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Protein-peptide association kinetics beyond the
seconds timescale from atomistic simulations
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Understanding and control of structures and rates involved in protein ligand binding are

essential for drug design. Unfortunately, atomistic molecular dynamics (MD) simulations

cannot directly sample the excessively long residence and rearrangement times of tightly

binding complexes. Here we exploit the recently developed multi-ensemble Markov model

framework to compute full protein-peptide kinetics of the oncoprotein fragment 25–109Mdm2

and the nano-molar inhibitor peptide PMI. Using this system, we report, for the first time,

direct estimates of kinetics beyond the seconds timescale using simulations of an all-atom

MD model, with high accuracy and precision. These results only require explicit simulations

on the sub-milliseconds timescale and are tested against existing mutagenesis data and our

own experimental measurements of the dissociation and association rates. The full kinetic

model reveals an overall downhill but rugged binding funnel with multiple pathways. The

overall strong binding arises from a variety of conformations with different hydrophobic

contact surfaces that interconvert on the milliseconds timescale.
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In the past, drug design has primarily focused on finding
inhibitors with maximal binding affinity to the target.
Recently, there has been a growing interest in optimizing

target-drug kinetics1, 2. A direct strategy to exploit kinetics is the
maximization of the drug’s residence time at the receptor in order
to ensure contiguous drug effect between subsequent
deliveries3, 4. Protein–ligand kinetics may involve more than two
kinetically relevant states, either due to different ligand binding
poses, different protein conformations or their coupling5–10.
While this multi-state nature is not always apparent in ensemble
kinetic experiments11, accounting for it may help during multiple
stages of the drug design process12, 13. On the molecular scale,
targeting receptor binding pockets that open transiently can lead
to allosteric inhibitors14, 15. On the pharmacokinetic scale, a
complete assessment of protein–drug kinetics can provide more
accurate models and offer additional freedom to optimize the
drug delivery strategy2, 16. Multi-state kinetics are especially
relevant in multivalent binders, which are characterized by highly
non-exponential kinetics and nonlinear amplification of the
binding strength through multiple parallel binding
interfaces17, 18.

Simultaneous study of molecular structure and kinetics at high
resolution is possible with fully flexible all-atom molecular
dynamics (MD) simulation in explicit solvent. However, such
simulations are limited to lengths of few microseconds on pub-
licly available hardware. Few milliseconds can be reached on
specialized hardware19 or in aggregate times using distributed
computing20–23. These simulation times are short compared to
residence times of most high-affinity binders.

Calculating unbiased long-term kinetics for all-atom MD
models is one of the hardest problems in molecular simulation, as
it depends upon the solution of three difficult tasks simulta-
neously: (A) the ability to explore initially unknown states and
conformational changes, (B) the repeated sampling of the slowest
transitions, (C) the computation of unbiased transition rates from
such simulation data. Fortunately, tools have been established
that each excel at one or two of these tasks, and that can be
combined to a powerful framework.

Path sampling and milestoning-based methods24–27 enhance
the probability of transition pathways between a priori known
end-states and can be extended to compute transition rates (tasks
B, C), but offer only limited help in exploring the state space. In
contrast, unbiased MD simulations, especially high-throughput
MD simulations28, 29 can explore the state space without hin-
drance from constraints (task A). When analyzed with kinetic
models, such as Markov state models (MSMs)30–33, the unbiased
long-term kinetics can be approximated34, 35, without required
initial knowledge of relevant states, coordinates or a timescale
separation (task C). However, this approach relies on having
sampled the rare-event transitions in the data. While MSMs help
with parallelizing this problem and rare events can be sampled, in
particular when adaptive sampling strategies are combined with
high-throughput simulation23, the sampling of very rare events
such as protein-inhibitor dissociation can still be very inefficient.
In practice, this difficulty may result in not properly connected
models and underestimated or imprecisely estimated residence
times. While MSM analyses have the advantage of being able to
detect these problems with carefully conducted Markovianity
tests36 and by computing binding free energies as a function of
the MSM lag time37, 38, the typical solution involves running
more simulations, which is unpractical when computational
resources are limited. Enhanced sampling methods such as
umbrella sampling, flooding, metadynamics, or replica
exchange39–42 are specialized in rare-event sampling (task B), and
some of them can significantly help to explore states with low
populations (task A), however they rely on a priori knowledge of

good collective coordinates. Kinetic quantities cannot be directly
computed from such data and the data analysis relies on the
applicability of macroscopic rate theories43. This has been miti-
gated by recent progress in hyper-dynamics which allows to
predict transition rates between long-lived states when good
collective coordinates are known44–48.

In order to combine the advantages of enhanced sampling
methods and MSMs, we recently developed the concept of multi-
ensemble Markov models (MEMMs)49. MEMMs rely on the idea
of combining unbiased simulations of fast events (such as
rapid binding) with efficient sampling of the rare events in
biased ensembles (such as biased unbinding) within a reweighting
framework that can extract full and unbiased kinetics.
Several MEMM estimators have been developed50–52, including
the statistically optimal transition-based reweighting analysis
method (TRAM), which exploits detailed balance to extract
unbiased kinetics of the slow steps from equilibrium properties
harvested at biased ensembles49, 53. The recently introduced bin-
less TRAM version can compute complex multi-state kinetics
without requiring pre-defined collective variables49, which allows
kinetics in very high-dimensional and complex examples to be
studied.

Here we show how enhanced MD simulation techniques can be
combined to compute unbiased multi-state kinetics of the onco-
protein fragment 25–109Mdm2 with the nano-molar peptide
inhibitor PMI in all-atom resolution. MEMMs are the key tech-
nology for this achievement, and allow us to obtain the residence
time that is beyond the seconds timescale with high accuracy and
precision, from sub-millisecond simulations. Multiple inter-
mediates and mis-bound modes are found, the equilibrium
folding–binding pathways are computed. The simulations are
tested against previous mutagenesis experiments and
binding–unbinding kinetics experiments conducted here.

Results
Direct MD simulation of protein–ligand complex Mdm2–PMI.
Mdm2 is a major therapeutic target that antagonizes the tumor
suppressor p53 by ubiquitinating it or by binding the N-terminal
trans-activation domain (TAD) of p53. In certain cancers, Mdm2
is over-expressed leading to excessive inactivation of p5354.
Therefore the Mdm2–p53 interaction is a primary target for
inhibitor design55–57. The 12-amino-acid peptide PMI
(p53–Mdm2/MdmX inhibitor) is one of the strongest known
Mdm2 binders, with a dissociation constant of Kd= 3.3 nM57.
In the co-crystal structure of PMI with the protein
fragment 25–109Mdm2, PMI binds as a helix57 while our MD
simulations of PMI without its binding partner suggest that PMI
is at most 40% helical in isolation. Thus the binding mechanism
must involve PMI folding. The binding of PMI to the Mdm2
protein fragment is a particular challenging system for MD not
only because of the high affinity but also because of the abun-
dance of metastable states that act as traps on achievable simu-
lation lengths of microseconds. In Zwier et al.58, 120 μs of implicit
solvent simulations of the same Mdm2 fragment were conducted
with a different p53-peptide and only 10% of the simulations
reached the crystallographic binding pose.

We conducted 500 µs of unbiased atomistic MD simulations
of the protein fragment 25–109Mdm2 and the PMI peptide
from different initial structures, especially dissociated states.
A preliminary analysis showed that these trajectories contain five
complete binding events from dissociated to crystal-like states,
several tens of partial binding events via intermediates. A variety
of intermediates and trap states were found (Fig. 1). However,
not a single clear dissociation event was observed, and a MSM
constructed from the unbiased MD data contained many
disconnected states.
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Biased simulations predict the binding affinity. Consequently,
we added biased simulations with the aim of reversibly sampling
bound, unbound and intermediate states. MEMMs can in
principle be built using any biased sampling protocol, including
umbrella sampling39 or metadynamics41. Here, six independent
Hamiltonian replica-exchange simulations were conducted,
each about 1 µs long and with 14 replicas. The first Hamiltonian

is unbiased while the other Hamiltonians have gradually
reduced protein–ligand interaction strengths (see “Methods”).
In contrast to unbiased MD, these simulations do not
provide direct kinetic information, but sampled efficiently
different binding sites and binding modes. After discarding
the initial equilibration phase of 50 ns (Supplementary Note 3.3)
these data still contained six full binding and 26 full
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Fig. 1 Metastable states and transition rates for the binding of PMI to Mdm2. The PMI peptide is colored according to ( ).
States are represented by discs with areas proportional to the natural logarithm of the equilibrium probability. Arrows indicate transitions with rate
constants of at least 1 ms−1 in either direction. Numbers quantify transition rate constants in ms−1 M−1 for association events and in ms−1 for all other
transitions. The definition of the states is hierarchical: between top-level states 0 and 13, transitions happen on timescales of 10 µs or slower. States in the
lower part of the figure are sub-states of top-level state 13. There, PMI transitions between different states in the main binding pocket of Mdm2 on
timescales of microseconds or slower (only states with large probabilities are shown)

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01163-6 ARTICLE

NATURE COMMUNICATIONS |8:  1095 |DOI: 10.1038/s41467-017-01163-6 |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


dissociation events, as well as many transitions between inter-
mediates (Fig. 1).

To test the enhanced sampling simulation, we determined the
dissociation constant between Mdm2 and PMI experimentally
using fluorescence anisotropy (see Supplementary Note 4.2 and
Supplementary Fig. 11), obtaining Kexp

d ¼ 3:02± 0:31nM, in
agreement with previous data59. Computationally, Ksim

d ¼
0:34nM (95% confidence interval: 0:22nM; 0:44nM½ �) was
determined by applying the PyEMMA implementation60 of the
MBAR estimator61, 62 on the replica-exchange data (Supplemen-
tary Note 3.6). The difference between the computational and the
experimental value corresponds to 1.3 kcal mol−1, which is in the
expected range of force field inaccuracies63, 64. As a more
comprehensive test, previously measured changes in binding free
energies (ΔΔG) upon mutation of PMI residues to alanine were
predicted using perturbation theory65, 66. We find good
agreement of the ΔΔG values between simulation and experi-
ment59 within statistical uncertainties, in particular for the amino
acids that are important for binding: Phe3, Trp7, and Leu10
(Fig. 2e and Supplementary Note 3.2).

Multi-ensemble Markov models reveal slow unbinding kinetics.
We developed an extension of the recent TRAM estimator49

called TRAMMBAR for combining unbiased MD simulations
with replica-exchange simulations (see “Methods”). While TRAM
requires all simulations to be longer than its lag time (often on the
order of tens to hundreds of nanoseconds), this is not the case for
replica-exchange simulations with rapid exchanges. TRAMMBAR
can employ such replica-exchange data, by assuming global
equilibrium for that part of the simulation, which is justified
when statistical tests indicate short correlation times62. The pre-
sent replica-exchange data has a correlation time of 40 ns,

compared to simulation lengths of about 1 μs (Supplementary
Note 3.3). Using TRAMMBAR, all unbiased and biased simula-
tion data were combined to a MEMM with 1056 states at a lag
time of 150 ns, and its self-consistency was validated using
standard tests35 (Supplementary Note 3.4 and Supplementary
Figs. 5 and 6). The kinetics of the unbiased ensemble was then
analyzed.

The association rate is predicted to be 3.3 × 109 M−1 s−1 (see
“Methods”, Supplementary Note 3.7) which is faster than the
association of similar p53-peptides to the full-length N-terminal
domain of Mdm2 (on the order of 107 M−1 s−1)67 and still faster
than the association of the 17–29p53 peptide to the 25–109Mdm2
fragment (kon= 7 × 107M−1 s−1)58. The majority of association
trajectories enter basin 13 that contains the crystallographic
complex and is correctly predicted as the most populous state
(Fig. 1).

Computing the residence time of the complex from the
transition matrix may lead to a systematic overestimate, because
the dissociated state lifetime is shorter than the lag time used to
estimate the transition matrix. To avoid this bias, we estimated
rate matrices. Rate matrix estimation is not unique and we
considered the maximum likelihood approach of Kalbfleisch and
Lawless68 which gives an estimate of the residence time of 0.88 s
(95% confidence interval 0:48s; 1:33s½ �, see Fig. 2b, d), and the
least-squares approach of Crommelin and Vanden-Eijnden69,
which gives an estimate of 8 s (confidence interval 1:5s; 40s½ �). To
test the predicted values from the simulations, we decided to
measure the binding kinetics of PMI to Mdm2 experimentally.
We performed a binding competition experiment with a
fluorescence anisotropy readout to measure the PMI dissociation
rate and stopped-flow kinetics experiments to measure the
association rate (see Supplementary Notes 4.1–4.3, Fig. 2f
and Supplementary Fig. 12). We measured a residence time of
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26.8 s (confidence interval 24:7s; 34:1s½ �) and an association
rate constant of 5.27 × 108M−1 s−1 (confidence interval
5:17; 5:37½ � ´ 108M�1 s�1). Interestingly, our simulation-based
predictions and the experimental estimate for the residence time
all lie in the range of seconds to tens of seconds, which is a good
agreement considering expected errors in the simulation force
field63, 64 and influence of the measurement by the fluorescence
label. About 50% of the simulation data, i.e., a total of 300 μs of
mixed unbiased and biased data, are sufficient to get estimates
that are statistically indistinguishable from the estimates using all
data (Fig. 2a, b and Supplementary Fig. 9a).

To assess the importance of the biased simulations for the
computation of the binding free energy and the residence time,
we varied the fraction of biased data used for the estimation
(Fig. 2c, d and Supplementary Fig. 9b). Both quantities converge
within statistical uncertainty if at least 50% of the biased data is
included in the estimation (i.e., 450 μs unbiased data and a total
of 50 μs biased data in all replicas). If no biased simulation data is
used and a conventional MSM is estimated (using 500 μs
unbiased data) the errors increase by a magnitude that makes
the estimate practically useless. Note that it is not easy to
determine whether a MSM is truly connected, and it is possible
that this large error actually indicates that the dissociation
pathway has not been sampled in the unbiased simulations alone.

Analysis of the full kinetic network. To obtain an overview of
structure-kinetics relationships, we analyzed the MEMM kinetics
between the dissociated state (protein-peptide distances larger
than 1 nm) and 14 metastable states that interchange on the
timescale of 10 μs or slower (Fig. 1 upper half). At this resolution,
the binding is overall downhill with fast direct association rates
on the order of 109 M−1 s−1 into the native basin 13 that dominate
the experimentally measurable on-rate. Association can also
occur to non-native intermediates (3, 4, 6, 12) with smaller rates
of 107 to 108 M−1 s−1 (Fig. 1).

In the most populous state 13, PMI is folded and anchored,
with a high probability, to the binding pocket with its
hydrophobic residues Phe3 and Trp7. In the second-most
populous state 12, PMI has the folded crystallographic N-
terminal conformation, but the C-terminus is unfolded and forms
a different contact pattern: while Leu9 forms multiple contacts

with Mdm2 helix 2 (Supplementary Fig. 4), Leu10 has no contact
to Leu54, Val93, and Ile99. Ser11 forms a contact with Tyr100
and Pro12 forms contacts with Arg97, His96, and Try100 of
Mdm2 (Supplementary Table 1).

To examine the importance of different PMI side chains for the
observed binding modes, we computed the change in binding free
energy upon mutation ΔΔG but with the free energy of the
associated state replaced by the free energy of macro-state Si (see
Supplementary Note 3.2 and Supplementary Table 2). We
observe that Phe3 and Trp7 are most important for stable
binding. The role of the other side chains depends on the binding
mode. For example, Thr1, Tyr6, Leu9, and Pro12 stabilize state 12
but not state 13. Alanine scanning experiments (Fig. 2e) have
revealed that the Tyr6Ala mutant shows a similar ΔΔG to that of
the Leu10Ala mutant even though the crystal structure shows no
binding of Tyr6 to the inside of the hydrophobic cleft of Mdm259.
Our results thus suggest that the higher Kd of the Tyr6Ala PMI
mutant is not due to a destabilization of the crystal-like state, but
may rather be explained by the destabilization of alternative
bound states.

Other binding modes that involve more flexible PMI config-
urations do not strongly contribute to the binding affinity, but are
relevant for the association process by “catching” PMI and
funneling it into state 13. In the non-native states, PMI binds in
different locations (3), in different orientations (5, 10, 11), or in
unfolded conformations that dissociate relatively easily, but
otherwise fold during the binding transition (4, 6, 8). The slowest
transitions occur between states 12 and 11 and between states 13
and 7 that happen on milliseconds to hundreds of milliseconds.
Non-native states that do not significantly contribute to binding
pathways are briefly denoted as “trap”. Trap states 5, 7, and 9 are
predominantly reachable from state 13. Additional traps with
lifetimes larger than 10 µs but not significant population were
found, in which PMI binds far away from the binding site
(structures not shown).

To resolve the dynamics inside the main binding pocket in
greater detail, we split state 13 into the sub-states A–H with
kinetics on time scales of a single microsecond or slower (Fig. 1
lower half and Supplementary Note 3.5). Sub-state A is
structurally well-defined and contains the crystal structure (pdb
code 3eqs), the crystallographically unresolved Pro12 forms
contacts with Mdm2 Tyr100. Many of the sub-states (B, C, E, I)
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Fig. 3 Binding mechanism comprised by the 60% most probable pathways. Structures of metastable (on-pathway) intermediates are shown, labels are as
in Fig. 1. Arrows indicate the direction and relative magnitude of the reactive flux from the dissociated state to the crystal-like bound state. PMI residues
that form PMI–Mdm2 contacts with at least a probability of 0.5 in a given macro-state are shown as sticks
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are intermediates in the binding process (Fig. 3). In the crystal-
like state (A) the Tyr6 side chain of PMI is not buried in the
binding cleft. However in many non-native states, Tyr6 can either
bind to the inner cleft together with Trp7 and Phe3 (D, B, H) or
take the role of Trp7/Phe3 by anchoring PMI to the cleft (C, G, F
and 5). Tyr6 can even take the place of Trp7 in a helically bound
conformation that is similar to the crystallographic mode (E).

With the simulations conducted here, we find that state A has a
stationary probability of 72%. Together states A and 12 have a
joint stationary probability of 86%. Thus a large fraction of the
strong affinity between PMI and Mdm2 is due to the two distinct
but individually well-defined conformations 12 and A that
interconvert directly on the timescale of 10 µs.

It is possible that the number of discovered non-natively bound
structures, and their combined equilibrium probability, would
continue to grow if the simulations would be extended. However,
almost all metastable states found here are already visited in the
first 60% of our simulation data (Supplementary Fig. 7) and the
estimate for the binding free energy is converged (Fig. 2a). These
indicators suggest that the non-natively bound structures with
significant probabilities have been found.

Binding mechanism. To investigate the binding mechanism, we
computed the reactive flux using transition path theory36, 70 from
the dissociated state to the crystal-like bound state (Supplemen-
tary Note 3.5). There are multiple parallel pathways and the
metastable states can be grouped into on-pathway intermediates
and off-pathway trap states—see Fig. 3 for an illustration of the
major 60% of binding pathways. The most populous pathway
(29%) goes through a partially folded state (C) that is anchored by
Leu10 and Tyr6 to the binding cleft, while Phe3 and Trp7 form
contacts with the outer surface of helix 2 of Mdm2. 15% of the
reactive binding flux goes through states where PMI binds to the
terminal region of the Mdm2 fragment that is located at the end
of the binding cleft. A similar pathway was found for the p53-
peptide in Ref. 71. The terminally bound states form a con-
formational ensemble with various unfolded (not shown) and
folded (3, I) PMI conformations. Among the terminally bound
states, the macro-states that carry most reactive flux exhibit fol-
ded PMI. The folded conformations differ in the (hydrophobic)
interface that they form with Mdm2 (3, I). Nine percent of the
flux go through states 12 and E where PMI is almost in the
crystal-like fold but the binding pattern is non-native. Inspection
of the MD trajectories shows that during the fast transition from
state E to the crystal-like state, the Tyr6 side chain leaves the
binding cleft first and is then replaced by the Trp7 side chain all
while Phe3 remains anchored to the cleft. In the transition
between state 12 and the crystal-like state, the flexible C-terminus
of PMI is rearranged such that Leu10 takes the place of Leu9 at
the binding interface.

Discussion
Multi-ensemble Markov models can be used to probe full multi-
state kinetics of strong binders by combining conventional MD
simulations of the binding process with biased MD simulations
that spontaneously sample bound and unbound states. While
standard analyses of enhanced sampling simulations do not
readily provide kinetic information, MEMM estimators provide
direct estimates of the kinetics without invoking macroscopic rate
models. Using the nano-molar complex PMI–25–109Mdm2 as an
example, we obtained robust estimates of residence times that
exceed the total amount of simulation data by three to four orders
of magnitude and the individual simulation lengths by six to
seven orders of magnitude.

Importantly, the inclusion of relatively little biased data enables
us to sample rare events such as the protein-inhibitor dissociation
steps, and drastically reduces the statistical error of rates and
binding free energies compared to a MSM of purely unbiased MD
data. In particular, we have demonstrated that MEMMs can
effectively mitigate the problem of trajectories getting trapped in
long-lived states. While direct estimation of MSMs requires that
the visited states are reversibly connected—a condition that is
difficult to test in high-dimensional systems—MEMMs only
require irreversible visits to metastable states if those states were
sampled reversibly in a biased simulation. On the other hand, in
contrast to standard analysis methods such as WHAM or MBAR,
MEMM estimators such as TRAM or TRAMMBAR do not
require the full simulation data to be sampled from global equi-
librium, thus greatly alleviating the sampling problem.

The binding/unbinding mechanism of PMI and Mdm2 was
elucidated in full atomistic detail. While the binding is overall
funnel-like, the detailed kinetics are quite complex. Rebinding
can occur via multiple non-native intermediates on multi-
milliseconds timescales. Another slow process is the inter-
conversion of the crystallographic PMI–Mdm2 state with a
newly identified state in which the C-terminus of PMI is
unraveled and forms a new interaction pattern with Mdm2.
Both states contribute significantly to the PMI–Mdm2 binding
affinity and will inhibit binding to p53. The identification of such
conformations gives us additional flexibility in optimizing the
inhibitor.

Some minor trap states were found that do not significantly
contribute to the binding affinity, but have lifetimes on the order
of microseconds. Although such states may be overrepresented by
current atomistic force fields63, their existence implies that even
for fast binders, around 100 µs of unbiased MD simulation are
needed in order to characterize the association kinetics with
statistical confidence.

The current study is a proof of principle—making optimal
choice of starting structures and amount of data in unbiased vs.
biased simulations depends on the molecular system, and a
logical next step would be to make these choices iteratively within
an adaptive sampling framework28, 37, 72. The present simulation
approach makes progress towards the routine computation of
residence times, and the identification of non-native or allosteric
binding sites for protein-inhibitor systems. Because the approach
does not require a priori knowledge of order parameters and
structures, it can potentially be fully automated. With ever
increasing computing power, this approach may become part of a
high-throughput framework to compute protein–drug kinetics
that may serve both pharmacological applications and the
improvement of force fields towards the more accurate prediction
of kinetics73, 74.

MEMMs combine methods of free energy calculation and
MSM estimation. Therefore any progress made in the develop-
ment of protocols for free energy calculation might directly
translate into a corresponding progress in the estimation of
kinetics. We are confident that the seconds timescale is not the
limit and that timescales comparable to the biological half-life of
drugs (hours)2, or the excessively long lifetimes of multivalent
binders17, 18 are, in principle, accessible. Equilibrium kinetic
models of protein binding kinetics harvested with MEMMs can
be embedded into particle-based reaction-diffusion simulations in
order to probe the kinetics emerging from non-equilibrium
conditions and the behavior of entire cellular signaling
pathways75.

Methods
MDM2–PMI simulation setup. MD simulations were conducted with the
Amber99SB-ILDN force field76 and TIP3P water model77 in the canonical
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ensemble at temperature T= 300 K. To generate a starting structure, we used the
heavy atom positions from the protein data bank (PDB) file 3eqs57 and moved the
peptide out of the binding pocket. Missing residues of the PDB structure (PMI
Pro12 and Mdm2 Glu25) were modeled in standard conformations. Hydrogen
atoms were added with AmberTools78, the complex was solvated in a cubic box of
edge length 7.62 nm with 13,698 water molecules, and five Cl− and one Na+

counter ions were added. The two histidine residues of Mdm2 were protonated at
the ϵ2 site. Simulations were performed with the ACEMD computer code79 using
the Langevin integrator using a damping constant γ= 0.1 ps−1, constraints on the
bonds that involve hydrogen atoms, and with heavy hydrogen atoms (four times
the natural mass) to allow for an integration time step of 4 fs. Electrostatics were
computed using Particle Mesh Ewald using a real-space cutoff of 0.9 nm.

Hamiltonian replica-exchange simulations. Since the relevant conformational
states were a priori unknown, we avoided choosing structure-based collective
variables but instead employed a so-called boost potential that was developed in the
context of accelerated MD80 and works by reducing the depth of the minima in the
potential energy landscape. As the interaction of Mdm2 with PMI and other
peptides is mostly hydrophobic57, 81, the boost potential was applied to the
Lennard-Jones interactions between the two chains and not the electrostatic
interactions (see Supplementary Note 3.1 for simulation details). Six independent
simulations starting from the crystallographic pose of about 1 μs length each were
carried out with replica exchange82 between 14 ensembles that interpolate between
unbiased and strongly boosted potentials (Supplementary Note 3.1). The simula-
tion took approximately 42×103 GPU hours.

Unbiased MD simulations. Short MD simulations of a total of 20 μs were used to
explore the conformational space. From these simulations and all replicas of the
replica-exchange simulations, starting conformations were uniformly sampled,
generating various bound and unbound structures. In total, 502.597 μs of unbiased
MD simulations were run. The initial structures were resolvated, energy minimized
with 100 steps of conjugate-gradient descent, temperature equilibrated for 100 ps
with harmonic constraints on protein and peptide atoms, followed by a 1 ns
pressure equilibration with the Berendsen barostat. Finally the box size was set to
the fixed cube with 7.62 nm edge length and an additional equilibration run of 1 ns
was performed with active harmonic constraints. The production run generated
481 trajectories with varying lengths (between 945 and 1211 ns per trajectory). The
simulation took approximately 115×103 GPU hours.

TRAMMBAR is a new estimator for MEMMs. Replica-exchange MD between
different bias potentials can be extremely effective in exploring complex molecular
state spaces82. Here we develop an extension of the bin-less TRAM method49 to
compute MEMMs in order to facilitate the integration of replica-exchange MD
with unbiased MD. TRAM’s ability to estimate unbiased kinetics relies on counting
transitions between states within each simulation ensemble, but the contiguous
simulation times between ensemble changes in a replica-exchange scheme are
usually too short for that. We address the problem by splitting the data into two
sets: (a) data from replica-exchange simulations for which we assume that it
samples the equilibrium distributions of the respective ensembles and is thus
analyzed with the MBAR framework61, 62; (b) data from unbiased MD simulations
that are not long enough to sample the equilibrium distribution of the respective
ensemble and are analyzed with bin-less TRAM. These two parts need to
be coupled, and we call the resulting hybrid analysis method TRAMMBAR.
Following Ref. 49, we denote the set of equilibrium samples (a) from ensemble k by
Xk
MBAR and the set of time-correlated samples (b) from ensemble k by Xk

TRAM. We
approximate the reference equilibrium distribution as a point-wise distribution on
all data by maximizing the likelihood

LTRAMMBAR ¼ LTRAM � LMBAR ð1Þ

where LTRAM is defined as in Ref. 49

LTRAM ¼
Y

k;i;j

pkij

� �ckij Y

x2Xk
TRAM\Si

μðxÞef ki �bkðxÞ ð2Þ

and LMBAR is the standard MBAR likelihood61

LMBAR ¼
Y

k

Y

x2Xk
MBAR

μ xð Þef k�bkðxÞ
ð3Þ

Here, bk(x) denotes the known unit-less bias energy of configuration x evaluated in
the kth ensemble that can be obtained from the MD software. ckij are the observed

transition counts from the time-correlated data Xk
TRAM, and e�f k :¼ P

i e
�f ki are the

ensemble free energies. The likelihood is optimized by varying: the unbiased
configuration weights μ(x), the joint equilibrium probabilities e�f ki to be in Markov
state Si and ensemble k, and the transition probabilities pkij , from which the kinetics
at every ensemble can be computed. The TRAMMBAR algorithm is equivalent to
the MBAR algorithm if XTRAM is empty, and equivalent to the TRAM algorithm

with empty XMBAR. The algorithm for maximizing the above likelihood is described
in Supplementary Notes 1.1 and 1.2.

In order to illustrate our approach for computing rare-event kinetics for strong
binders, consider the two-dimensional potential energy landscape in Fig. 4a. The
gray shape represents a protein to which a small molecule ligand can bind. The
protein has two shallow minima representing non-native binding sites on the
surface, and a deep energy minimum representing an internal binding pocket at the
end of a channel.

The mean dissociation time for this system is about 1.8×106 Monte Carlo steps
(vertical bar in Fig. 4b, c). To approximate this time with direct simulation,
multiple trajectories with lengths of at least 107 steps need to be launched from the
bound state (Supplementary Fig. 2). Using MSMs, still a total of 107 steps of
simulation time in shorter trajectories is needed to obtain accurate estimates of
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Fig. 4 Illustration of computing rare-event kinetics with TRAMMBAR using
a model for protein ligand binding. a Potential energy surface and transition
rates between five states (bound, pre-bound, two mis-bound states,
dissociated). Arrow thickness is proportional to rate. b Probability of
computing the binding free energy ΔG within 1kBT accuracy of the exact
value for a given amount of simulation data using MEMMs (TRAMMBAR
estimator) or MSMs. The vertical bar indicates the mean-first-passage time
(MFPT) for dissociation. c Probability of computing the dissociation rate
within factor 1

2 to 2 accuracy of the exact value
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both thermodynamics and kinetics (Fig. 4b, c). Using a MEMM with the
TRAMMBAR estimator, we can get accurate estimates for both the binding free
energy and the dissociation time with a total of only 5×105 steps that include short
unbiased binding simulations and biased simulations on a flattened potential
(Fig. 4b, c, Supplementary Note 2 and Supplementary Figs. 1 and 3). In contrast to
most other enhanced sampling methods, a MEMM allows the computation of
unbiased kinetics despite the fact that biases are used in the simulation. Moreover,
MEMMs provide not only selected macroscopic rates, but full kinetics such as the
whole set of transition rates shown in Fig. 4a.

Multi-ensemble Markov model for Mdm2–PMI. A MEMM was build from the
MD and replica-exchange trajectories. To define MEMM states, we first chose the
following set of features: all 1086 nearest-neighbor heavy atom distances between
PMI residues and PMI residues (a) or Mdm2 residues (b) and the sine and cosine
of the χ1 dihedral angle of Mdm2 Tyr100 (c), which is a known “gate-keeper”
residue for ligand association83. The time-lagged independent component analysis
(TICA) algorithm84 with a lag time of 10 ns was used to obtain 20 independent
components containing the slow kinetics. To these, trajectories of the minimal
distance between PMI and Mdm2 were added to facilitate a clear definition of the
fully dissociated state. The resulting feature trajectories were clustered with k-
means (k= 1000). In total, 56 microstates discretizing the dissociated state were
defined based on the minimal heavy atom distance between PMI and Mdm2 and
added to the set of the 1000 k-means clusters. The dissociated states had to be
defined explicitly because of the low metastability of the dissociated state in the
simulation box which prevents that the TICA algorithm finds a dimension that
describes the full association/dissociation process of the binding partners (see
Supplementary Fig. 10 for the influence of the definition of the dissociated states on
the estimates of the binding free energy and of the residence time). Transition
counts were computed for TRAMMBAR and for the MSM. For TRAMMBAR the
initial 50 ns of the replica-exchange trajectories were discarded and the rest was
subsampled, taking only one frame every 0.1 ns. We picked a lag time of 150 ns for
TRAMMBAR based on the convergence of the implied time scales and mean-first-
passage-times (Supplementary Notes 3.4 and 3.7, Supplementary Figs. 5 and 8). All
analyses were done using PyEMMA60 and MDTraj85.

Experimental binding kinetics. The association and dissociation rate measure-
ments were performed in stopped-flow and competition fluorescence anisotropy
experiments. For the association measurements, FITC-PMI and Mdm2 were
rapidly mixed using an SX20 stopped-flow spectrometer (Applied Photophysics).
The temperature was maintained at 25 °C, and an excitation wavelength of 493 nm,
in conjunction with a 515 nm long-pass filter was utilized. For the dissociation
measurements, 10 nM FITC-PMI peptide was incubated with Mdm2, then excess
of the unlabeled PMI (10 μM) was added and the dissociation was followed with a
Multilabel 384-well plate reader (Tecan, Infinite M1000 PRO) with excitation at
494 nm and emission at 517 nm (see Supplementary Notes 4.1–4.3 and Supple-
mentary Figs. 11 and 12 for details).

Code availability. TRAMMBAR has been implemented in the PyEMMA software.
PyEMMA is available free of charge at http://pyemma.org.

Data availability. The molecular dynamics data that support the findings of this
study are available in the Edmond Open Access Data Repository with the identifier
doi:10.17617/3.x.86. All relevant data is available from the authors upon request.
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