £ 0.71
20.0 -3.93 £0.09 18.73 £0.75
30.0 -3.98 £0.08 18.82 £ 0.74
40.0 -3.94 £ 0.09 18.75 4+ 0.83
50.0 -3.97 £0.09 19.44 £ 0.83

Table II: Similar to Tab. for membrane patches with
the given lattice parameter a and lateral dimension L
(data points presented in Fig. @)

a (nm) L (pm) n % (kT)
10.0 1 -397+£0.09 19.44 £ 0.83
15.0 1 -3.90 £ 0.27 21.61 £ 0.75
15.0 1.5 -390 £0.12 21.12 £ 0.26
20.0 1 -3.83 £0.16 21.5 £ 0.28
20.0 2 -3.97 £ 0.11 23.67 £ 0.21

B. In-plane fluidity

As explained in Sec. [[TD} bond-flipping Monte Carlo
moves have been implemented to model the in-plane flu-
idity of the bilayer membrane. It is expected that the
frequency of proposing bond-flipping moves, ¢, is corre-
lated with the actual fluidity of the membrane. The flu-
idity of the 2D liquid is described in terms of the surface
viscosity, which arises from the assumed linear relation
between the in-plane shear stress and the correspond-
ing velocity gradient. This assumption in effect means
that the bond-flipping moves give rise to a Newtonian
fluid. In order to measure the surface viscosity of the
membrane, simulation of a 2D Poiseuille flow under the
influence of a gravity-like force f = (mg,0) with fixed
parallel boundaries is performed™. The whole mem-
brane patch is kept in a planar configuration by adding
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Figure 5: Surface viscosity of the membrane model as a
function of the frequency of bond-flipping moves at T =
298 K. Superimposed simulation snapshots show the
development of Poiseulle flow under a gravity-like force
for the case of ¢ = 50ns~!. The color gradient
corresponds to the initial position of particles in the
flow direction. The solid red line is the function
1 = Noo €XP (fC’¢/¢2) fitted to the simulation results.

harmonic penalty for displacement in the normal direc-
tion. Reaching steady-state, the velocity component in
the flow direction develops into the well-known parabolic
profile with vyax = pgL?/8n, where p and 7 are the mem-
brane’s surface density and surface viscosity, respectively.
Superimposed frames on Fig. [5| show development of the
flow in the simulated model for the case of ¢ = 50ns~" at
T = 298 K. Values of surface viscosity (in units of surface
poise) versus the bond-flipping frequency are also given
in Fig. As is expected, surface viscosity of the mem-
brane decreases rapidly as the frequency of bond-flipping
moves increases from 5ns~! to 50ns~'. The red line is
a least squares fit of the function 7 = 7. exp (fC¢ / ¢2)
to the simulation results with 1, = 9.41 x 1071%sp and
Cy = 95.46 ns~3. Surface viscosity of different phospho-
lipid bilayers have been measured to be in the range 10~7
to 107%s If we employ this exponential fit, a
choice of the bond-flipping frequency in the range ¢ =
3.2 to 4.5ns~! reproduces the experimental range of sur-
face viscosity. It is to be noted that in principle, surface
viscosity is a kinetic property dictated by the in-plane
dynamics of the model, which in turn depends on the
time integration scheme. Thus, the general procedure
described in this section has to be repeated if another
integrator is used.



Figure 6: Representative snapshots of a nanoparticle
wrapping simulation for a 100 nm spherical nanoparticle
with the dimensionless adhesion energy of u = 3.0 and
interaction range of p = 0.1R.

C. Nanoparticle wrapping

As a final test of the usefulness of our membrane model
to handle substantial deformations and model biologi-
cally relevant membrane remodeling processes, we simu-
late the interaction of spherical nanoparticles with the
membrane, as a well-known benchmark syste
This simple system mimics the endocytosis of nanoparti-
cles or viral capsids by cell membranes. It is a useful test
for the membrane model to show that a) the model offers
enough flexibility to simulate the budding behavior of bi-
layer membranes, and b) if it correctly reproduces the in-
terplay between bending and adhesion energies. For this
computational experiment, a spherical nanoparticle with
the radius of R is put in the simulation box in the vicin-
ity of a square shaped membrane patch. The nanopar-
ticle interacts with the membrane through a Morse-type
surface adhesion energy density of U, exp [— (r — R) /p],
where 7 is the radial distance between the center of the
nanoparticle and the membrane surface. For this type of
nanoparticle-membrane interaction, and with a contin-
uum membrane model, semi-analytical studies’®® have
been carried out on the degree to which the surface of
the nanoparticle is covered by the membrane, as a func-
tion of the dimensionless adhesion energy u = UpR2 /K
as well as the potential range, p. The parameter u is
the ratio between the nanoparticle-membrane adhesion
energy and the energy needed to bend the membrane
to a spherical shape. In order to obtain an approxima-
tion of minimum energy configurations of the membrane,
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Figure 7: Fraction of nanoparticle’s surface engulfed by
the membrane as a function of dimensionless adhesion
energy, u, for the same interaction range of p = 0.1R.

The continuous red line represents the prediction of the

continuum mode 2. Superimposed are two slides
showing “heat maps” of particle positions in final stages
of nanoparticle wrapping. The green curves in the slides
are catenary curve fits to the neck regions,
corresponding to zero energy surfaces.

and make a more meaningful comparison of the results
with analytical models, simulated annealing is performed
on the system of nanoparticle interacting with the mem-
brane. The temperature of the system is decreased from
300K to 50K in 25 consecutive steps, and the system
is equilibrated in each step. Fig. [6] shows snapshots of
the simulation performed for a spherical nanoparticle of
100 nm radius interacting with a 1 pm membrane patch,
with v = 3.0, and p = 0.1R = 10nm. Values of nanopar-
ticle surface coverage for different choices of w, and for
the same interaction range of p = 0.1R are give in Fig.
[ Added on the figure is the prediction of the contin-
uum model™ (red line). It is observed that the model
follows this prediction with very good accuracy. The fig-
ure includes two slides showing “heat maps” of particle
positions in final stages of nanoparticle wrapping for the
two cases with u = 1.5 and u = 3.0. On the slides, cate-
nary curves are fitted to the neck region (green lines).
A catenoidal membrane segment, which corresponds to
zero bending energy, is expected in the unbound neck re-
gion, when the interaction range p approaches zerd10Z,
Yet, for non-zero interaction range, the catenary is still
a good approximation for this region™2. The good fit
to the catenary curve is an indication that the particle-
based model very well captures the zero-energy regions
and assumes corresponding minimal surface geometries.



V. CONCLUSION

We have described a strongly coarse-grained model for
simulating lipid bilayer membranes that is similar in na-
ture with triangulated surface models, but is purely par-
ticle based, and as such suitable for the seamless inte-
gration into interacting-particle reaction-diffusion simu-
lations. The model incorporates particle dimers, repre-
senting each leaflet with particles in a close-packed ar-
rangement, and is thus suitable for distinguishing the
effects corresponding to interior and exterior of cells.
The lattice parameters are in the 10 nm range, leading
to each particle to laterally represent more than a hun-
dred lipid molecules. The model relies on bond-stretching
and angle-bending interactions among nearest-neighbor
particles with parameters optimized to reproduce a pre-
scribed macroscopic curvature elasticity.

It has been observed that giant plasma membrane vesi-
cles generated from cell membranes are “optically ho-
mogeneous” at physiological temperatures’’d, This in
essence means that on length scales of a few hundred
nanometers and above, these vesicles, which contain com-
plex lipid and protein composition similar to cell mem-
branes without cytoskeletons, look like and behave like
reconstituted homogeneous vesicles made from a single
species or a few species of lipids. Thus, whereas cell
membranes have a complex composition of a multitude
of lipids and proteins, which would be hard or impossi-
ble to model bottom up via molecular or coarse-grained
approaches, their mechanical behavior and assumed ge-
ometries at sufficiently large length scales can be satis-
factorily modeled using an elastic membrane model, such
as the one proposed in this paper.

We demonstrated that the proposed model repro-
duces the mesoscopic physics of bilayer membranes accu-
rately, by studying thermal undulations, shear flow, and
nanoparticle wrapping in a quantitative manner. These
computer experiments have proven the model to be re-
liable in different equilibrium and non-equilibrium sim-
ulations, and correctly predict the expected behavior of
lipid bilayer membranes as two-dimensional fluids obey-
ing curvature elasticity. The fact that the in-plane flu-
idity of the membrane can be adjusted through choosing
the frequency of bond-flipping moves endows the model
with the ability to include regions with different viscosi-
ties, and to mimic phenomena such as lipid rafts.

The proposed model achieves remarkable computa-
tional efficiency through avoiding non-bonded pairwise
interactions. With the MTK integrator used here, in the
case of a 1pm membrane patch that constitutes about
23 000 particles, simulations done on a 2.66 GHz machine
achieved 1 s long trajectories in less than one hour of cpu
time. The small time step of 20 ps used here is due to very
small particle masses. Though limiting the time step in
molecular dynamics, the small masses lead to vanishing
inertial contributions. Thus, if the Langevin dynamics
is applied, and a stochastic integrator with significant
damping corresponding to actual biological environment
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is used, much larger time steps are expected. This will
pave the way for simulating cellular processes in their
actual time scale.

Our simulations of the wrapping of spherical nanopar-
ticles demonstrate that the presented model is able to
capture biologically relevant membrane remodeling pro-
cesses such as pit formation and endocytosis, where large
local curvatures are induced as a result of external in-
teractions. In contrast with the nanoparticle wrapping
simulations, protein-membrane interactions can be mod-
eled more naturally by including the induced local curva-
tures into the bonded interactions themselves. In PBRD
or iPRD frameworks, such effects can be naturally mod-
eled using reversible binding-unbinding reactions. Armed
with these capabilities, we ultimately aim to use this
coarse-grained model in the context of iPRD simulations
to study cellular signal transduction at large spatiotem-
poral scales.
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