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Abstract

Many applications, such as human action recognition and object detection, can be formu-
lated as a multiclass classification problem. One-vs-rest (OVR) is one of the most widely
used approaches for multiclass classification due to its simplicity and excellent performance.
However, many confusing classes in such applications will degrade its results. For example,
hand clap and boxing are two confusing actions. Hand clap is easily misclassified as boxing,
and vice versa. Therefore, precisely classifying confusing classes remains a challenging task.
To obtain better performance for multiclass classifications that have confusing classes, we
first develop a classifier chain model for multiclass classification (CCMC) to transfer class
information between classifiers. Then, based on an analysis of our proposed model, we
propose an easy-to-hard learning paradigm for multiclass classification to automatically
identify easy and hard classes and then use the predictions from simpler classes to help
solve harder classes. Similar to CCMC, the classifier chain (CC) model is also proposed
by Read et al. (2009) to capture the label dependency for multi-label classification. How-
ever, CC does not consider the order of difficulty of the labels and achieves degenerated
performance when there are many confusing labels. Therefore, it is non-trivial to learn the
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appropriate label order for CC. Motivated by our analysis for CCMC, we also propose the
easy-to-hard learning paradigm for multi-label classification to automatically identify easy
and hard labels, and then use the predictions from simpler labels to help solve harder la-
bels. We also demonstrate that our proposed strategy can be successfully applied to a wide
range of applications, such as ordinal classification and relationship prediction. Extensive
empirical studies validate our analysis and the effectiveness of our proposed easy-to-hard
learning strategies.

Keywords: Multiclass Classification, Multi-label Classification, Classifier Chain, Easy-
to-hard Learning Paradigm

1. Introduction

Many applications can be formulated as a multiclass classification problem. For example,
human action recognition aims to classify videos into different categories of human action.
In the KTH data set (Schüldt et al., 2004), for example, there are six types of human action:
walk, jog, run, hand wave, hand clap and boxing. These actions can be classified into two
main categories: leg movements (walk, jog and run) and hand movements (hand wave, hand
clap and boxing). It is easy to differentiate between leg and hand movements, such as walk
and hand wave, but actions within leg or hand movements, such as hand clap and boxing,
are easily confused. Hand clap is easily misclassified as boxing, and vice versa. Confusing
classes are ubiquitous in real world applications, especially for data sets with many classes.
For example, there are many confusing classes in the ALOI data set from the LIBSVM
website1, which contains 1,000 classes. Therefore, precisely classifying multiclass data sets
with confusing classes is a challenging task.

From the confusion matrix of one-vs-rest (OVR) on the KTH data set shown in Figure 1,
we observe that walk is the easiest action to classify and hand clap is the hardest action to
classify, as the walk action can be correctly identified by OVR whereas the percentage of
hand clap images that are misclassified as boxing is 22.5%. To achieve accurate prediction
performance, according to Figure 1, we should classify walk first, followed by run, jog and
hand wave. Boxing and hand clap are the last two actions to classify. The motivation behind
this paper is to solve classification tasks from easy to hard, and to use the predictions from
simpler tasks to help solve the harder tasks.

To achieve our goal, a classifier chain model for multiclass classification (CCMC) is pro-
posed to transfer class information between classifiers. Furthermore, we generalize CCMC
over a random class order and provide a theoretical analysis of the generalization error for
the proposed generalized model. Our results show that the upper bound of the general-
ization error depends on the sum of the reciprocal of the square of the margin over the
classes. Therefore, we conclude that class order does affect the performance of CCMC,
and a globally optimal class order exists only when the minimization of the upper bound is
achieved over this CCMC. Lastly, based on our results, we propose the easy-to-hard learning
paradigm for multiclass classification to automatically identify easy and hard classes and
then use the predictions from simpler classes to help solve harder classes.

Multi-label classification, where each instance can belong to multiple labels simultane-
ously, has garnered significant attention from researchers as a result of its various applica-

1. https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets
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Figure 1: Confusion Matrix of OVR on the KTH Data Set. In the confusion matrix, the
entry in the i-th row and j-th column is the percentage of images from action i that
are misclassified as action j. Average classification accuracy rates for individual
actions are listed along the diagonal, which is colored yellow.

tions, which range from document classification and gene function prediction, to automatic
image annotation. For example, a document can be associated with a range of topics,
such as Sports, Finance and Education (Schapire and Singer, 2000); a gene belongs to the
functions of protein synthesis, metabolism and transcription (Barutcuoglu et al., 2006); an
image may have both beach and tree tags (Boutell et al., 2004).

Similar to CCMC, a classifier chain (CC) model is also proposed by Read et al. (2009) to
capture the label dependency for multi-label classification. It also tries to use information
from previous labels to help train the classifier for the next label. However, CC’s perfor-
mance degenerates when there are many confusing labels, because the main drawback of CC
is that it does not consider the order of difficulty of the labels. Therefore, it is non-trivial
to learn the appropriate label order for CC.

Motivated by our analysis for CCMC, we first generalize CC over a random label order
and provide the generalization error bound for the proposed generalized model. Then we
propose the easy-to-hard learning paradigm for multi-label classification to automatically
identify easy and hard labels. Lastly, we use the predictions from simpler labels to help solve
harder labels. To learn the objective of our proposed easy-to-hard learning paradigms, it is
very expensive to search over q! different class or label orders2, where q denotes the number
of classes or labels, which is computationally infeasible for a large q. We thus propose a set
of easy-to-hard learning algorithms to simplify the search process of the optimal learning
sequence.

Experiments on a wide spectrum of data sets show that our proposed methods excel in
all data sets for multi-label and multiclass classification problems. The results validate our
analysis and the effectiveness of our proposed easy-to-hard learning algorithms. Lastly, we
demonstrate that our proposed easy-to-hard learning strategies can be successfully applied

2. ! represents the factorial notation.
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to a wide range of applications, such as ordinal classification (Chu and Ghahramani, 2005)
and relationship prediction (Massa and Avesani, 2006).

We organize this paper as follows. Section 2 summarizes existing related works and
problems. The easy-to-hard learning paradigm for multi-label and multiclass classification
are proposed in Sections 3 and 4. Learning algorithms and time complexity analysis are
described in Section 5. We present two applications in Section 6. Section 7 shows the
comprehensive experimental results. The last section provides concluding remarks.

Notations: Assume xt ∈ Rd is a real vector representing an input or instance (feature)
for t ∈ {1, · · · , n}. n denotes the number of training instances. Yt ⊆ {λ1, λ2, · · · , λq} is the
corresponding output (class or label). yt ∈ {0, 1}q is used to represent the set Yt, where
yt(j) = 1 if and only if λj ∈ Yt. Note that, there is only one element in Yt for the multiclass
problem.

2. Related Work and Problems

2.1 Multiclass Classification

2.1.1 OVR and OVO

One-vs-rest (OVR) and one-vs-one (OVO) are two famous strategies for decomposing mul-
ticlass classification problems into multiple binary classification problems. Hsu and Lin
(2002), Rifkin and Klautau (2004), Demirkesen and Cherifi (2008) and Lapin et al. (2015,
2016) have already shown that OVR and OVO are successful schemes that are as accurate as
more complicated approaches, such as error-correcting output coding (ECOC) (Dietterich
and Bakiri, 1995), the tree-based method (Beygelzimer et al., 2009a,b; Bengio et al., 2010;
Yang and Tsang, 2011; Liu and Tsang, 2016) and multi-class SVM (Weston and Watkins,
1999; Lapin et al., 2015, 2016).

OVR works as follows: a binary classifier is trained for each class λj , with all of the
instances in the j-th class having positive labels, and all other instances having negative
labels. q binary classifiers are then trained on {xt,yt(1)}nt=1, · · · , {xt,yt(q)}nt=1. The final
output of OVR for each testing instance is the class that corresponds to the classifier with
the highest output value. OVR ignores correlations between classes and each classifier is
trained independently. OVO trains all possible q(q− 1)/2 binary classifiers from a training
set of q classes, where each classifier is trained on only two out of q classes.

The main differences between OVR and OVO relate to computational issues and appli-
cations: 1) Computational issues: OVO requires O(q2) classifiers, while OVR trains O(q)
classifiers. If q is very large, then the cost of OVO will be prohibitive. 2) Applications:
many real world data sets are partially labelled, as a result of the heavy burden of labelling
data. We call this kind of data “background data” (See also (Niu et al., 2016)). It arises
in many applications, for example, multiclass image segmentation (Guillaumin et al., 2010;
Pham et al., 2015), object detection (Torralba et al., 2004; Huo et al., 2016) and multi-
class video segmentation (Budvytis et al., 2010). OVR can be used both in supervised and
semi-supervised settings, while OVO can not be used in semi-supervised settings. Thus,
OVR can be used to tackle this kind of background data, but OVO cannot. Milgram et al.
(2006) have already shown that OVR appears to be significantly more accurate than OVO
for handwriting recognition.
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2.1.2 Rifkin and Klautau’s conjecture

OVR is a lower cost approach with many more applications than OVO. However, Rifkin and
Klautau (2004), who conduct a thorough study on OVR, point out that the condition of
OVR working as well as any other clever schemes is that the classes are independent - we do
not necessarily expect instances from class “A” to be closer to those in class “B” than those
in class “C”. They also speculate that an algorithm that exploits the relationship between
classes could offer superior performance, and that this would remains an open problem. To
the best of our knowledge, this problem has still not been well-addressed, which is why the
present paper studies this problem to provide an answer.

2.2 Multi-label Classification

One popular strategy for multi-label classification is to reduce the original problem into
many binary classification problems. Many works have followed this strategy. For example,
binary relevance (BR) (Tsoumakas et al., 2010) is a simple approach for multi-label learning
which independently trains a binary classifier for each label. Recently, Chen and Lin (2012);
Liu and Tsang (2015a,b); Zhang and Zhou (2014); Gong et al. (2017); Liu and Tsang (2017)
have shown that multi-label learning methods that explicitly capture label dependency will
usually achieve better prediction performance. Therefore, modeling label dependency is one
of the major challenges in multi-label classification problems.

To capture label dependency, Hsu et al. (2009) first use the compressed sensing technique
to handle multi-label classification problems. They project the original label space into a
low dimensional label space. A regression model is then trained on each transformed label.
Lastly, multi-labels are recovered from the regression output, which usually involves solving
a quadratic programming problem (Hsu et al., 2009). Many works have been developed
in this way (Zhang and Schneider, 2011, 2012; Tai and Lin, 2012). Such methods mainly
aim to use different projection methods to transform the original label space into another
effective label space. However, an expensive encoding and decoding procedure prevents
these methods from being practical.

Another important approach attempts to exploit the different orders (first-order, second-
order and high-order) of label correlations (Zhang and Zhang, 2010; Zhang and Zhou, 2014).
Following this way, some works try to provide a probabilistic interpretation for label corre-
lations. For example, Guo and Gu (2011) model the label correlations using a conditional
dependency network; PCC (Dembczynski et al., 2010) exploits a high-order Markov Chain
model to capture the correlations between the labels and provide an accurate probabilistic
interpretation of classifier chain (CC) (Read et al., 2009). Some other works (Kang et al.,
2006; Read et al., 2009; Huang and Zhou, 2012) focus on modeling the label correlations in
a deterministic way. Among them, the CC model is one of the most popular methods due
to its simplicity and promising experimental results (Read et al., 2009).

CC works as follows: one classifier is trained for each label. For the (i+ 1)th label, each
instance is augmented with the 1st, 2nd, · · · , ith label as the input to train the (i + 1)th
classifier. Given a new instance to be classified, CC firstly predicts the value of the first
label, then takes this instance together with the predicted value as the input to predict the
value of the next label. CC proceeds in this way until the last label is predicted. However,
here the question is: Does the label order affect the performance of CC? Apparently yes,
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because different classifier chains involve different classifiers trained on different training
sets. Thus, to reduce the influence of the label order, Read et al. (2009) propose the
ensemble of classifier chains (ECC) to average the multi-label predictions of CC over a set
of random ordering chains. Since the performance of CC is sensitive to the choice of label,
there is another important question: Is there any globally optimal classifier chain which can
achieve the optimal prediction performance for CC? If yes, how can the globally optimal
classifier chain be found? This paper studies this problem and provides an answer.

2.3 Curriculum Learning

Curriculum learning (Bengio et al., 2009) can be seen as a sequence of training criteria.
Each training criterion in the sequence is associated with a different set of weights in the
training examples, or more generally, in a re-weighting of the training distribution. Initially,
the weights favor easier examples that can be learned most easily. The next training crite-
rion involves a slight change in the weighting of examples that increases the probability of
sampling slightly more difficult examples. Overall, curriculum learning aims to find easier
examples. However, up to now, curriculum learning has not defined what easy examples
mean, or equivalently, how to sort the examples into a sequence that illustrates the simpler
concepts first.

Inspired by curriculum learning, this paper clearly defines easy and hard tasks and
provides the strategy to learn easy and hard tasks. Our empirical studies verify that our
method is able to automatically identify easy and hard tasks, and use the predictions of
classifiers from easier tasks to train the classifier for harder tasks.

3. The Easy-to-hard Learning Paradigm for Multiclass Classification

3.1 Classifier Chain for Multiclass Classification

In multi-label classification, each instance can belong to multiple labels simultaneously,
while multiclass classification classifies instances into one of more than two classes. There-
fore, multiclass classification (Hsu and Lin, 2002) is a quite different learning task compared
to multi-label classification (Zhang and Zhou, 2014). Many applications, such as human
action recognition and object detection, can be formulated as a multiclass classification
problem. However, many confusing classes in such applications will degrade the existing
solver’s performance. For example, hand clap and boxing are two confusing actions. Hand
clap is easily misclassified as boxing, and vice versa. Therefore, it is non-trivial to precisely
classify confusing classes for multiclass classification.

To solve these issues, motivated by CC for multi-label classification, we propose a clas-
sifier chain model for multiclass classification (CCMC) which aims to transfer class infor-
mation between classifiers. CCMC trains q binary classifiers hj (j ∈ {1, · · · , q}), with all of
the instances in the j-th class having positive labels, and all other instances having negative
labels. Similar to CC, classifiers of CCMC are linked along a chain. CCMC works as follows:
binary classifier h1 is first trained for class λ1, then the augmented vector {xt, h1(xt)}nt=1

is used as the input to train classifier h2 for class λ2. Similarly, xt augments all previous
prediction values of h1, · · · , hj as the input to train classifier hj+1 for class λj+1. CCMC
proceeds in this way until the last classifier hq for class λq has been trained.
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Figure 2: Schematic illustration of OVR and CCMC. A circle represents the input x. A
rectangle represents class λi(t ∈ {1, · · · , q}). The starting point of the arrow
denotes the input to train the classifier for the class to which the arrow points.

Given a new testing instance x, classifier h1 in the chain is responsible for predicting the
value for λ1 using input x. h2 predicts the value for λ2 taking x plus the predicted value
of h1(x) as an input. Similarly, hj+1 predicts the value for λj+1 using x plus all previous
prediction results from h1, · · · , hj as the input. CCMC proceeds in this way until the value
of the last class λq has been predicted. Similar to OVR, the final output of CCMC for x is
the class that corresponds to the classifier with the highest output value. CCMC exploits
the class dependence by passing class information between classifiers. Figure 2 illustrates
the working scheme between OVR and CCMC.

3.2 Generalized Classifier Chain for Multiclass Classification

We generalize the CCMC model over a random class order, called generalized classifier chain
for multiclass classification (GCCMC). Assume that classes {λ1, λ2, · · · , λq} are randomly
reordered as {ζ1, ζ2, · · · , ζq}, where ζj = λk means class λk moves to position j from k. In
the GCCMC model, classifiers are also linked along a chain where each classifier hj deals
with the binary classification problem for class ζj (λk). GCCMC follows the same training
and testing procedures as CCMC, the only difference being the class order.

3.3 Analysis

In this subsection, we analyze the generalization error bound of the multiclass classification
problem using GCCMC based on some techniques, such as fat shattering dimension (Kearns
and Schapire, 1990) and the upper bound theorem of covering numbers (Shawe-Taylor et al.,
1998).
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Let X represent the input space. Both s and s̄ are m multiclass examples drawn inde-
pendently according to an unknown distribution D. We denote logarithms to base 2 by log.
If S is a set, |S| denotes its cardinality. ‖ · ‖ means the l2 norm.

We begin with the definition of the fat shattering dimension.

Definition 1 (Kearns and Schapire (1990)) Let H be a set of real valued functions.
We say that a set of points P is γ-shattered by H relative to r = (rp)p∈P if there are real
numbers rp indexed by p ∈ P such that for all binary vectors b indexed by P , there is a
function fb ∈ H satisfying

fb(p) =

{
≥ rp + γ if bp = 1

≤ rp − γ otherwise

The fat shattering dimension fat(γ) of the set H is a function from the positive real numbers
to the integers which maps a value γ to the size of the largest γ-shattered set, if this is finite,
or infinity otherwise.

Assume that H is the real valued function class and h ∈ H. l(y, h(x)) denotes the loss
function. The expected error of h is defined as erD[h] = E(x,y)∼D[l(y, h(x))], where (x, y)
drawn from the unknown distribution D. Here we select 0-1 loss function. So, erD[h] =

P(x,y)∼D(h(x) 6= y). The empirical risk ers[h] is defined as ers[h] = 1
n

n∑
t=1

I
(
yt 6= h(xt)

)
.3

Suppose that N (ε,H, s) is the ε-covering number of H with respect to the l∞ pseudo-
metric measuring the maximum discrepancy on the example s. The notion of the covering
number can be referred to Appendix A. We introduce the following general corollary re-
garding the bound of the covering number:

Corollary 2 (Shawe-Taylor et al. (1998)) Let H be a class of functions X → [a, b] and
D a distribution over X. Choose 0 < ε < 1 and let d = fat(ε/4) ≤ em. Then

E(N (ε,H, s)) ≤ 2
(4m(b− a)2

ε2

)d log(2em(b−a)/(dε))
(1)

where the expectation E is over examples s ∈ Xm drawn according to Dm.

We study the generalization error bound of the specified GCCMC with the speci-
fied number of classes and margins. Let G be the set of classifiers of GCCMC, G =
{h1, h2, · · · , hq}. ers[G] denotes the fraction of the number of errors that GCCMC makes

on s. Define x̂ ∈ X× {0, 1}, ĥj(x̂) = hj(x)(1− y(j))− hj(x)y(j).
We introduce the following proposition:

Proposition 3 If an instance x ∈ X is misclassified by a GCCMC model, then ∃hj ∈
G, ĥj(x̂) ≥ 0.

Proof For multiclass problem, assume that an instance x belongs to class ζi: y(i) = 1,
y(g) = 0(∀g ∈ {1, 2, · · · , q}, g 6= i), and that it is misclassified as ζj . Suppose that classifier
hj ∈ G reports the highest confidence score for this instance: hj(x).

3. The expression I
(
yt 6= h(xt)

)
evaluates to 1 if yt 6= h(xt) is true and to 0 otherwise.
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Case 1: hj(x) ≥ 0. In this case, ĥj(x̂) = hj(x)(1− y(j))− hj(x)y(j) = hj(x) ≥ 0.
Case 2: hj(xt) < 0. In this case, all classifiers will output negative real numbers as

the result of hj reporting the highest confidence score. Thus, ĥi(x̂) = hi(x)(1 − y(i)) −
hi(x)y(i) = −hi(x) ≥ 0.

Lemma 4 Given a specified GCCMC model with q classes and with margins γ1, γ2, · · · , γq
for each class satisfying ki = fat(γi/8), where fat is continuous from the right. If GCCMC
has correctly classified m multiclass examples s generated independently according to the
unknown (but fixed) distribution D and s̄ is a set of another m multiclass examples, then
we can bound the following probability to be less than δ: P 2m{ss̄ : ∃ a GCCMC model,
it correctly classifies s, fraction of s̄ misclassified > ε(m, q, δ)} < δ, where ε(m, q, δ) =
1
m(Q log(32m) + log 2q

δ ) and Q =
∑q

i=1 ki log(8em
ki

).

Proof (of Lemma 4). Suppose that G is a GCCMC model with q classes and with margins
γ1, γ2, · · · , γq, the probability event in Lemma 4 can be described as

A = {ss̄ : ∃G, ki = fat(γi/8), ers[G] = 0, ers̄[G] > ε}.

Let ŝ and ˆ̄s denote two different set of m multiclass examples, which are drawn i.i.d. from the
distribution D×{0, 1}. Applying the definition of x̂, ĥ and Proposition 3, the event can also
be written as A = {ŝˆ̄s : ∃G, γ̂i = γi/2, ki = fat(γ̂i/4), ers[G] = 0, ri = maxtĥi(x̂t), 2γ̂

i =
−ri, |{ŷ ∈ ˆ̄s : ∃hi ∈ G, ĥi(ŷ) ≥ 2γ̂i + ri}| > mε}. Here, −maxtĥi(x̂t) means the minimal
value of |hi(x)| which represents the margin for class ζi, so 2γ̂i = −ri. Let γki = min{γ′ :
fat(γ′/4) ≤ ki}, so γki ≤ γ̂i, we define the following function:

π(ĥ) =


0 if ĥ ≥ 0

−2γki if ĥ ≤ −2γki
ĥ otherwise

so π(ĥ) ∈ [−2γki , 0]. Let π(Ĝ) = {π(ĥ) : h ∈ G}.
Let Bki

ŝˆ̄s
represent the minimal γki-cover set of π(Ĝ) in the pseudo-metric dŝˆ̄s. We have

that for any hi ∈ G, there exists f̃ ∈ Bki
ŝˆ̄s

, |π(ĥi(ẑ)) − π(f̃(ẑ))| < γki , for all ẑ ∈ ŝˆ̄s.

For all x̂ ∈ ŝ, by the definition of ri, ĥi(x̂) ≤ ri = −2γ̂i, and γki ≤ γ̂i, ĥi(x̂) ≤ −2γki ,
π(ĥi(x̂)) = −2γki , so π(f̃(x̂)) < −2γki + γki = −γki . However, there are at least mε points
ŷ ∈ ˆ̄s such that ĥi(ŷ) ≥ 0, so π(f̃(ŷ)) > −γki > maxtπ(f̃(x̂t)). Since π only reduces the
separation between output values, we conclude that the inequality f̃(ŷ) > maxtf̃(x̂t) holds.
Moreover, the mε points in ˆ̄s with the largest f̃ values must remain for the inequality to
hold. By the permutation argument, at most 2−mε of the sequences obtained by swapping
corresponding points satisfy the conditions for fixed f̃ .

As for any hi ∈ G, there exists f̃ ∈ Bki
ŝˆ̄s

, so there are |Bki
ŝˆ̄s
| possibilities of f̃ that satisfy

the inequality for ki. Note that |Bki
ŝˆ̄s
| is a positive integer which is usually bigger than 1,

and by the union bound, we obtain the following inequality:

P (A) ≤ (E(|Bk1
ŝˆ̄s
|) + · · ·+ E(|Bkq

ŝˆ̄s
|))2−mε ≤ (E(|Bk1

ŝˆ̄s
|)× · · · × E(|Bkq

ŝˆ̄s
|))2−mε
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Since every set of points γ-shattered by π(Ĝ) can be γ-shattered by Ĝ, so fatπ(Ĝ)(γ) ≤
fatĜ(γ), where Ĝ = {ĥ : h ∈ G}. Hence, by Corollary 2 (setting [a, b] to [−2γki , 0], ε to γki
and m to 2m),

E(|Bki
ŝˆ̄s
|) = E(N (γki , π(Ĝ), ŝˆ̄s)) ≤ 2(32m)d log( 8em

d
)

where d = fatπ(Ĝ)(γki/4) ≤ fatĜ(γki/4) ≤ ki. Thus E(|Bki
ŝˆ̄s
|) ≤ 2(32m)

ki log( 8em
ki

)
, and we

obtain

P (A) ≤ (E(|Bk1
ŝˆ̄s
|)× · · · × E(|Bkq

ŝˆ̄s
|))2−mε ≤

q∏
i=1

2(32m)
ki log( 8em

ki
)

= 2q(32m)Q

where Q =
∑q

i=1 ki log(8em
ki

). And so (E(|Bk1
ŝˆ̄s
|)× · · · × E(|Bkq

ŝˆ̄s
|))2−mε < δ provided

ε(m, q, δ) ≥ 1

m

(
Q log(32m) + log

2q

δ

)
as required.

Lemma 4 applies to a particular GCCMC model with a specified number of classes and
a specified margin for each class. In practice, we will observe the margins after running the
GCCMC model. Thus, we must bound the probabilities uniformly over all of the possible
margins to obtain a practical bound. The generalization error bound of the multiclass
classification problem using GCCMC is shown as follows:

Theorem 5 Suppose that random m multiclass examples can be correctly classified using
a GCCMC model, and suppose this GCCMC model contains q classifiers with margins
γ1, γ2, · · · , γq for each class. Then we can bound the generalization error with probability
greater than 1− δ to be less than

130R2

m

(
Q′ log(8em) log(32m) + log

2(2m)q

δ

)
where Q′ =

∑q
i=1

1
(γi)2

and R is the radius of a ball containing the support of the distribution.

Before proving Theorem 5, we state one key symmetrization lemma and Theorem 7.

Lemma 6 (Symmetrization) Let H be the real valued function class. s and s̄ are m
examples both drawn independently according to the unknown distribution D. If mε2 ≥ 2,
then

Ps(sup
h∈H
|erD[h]− ers[h]| ≥ ε) ≤ 2Pss̄(sup

h∈H
|ers̄[h]− ers[h]| ≥ ε/2) (2)

The proof of this lemma can be found in Appendix B.

Theorem 7 (Bartlett and Shawe-Taylor (1998)) Let H be restricted to points in a
ball of M dimensions of radius R about the origin, then

fatH(γ) ≤ min
{R2

γ2
,M + 1

}
(3)

10
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Proof (of Theorem 5). We must bound the probabilities over different margins. We first
use Lemma 6 to bound the probability of error in terms of the probability of the discrepancy
between the performance on two halves of a double example. Then we combine this result
with Lemma 4. We must consider all possible patterns of ki’s for ζi. The largest value of
ki is m. Thus, for fixed q, we can bound the number of possibilities by mq. Hence, there
are mq of applications of Lemma 4.

Let ci = {γ1, γ2, · · · , γq} denote the i-th combination of margins varied in {1, · · · ,m}q.
G denotes a set of GCCMC models. The generalization error of G can be represented as
erD[G] and ers[G] is 0, where G ∈ G. The uniform convergence bound of the generalization
error is

Ps(sup
G∈G
|erD[G]− ers[G]| ≥ ε)

Applying Lemma 6,

Ps(sup
G∈G
|erD[G]−ers[G]| ≥ ε) ≤ 2Pss̄(sup

G∈G
|ers̄[G]− ers[G]| ≥ ε/2)

Let Jci = {ss̄ : ∃ a GCCMC modelG with q classes and with margins ci : ki = fat(γi/8), ers[G] =
0, ers̄[G] ≥ ε/2}. Clearly,

Pss̄(sup
G∈G
|ers̄[G]− ers[G]| ≥ ε/2) ≤ Pmq

( mq⋃
i=1

Jci

)
As ki still satisfies ki = fat(γi/8), Lemma 4 can still be applied to each case of Pm

q
(Jci).

Let δk = δ/mq. Applying Lemma 4 (replacing δ by δk/2), we get:

Pm
q
(Jci) < δk/2

where ε(m, k, δk/2) ≥ 2/m(Q log(32m) + log 2×2q

δk
) and Q =

∑q
i=1 ki log(4em

ki
). It suffices

to show by the union bound that Pm
q
(
⋃mq

i=1 Jci) ≤
∑mq

i=1 P
mq(Jci) < δk/2 × mq = δ/2.

Applying Lemma 6,

Ps(sup
G∈G
|erD[G]− ers[G]| ≥ ε) ≤ 2Pss̄(sup

G∈G
|ers̄[G]− ers[G]| ≥ ε/2)

≤ 2Pm
q
( mq⋃
i=1

Jci

)
< δ

Thus, Ps(supG∈G |erD[G] − ers[G]| ≤ ε) ≥ 1 − δ. Let R be the radius of a ball containing
the support of the distribution. Applying Theorem 7, we get ki = fat(γi/8) ≤ 65R2/(γi)2.
Note that we have replaced the constant 82 = 64 by 65 in order to ensure the continuity
from the right required for the application of Lemma 4. We have upperbounded log(8em/ki)
by log(8em). Thus,

erD[G] ≤ 2/m
(
Q log(32m) + log

2(2m)q

δ

)
≤ 130R2

m

(
Q′ log(8em) log(32m) + log

2(2m)q

δ

)
11



Liu, Tsang and Müller

where Q′ =
∑q

i=1
1

(γi)2
.

Given the training data size and the number of classes, Theorem 5 reveals an important
factor in reducing the generalization error bound for the GCCMC model: the minimization
of the sum of the reciprocal of the square of the margin over the classes. Thus, we obtain
the following Corollary:

Corollary 8 (Globally Optimal Classifier Chain for Multiclass Classification) Suppose
that random m multiclass examples with q classes can be correctly classified using a GC-
CMC model, this GCCMC model is the globally optimal classifier chain if and only if the
minimization of Q′ in Theorem 5 is achieved over this classifier chain.

Based on Corollary 8, we propose the following easy-to-hard learning paradigm for multiclass
classification problems.

Definition 9 (Easy-to-hard Learning Paradigm for Multiclass Classification) The
easy-to-hard learning paradigm for multiclass classification problem is to minimize Q′ in
Theorem 5. By minimizing Q′, we can automatically identify easy and hard classes.

Remark. Classes with a larger margin are easier to identify than those with a smaller
margin. Thus, the intuitive idea of the easy-to-hard learning paradigm is to identify the
class with a larger margin first, followed by ones with a smaller margin.

Discussion of Rifkin and Klautau’s Conjecture. Rifkin and Klautau (2004) spec-
ulate that an algorithm which exploits the relationship between classes can offer superior
performance, and this remains an open problem. Theoretically, Corollary 10 provides an
affirmative answer to Rifkin and Klautau (2004)’s conjecture based on Theorem 5:

Corollary 10 By exploiting the relationship between classes, our proposed GCCMC model
is able to achieve a lower generalization error bound. Furthermore, our proposed easy-to-
hard learning paradigm can optimize the performance of GCCMC.

Motivated by the above analysis, we derive the following easy-to-hard learning paradigm
for multi-label classification.

4. The Easy-to-hard Learning Paradigm for Multi-label Classification

4.1 Classifier Chain for Multi-label Classification

Similar to CCMC, the classifier chain (CC) model (Read et al., 2009) is proposed to train q
binary classifiers hj (j ∈ {1, · · · , q}) for multi-label problems. Classifiers are linked along a
chain where each classifier hj deals with the binary classification problem for label λj . The
augmented vector {xt,yt(1), · · · ,yt(j)}nt=1 is used as the input for training classifier hj+1.
Given a new testing instance x, classifier h1 in the chain is responsible for predicting the
value of y(1) using input x. Then, h2 predicts the value of y(2) taking x plus the predicted
value of y(1) as an input. Following in this way, hj+1 predicts y(j + 1) using the predicted
value of y(1), · · · ,y(j) as additional input information. CC passes label information be-
tween classifiers, allowing CC to exploit the label dependence and thus overcome the label
independence problem of BR.

12
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Different classifier chains involve different classifiers learned on different training sets
and thus the order of the chain itself clearly affects the prediction performance. To solve
the issue of selecting a chain order for CC, Read et al. (2009) propose the extension of CC,
called ensembled classifier chain (ECC), to average the multi-label predictions of CC over
a set of random chain ordering. ECC first randomly reorders the labels {λ1, λ2, · · · , λq}
many times. Then, CC is applied to the reordered labels for each time and the performance
of CC is averaged over those times to obtain the final prediction performance.

4.2 Generalized Classifier Chain for Multi-label Classification

We generalize the CC model over a random label order, called generalized classifier chain
(GCC) model. Assume the labels {λ1, λ2, · · · , λq} are randomly reordered as {ζ1, ζ2, · · · , ζq},
where ζj = λk means label λk moves to position j from k. In the GCC model, classifiers
are also linked along a chain where each classifier hj deals with the binary classification
problem for label ζj (λk). GCC follows the same training and testing procedures as CC,
while the only difference is the label order. In the GCC model, for input xt, yt(j) = 1 if
and only if ζj ∈ Yt.

4.3 Analysis

Motivated by our analysis in Section 3, we analyze the generalization error bound of the
multi-label classification problem using GCC.

Let X represent the input space. Both s and s̄ are m multi-label examples drawn
independently according to an unknown distribution D.

We first study the generalization error bound of the specified GCC with the specified
number of labels and margins. Let G be the set of classifiers of GCC, G = {h1, h2, · · · , hq}.
ers[G] denotes the fraction of the number of errors that GCC makes on s. Define x̂ ∈
X× {0, 1}, ĥj(x̂) = hj(x)(1− y(j))− hj(x)y(j).

We introduce the following proposition:

Proposition 11 If an instance x ∈ X is misclassified by a GCC model, then ∃hj ∈
G, ĥj(x̂) ≥ 0.

Proof For multi-label problem, it is easy to verify that if an instance x ∈ X is correctly
classified by hj , then ĥj(x̂) < 0, otherwise, ĥj(x̂) ≥ 0.

Lemma 12 Given a specified GCC model with q labels and with margins γ1, γ2, · · · , γq
for each label satisfying ki = fat(γi/8), where fat is continuous from the right. If GCC
has correctly classified m multi-labeled examples s generated independently according to the
unknown (but fixed) distribution D and s̄ is a set of another m multi-labeled examples,
then we can bound the following probability to be less than δ: P 2m{ss̄ : ∃ a GCC model,
it correctly classifies s, fraction of s̄ misclassified > ε(m, q, δ)} < δ, where ε(m, q, δ) =
1
m(Q log(32m) + log 2q

δ ) and Q =
∑q

i=1 ki log(8em
ki

).

The proof can be adapted from the proof for Lemma 4.
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Based on Lemma 12, we can bound the probabilities uniformly over all of the possible
margins to obtain a practical bound. The generalization error bound of the multi-label
classification problem using GCC is shown as follows:

Theorem 13 Suppose that random m multi-labeled examples can be correctly classified
using a GCC model, and suppose this GCC model contains q classifiers with margins
γ1, γ2, · · · , γq for each label. Then we can bound the generalization error with probability
greater than 1− δ to be less than

130R2

m

(
Q′ log(8em) log(32m) + log

2(2m)q

δ

)
where Q′ =

∑q
i=1

1
(γi)2

and R is the radius of a ball containing the support of the distribution.

The proof can be adapted from the proof for Theorem 5.

Theorem 13 reveals an important factor in reducing the generalization error bound for
the GCC model: the minimization of the sum of the reciprocal of the square of the margin
over the labels, given the training data size and the number of labels. Thus, we obtain the
following Corollary:

Corollary 14 (Globally Optimal Classifier Chain for Multi-label Classification)
Suppose that random m multi-labeled examples with q labels can be correctly classified using
a GCC model, this GCC model is the globally optimal classifier chain if and only if the
minimization of Q′ in Theorem 13 is achieved over this classifier chain.

Based on Corollary 14, we propose the following easy-to-hard learning paradigm for multi-
label classification.

Definition 15 (Easy-to-hard Learning Paradigm for Multi-label Classification) The
easy-to-hard learning paradigm for multi-label classification problem is to minimize Q′ in
Theorem 13. By minimizing Q′, we can automatically identify easy and hard labels.

Discussion of Label’s Relationship. Recently, many works, such as Read et al.
(2009) and Guo and Schuurmans (2011), have conducted extensive experiments to show that
multi-label learning methods which explicitly capture the label’s relationship will usually
achieve better prediction performance. However, to the best of our knowledge, very few
works study the reasons behind these promising empirical results. Based on Theorem 13,
Corollary 16 provides theoretical support for this problem:

Corollary 16 By exploiting the relationship between labels, our proposed GCC model is
able to achieve a lower generalization error bound. Furthermore, our proposed easy-to-hard
learning paradigm can optimize the performance of GCC.

Given the number of classes or labels q, there are q! different class or label orders. It
is very expensive to find the globally optimal CCMC or CC, which can minimize Q′, by
searching over all of the class or label orders. Next, we discuss some simple easy-to-hard
learning algorithms.
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5. Easy-to-hard Learning Algorithm

In this section, we propose some simple easy-to-hard learning algorithms. To clearly state
the algorithms, we redefine the margins with class or label order information. Given class
or label setM = {λ1, λ2, · · · , λq}. Let oi(1 ≤ oi ≤ q) denote the order of λi in the GCCMC
or GCC model, γoii represents the margin for λi, with previous oi − 1 classes or labels as
the augmented input. If oi = 1, then γ1

i represents the margin for λi, without augmented
input. Then Q′ is redefined as Q′ =

∑q
i=1

1
(γ
oi
i )2

.

5.1 Dynamic Programming Algorithm

To simplify the search algorithm mentioned before, we propose the CCMC-DP and CC-
DP algorithm to find the globally optimal CCMC and CC, respectively. Note that Q′ =∑q

i=1
1

(γ
oi
i )2

= 1
(γ
oq
q )2

+ · · · +
[

1

(γ
ok+1
k+1 )2

+
∑k

j=1
1

(γ
oj
j )2

]
, we explore the idea of dynamic pro-

gramming (DP) to iteratively optimize Q′ over a subset ofM with the length of 1, 2, · · · , q.
Lastly, we obtain the optimal Q′ overM. Assume i ∈ {1, · · · , q}. Let V (i, η) be the optimal
Q′ over a subset of M with the length of η(1 ≤ η ≤ q), where the class or label order ends
by λi. M

η
i represents the corresponding class or label set for V (i, η). When η = q, V (i, q)

is the optimal Q′ over M, where the class or label order ends by λi. The DP equation is
written as:

V (i, η + 1) = min
j 6=i,λi 6∈Mη

j

{
1

(γη+1
i )2

+ V (j, η)

}
(4)

where γη+1
i is the margin for λi, with Mη

j as the augmented input. The initial condi-

tion of DP is: V (i, 1) = 1
(γ1i )2

and M1
i = {λi}. The optimal Q′ over M can be ob-

tained by solving mini∈{1,··· ,q} V (i, q). Assume that the training time of linear SVM takes
O(nd). The CCMC-DP or CC-DP algorithm is shown as the following bottom-up proce-
dure: from the bottom, we first compute V (i, 1) = 1

(γ1i )2
, which takes O(nd). Then we

compute V (i, 2) = minj 6=i,λi 6∈M1
j
{ 1

(γ2i )2
+ V (j, 1)}, which requires at most O(qnd), and set

M2
i = M1

j ∪ {λi}. Similarly, it takes at most O(q2nd) time complexity to calculate V (i, q).
Lastly, we iteratively solve this DP equation, and use mini∈{1,··· ,q} V (i, q) to obtain the
optimal solution, which requires at most O(q3nd) time complexity.

Theorem 17 (Correctness of DP) Q′ can be minimized by CCMC-DP or CC-DP, which
means this Algorithm can find the globally optimal CCMC or CC.

The proof can be found in Appendix C.

5.2 Greedy Algorithm

We propose the CCMC-Greedy and CC-Greedy algorithm to find a locally optimal CCMC
and CC, respectively. To save time, we construct only one classifier chain with the locally
optimal class or label order. If the maximum margin can be achieved over this class or
label, without augmented input, we select this class or label from {λ1, λ2, · · · , λq} as the
first class or label. The first class or label is denoted by ζ1. We then select the class or label
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from the remaining classes or labels as the second class or label, if the maximum margin
can be achieved over this class or label with ζ1 as the augmented input. We continue in
this way until the last class or label has been selected. CCMC-Greedy and CC-Greedy take
O(q2nd) time, respectively. We show the details of the CC-Greedy algorithm in Appendix
D.

5.3 Fast Greedy Algorithm

In multiclass problems, CCMC-DP and CCMC-Greedy are intractable for data sets with a
large number of classes. To further speed up the CCMC-Greedy algorithm, we propose fast
greedy algorithm (CCMC-FG), which scales linearly with q, to greedily optimize the order
of the top ω classes. Similar to CCMC-Greedy, if the maximum margin can be achieved
over this class without augmented input, we select this class from {λ1, λ2, · · · , λq} as the
first class. The first class is denoted by ζ1. Then we select the class from the remaining
classes as the second class, if the maximum margin can be achieved over this class with
prediction values of the classifier trained for class ζ1 as the augmented input. We continue
in this way until the ω class has been selected. Lastly, we use the remaining q − ω classes
to form the classifier chain. CCMC-FG takes O(qωnd) time.

Remark. CCMC-Greedy converges to the locally optimal CCMC, while CCMC-FG
finds the top ω locally optimal class order.

5.4 Tree-Based Algorithm

For multi-label problem, CC-DP and CC-Greedy are very time-consuming for data sets with
many labels. We propose Tree-DP and Tree-Greedy algorithms to further speed up CC-DP
and CC-Greedy, respectively, which scale linearly with q. We create a tree recursively in a
top-down manner.

Assume that {xt,yt}nt=1 is the input data for the root node. Suppose that the label set
{λ1, λ2, · · · , λq} in the root node is randomly split into two subsets with about the same size
for left and right child nodes: leftset = {λ1, · · · , λq/2} and rightset = {λq/2+1, · · · , λq}. A
training example can be considered annotated with leftset and rightset if it is annotated
with at least one of the labels in leftset and rightset, respectively. In this way, leftset and
rightset can be seen as two labels. Then, in the root node, we train the CC with leftset
and rightset as two labels using CC-DP or CC-Greedy. After that, left and right child
nodes only keep the examples that are annotated with leftset and rightset, respectively.
This approach recurses into each child node that contains more than a single label.

Starting from the root node, we use the trained CC classifier on this node for prediction
and we follow the recursive process. Finally, this process may lead to the prediction of some
labels corresponding to some leaves. We provide the following corollary pertaining to the
Tree-DP.

Corollary 18 After building a tree using the Tree-DP algorithm, we can find the globally
optimal CC in each decision node of the tree.

Proof Given the structure of the tree, according to Theorem 17, we can find the globally
optimal label order in each decision node using the CC-DP algorithm.
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For each internal node, we only deal with two labels, thus the training time of Tree-DP
and Tree-Greedy only take O(8nd) and O(4nd), respectively. The number of internal nodes
in such a tree is equal to q− 1. In total, Tree-DP and Tree-Greedy take O(8(q− 1)nd) and
O(4(q − 1)nd) training time, respectively. Assume that the testing instance goes along ι
paths in our tree during the testing procedure and the depth of the tree is log(q). In each
decision node, we take O(d) time for testing. Totally, the testing time for Tree-DP and
Tree-Greedy is O(ι log(q)d).

6. Applications

This section shows that our framework can be used for various applications, such as ordinal
classification and relationship prediction.

6.1 Ordinal Classification

Many practical applications involve situations exhibiting an order among the different
categories. For example, a user rates movies by giving them grades based on quality.
These grades represent the ranking information. For example, grade classes are ordered as
D < C < B < A. This is a learning task for predicting ordinal classes, referred to as ordinal
classification (Seah et al., 2012).

Several algorithms and methods have been developed to deal with ordinal classification,
such as SVM techniques (Shashua and Levin, 2002), binary decomposition (Destercke and
Yang, 2014), Gaussian processes (Chu and Ghahramani, 2005) and monotone functions
(Tehrani et al., 2012). However, all these methods do not capture and use correlated
information between ordinal classes. To achieve this goal, we transform ordinal classification
into multiclass classification and then apply CCMC for ordinal classification.

Consider an ordinal classification problem with q ordered categories. We denote these
categories as Yt ⊆ {λ1, λ2, · · · , λq} to keep the known ordering information. yt ∈ {0, 1}q is
used to represent the set Yt, where yt(j) = 1 if and only if λj ∈ Yt, and there is only one
element in Yt for the ordinal classification problem. So, we transform ordinal classification
into a multiclass classification problems. Then, we apply CCMC for ordinal classification as
follows: the binary classifier h1 is first trained for the ordinal class λ1, then the augmented
vector {xt, h1(xt)}nt=1 is used as the input to train classifier h2 for ordinal class λ2. Similarly,
xt augments all previous prediction values of h1, · · · , hj as the input to train classifier hj+1

for ordinal class λj+1. CCMC proceeds in this way until the last classifier hq for ordinal
class λq has been trained.

6.2 Relationship Prediction

Relationship prediction problems in the online review website Epinions (Massa and Avesani,
2006) attempt to predict whether people trust or distrust others based on their reviews.
Such social networks can be modeled as a signed network where trust/distrust are modeled
as positive/negative edges between entities (Leskovec et al., 2010). The problem then
becomes predicting unknown relationship between any two users given the network.

Many approaches, such as Hsieh et al. (2012) and Chiang et al. (2014), perform ma-
trix completion on an adjacency matrix and then use the sign of the completed matrix
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for relationship prediction. Recently, Chiang et al. (2015) achieve state-of-the-art perfor-
mance by incorporating the feature information of users. Based on feature information, we
provide new insight into the design of relationship prediction algorithms. Specifically, we
first transform relationship prediction into a multi-label classification problem by consider-
ing trust/distrust as positive/negative labels. Then, we apply our proposed easy-to-hard
learning strategy to solve relationship prediction tasks.

Relationship prediction is represented as a graph with the adjacency matrixR ∈ {0, 1}n×n,
which denotes relationships between users as follows:

Rij =

{
1, if user i and user j have positive relationship;
0, if user i and user j have negative relationship

We assume that user i and user i have a positive relationship. The attribute information of
user i can be extracted as the input or instance (feature) xi, and the i-th row vector of R can
be used as label yi. So, we transform relationship prediction into a multi-label classification
problem. Then, CC model can be used to deal with the transformed problems, and we can
apply our proposed easy-to-hard learning strategy to solve relationship prediction tasks.

7. Experiment

In this section, we perform experimental studies on a number of real world data sets to eval-
uate the performance of our proposed algorithms for multiclass and multi-label classification
problems. To perform a fair comparison, we use the same linear classification/regression
package LIBLINEAR (Fan et al., 2008) with L2-regularized square hinge loss (primal) to
train the classifiers for all methods and use the default parameter settings in LIBLINEAR.
All experiments are conducted on a workstation with a 3.4GHZ Intel CPU and 32GB main
memory running on a Linux platform.

7.1 Experiment on Multiclass Classification

In this subsection, we first demonstrate our motivation on the recognition of human action
(Schüldt et al., 2004). We then consider a variety of benchmark multiclass data sets with-
out background from the LIBSVM website4 to evaluate the performance of the proposed
algorithms for multiclass classification. Lastly, we conduct experiments on two multiclass
data sets with background collected from Silberman et al. (2012) and He et al. (2004). The
training/testing partition is either predefined or the data is randomly split into 80% train-
ing and 20% testing. The statistics of each data set are reported in Table 1. We compare
our algorithms with some baseline methods: OVO, OVR, ECOC (Dietterich and Bakiri,
1995) and Top-k SVM (Lapin et al., 2015, 2016). The library for ECOC is from Pedregosa
et al. (2011) and the size of code for ECOC is selected using 5-fold cross validation over
the range {2, 10, 30, 50}. Top-k SVM (Lapin et al., 2015, 2016) is one of the state-of-the-art
generalized multiclass SVM for top-k error optimization. The code is provided by their
authors. Following the similar parameter settings in Lapin et al. (2015, 2016) for Top-k
SVM, k is selected using 5-fold cross validation over the range {1, 3, 5, 10}.

4. https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets
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Table 1: Multiclass data sets used in the experiments.
Data set # TRAINING # TESTING # Classes Background
KTH 1,910 477 6 ×
IRIS 120 30 3 ×
SEGMENT 1,848 4,62 7 ×
SEISMIC 78,823 19,705 3 ×
RCV1 15,564 518,571 51 ×
ALOI 86,400 21,600 1,000 ×
ILSVRC2012 58,700 31,300 1,000 ×
NYU 60,232 11,768 5

√

SOWERBY 528,356 110,620 6
√

Table 2: Testing error rate (in %) on the KTH data set.
OVO OVR ECOC Top-k SVM CCMC CCMC-Greedy CCMC-DP
8.81 8.18 7.73 8.13 7.34 6.29 5.66

7.1.1 Human action recognition

We first validate our methods by recognizing complex human actions on the KTH data set
Schüldt et al. (2004). KTH contains six types of human action: walk, jog, run, hand wave,
hand clap and boxing. The confusion matrix of OVR on the KTH data set is shown in Figure
1. From Figure 1, we can see that it is easy to identify walk from other actions, whereas it
is difficult to distinguish between boxing and hand clap. This observation is consistent with
commonsense. Our model aims to classify classes from simple to hard; the classifier of the
hard actions will benefit significantly from the prediction of the simple actions.

The testing error rates of the different methods are shown in Table 2. The order of
actions identified by CCMC-Greedy is: run, hand wave, walk, jog, boxing and hand clap.
CCMC-DP finds the action order: walk, run, jog, hand wave, boxing and hand clap. From
these results, we observe that:

• For the KTH data set, our methods achieve a better prediction performance than
OVO, OVR, ECOC and Top-k SVM, which verifies that our model effectively uses
the predictions of previous classifiers to improve the performance of OVR.

• CCMC-Greedy and CCMC-DP improve CCMC, which also verifies our motivation:
we should classify the classes from easy to hard. The order of actions (from easy
to hard) found by CCMC-Greedy and CCMC-DP are consistent with the confusion
matrix, which demonstrates that our model can automatically identify easy and hard
classes, and use the predictions of classifiers from easier classes to train the classifier
for harder classes.

Figure 3 shows the confusion matrix of CCMC-DP on the KTH data set. By comparing
Figure 1 with Figure 3, we observe that our method significantly improves OVR in terms
of the classification accuracy rate for each action. For example, we achieve 100% accuracy
for run and improve the accuracy for hand clap from 77.50% to 81.25%.
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Figure 3: Confusion Matrix of CCMC-DP on the KTH Data Set.

7.1.2 Results without background data

We compare OVO, OVR and ECOC with our algorithms on the benchmark data sets
without background. The classification results for our methods and baseline approaches on
the IRIS, SEGMENT, SEISMIC and RCV1 data sets are reported in Table 3. Based on
these results, we make the following observations.

• Our results show that OVR and OVO perform as accurate as ECOC and Top-k
SVM, which is consistent with the empirical results in Rifkin and Klautau (2004),
Demirkesen and Cherifi (2008) and Lapin et al. (2015, 2016).

• CCMC consistently improves the prediction performance of OVR and other baselines
on all data sets. The results verify Rifkin and Klautau (2004)’s conjecture: an algo-
rithm which exploits the relationship between classes can offer superior performance.

• When OVO outperforms OVR on certain data sets such as SEISMIC and SEGMENT,
our methods are able to achieve superior prediction performance to OVO on these data
sets.

• CCMC-Greedy is better than CCMC, and CCMC-DP outperforms CCMC-Greedy
and CCMC. The results validate our theoretical analysis: i) Class order affects the
performance of CCMC. ii) CCMC-DP is able to find the globally optimal CCMC which
achieves the best prediction performance compared to CCMC-Greedy and CCMC.
iii) The CCMC-Greedy algorithm achieves comparable prediction performance with
CCMC-DP.

We also evaluate the performance of our fast greedy algorithm on the ALOI data set,
which contains 1,000 classes. Here, ω is set to 10, 30, 50 and 100. The classification
results and training time are reported in Table 4, from which we can see that CCMC-FG
outperforms CCMC and improves the prediction performance of OVR, ECOC and Top-k
SVM by about 9%, 6% and 5%, respectively. The prediction performance of CCMC-FG
improves with the increased value of ω.
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Table 3: Testing error rate (in %) on data sets without background.
CCMC-

Data set OVO OVR ECOC Top-k SVM CCMC Greedy DP
IRIS 10.00 10.00 8.67 10.33 3.33 3.33 3.33
SEGMENT 5.63 7.14 7.08 7.06 6.28 5.63 5.19
SEISMIC 27.92 29.87 27.62 28.19 26.85 26.50 26.48
RCV1 11.09 11.90 11.83 11.98 11.78 11.71 11.68

Table 4: Testing error rate (in %) and training time (in second) on the ALOI data set.
Method Testing Error Training Time
OVO 6.88 14,748s
OVR 13.69 1,559s
ECOC 10.31 85,316s
Top-k SVM 9.4 65s
CCMC 5.46 12,715s
CCMC-FG(ω = 10) 5.27 16,327s
CCMC-FG(ω = 30) 5.08 31,886s
CCMC-FG(ω = 50) 4.94 67,582s
CCMC-FG(ω = 100) 4.78 163,891s

7.1.3 Results with background data

The OVO, ECOC and Top-k SVM approaches cannot be directly applied to background
data. Table 5 shows the classification results for our methods and OVR on the NYU and
SOWERBY data sets. From the results of Table 5, we can see that:

• CCMC consistently outperforms OVR.

• CCMC-Greedy achieves better prediction performance than CCMC and is comparable
to CCMC-DP.

• CCMC-DP improves the prediction performance of OVR on the data sets with back-
ground by 3%.

7.1.4 Training time

This section studies the training time of the proposed methods and baselines on all data
sets. The results are shown in Tables 4 and 6. From these results, we can see that:

• Top-k SVM is much faster than other methods on the ALOI data set with 1000 classes.

• Compared to OVR, CCMC maintains the training time over an acceptable threshold,
while CCMC consistently improves OVR.

Table 5: Testing error rate (in %) on data sets with background.
CCMC-

Data set OVR CCMC Greedy DP
NYU 21.07 20.61 19.39 18.82
SOWERBY 18.03 16.27 15.54 15.24
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Table 6: Training time (in second).
CCMC-

Data set OVO OVR ECOC Top-k SVM CCMC Greedy DP
KTH 0.09s 0.20s 0.16s 0.13s 0.24s 0.60s 1.37s
IRIS 0.009s 0.008s 0.008s 0.02s 0.012s 0.019s 0.019s
SEGMENT 0.04s 0.05s 0.30s 0.06s 0.32s 1.10s 5.85s
SEISMIC 2.94s 4.60s 167.28s 2.23s 22.08s 32.88s 98.28s
RCV1 56.06s 18.16s 31.15s 346.79s 30.27s 982.89s 16,450.55s
NYU N/A 4.74s N/A N/A 4.58s 14.46s 83.75s
SOWERBY N/A 23.63s N/A N/A 39.73s 105.42s 558.02s

• CCMC-Greedy is much faster than CCMC-DP.

• With the increasing value of ω, the training time of CCMC-FG rises, but the prediction
performance of CCMC-FG becomes better. ω can be set according to the time and
accuracy requirements of applications.

The testing time of the proposed methods is similar to OVR. Although the training
time of the proposed approaches is slower than OVR, the time required to test is of more
importance than the time required to train for many applications.

7.1.5 Comparisons with deep learning methods

ADIOS (Cissé et al., 2016) is a state-of-the-art deep learning architecture for solving multiple
class and label tasks. Unlike traditional deep learning methods that use a flat output layer,
ADIOS aims to capture the complex dependency between labels/classes to improve deep
learning methods. Their approach is to split the label/class set into two subsets, G1 and
G2, such that given G1, the labels/classes in G2 are independent. Our strategy to leverage
label/class dependency is very different from that of ADIOS, as shown in Figure 2, we use
a classifier chain model for multi-class classification and find the optimal class ordering.
After that, we use the predictions of classifiers from easier classes to train the classifiers for
harder classes. As such, the assumptions and constraints used in ADOIS are not applicable
in our model.

This subsection conducts the experiments on the ILSVRC2012 data set5. It con-
tains 1,000 object categories (Liu et al., 2017). Due to the limit of computational re-
sources, we randomly sample 58,700 training instances and 31,300 testing instances from
the ILSVRC2012 data set. We use the source code provided by the authors of ADIOS with
default parameters. According to Cissé et al. (2016), we use one hidden layer with 1024
rectified linear units (ReLUs) (Glorot et al., 2011) between inputs and G1, and another
512-dimensional ReLUs between the hidden layer before G1 and G2 as well as direct con-
nections between G1 and G2. We also compare with VGG (Simonyan and Zisserman, 2014)
and residual nets (ResNet) (He et al., 2016). Both VGG and ResNet use a flat output layer,
in which do not model the dependency between the classes(Cissé et al., 2016), so the rich
structure information among classes is missing in VGG and ResNet. We use the source code
provided by the respective authors with default parameters. Following He et al. (2016), we
use the 34-layer residual nets due to the limit of computational resources, and also extract

5. http://www.image-net.org/challenges/LSVRC/2012/
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Table 7: Testing error rate (in %) of VGG, ResNet-34, ADIOS and CCMC-FG on the
ILSVRC2012 data set.

Method VGG ResNet-34 ADIOS CCMC-FG+VGG features CCMC-FG+ResNet features

Testing Error 23.95 21.51 21.28
23.98 (ω = 10) 21.85 (ω = 10)
22.67 (ω = 30) 20.11 (ω = 30)
20.73 (ω = 50) 19.84 (ω = 50)

2048-dimensional features by the ResNet-34. According to Simonyan and Zisserman (2014),
we extract 4096-dimensional features from the 16-layer of the VGG. Here, ω is set to 10, 30
and 50 for our method.

The classification results are reported in Table 7. From this table, we can observe that

• ADIOS outperforms VGG and ResNet-34, which verifies ADIOS’s claim: existing deep
learning approaches do not take into account the often unknown but nevertheless rich
relationships between classes, this knowledge about the rich class structure (and other
deep structure in data) is sometime referred to as dark knowledge (e.g. by Hinton
et al. (2015) and Ba and Caruana (2014)).

• Without the restriction of the assumptions and constraints used in ADOIS, our
method achieves better performance than ADIOS with the increasing value of ω.

• CCMC-FG with ResNet features obtains better performance than CCMC-FG with
VGG features, which demonstrates that our proposed method can be further improved
based on better features.

• Based on the deep learning features, CCMC-FG consistently improves VGG and
ResNet-34 with the increasing value of ω. The results validate our analysis and the
better ordering of classes obtains the better performance. Note that the above men-
tioned results were obtained using 58,700 training data points. We conclude that
with limited data, the usage of structure information is helpful. We conjecture that
this advantage may ultimately vanish as more and more data becomes available for
training.

7.2 Experiment on Multi-label Classification

We conduct experiments on ten real-world multi-label data sets with various domains from
three websites.678 The EURLEX SM and EURLEX ED data sets are preprocessed accord-
ing to the experimental settings in Dembczynski et al. (2010) and Zhang and Schneider
(2012). The statistics of data sets are presented in Table 8. We compare our algorithms
with some baseline methods: BR, CC, ECC, CCA (Zhang and Schneider, 2011) and MMOC
(Zhang and Schneider, 2012). ECC is averaged over several CC predictions with random

6. http://mulan.sourceforge.net
7. http://meka.sourceforge.net/#datasets
8. http://cse.seu.edu.cn/people/zhangml/Resources.htm#data
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Table 8: Multi-label data sets used in the experiments.
Data # inst. # attr. # labels Domain

YEAST 2,417 103 14 biology
IMAGE 2,000 294 5 image
SLASHDOT 3,782 1,079 22 text
ENRON 1,702 1,001 53 text
LLOG 799 1,004 10 linguistics
ART 6,849 23,146 10 art
EURLEX SM 10 11,454 5,000 10 text
EURLEX ED 10 6,540 5,000 10 text
EURLEX SM 19,348 5,000 201 text
EURLEX ED 19,348 5,000 3,993 text

order and the ensemble size in ECC is set to 10 according to Dembczynski et al. (2010);
Read et al. (2009). In our experiment, the running time of PCC and EPCC (Dembczynski
et al., 2010) on most data sets, like SLASHDOT and ART, takes more than one week. From
the results in Dembczynski et al. (2010), ECC is comparable with EPCC and outperforms
PCC, so we do not consider PCC and EPCC here. CCA and MMOC are two state-of-the-
art encoding-decoding (Hsu et al., 2009) methods. We cannot get the results of CCA and
MMOC on ART , EURLEX SM 10 and EURLEX ED 10 data sets in one week.

We consider the following evaluation measurements Mao et al. (2013) to measure the
prediction performance of all methods fairly:

• Example-F1: computes the F-1 score for all the labels of each testing example and
then takes the average of the F-1 score.

• Macro-F1: calculates the F-1 score for each label and then takes the average of the
F-1 score.

• Micro-F1: computes true positives, true negatives, false positives and false negatives
over all labels, and then calculates an overall F-1 score.

The larger the value of those measurements, the better the performance. We perform 5-fold
cross-validation on each data set and report the mean and standard error of each evaluation
measurement.

7.2.1 Small-scale results

Three measurement results for CC-Greedy, CC-DP and baseline approaches in respect to
the different small-scale data sets are reported in Tables 9, 10 and 11. We conduct the
pairwise t-test at a 5% significance level to show that our methods perform significantly
better than the compared methods. From the results, we can see that:

• BR generally underperforms in terms of Macro-F1 and Micro-F1 and it is much in-
ferior to other methods in terms of Example-F1. Our experiment provides empirical
evidence that the label correlations exist in many real word data sets and because BR
ignores the information about the correlations between the labels, BR achieves poor
performance on most data sets.
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Table 9: Results of Example-F1 on the various small-scale data sets (mean ± standard
deviation). The best results are in bold. Numbers in square brackets indicate the
rank. “-” denotes the training time is more than one week.

Data set BR CC ECC CCA MMOC CC-Greedy CC-DP
YEAST 0.6076±0.02[6] 0.5850±0.03[7] 0.6096±0.02[5] 0.6109±0.02[4] 0.6132±0.02[3] 0.6144±0.02[1] 0.6135±0.02[2]
IMAGE 0.5247±0.03[7] 0.5991±0.02[1] 0.5947±0.02[4] 0.5947±0.01[4] 0.5960±0.01[3] 0.5939±0.02[6] 0.5976±0.02[2]
SLASHDOT 0.4898±0.02[6] 0.5246±0.03[4] 0.5123±0.03[5] 0.5260±0.02[3] 0.4895±0.02[7] 0.5266±0.02[2] 0.5268±0.02[1]
ENRON 0.4792±0.02[7] 0.4799±0.01[6] 0.4848±0.01[4] 0.4812±0.02[5] 0.4940±0.02[1] 0.4894±0.02[2] 0.4880±0.02[3]
LLOG 0.3138±0.02[6] 0.3219±0.03[4] 0.3223±0.03[3] 0.2978±0.03[7] 0.3153±0.03[5] 0.3269±0.02[2] 0.3298±0.03[1]
ART 0.4840±0.02[5] 0.5013±0.02[4] 0.5070±0.02[3] - - 0.5131±0.02[2] 0.5135±0.02[1]
EURLEX SM 10 0.8594±0.00[5] 0.8609±0.00[1] 0.8606±0.00[3] - - 0.8600±0.00[4] 0.8609±0.00[1]
EURLEX ED 10 0.7170±0.01[5] 0.7176±0.01[4] 0.7183±0.01[2] - - 0.7183±0.01[2] 0.7190±0.01[1]

Average Rank 5.88 3.88 3.63 4.60 3.80 2.63 1.50

Table 10: Results of Macro-F1 on the various small-scale data sets (mean ± standard de-
viation). The best results are in bold. Numbers in square brackets indicate the
rank. “-” denotes the training time is more than one week.

Data set BR CC ECC CCA MMOC CC-Greedy CC-DP
YEAST 0.3543±0.01[4] 0.3993±0.03[1] 0.3763±0.02[2] 0.3496±0.02[5] 0.3431±0.02[7] 0.3441±0.02[6] 0.3596±0.02[3]
IMAGE 0.5852±0.01[7] 0.6013±0.02[1] 0.5988±0.01[4] 0.6010±0.01[2] 0.5975±0.01[6] 0.5987±0.02[5] 0.6010±0.01[2]
SLASHDOT 0.3416±0.01[4] 0.3485±0.02[2] 0.3331±0.01[7] 0.3512±0.02[1] 0.3334±0.01[6] 0.3431±0.01[3] 0.3408±0.01[5]
ENRON 0.2089±0.02[2] 0.2066±0.02[5] 0.2088±0.02[3] 0.1594±0.03[6] 0.1539±0.02[7] 0.2090±0.02[1] 0.2082±0.02[4]
LLOG 0.3452±0.03[2] 0.3428±0.03[4] 0.3425±0.04[5] 0.3189±0.04[7] 0.3303±0.04[6] 0.3448±0.03[3] 0.3471±0.04[1]
ART 0.4836±0.01[4] 0.4816±0.01[5] 0.4851±0.02[3] - - 0.4876±0.01[2] 0.4884±0.02[1]
EURLEX SM 10 0.8546±0.00[5] 0.8558±0.00[2] 0.8554±0.00[3] - - 0.8550±0.00[4] 0.8559±0.00[1]
EURLEX ED 10 0.7201±0.01[5] 0.7202±0.01[4] 0.7205±0.01[3] - - 0.7208±0.01[2] 0.7217±0.01[1]

Average Rank 4.13 3.00 3.75 4.20 6.40 3.25 2.25

• CC improves on the performance of BR, however, it underperforms compared to ECC.
This result verifies the answer to our first question stated in Section 2.2: the label order
does affect the performance of CC; ECC, which averages over several CC predictions
with random order, improves the performance of CC.

Table 11: Results of Micro-F1 on the various small-scale data sets (mean ± standard de-
viation). The best results are in bold. Numbers in square brackets indicate the
rank. “-” denotes the training time is more than one week.

Data set BR CC ECC CCA MMOC CC-Greedy CC-DP
YEAST 0.6320±0.02[4] 0.6185±0.03[7] 0.6306±0.02[5] 0.6362±0.03[1] 0.6361±0.02[2] 0.6303±0.02[6] 0.6328±0.02[3]
IMAGE 0.5840±0.02[7] 0.5994±0.02[2] 0.5955±0.01[5] 0.6003±0.01[1] 0.5958±0.01[4] 0.5946±0.02[6] 0.5980±0.01[3]
SLASHDOT 0.5233±0.02[6] 0.5278±0.03[3] 0.5175±0.03[7] 0.5844±0.02[1] 0.5720±0.02[2] 0.5266±0.02[5] 0.5272±0.02[4]
ENRON 0.5052±0.01[6] 0.5013±0.01[7] 0.5056±0.01[5] 0.5335±0.02[2] 0.5401±0.01[1] 0.5104±0.01[3] 0.5096±0.01[4]
LLOG 0.3768±0.03[1] 0.3712±0.03[6] 0.3730±0.04[5] 0.3623±0.03[7] 0.3760±0.03[3] 0.3744±0.03[4] 0.3762±0.03[2]
ART 0.5122±0.02[5] 0.5130±0.02[4] 0.5156±0.02[3] - - 0.5184±0.01[1] 0.5184±0.02[1]
EURLEX SM 10 0.8718±0.00[5] 0.8727±0.00[2] 0.8725±0.00[3] - - 0.8722±0.00[4] 0.8733±0.00[1]
EURLEX ED 10 0.7419±0.01[5] 0.7421±0.01[4] 0.7424±0.01[3] - - 0.7425±0.01[2] 0.7432±0.01[1]

Average Rank 4.88 4.38 4.50 2.40 2.40 3.88 2.38

25



Liu, Tsang and Müller

Figure 4: Training time (in second) of all methods on the small-scale data sets. EU-
RLEX SM 10 and EURLEX ED 10 are abbreviated to SM 10 and ED 10.

Figure 5: Testing time (in second) of all methods on the small-scale data sets. EU-
RLEX SM 10 and EURLEX ED 10 are abbreviated to SM 10 and ED 10.

• Our algorithms outperform CCA and MMOC. This study verifies that optimal CC
achieves competitive results compared with state-of-the-art encoding-decoding ap-
proaches.
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• Our proposed CC-DP and CC-Greedy algorithms are successful on most data sets.
This empirical result verifies the effectiveness of our easy-to-hard learning strategies,
and we provide an answer to the last two questions stated in Section 2.2: a globally
optimal CC exists and CC-DP is able to find the globally optimal CC that achieves
the best prediction performance. The CC-Greedy algorithm achieves comparable
prediction performance with CC-DP.

Figures 4 and 5 show the training and testing time of CC-Greedy, CC-DP and the
baseline methods on the small-scale data sets, respectively. According to these two figures,
we can see that:

• Our proposed algorithms are much faster than CCA and MMOC in terms of both
training and testing time.

• CC-Greedy and CC-DP achieve comparable testing time with BR, CC and ECC.
Though the training time of our algorithms are slower than BR, CC and ECC, our
extensive empirical studies show that our algorithms achieve superior prediction per-
formance than those baselines.

• The CC-Greedy algorithm is much faster than CC-DP in terms of training time, and
it achieves comparable prediction performance with CC-DP.

7.2.2 Large-scale results

This subsection studies the performance of Tree-Greedy, Tree-DP and other baselines on
the EURLEX SM and EURLEX ED data sets with many labels. We cannot get the results
of CCA and MMOC on EURLEX SM and EURLEX ED data sets in one week. And we
also cannot get the results of ECC on EURLEX ED data set in one week. The prediction
performance of Tree-Greedy, Tree-DP and the baselines are reported in Tables 12, 13 and
14. We conduct the pairwise t-test at a 5% significance level to show that our methods
perform significantly better than the compared methods. From the results, we can see that:
our proposed Tree-Greedy and Tree-DP algorithms consistently outperform BR, CC and
ECC on the data sets with many labels.

The training and testing time of Tree-Greedy, Tree-DP and the baselines on the EU-
RLEX SM and EURLEX ED data sets are shown in Figure 6. According to this figure,
we can observe that compared to BR, CC and ECC, our algorithms maintain the testing
time over an acceptable threshold, while our methods are much faster than the baselines in
terms of training time.

7.3 Experiment on Ordinal Classification

This subsection conducts experiments on four ordinal data sets with various domains from
website9. The statistics of these data sets are presented in Table 15. We compare our
algorithm with some baseline methods: SVM (Shashua and Levin, 2002), MAP (Chu and
Ghahramani, 2005), EP (Chu and Ghahramani, 2005) and BD (Destercke and Yang, 2014).

9. http://www.gatsby.ucl.ac.uk/ chuwei/ordinalregression.html
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Table 12: Results of Example-F1 on EURLEX SM and EURLEX ED data sets (mean ±
standard deviation). The best results are in bold. Numbers in square brackets
indicate the rank. “-” denotes the training time is more than one week.

Data set BR CC ECC Tree-Greedy Tree-DP
EURLEX SM 0.6970±0.02[5] 0.7233±0.01[4] 0.7263±0.01[3]0.7292±0.01[2] 0.7301±0.01[1]
EURLEX ED 0.4345±0.03[4] 0.4528±0.02[3] - 0.4550±0.01[2] 0.4563±0.01[1]

Average Rank 4.5 3.5 3 2 1

Table 13: Results of Macro-F1 on EURLEX SM and EURLEX ED data sets (mean ± stan-
dard deviation). The best results are in bold. Numbers in square brackets indi-
cate the rank. “-” denotes the training time is more than one week.

Data set BR CC ECC Tree-Greedy Tree-DP
EURLEX SM 0.4777±0.02[5] 0.4785±0.02[4] 0.4800±0.02[3]0.4817±0.01[2] 0.4834±0.01[1]
EURLEX ED 0.1660±0.01[4] 0.1812±0.00[3] - 0.1844±0.00[2] 0.1848±0.00[1]

Average Rank 4.5 3.5 3 2 1

The results are shown in Table 16. From this table, we can see that our proposed CCMC-
DP outperforms the other baselines on all data sets, which verifies that our method is
able to capture and use the correlated information between ordinal classes, and boost the
performance of ordinal classification problems.

7.4 Experiment on Relationship Prediction

This subsection conducts experiments on the Epinions data set (Massa and Avesani, 2006).
According to Chiang et al. (2015), we collect 10,000 users and 41 features in this data set.
We compare our proposed Tree-DP algorithm with some popular methods: IMC (Jain and
Dhillon, 2013), MF-ALS (Hsieh et al., 2012), HOC-3 (Chiang et al., 2014), HOC-5 (Chiang
et al., 2014) and DirtyIMC (Chiang et al., 2015). We perform 5-fold cross-validation on
this data set and report the mean and standard error of Example-F1. The results are
shown in Table 17. From this table, we can see that 1) DirtyIMC outperforms the other
baselines, which verifies the effectiveness of using feature information and is consistent with
the empirical results in Chiang et al. (2015). 2) Our proposed Tree-DP algorithm is able to
achieve the best accuracy among all baselines, which demonstrates the superior performance
of the easy-to-hard learning strategy.

8. Conclusion

To precisely classify multiclass data sets with confusing classes, this paper aims to solve
classification tasks from easy to hard, and then use the predictions from simpler tasks to
help solve the harder tasks. To achieve our goal, we first build the classifier chain model for
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Table 14: Results of Micro-F1 on EURLEX SM and EURLEX ED data sets (mean ± stan-
dard deviation). The best results are in bold. Numbers in square brackets indi-
cate the rank. “-” denotes the training time is more than one week.

Data set BR CC ECC Tree-Greedy Tree-DP
EURLEX SM 0.7321±0.01[5] 0.7422±0.02[3] 0.7363±0.01[4]0.7440±0.01[2] 0.7454±0.01[1]
EURLEX ED 0.4200±0.01[4] 0.4477±0.01[3] - 0.4527±0.00[2] 0.4549±0.00[1]
Average Rank 4.5 3 4 2 1

Figure 6: Training and testing time (in second) of BR, CC, ECC, Tree-Greedy and Tree-DP
on EURLEX SM and EURLEX ED data sets.

multiclass classification (CCMC) to transfer class information between classifiers. Then, we
generalize the CCMC model over a random class order and provide a theoretical analysis
of the generalization error for the proposed generalized model. Our results show that the
upper bound of the generalization error depends on the sum of the reciprocal of the square
of the margin over the classes. Based on our results, we propose the easy-to-hard learning
paradigm for multiclass classification to automatically identify easy and hard classes and
then use the predictions from simpler classes to help solve harder classes.

Similar to CCMC, a CC model is also proposed by Read et al. (2009) to capture the
label dependency for multi-label classification. However, confusing labels decrease the gen-
eralization performance of CC, especially when there are many confusing labels, because it
ignores the label’s order of difficulty. Thus, it is imperative to learn the appropriate label
order for CC. Motivated by our analysis of CCMC, we first generalize the CC over a random
label order and provide the generalization error bound for the proposed generalized model,
and then we also propose the easy-to-hard learning paradigm for multi-label classification
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Table 15: Ordinal data sets used in the experiments.
Data set # TRAINING # TESTING # Rank
Stocks Domain 600 350 5
Machine CPU 150 59 5
Abalone 1,000 3,177 6
Boston Housing 300 206 5

Table 16: Testing error rate (in %) on ordinal data sets.
Data set SVM MAP EP BD CCMC-DP
Stocks Domain 10.84 11.99 12.00 10.05 9.87
Machine CPU 19.15 18.47 18.56 18.71 17.34
Abalone 22.93 23.22 23.37 23.43 21.62
Boston Housing 26.72 26.04 25.85 25.86 23.50

to automatically identify easy and hard labels. Lastly, we use the predictions from simpler
labels to help solve harder labels.

It is very expensive to search over q! different class or label orders for learning the objec-
tive of our proposed easy-to-hard learning paradigms, which is computationally infeasible
for a large q. We thus propose the CCMC-DP and CC-DP algorithms to find the globally
optimal solution, respectively, which requires O(q3nd) complexity. To speed up the CCMC-
DP and CC-DP algorithm, we propose the CCMC-Greedy and CC-Greedy algorithms to
find a locally optimal CCMC and CC, respectively, which takes O(q2nd) time. Fast greedy
and tree-based algorithms are further developed to handle large data sets with many classes
and labels, respectively, which scale linearly with q.

Comprehensive experiments on extensive multiclass data sets, without and with back-
ground, demonstrate that our proposed methods consistently improve the prediction per-
formance of OVR and outperforms ECOC and Top-k multiclass SVM. Our human action
recognition experiment results also validate our analysis and the success of our proposed
easy-to-hard learning strategies: we can automatically identify easy and hard classes, and
use the predictions of classifiers from easier classes to train the classifiers for harder classes.
Furthermore, this paper also provide an affirmative answer to Rifkin and Klautau’s conjec-
ture.

Empirical results on ten real-world multi-label data sets from different domains verify
the effectiveness of our easy-to-hard learning strategies, and we provide an answer to the
last two questions stated in Section 2.2: a globally optimal CC exists, and CC-DP is able to
find the globally optimal CC which achieves the best prediction performance. Moreover, we
provide theoretical support for the argument: multi-label learning methods which explicitly
capture the label’s relationship will usually achieve better prediction performance.

Table 17: Results of Example-F1 on the Epinions data sets (mean ± standard deviation).

Data set IMC MF-ALS HOC-3 HOC-5 DirtyIMC Tree-DP
Epinions 0.910 ± 0.002 0.936 ± 0.001 0.926 ± 0.001 0.927 ± 0.002 0.939 ± 0.001 0.946 ± 0.001
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Lastly, we demonstrate our proposed easy-to-hard learning strategies can be successfully
applied to a wide range of applications, such as ordinal classification and relationship pre-
diction. From a more philosophical point of view, our work has shown that the proper usage
of structure information in multiclass and multi-label problems yields better modeling, in
other words structuring output class information may be an attractive path to incorporate
more dark knowledge into learning models.
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Appendix A. Covering Numbers

Definition 19 (Covering Numbers) Let (X, d) be a (pseudo-) metric space, A be a sub-
set of X and ε > 0. A set B ⊆ X is an ε-cover for A, if for every a ∈ A, there exists b ∈ B
such that d(a, b) < ε. The ε-covering number of A, Nd(ε, A), is the minimal cardinality of
an ε-cover for A (if there is no such finite cover then it is defined to be ∞).

In the main paper, let N (ε,H, s) be the ε-covering number of H with respect to the l∞
pseudo-metric measuring the maximum discrepancy on the sample s, that is, with respect
to the distance d(f, g) = max1≤t≤m |f(xt)− g(xt)|, for f, g ∈ H.

Appendix B. Proof of Lemma 6

Proof (of Lemma 6). For each s, let h̄s be a function for which |erD[h̄s] − ers[h̄s]| ≥ ε if
such a function exists, and any fixed function in H otherwise. Then

Pss̄(sup
h∈H
|ers̄[h]− ers[h]| ≥ ε/2) ≥Pss̄(|ers̄[h̄s]− ers[h̄s]| ≥ ε/2)

≥Pss̄({|erD[h̄s]− ers[h̄s]| ≥ ε}
⋂
{|ers̄[h̄s]− erD[h̄s]| ≤ ε/2})

=Es[I
(
|erD[h̄s]− ers[h̄s]| ≥ ε

)
Ps̄(|ers̄[h̄s]− erD[h̄s]| ≤ ε/2)]

(5)

Now the conditional probability inside can be bounded using Chebyshev’s inequality:

Ps̄(|ers̄[h̄s]− erD[h̄s]| ≤ ε/2) ≥ 1− Vars̄[ers̄[h̄s]]

ε2/4
(6)

Since s̄ ∼ Dm and ers̄[h̄s] is 1/m times a Binomial random variable with parameters

(m, erD[h̄s]), we have Vars̄[ers̄[h̄s]] = erD[h̄s](1−erD[h̄s])
m ≤ 1

4m . This gives

Ps̄(|ers̄[h̄s]− erD[h̄s]| ≤ ε/2) ≥ 1− 1

mε2
≥ 1

2
(7)

whenever mε2 ≥ 2. Thus we get

Pss̄(sup
h∈H
|ers̄[h]− ers[h]| ≥ ε/2) ≥1

2
Ps(|erD[h̄s]− ers[h̄s]| ≥ ε)

=
1

2
Ps(sup

h∈H
|erD[h]− ers[h]| ≥ ε)

(8)

where the last step of Eq. (8) is by definition of h̄s.

Appendix C. Proof of Theorem 15

Proof (of Theorem 15). We proof the theorem using the mathematical induction. For
i ∈ {1, · · · , q},
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Case 1: V (i, 1) = 1
(γ1i )2

, where γ1
i is the margin for λi, without augmented input and

M1
i = {λi}.
Case 2: V (i, 2) = minj 6=i,λi 6∈M1

j
{( 1

(γ2i )2
+ V (j, 1)}, where γ2

i is the margin for λi, with

M1
j as the augmented input. As in case 1, we already calculated V (i, 1), so we can easily

find the solution of V (i, 2). Assume V (j, 1) is the optimal value for computing V (i, 2), then
we can get M2

i = M1
j ∪ {λi}.

Case 3: Assume V (i, k−1), k ≤ q is the optimal Q′ over a subset ofM with the length
of k−1, where the class or label order ends by λi and Mk−1

i denote the corresponding class
or label set for V (i, k − 1).

Case 4: V (i, k) = minj 6=i,λi 6∈Mk−1
j
{ 1

(γki )2
+ V (j, k − 1)}, where γki is the margin for λi,

with Mk−1
j as the augmented input. Based on the assumption in case 3, we can obtain

V (i, k), i ∈ {1, · · · , q}. Thus, we can find the optimal Q′ over M by using CCMC-DP or
CC-DP algorithm.

Appendix D. Greedy Algorithm

This section presents the details of the CC-Greedy algorithm. Let {xt}nt=1 be the feature and
{yt(ζj)}nt=1 be the label, the output parameter of SVM is defined as [wj , b] =SVM({xt,yt(ζ1),· · · ,
yt(ζj−1)}nt=1, {yt(ζj)}nt=1).

Algorithm 1 CC-Greedy

Input: training data {xt,yt}nt=1 with size n and label set {λ1, λ2, · · · , λq}.
Set M = {λ1, λ2, · · · , λq}.
for λj ∈M do

Calculate [wj , b] = SVM({xt}nt=1, {yt(λj)}nt=1).
Calculate γ1

j = 1
||wj ||2 .

end for
Calculate ν = argλj∈Mmin 1

(γ1j )2
.

Set M =M−{λν}
Set C[1] = λν .
for s = 2 to q do

for λk ∈M do
Calculate [wk, b] = SVM({xt,yt(C[1]), · · · ,yt(C[s− 1])}nt=1, {yt(λk)}nt=1).
Calculate γsk = 1

||wk||2
.

end for
Calculate ν = argλk∈Mmin 1

(γsk)2
.

Set M =M−{λν}.
Set C[s] = λν .

end for
Output this locally optimal CC.
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