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Role of generosity and forgiveness: Return to a cooperative society
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One’s reputation in human society depends on what and how one did in the past. If the reputation of a
counterpart is too bad, we often avoid interacting with the individual. We introduce a selective cooperator called
the goodie, who participates in the prisoner’s dilemma game dependent on the opponent’s reputation, and study its
role in forming a cooperative society. We observe enhanced cooperation when goodies have a small but nonzero
probability of playing the game with an individual who defected in previous rounds. Our finding implies that even
this small generosity of goodies can provide defectors chances of encountering the better world of cooperation,
encouraging them to escape from their isolated world of selfishness.
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I. INTRODUCTION

What is best for a myopic individual may not be the
best for a long-lasting society. Suppose that two persons A
and B trade their goods α and β for their own benefits: A
needs β and B needs α. One can maximize one’s profit by
giving nothing or inappropriate goods to one’s counterpart
in return for getting his or her wanted goods. Whether or
not the opponent cheats, one is always better off cheating
the trade partner. Consequently, both individuals, if they are
rational, decide to cheat, although the total profit of the two
is maximum when both of them cooperate and remain loyal.
Such a situation, in which the individual and social benefits
are in conflict with each other is called a social dilemma, with
the prisoner’s dilemma game (PDG) the most popular example
[1,2]. In the conventional PDG, each player can cooperate or
defect. Defection always gives a better profit irrespective
of what the opponent does. Rationality of all individuals is
assumed in the sense that all players try to maximize their own
profits without considering the total profit of the society. The
direct outcome from the setting of the conventional PDG is that
all the players defect in the end, which is a Nash equilibrium
of the conventional PDG.

From the viewpoint of natural selection, the behavior
that gives the lower payoff measured by the number of off-
spring must eventually die out. Accordingly, if a cooperating
individual gets a lower payoff than defecting individuals,
defection must flourish in the end in this brutal world of
Darwinian selection: Cooperation must be a rare thing in
reality. Nevertheless, cooperative behaviors are abundantly
observed in human societies and natural worlds. For this
reason, extensive research has been carried out to find a
mechanism that makes cooperative behavior evolutionary
stable [3,4].

Here, we focus on the indirect reciprocity [5–11] which
explains the emergence of the cooperation in the following
context: People tend to cooperate with a person who has
a good reputation and thus is expected to cooperate back.
Indirect reciprocity has been found to play an important
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role in “third party altruism” [12] among strangers. Due to
the fast development of Internet technology, more and more
buyers get product information online and a huge volume of
products is traded based on e-commerce. In a typical online
shopping system, purchases of products are made between
almost-anonymous buyers and sellers who have never met
before. We believe that the success of such online trading
hinges on the existence of a reliable and trustful reputation
system. In this respect, indirect reciprocity must be the key
factor for maintaining the online marketplace, on which
experimental investigations have been performed [13,14].

Previously, optional interactions based on indirect reci-
procity have been examined [8] in terms of establishing a
reputation. Reputation value has been treated as a binary
variable, and thus defectors are not permitted to play games
when the defector’s reputation is established. In the present
work, on the other hand, we more generally introduce
nonbinary reputation values with a memory horizon τ and
participation probability function based on the reputation
value. Whereas previous works have focused on establishing
a reputation, we concentrate on participation strategy with
public reputation values. The main theme of the paper is to
study the role of preferential participation in the survival of
cooperators. We formulate the evolution of the population
strategies and find the role of generosity and forgiveness
for the evolution of cooperation. For τ = 1, if we lower
the participation barrier for defectors, we observe that such
generosity enhances cooperation in a society. For τ > 1, the
preferential participation rule plays an important role in the
evolution of cooperation by naturally introducing forgiveness
in the sense that a one-time defection can be forgiven in view
of a long sequence of cooperation in the past. The remainder
is organized as follows: we introduce our model in Sec. II in a
general context, and its mean-field formulation is described in
Sec. III. Our mean-field results are reported in Sec. IV, and in
Sec. V we summarize our results and interpret our conclusion
in the setting of social cooperation.

II. MODEL

People repeatedly meet and interact with each other in a
society. Depending on what a player and opponents do, the
player gets payoffs from interaction. Accordingly, people tend
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to avoid playing with low bad-reputation partners. Defecting
cheaters can get a large payoff the first time, but the cheaters
have a hard time playing the game in the next round since
they are now tagged as cheaters due to their bad reputation:
Defectors can cheat once but not twice, because selective
cooperators avoid playing the game with them. Hence, we
focus on the option to refuse the game based on the partner’s
reputation.

We study the evolution of the stochastic optional PDG
[15–17] in a complete graph. A player can choose the “refusal”
option to opt out of the game. Each player proposes a game to
his or her neighbors with a certain probability which depends
on the neighbors’ reputation. Two players actually play the
game only when they propose the game mutually. For the sake
of simplicity, we consider only two types of players, cheaters
and goodies. Cheaters are indiscriminative defectors. They are
not concerned about others’ reputations and propose games
for their neighbors at a given constant probability η ∈ [0,1].
Cheaters always defect once they play games. Goodies, on the
other hand, are discriminative cooperators. When they play
games they always cooperate, but they are picky in choosing
games in which to participate. Goodies propose games to
their neighbors depending on their reputations (see below for
details).

In general, the reputation of a player reflects what the person
has done in the past. It is fully determined by the strategy
history of the player. We denote the strategy of the ith player
at time t as si(t). It is 1 and 0 for the goodie and the cheater
strategies, respectively. The more frequently they have played
goodie in the past, the better will be their current reputation.
Reputation value is defined as the fraction of games in which
the player has chosen the goodie strategy in the past. We also
incorporate the fact that no one remembers the past for eternity
and introduce the memory horizon τ , which is a time cutoff in
the calculation of the reputation value. For t > 0, the reputation
value ri(t) of player i at time t is defined as

ri(t) = 1

τ̃

t−1∑
t ′=t−τ̃

si(t
′), (1)

where τ̃ = min(τ,t) is the minimum of τ and t . At time t = 0,
when the first game begins, there is no reputation value to
consult and thus we assign ri(t = 0) = 1/2 for all players.
We also assume that the values of reputations are faithful and
accessible to all players.

As mentioned above, the game proposal probability of a
player depends on the player’s strategy and the reputation of
the partner. We denote the probability ps(r) of a player with
strategy s to propose a game to a neighbor with reputation r

as

ps(r) =
{

(1 − ε)r + ε for s = 1 (goodie),
η for s = 0 (cheater). (2)

In words, p0(r) = η means that a cheater (s = 0) does not
discriminate his or her counterpart, while p1(r) = (1 − ε)r +
ε implies that a goodie (s = 1) is picky and proposes the game
depending on the reputation of the partner.

The reputation value r(t) defined by Eq. (1) is used when a
goodie decides whether or not to propose a game to its potential
partner. Since p1(r) is an increasing function of r , a goodie

has a higher probability of playing the game with someone
with a better reputation. The “generosity” parameter ε plays
an important role for τ = 1 in our model. If it is 0 (ε = 0),
zero-reputation players (with ri = 0) cannot play games with
goodies regardless of their current strategy. Hence, they will
play only with cheaters if ε = 0, while a nonzero ε provides
the route for the zero-reputation members to play games with
goodies.

From our preferential participation rule in Eq. (2), forgive-
ness naturally emerges for τ > 1. Forgiveness is a reward
response to one’s past cooperative behavior. Therefore, we
can interpret nonzero participation probabilities for nonzero
reputation partners as forgiveness. In contrast to generosity,
forgiveness does not work for null reputation partners. How-
ever, similarly to generosity, forgiveness also provides chances
for cheaters to play games with goodies by remembering their
past cooperative behaviors.

Once a pair plays the game (after mutual proposals), each
player gets the payoff of the PDG. We consider a simplified
version of the PDG, “donation” PDG, in which payoffs are
expressed in terms of the cost c and the benefit b of the
cooperation [6]. Cooperators pay the cost c and the counterpart
gets benefit b. Defectors do not pay the cost and no benefit
occurs. If we use the notation |si〉 = ( 1

0 ) for a cooperator and
|si〉 = ( 0

1 ) for a defector, the total payoff of the ith agent is
written as

Ei(t) =
∑
j∈�i

〈si(t)|M|sj (t)〉, (3)

where �i is the set of all neighbors who proposed the game
mutually with i, and the payoff matrix is given by

M =
(

b − c −c

b 0

)
. (4)

From now on, we fix the parameter b = 1 without loss of
generality and vary c within the PDG constraint. Since the
reward R, the temptation T , the sucker’s payoff S, and the
punishment P in the conventional PDG correspond to R = 1 −
c, T = 1, S = −c, and P = 0 in our setting, we impose 0 <

c < 1 for the PDG constraint T > R > P > S (with 2R >

T + S). A player updates his or her strategy by mimicking
a successful one. Before updating the player’s reputation, his
or her strategy is known only to directly interacting other
individuals. Hence, adoption of a more successful strategy
occurs only via direct interaction. In other words, we assume
that the reputation is public information, but a player’s current
strategy is local information before it is reflected in his or her
reputation.

The games are played as follows: (i) Each player proposes
games to his or her neighbors at the probability given in
Eq. (2). If two players mutually propose, they play the game.
Otherwise, they do not play the game. Since player i proposes
a game to player j at probability psi

(rj ) and player j does the
same to player i at probability psj

(ri), the two play the game
with joint probability,

pij = psi
(rj ) psj

(ri). (5)

(ii) Each player gets payoffs from the games. The total payoff
that player i earns at time t is Ei(t) in Eq. (3). (iii) Strategies
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are updated synchronously. Every player randomly picks one
of his or her game partners. If the neighbor’s total payoff is
higher than the player’s own, the player follows the strategy of
the chosen neighbor. Error (or mutation) can occur during the
updating process at the mutation probability μ: Each player
adopts the successful strategy of a chosen neighbor at proba-
bility 1 − μ and chooses another strategy at probability μ. (iv)
Reputations in Eq. (1) are also synchronously updated for the
next round of iteration.

To summarize our model, there are five control parameters:
The memory horizon τ controls how distant a past a player
remembers for the reputation. Two parameters, η and ε,
in Eq. (2) determine the proposal probabilities for cheaters
and goodies, respectively, and we call the latter parameter ε

generosity henceforth. We fix b = 1 and use the cooperation
cost c in the payoff matrix as another parameter in the present
paper. We also control the mutation probability μ that appears
in the strategy update.

III. EVOLUTIONARY DYNAMICS

We consider our optional PDG model in a complete graph.
Each player’s behavior is described by what the person did
in the past and does today, and we use the term state to
denote each player’s strategy history profile within the memory
horizon τ and current strategy.

The state Si(t) of player i at time t is defined as

Si(t) =
τ̃∑

k=0

2ksi(t − k) (6)

with τ̃ = min(t,τ ). It can have Ñ = 2τ̃+1 different integer
values, S = 0, 1,2, . . . ,Ñ − 1. We set si(k) = 0 for all k < 0
so that the state of Eq. (6) can be written as

Si(t) =
τ∑

k=0

2ksi(t − k) (7)

for t < τ as well as t � τ . If we read Si as a binary
number, it becomes si(t − τ )si(t − τ + 1) . . . si(t − 1)si(t).
For example, when τ = 1, we have four possible states, 00,
01, 10, and 11, for t � 1 and two possible states, 00 and
01, for t = 0. For convenience, we also use “H” and “G”
(for 0 and 1, respectively) to represent cheater and goodie,
respectively. (To denote a cheater we use H, which is the
second letter in it instead of the first letter, C, because the
latter has been widely used to denote a cooperator). For
instance, HG (01) means that the player was a cheater one
time step ago and becomes a goodie now. If two players,
i and j , are in the same state [Si(t) = Sj (t)], they have
the same reputation [ri(t) = rj (t)] and (current) strategy
[si(t) = sj (t)]. Therefore, in a complete graph, total payoffs of
the players in the same state are the same, and the population
dynamics is fully determined by the frequency profile of
states. We define the N = 2τ+1–dimensional frequency vector
x = (x0,x1,x2, . . . ,xS, . . . ,xN−1), where the Sth component
xS is the frequency of state S. For t < τ , we set xi = 0
for i > Ñ . In the same spirit, we define the N -dimensional
total payoff vector E = (E0,E1,E2, . . . ,EN−1), where the Sth
component ES is the total payoff of an individual in state S.

An individual in state S has the reputation value rS =
1
τ̃

∑τ̃
k=1 s(t − k), which corresponds to the fraction of goodie

strategies in the past τ̃ time steps [see Eq. (1)]. From Eq. (2),
we get the probability that a player in state S proposes a game
to a player in state S ′,

ps(t)(rS ′) = [(1 − ε)rS ′ + ε]s(t) + η[1 − s(t)]. (8)

Since the game is played only for mutual proposals, the
probability pSS ′ that an individual in S plays the game with an
individual in S ′ is given by

pSS ′ = ps(t)(rS ′) ps ′(t)(rS)

= ([(1 − ε)rS ′ + ε]s(t) + η[1 − s(t)])

× ([(1 − ε)rS + ε]s ′(t) + η[1 − s ′(t)]). (9)

When S and S ′ (their strategies at t are s and s ′, respectively)
play the PDG, the payoff that S gets from S ′ is given by

aSS ′ = bs ′ − cs. (10)

Hence, the total payoff ES(t) that an individual in state S earns
at time t is given by

ES(t) =
N−1∑
S ′=0

aSS ′pSS ′xS ′ . (11)

After all games are played at time t for the whole population,
players change their strategies as described in step (iii) in
Sec. II: Player i randomly selects one among its game partners
(say, player j ) and adopts the partner’s strategy if Ej > Ei

(with probability 1 − μ and the opposite with probability μ).
We update strategies synchronously. The strategy si of player i

at t + 1 is given by si(t + 1) = 1 − si(t) if Ej (t) > Ei(t) and
sj (t) �= si(t) (unless mutation occurs). Otherwise, si(t + 1) =
si(t). Now, state Si of player i at t + 1 is formally given by

Si(t + 1) = 2
[
Si(t) − 2τ si(t − τ )

] + si(t + 1). (12)

The meaning of Eq. (12) is easily understood in the binary
representation of S. The updated strategy s(t + 1) becomes a
new bit at the last binary digit (s = 0 or 1 depending on its
strategy at t + 1) of S(t + 1). Other digits are simply obtained
from the bits of S(t) by just shifting each bit to the left, because
the kth past at time t has become the (k + 1)th past at time
t + 1. For t � τ , the leftmost bit of S(t) is simply dropped
in S(t + 1). Consequently, for a given state S(t), only two
states are possible for S(t + 1). In order to exclude forbidden
transitions from S to S ′, it is convenient to define

�SS ′ ≡
τ−1∏
k=0

δ�S	k�S ′	k+1
, (13)

where

�S	k ≡
(

S

2k

)
mod 2 (14)

is the (k + 1)th binary bit of S. Then �SS ′ = 0 for all N − 2
forbidden transitions.

Since the change of a player’s strategy is caused by
a neighbor who has a higher total payoff (ES ′ > ES) with a
different (current) strategy (s ′ �= s), the probability wS of a
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player’s changing his or her current strategy s is given by

wS = 1∑
S ′ pSS ′xS ′

∑
S ′

pSS ′xS ′ (1 − δss ′ )
(ES ′ − ES), (15)

where s = �S	0, s ′ = �S ′	0, and 
(x) is 1 for x > 0 and 0
otherwise.

We should note that S(t + 1), given by Eq. (12), is different
from S(t) in general even when the player keeps the current
strategy [s(t + 1) = s(t)]. The transition probability qS→S̃

from S at t to S̃ at t + 1 can be written as the sum of two
terms,

q
S→S̃

= [wS(1 − δss̃) + (1 − wS) δss̃ ]�
SS̃

, (16)

where s = �S	0 and s̃ = ˜�S	0. The first term represents the
transition probability of the player’s changing the current
strategy [s̃ = s(t + 1) �= s(t) = s]; the second term, that of
the player’s keeping the current strategy [s(t + 1) = s(t)].

Generalization for the case with nonzero mutation probabil-
ity is straightforward. In the presence of a mutation (μ > 0),
a player in state S changes his or her current strategy with
probability wS(μ),

wS(μ) = (1 − μ) wS + μ (1 − wS), (17)

with wS given by Eq. (15).
We are now ready to write our main equation for the time-

evolution of the frequency,

xS(t + 1) = xS(t) +
∑

S̃

[xS̃(t)qS̃→S − xS(t)qS→S̃], (18)

where the transition probability is given by

qS→S̃ = {wS(μ)(1 − δss̃) + [1 − wS(μ)] δss̃ }�SS̃. (19)

For a given set of our control parameters, τ , η, ε, c, and
μ, and a given initial goodie frequency, x0

G (with the initial
cheater frequency x0

H = 1 − x0
G ), we numerically iterate the

time evolution, Eq. (18), to get the stationary solution, x∞ =
x(t → ∞). Goodies at time t must have s(t) = 1 (�S	0 = 1)
as their last binary digit, and thus the goodie frequency xG is
given by

xG(t) =
N/2∑
k=1

x2k−1(t). (20)

By the same token, the cheater frequency xH = 1 − xG is given
by

xH(t) =
N/2∑
k=1

x2k−2(t). (21)

IV. RESULTS

We observe the time evolution of the populations from given
initial frequencies and find the final states. First, we find that the
final frequencies in a stationary state crucially depend on the
initial frequencies for μ = 0. We also find that η dependency
of the stationary frequencies is very intriguing. As η varies,
the final goodie frequency undergoes a series of sharp drops
with fractal-like features (see Appendix A). Although the
evolutionary dynamics of a mutation-free population reveals

FIG. 1. Time evolution of goodie and cheater frequencies, xG and
xH, for (a) τ = 1, (b) τ = 2, and (c) τ = 4 with η = 0.2. In (a)–(c),
we use c = 0.2, μ = 0.001, ε = 0, and x0

G = 0.5. Populations evolve
quite differently for (a) τ = 1 and (b, c) τ � 2. After a sufficiently
long time, cheaters dominate for τ = 1, while goodies dominate for
τ � 2. Insets in (a)–(c): To clearly show the initial stage of time
evolution, we present xG and xH in semilog plots here. (d) Stationary
goodie frequencies x∞

G are plotted versus η for various τ . The x∞
G ≈ 1

for η < ηc and x∞
G ≈ 0 otherwise, exhibiting sharp transitions at finite

values of ηc for τ � 2. However, x∞
G = 0 for the whole range of η

for τ = 1. Inset: ηc vs τ . For τ = 1, ηc is 0, but for τ � 2, ηc is
around 0.7.

rich, nontrivial behaviors, we present them in Appendix A,
since most of them are not generic phenomena in the sense
that they disappear when we turn on mutation.

When we turn on mutation, evolutionary dynamics and the
final stationary frequencies are different from the results for
μ = 0. The final population structure becomes independent of
the initial frequencies in many cases. Especially, we find that
the population always evolves to a cheater society for τ = 1 if
goodies have no generosity (ε = 0). In the following, we first
consider evolutionary dynamics without generosity and then
show how generosity can dramatically change the dynamics
for τ = 1 where forgiveness does not appear.

A. Absence of generosity (ε = 0)

We show the time evolution of the goodie and cheater
frequencies, xG and xH, respectively, for τ = 1 [Fig. 1(a)],
τ = 2 [Fig. 1(b)], and τ = 4 [Fig. 1(c)], with a small but
nonzero mutation probability, μ = 0.001. Both frequencies
are calculated from the state frequencies xS(t), which we
obtain using Eq. (18). After a few thousand transient iterations,
the frequencies reach their stationary values. For τ = 1,
cheaters become dominant regardless of η and x0

G . However, a
cooperative society of goodies can emerge for a finite range of
η if the memory horizon τ becomes larger than unity. Before
analyzing the evolution of cooperation for τ � 2, let us first
take a look why the goodies always die out for τ = 1 in the
presence of mutation.

The gruesome future for τ = 1 (it may not hold in
the structured population in reality, though) can be simply
explained as follows (see Fig. 2): In the presence of a mutation,

042314-4



ROLE OF GENEROSITY AND FORGIVENESS: RETURN TO . . . PHYSICAL REVIEW E 95, 042314 (2017)

HH

HG

GG

GH

FIG. 2. Schematic of transitions between states with τ = 1 in the
presence of a mutation with ε = 0. Gray arrows indicate transitions
that occur when the individual changes his or her last strategy;
yellow arrows, itransitions when the individual keeps his or her last
strategy. Dotted lines denote transitions which occur only through
mutations. Where transitions are possible by learning the partner’s
(higher payoff) strategy, they are represented by thick solid lines.
Once GG becomes GH, it easily becomes HH, while a mutant HG
from HH likely returns to HH.

HG can be obtained from HH through random mutations.
When this happens, HG does not play the game with HH
or with HG, since both have zero reputation value. HG may
suggest playing to GG, but GG rejects the proposal because of
the bad reputation of HG. Accordingly, HG can play the game
with GH only. When HG plays the game with GH, HG always
gets a lower payoff than GH and, thus, returns to the cheater
strategy and evolves to GH. At the next time step, GH becomes
either HH (remains a cheater) or HG (changes to a goodie).
For the latter, the evolution of HG is just the one we described
above. This process applies iteratively until HG becomes
HH. Therefore, HG eventually becomes HH unless unlikely
multiple mutations occur in the process. Consequently, state
HH is stable.

Now, let us consider the stability of state GG. It may evolve
to GH by higher-payoff-driven “learning” as well as by a pure
random mutation. Once this happens, GH eventually evolves
to state HH since GH is the state in the process in which HG
evolves to HH (see Fig. 2 ). Thus the persistent goodie strategy
(characterized by state GG) is not stable, unlike the persistent
cheater strategy (characterized by state HH). Cooperation in
our PDG setting is extremely fragile at τ = 1.

One crucial element for the evolution of cheaters is that a
repenter HG can play a game with GH only. Unless a mutation
occurs, HG returns to the cheater society by learning because
GH always gets a higher payoff than HG. Since a repenter
goodie HG becomes a cheater at the next time step, HG has
no chance of becoming GG.

We may escape from this cheater-dominant situation by
providing routes for repenters to join the persistent goodie
society. There are at least two ways to do this. We can increase
the reputation value of repenters by extending the memory
horizon or we can introduce a finite generosity. If we increase
the memory horizon to τ = 2, there are eight possible states,
HHH, HHG, . . . , GGG. Now, the repenter HHG at τ = 2
becomes HGH first because he or she cannot play a game with
goodies due to his or her bad reputation as before. In the next
step, however, the repenter can be GHG or GHH. The evolution
of GHH is similar to that of GH for τ = 1: GHH becomes either
the persistent cheater state HHH or the repenter HHG. On the
other hand, the evolution of GHG is different. It can be HGG

(a)

1 10 102 103 104

t

0

1

.5

XG ε=0.01
ε=0.00

(b)

1 10 102 103 104

t

1

10-1

10-2

10-3

XS xGG
xGH
xHG
xHH

FIG. 3. (a) Evolution of goodies for τ = 1 from the initial goodie
frequency, x0

G = 0.2. The time evolution of xG with ε = 0.01 is shown
by the thick blue line. For comparison, xG with ε = 0 is also shown
by the thin red line. (b) The frequencies of four states, xHH, xHG, xGH,
and xGG, in the population in (a) are plotted versus time on a log-log
scale. At t = 1, xHH becomes almost 1 and stays there until tq ≈ 103

(quasisteady state). Then it drops to its stationary value, 10−6 (out of
plot range), while xGG soars to its stationary value around 1. Here,
c = 0.2, η = 0.5, and μ = 0.001 are used.

by learning since GHG can play with goodies. Once a repenter
becomes HGG, he or she can join the persistent goodie group
of GGG by learning. Hence, for τ � 2, there is a way for
cheaters to escape and join the goodie society. For ε > 0 with
τ = 1, evolution of persistent goodies is also possible, since
the probability that goodies propose games to repenters is not
strictly 0 anymore. We analyze the evolutionary dynamics for
ε > 0 in detail in the following subsection.

B. Effect of generosity (ε > 0)

In the previous subsection, we have shown that cooperation
cannot be evolved for τ = 1 without generosity. We have also
observed that the goodies fail to build their stronghold to
further spread cooperation across the society, since they turn
their faces from newly born goodies. In this subsection, we
show how the existence of a small generosity can dramatically
change the society. In Fig. 3(a), we present how the goodie
frequency xG evolves with time for ε = 0.01. For comparison,
xG for ε = 0 is also presented, as the thin red line. Here, the
cheater’s game proposal probability is η = 0.5, and the mu-
tation probability is μ = 0.001. The evolution of population
starts from an initial goodie frequency x0

G = 0.2. As expected,
a small generosity (ε = 0.01) does not change the initial
dynamics much from the results without generosity (ε = 0).
However, the results in the stationary state at sufficiently long
times are totally different. With generosity, the goodies prevail
in the population, while goodies never dominate for ε = 0.

To understand why a small generosity can change the final
goodie frequency so dramatically, we take a closer look at the
time evolution of each state. Even for nonzero ε, the initial
goodie frequency rapidly decreases as long as ε is small,
because most HG and GH become HH following the process
presented for the ε = 0 case. Then HG and GH are rare, and the
population falls into a quasisteady state in which the population
consists mainly of two groups: the major cheater group and
minor goodie group. Now interactions between individuals
mostly occur within groups, and hence most players in both
groups remain in persistent state HH or GG. Figure 3(b) shows
the time evolution of the frequencies of four states: xHH, xHG,
xGH, and xGG. Here, we use logarithmic scales for both axes
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(b)

c=0.8
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0
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FIG. 4. Stationary-state goodie frequencies for (a) c = 0.2 and
(b) c = 0.8 with ε = 0.01, μ = 0.001, and initial frequencies xHH =
0.499, xHG = 0.001, xGH = 0.001, and xGG = 0.499. Numerical
results are consistent with the quasisteady-state approximation, which
predicts the evolution of goodies for η < ηc = 0.8 (a) and η < ηG ≈
0.4 (b).

to represent changes in low frequencies at early times. After a
very short transient time, the population stays in a quasisteady
state for a while, up to t = tq ≈ 1000. Note that both the GG
and the HH groups in the quasisteady state really slowly grow
(for GG) or shrink (for HH) monotonically even though the
size of each group looks almost the same. For example, xGG

constantly increases but at a very small increase rate; we can
hardly notice its change (unless t approaches tq) even in the
log-scale plot.

To derive the criterion for the growth of the goodie group in
the presence of a small generosity, we compare fluxes between
two groups in the quasisteady state: fluxes from GG to HH,
and vice versa. In the quasisteady state, the frequencies of HG
and GH are of order ε or μ as discussed in Appendix B. We
calculate the payoffs of four states, HH, HG, GH, and GG, up
to a linear order in ε, xHG, and xGH. Then the conditions for the
evolution of goodies are obtained by considering all possible
rank orderings of payoffs of the four states. In Appendix B,
we show that goodies proliferate when

η < ηt = max (1 − c,ηG) (22)

with

ηG =
√

xGG − xGG

1 − xGG
, (23)

where xGG is the frequency of GG in the initial quasisteady
state.

For the validity of the quasisteady-state approximation,
we calculate the goodie frequency x∞

G in the stationary state
numerically for various values of η and plot x∞

G versus
η in Fig. 4 for two values of costs, c = 0.2 and c = 0.8.
Here, our numerical iteration starts with a particular set
of frequencies of four states, xHH = 0.499, xHG = 0.001,
xGH = 0.001, and xGG = 0.499, for both values of costs. In
Fig. 4, we see that the stationary frequencies of goodies
x∞

G are around 1 for η < ηt and 0 otherwise where ηt ≈
0.8 for c = 0.2 and ηt ≈ 0.4 for c = 0.8. These results
agree very well with the quasisteady-state approximation of
Eq. (22). We have max (1 − c,ηG) = 1 − c = 0.8 for c = 0.2
and max (1 − c,ηG) = ηG =

√
0.499−0.499
1−0.499 ≈ 0.4 for c = 0.8

with xGG = 0.499.
Here, we have to mention that it is not always possible

to obtain the transition point ηt analytically from the initial
frequency of goodies x0

G since we do not have a formula to

(a)
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(b)
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XG  ∞

τ=2
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FIG. 5. (a) Evolution of frequencies of eight states for τ = 2 and
η = 0.5. (b) Goodie frequencies in the stationary state versus η for
τ = 2, 3, and 4 with zero generosity and a finite mutation probability.
The subscript S in (a) is the decimal number representation of Eq. (6);
i.e., S = 0, 1, . . . , 7 for HHH, HHG, . . . , GGG, respectively. Initial
frequencies are given as xS = 1

2 [1 − δ(N − 2)] for persistent states
of S = 0 and S = N − 1 and as xS = δ = 0.001 otherwise. For all
cases, c = 0.2, ε = 0, and μ = 0.001 are used.

calculate xGG from x0
G . However, xGG in the initial quasisteady

state is obtained numerically very quickly (compared to x∞
G ),

and hence one can well predict the final state from Eq. (22).
Furthermore, we can predict the final stationary state by just
comparing η and ηc = 1 − c for c < 1/2, since ηG cannot be
larger than 1/2. If there is no cost g of playing games, cheaters
always dominate by choosing η = 1. In reality, however, it
often occurs that playing games requires some cost in general.
Because of the risk of losing the game cost g, cheaters may
reduce their game participation probability η. We discuss
in Appendix B how goodies can evolve when η = 1 in the
presence of game cost g.

At the end of Sec. IV A, we discussed the emergence of
cooperation without an explicit generosity when the memory
horizon τ becomes longer than 1 even if ε = 0. In Fig. 5(a),
we present the evolution of the frequencies of eight states,
HHH, HHG, . . . , GGG, of τ = 2 with ε = 0 explicitly. We use
c = 0.2, η = 0.5, and xS = 0.497 for two persistent states, S =
HHH and S = GGG, and xS = 0.001 otherwise. The subscript
S to xS in Fig. 5(a) is the binary number representation
of Eq. (6); i.e., S = 0,1, . . . ,7 for HHH, HHG, . . . , GGG,
respectively. We present goodie frequencies xG = ∑

k x2k−1

in the stationary states in Fig. 5(b) for τ = 2, 3, and 4, with
the initial frequencies given by xS = 1

2 [1 − �(N − 2)] for
persistent states of S = 0 and S = N − 1 and by xS = � =
0.001 otherwise. As long as τ is larger than 1, the final goodie
frequencies seem to be quite independent of τ . As shown in
Fig. 5(b), for c = 0.2 the final goodie frequencies are close
to 1 for η < 0.8 and 0 for η > 0.8, similarly to the case of
τ = 1 with ε > 0. The condition for the evolution of goodies
for τ > 1 (with ε = 0) is similar to that for τ = 1 (with ε > 0)
because the underlying mechanism for the growth of goodie
communities is the same. The roles of a long memory horizon
(τ > 1) and explicit generosity (ε > 0) are the same in the
sense that they provide opportunities for repenters to play
games with goodies.

V. DISCUSSION AND SUMMARY

Generosity and forgiveness together with niceness and
provocability have been named as essential ingredients for
the evolution of cooperation through direct reciprocity [9,18].
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Here, we show that they are also vital elements to promote
cooperation in the optional PDG based on the partner’s
reputation, where we define reputation as the fraction of
cooperation in the past of memory horizon τ . For τ = 1, we
need generosity for proliferation of goodies. A strict goodie
strategy (ε = 0) cannot spread because the repentant persons
are strictly excluded by the goodies. An HH player may
regret his or her past and become a cooperator HG. However,
HG is already labeled by the past and any goodie refuses
to play the game with HG, giving HG no chance to be a
member of a cooperating society. On the other hand, generous
goodies (ε > 0) provide the chance to keep the repenter’s
goodie strategy, which is the key mechanism to enhance the
cooperative behavior in the society for τ = 1. In other words,
a nonzero ε allows the new interaction between goodies and
repenters with zero reputation, and this interaction can make
the society cooperative.

For τ � 2, a cooperative society can be promoted by
forgiveness. In game theory, forgiveness indicates nonzero
cooperation probability for the partner in return for cooperation
of the opponent, while generosity usually means cooperation
with a finite probability even when the partner defects
[18,19,21]. For τ = 1, the reputation value of a repenter is
0, and the route for forgiveness is blocked. Hence, explicit
generosity is needed for the repenter to play with goodies.
On the other hand, for τ � 2, the reputation value of a
repenter (S = 1) is also 0, and thus goodies do not play
with newborn goodies at first. In that sense, there is no
spontaneous forgiveness. However, goodies are forgiving at
the next step, remembering the repenter’s cooperative behavior
in the previous step, and propose games. This provides an
opportunity for the repenter to learn about the success of the
persistent goodie group.

The roles of generosity of ε > 0 and forgiveness of τ � 2
can be unified in the sense that they provide a chance for
repenters to play with goodies and make them encounter
the better world of cooperation, encouraging them to escape
from their isolated world of selfishness. It is well known that
both generosity and forgiveness are necessary to achieve a
successful cooperative strategy in the iterative PDG [18–22].
On the contrary, just one of them is needed for the evolution of
cooperation in our model. Further studies are needed to verify
whether this is a generic feature of indirect reciprocity based
on reputation.
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APPENDIX A: EVOLUTION WITHOUT MUTATION

We consider evolutionary dynamics without mutation (μ =
0) for τ = 1 and ε = 0. We vary the cheater’s game proposal
probability η and see how η affects the goodie frequency x∞

G
in the stationary state. Figure 6 shows the time evolution of the
frequencies of goodies xG and cheaters xH, from equal goodie

0
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t

(a) η=0.2

xG

xH
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FIG. 6. Frequencies of goodies and cheaters (xG and xH) versus
time t for τ = 1 with the initial goodie frequency x0

G = 0.5. Blue
circles and red squares represent xG and xH, respectively. (a) For
η = 0.2, goodies eventually flourish (xG > xH), while (b) for η = 0.8,
cheaters dominate the system after a transient time. Here, we have
used c = 0.2, μ = 0, and ε = 0.

and cheater frequencies at t = 0 (x0
G = x0

H = 1/2). For small
η [for example, η = 0.2 shown in Fig. 6(a)], cheaters have
less chance of playing than goodies, even at the beginning.
Hence there are only a few newborn cheaters who have a good
reputation. Since goodies exclude bad-reputation players,
goodies and cheaters segregate into different noninteracting
communities after a short transient time and peacefully live
on to eternity without making any interaction between the two
groups.

For large η, on the contrary, cheaters eventually flourish
instead: At the initial stage of the PDG, cheaters’ reputation
values do not reflect their true selfish identities, and goodies
do not have enough time to realize whom they are facing.
The large value of η makes it possible that cheaters can
play the game with many goodies, and cheaters get high
payoffs from such profitable encounters. Several goodies then
become envious and turn to cheaters. At the next time step, the
remaining goodies play the game with those new cheaters who
still have good reputations. This avalanche process stops only
when the world is already dominated by cheaters, and goodies
can never recover their initial frequency.

For μ = 0, the final population structure strongly depends
on the initial goodie frequency x0

G as well as the cheater’s
game proposal probability η. In Fig. 7(a), we show the goodie
frequencies x∞

G in the stationary state versus η for three goodie
frequencies x0

G = 0.3, 0.5, and 0.7. One notable feature is that
there are series of sharp drops in the goodie frequencies. At
η = ηc1 ≈ 1/3 for x0

G = 0.5, for example, x∞
G drops below

0
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.1 .4 .7 1η

xG
∞

xG
0=0.3

xG
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(a)

η
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FIG. 7. (a) Goodie frequency x∞
G in the stationary state for c =

0.2, ε = 0, and μ = 0 for three different initial goodie frequencies,
x0

G = 0.3, 0.5, and 0.7. The final goodie frequency x∞
G undergoes

a series of sharp drops as η is varied. (b) Magnification of (a) for
x0

G = 0.5 showing its second and subsequent drops.
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half, which is its initial frequency. For η < ηc1 , the goodies get
more payoff than the cheaters (EG > EH) from the beginning.
This makes goodies keep their strategies and prohibits newborn
cheaters. Then goodies no longer play games with cheaters
since all the cheaters are persistent cheaters whose reputation
values are 0. Now the frequency of goodies does not change
and this stationary goodie density is higher than x0

G since
EG > EH from the beginning.

On the other hand, the cheaters defeat the goodies for
η > ηc1 at the beginning: At t = 1 a goodie may play the game
with a cheater who was a goodie at t = 0, since this cheater has
a fine reputation due to his or her past behavior as a goodie at
t = 0. Such an encounter between a goodie and a new cheater
causes the goodie to adopt the cheater strategy, making it a
new cheater at t = 2. Accordingly, for a sufficiently large η, it
is possible that the whole population will soon be occupied by
cheaters, resulting in a fast decrease in the goodie frequency.

We can estimate the value of ηc1 from the condition
EG = EH for a given initial goodie frequency x0

G . A goodie
cannot distinguish the true identity of his or her game partner at
t = 0 because all agents, goodies and cheaters, have the same
reputation value, r0 = 1/2, at t = 0. The goodies propose the
game for all other players at a probability r0 = 1/2. Cheaters,
on the other hand, propose the game with probability η.
Goodies meet other goodies at probability x0

G and play the
game with probability r2

0 since a mutual proposal is needed to
play. From such a goodie-goodie encounter, the goodie gets the
payoff b − c. Accordingly, the goodie’s average payoff from
other goodies is given by r2

0 (b − c) x0
G . On the other hand, the

goodie meets cheaters at probability 1 − x0
G , plays the game at

probability r0η (again, both must propose), and gets average
payoff −ηr0c(x0

G − 1) from cheaters. Overall, the total payoff
EG of a goodie is written as

EG = r2
0 (b − c) x0

G − η r0 c
(
1 − x0

G

)
. (A1)

Likewise, the total payoff EH of a cheater is computed to yield

EH = η r0 b x0
G . (A2)

From the condition EG = EH, we get the expression for ηc1 :

ηc1 = r0 (b − c) x0
G

c + (b − c) x0
G

. (A3)

We numerically calculate goodie frequencies at steady state
for various values of initial goodie frequencies x0

G and confirm
that the first drops in goodie frequencies actually happen at ηc1

given by Eq. (A3). We can also understand the existences of
later sudden drops in the goodie frequency in Fig. 7 similarly:
Agents with S = GG play the game only with GG and GH
because the partner must have a good reputation to play when
ε = 0. If the total payoff of GG is higher (lower) than that
of GH at t , H (G) changes to G (H) at t + 1. Consequently,
the nth transition point at ηcn

is determined from the condition
EGG = EGH at t = n, leading to the stepwise transitions shown
in Fig. 7. It is interesting that the step structure repeatedly
appears ad infinitum at smaller scales as η is increased.

APPENDIX B: CRITERION FOR EVOLUTION OF
GOODIES: QUASISTEADY-STATE APPROXIMATION

1. Quasisteady state

Here, we study the population dynamics for τ = 1 with
small ε in the limit of zero mutation. Frequencies and payoffs
are calculated up to a linear order in ε and μ and we consider
the limit that μ goes to 0 before ε does. For small ε and μ, our
system quickly falls into a quasisteady state in which almost
all members belong to either the persistent goodie (GG) group
or the persistent cheater (HH) group, and both groups retain
almost-constant sizes. GH and HG groups are not completely
empty, at least due to the mutation from GG or HH, but their
frequencies are of order of ε and μ. Note that GH and HG
cannot stay in their own groups. GH must be either HG or HH
at the next step. Similarly, HG must change to GG or GH in the
next step. By the same token, GH and HG cannot come from
their own groups. For example, GH must have been GG or HG
in the previous step. For GG to be GH by learning, GG should
have played with HH or GH. This happens with probability
ε only. GG can be GH by mutation also, which happens with
probability μ. Hence, the frequency xGH of GH is of order ε

or μ when xGG and xHH are of order 1. In parallel, xHG is also
of order ε or μ. We calculate below the payoffs of four states,
HH, HG, GH, and GG, up to a linear order in ε, xHG, and xGH.

2. Payoffs in the quasisteady state

The probability pSS ′ for the mutual proposals between S

and S ′ states is given by

pSS ′ = ps(rS ′) ps ′ (rS)

= ([(1 − ε)rS ′]s + η[1 − s])([(1 − ε)rS]s ′ + η[1 − s ′]),

(B1)

as discussed in the text. For τ = 1, we have four possible
states, S = HH, HG, GH, and GG, and their reputation value
rS and current strategy s(S) are given as rS = 0, 0, 1, and
1 and s(S) = 0, 1, 0, and 1 for S = HH, HG, GH, and GG,
respectively. The mutual proposal probability pSS ′ between
two states S and S ′ can be tabulated as follows:

S S ′

HH HG GH GG

HH η2 ηε η2 ηε

HG ηε ε2 η ε

GH η2 η η2 η

GG εη ε η 1

Now using the payoff matrix of the PDG,

M =
(

b − c −c

b 0

)
, (B2)

we can calculate the payoffs for each state up to a linear order
in ε, xGH, and xHG:

EHH = εηb(xHG + xGG) ≈ εηbxGG,

EHG = εη(−c)xHH+ε2(b−c)xHG+η(−c)xGH+ε(b−c)xGG

≈ −εηcxHH − ηcxGH + ε(b − c)xGG,
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HH

HG

GG

GH

FIG. 8. Possible transitions between two states of unit memory.
Yellow arrows indicate the transition when a player keeps his or her
last strategy; gray arrows, the transition when the player changes
the strategy. Here, wi represents the strategy change probability of
state Si .

EGH = ηb(xHG + xGG) ≈ ηb(xHG + xGG),

EGG = εη(−c)xHH + ε(b − c)xHG + η(−c)xGH + (b − c)xGG

≈ −εηcxHH − ηcxGH + (b − c)xGG. (B3)

The population dynamics is mainly determined by the rankings
of these four payoffs since the players are supposed to follow
the successful strategies of neighbors. We first note that the
inequality EHG < EGG and EHH < EGH always holds since
the players with better reputations always earn higher payoff
when they have the same current strategy. Furthermore, we
restrict our model to EHH < EGG and EHG < EGH cases only.
If EHH > EGG, goodies never prevail in the population since
G becomes a strictly dominated strategy. On the other hand,
H becomes a strictly dominated strategy if EHG > EGH. Now,
only two cases remain: (i) EGH < EGG, and (ii) EGG < EGH.
We calculate below the conditions for the evolution of goodies
in both cases.

3. Condition for evolution of goodies

In the quasisteady state, the population mainly consists of
GG and HH groups. The sizes of the two groups are almost
constant but change very slowly. In other words, there is small
but nonzero flux between two groups. We find the conditions
for the evolution of goodies by calculating the net flux between
GG and HH states. For the evolution of goodies, the influx Fin

from HH to GG should be larger than the outflux Fout from
GG to HH. Let us introduce wi to denote the probability that
an individual in state Si (with Si = HH, HG, GH, and GG for
i = 0, 1, 2, and 3, respectively) will change his or her current
strategy (see Fig. 8). Here, wi is a function of xGG and xHH

and hence it is not a constant, but its changing probability is
of order ε and μ only. If we treat wi as a constant, Fin and Fout

can be expressed in terms of wi as

Fin = xHHw0(1 − w1)[1 + w2w1 + (w2w1)2 + . . .]

= xHHw0
1 − w1

1 − w2w1
,

Fout = xGGw3(1 − w2)[1 + w1w2 + (w1w2)2 + . . .]

= xGGw3
1 − w2

1 − w2w1
. (B4)

The condition Fout < Fin for the evolution of goodies is then
reduced to

xGGw3(1 − w2) < xHHw0(1 − w1). (B5)

a. The EGH < EGG case

For EGH < EGG, we find that the population always evolves
to a goodie society once the quasisteady state is established.
First, note that EGH < EGG implies

η < ηc ≡ (1 − c/b) (B6)

for small ε and μ, since EGH ≈ ηbxGG and EGG ≈ (b − c)xGG

in the zeroth-order approximation. To determine the condition
for the evolution of goodies, we then calculate w0

i , the strategy
change probabilities wi for μ = 0. When EGH < EGG, they
are given by

w0
0 = εηxGG

εη(xHG + xGG) + η2(xHH + xGH)
≈ εxGG

ηxHH
,

w0
1 = εηxHH + ηxGH

εηxHH + ε2xHG + ηxGH+εxGG

≈ εηxHH + ηxGH

εηxHH + ηxGH + εxGG
,

w0
2 = xGG

ηxHH + xHG + ηxGH + xGG
≈ xGG

ηxHH + xGG
,

w0
3 = 0. (B7)

For μ > 0, the wi are given by

wi(μ) = w0
i (1 − μ) + (

1 − w0
i

)
μ. (B8)

Since xHG and xGH are constant (up to a linear order in ε and
μ) in the quasisteady state, the influxes to these states should
be the same as the outfluxes. From Fig. 8, we have

xHG = w0xHH + w2xGH, xGH = w3xGG + w1xHG. (B9)

Solving Eq. (B9) with the strategy change probabilities given
by Eq. (B8), we get

xHG = ε
xGG(ηxHH + 2xGG)

η(ηxHH + xGG)
+ μ

ηx2
HH + xGG(xHH + xGG)

ηxHH
,

xGH = ε
xGG

η
+ μ

(xHH + xGG)(ηxHH + xGG)

ηxHH
. (B10)

Now wi can be expressed in terms of xHH and xGG as

w0 = xGG

ηxHH
ε + μ,

w1 = (ηxHH + xGG)xHH ε + (ηxHH + xGG)(xHH + xGG) μ

(ηxHH + 2xGG)xHH ε + (ηxHH + xGG)(xHH + xGG) μ
,

w2 = xGG

ηxHH + xGG
,

w3 = μ. (B11)

In the zero-mutation limits, w3 goes to 0 first and the condition
Fout < Fin of inequality (B5) always holds. In other words,
for EGH < EGG (i.e., η < ηc) the evolution of cooperation is
guaranteed.
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b. The EGG < EGH case

We first note that η should be larger than ηc = 1 − c/b

in this case since EGH ≈ ηbxGG and EGG ≈ (b − c)xGG as
discussed before. When η > ηc, EHH is always larger than
EHG and the strategy change probabilities of zero mutation w0

i

are given by

w0
0 = εηxGG

εη(xHG + xGG) + η2(xHH + xGH)
≈ εxGG

ηxHH
,

w0
1 = εηxHH + ηxGH

εηxHH + ε2xHG + ηxGH + εxGG

≈ εηxHH + ηxGH

εηxHH + ηxGH + εxGG
, w0

2 = 0,

w0
3 = ηxGH

εηxHH + εxHG + ηxGH + xGG
≈ ηxGH

xGG
. (B12)

We get xHG and xGH in terms of xHH and xGG by solving the
quasisteady-state condition of Eq. (B9) with wi of Eq. (B8)
calculated with w0

i of Eq. (B12). They are given by

xHG = ε
xGG

η
+ μxHH,

xGH = −ε
xHH

2
+ ε

ηxGG + √
R(xHH,xGG,η)

2η(1 − η)
+ μ

xHH + xGG

1 − η
,

(B13)

where

R(xHH,xGG,η) = 4ηxHHxGG(1 − η) + η2[xGG − xHH(1 − η)]2.

(B14)

Now all wi can be written in terms of xHH and xGG, and
inequality (B5) becomes

xGG[2 − η(4 − η)] > xHHη2(1 − η) + η
√

R (B15)

in the zero-mutation limit. Since the population mainly
consists of GG and HH groups, we apply xGG + xHH ≈ 1 to
inequality (B15) and get the condition for the evolution of
cooperation for the EGG < EGH case. It is simply written as

η < ηG, (B16)

with

ηG =
√

xGG − xGG

1 − xGG
. (B17)

Since EGG < EGH implies η > ηc = 1 − c/b, the evolution of
cooperation occurs when

ηc < η < ηG. (B18)

We would like to make two comments on the above inequality.
First, it cannot have a solution if ηc > 1/2 (equivalently, c/b <

1/2) since ηG cannot be larger than 1/2. Second, xGG in ηG

is the frequency of GG in the initial quasisteady state. It is
determined by the initial frequency x0

G but is hard to estimate
from x0

G since the population dynamics to the quasisteady state
during the transient time is nontrivial.

Together with the case of EGH < EGG, the condition for
evolution of cooperation in the zero-mutation limit can be
summarized as

η <

{
1 − c/b for b/c < 1/2,

max (1 − b/c,ηG) otherwise,
(B19)

where ηG =
√

xGG−xGG

1−xGG
.

4. Evolution with the game cost g for η = 1

If there is no cost for playing games, cheaters may propose
games for everyone (η = 1). In reality, however, playing games
often requires paying cost g in general. When we introduce
the game cost g, the game payoff matrix is written as

M =
(

b − c − g −c − g

b − g −g

)
(B20)

for 0 � g � 1 − c. If the number of game opponents is fixed,
the game cost g will not play any role. However, due to the
refusal option in our model, g represents the benefit of not
playing the games. Here, we calculate the evolution condition
of goodies when cheaters always participate in games with
anyone (η = 1). In the presence of g, the average payoff in
Eq. (B3) is written differently, and so is wi . We take a closer
look at two cases: (i) EGH < EGG and (ii) EGH > EGG.

The first condition, EGH < EGG, holds when

xGG >
g

c + g
. (B21)

Since rankings of four payoffs are changed, wi’s are given by

w0
0 ≈ εxGG

xHH
, w0

1 ≈ xGH

εxHH + xGH + εxGG
,

w0
2 ≈ xGG

xHH + xGG
, w0

3 = 0. (B22)

For new expressions for wi , Eqs. (B9) are rewritten as follows:

xHG ≈ μxHH + εxGG + xGHxGG

xHH + xGG
,

xGH ≈ μxGG + xHGxGH

xGH + ε(xGG + xHH)
. (B23)
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FIG. 9. Goodie frequencies xG (a) versus g at c = 0.2 and
(b) versus c at g = 0.2. Note that the condition g + c < b must be
satisfied. Squares are from simulation results and agree well with
the solid gray line g/(c + g) obtained from analytic calculation (see
text). We have used the initial goodie frequency x0

G = 0.5.
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Using xGG + xHH ≈ 1 and keeping the leading order, we get
the following solutions:

xHG ≈ μ
xHH + x2

GG

xHH
+ εxGG, xGH ≈ μ

xHH
. (B24)

These solutions always satisfy the condition for evolution of
goodies in Eq. (B5), and thus goodies always dominate when
xGG >

g

c+g
.

On the other hand, cheaters always prevail for EGG < EGH

as shown below. We show that goodies cannot take over the
entire population when

xGG <
g

c + g
. (B25)

In this case, wi’s are written

w0
0 ≈ εxGG

xHH
, w0

1 ≈ xGH

εxHH + xGH + εxGG
,

w0
2 = 0, w0

3 ≈ xGH

xGG
. (B26)

These new wi’s directly give the solution of xHG from
Eqs. (B9), yielding xHG ≈ μxHH + εxGG. Because the second
Eq. (B9) cannot determine xGH, we get xGH from the first equa-
tion using the solution of xHG. We can get xHG = 2εxGG, and
these solutions yield the evolution of cheaters. Hence, cheaters
dominate when xGG <

g

c+g
. Combining the two results, we

conclude that the goodie frequency remains at g

c+g
because

there are two opposite flows towards g

c+g
. The prediction is in

good agreement with our simulation results (see Fig. 9).
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