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We propose and discuss quantum spin lenses, where quantum states of delocalized spin excitations in an
atomic medium are focused in space in a coherent quantum process down to (essentially) single atoms.
These can be employed to create controlled interactions in a quantum light-matter interface, where photonic
qubits stored in an atomic ensemble are mapped to a quantum register represented by single atoms. We
propose Hamiltonians for quantum spin lenses as inhomogeneous spin models on lattices, which can be
realized with Rydberg atoms in 1D, 2D, and 3D, and with strings of trapped ions. We discuss both linear
and nonlinear quantum spin lenses: in a nonlinear lens, repulsive spin-spin interactions lead to focusing
dynamics conditional to the number of spin excitations. This allows the mapping of quantum super-
positions of delocalized spin excitations to superpositions of spatial spin patterns, which can be addressed
by light fields and manipulated. Finally, we propose multifocal quantum spin lenses as a way to generate
and distribute entanglement between distant atoms in an atomic lattice array.
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I. INTRODUCTION

In quantum information processing [1] with atoms, qubits
are typically represented by internal atomic states, e.g., as
long-lived spin excitations within the atomic ground-state
manifold [2]. Ideally, qubits are stored in single atoms, and
for these qubits to be identifiable and addressable, we
typically require localization of the atoms in well-defined
spatial regions. Spatial control and localization of single
atoms is a prerequisite to implement single- and two-qubit
operations, allowing addressing of individual qubits with
laser light, and providing entangling operations between
adjacent qubits by finite-range interactions. Recent atomic
physics experiments have demonstrated in a remarkableway
the basic ingredients of single atom manipulation and
addressing with trapped atoms and ions, and controlled
interaction and entanglement between atomic spin qubits
with Rydberg atoms [3,4], trapped ions [5–8], cavity QED
setups [9], and quantum interfaces [10–12].

In contrast to localized qubits stored in single trapped
atoms, atomic ensembles provide us with qubits in the form
of delocalized spin excitations [13,14]. Delocalized spin
qubits arise naturally in light-atomic ensemble interfaces in
both free space and cavity-assisted setups. Here, incident
photons representing a “flying qubit” are absorbed in an
atomic ensemble with enhanced interactions benefiting
from a large atom number N, as in an optically thick
medium, and converted into a spin excitation, which may
be delocalized over the whole atomic cloud [15–19]. In
order to create controlled interactions between such delo-
calized qubits it is desirable to convert delocalized spin
qubits into localized qubits in the atomic array representing
quantum memory. Thus, ideally we want operations—a
lens for spin excitations—on the atomic array, which allow
in a coherent process “focusing” of qubits to a well-defined
and localized region, and ultimately to a single atom.
In this paper, we propose and discuss linear and nonlinear

quantum spin lenses and their physical realization in
quantum optical setups. We first identify Hamiltonians to
realize linear spin lenses, which map in a coherent process a
delocalized to localized spin excitation, and vice versa. This
has immediate application as a quantum atom-light inter-
face, where incident photonic qubits are sequentially stored
in an atomic array and focused to a quantum register of
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spatially localized spin qubits represented by single atoms
[cf. Fig. 1(a)] with coherent transport dynamics [20].
Moreover, we can generalize the concept of the quantum
spin lens to a multifocal lens. In particular, this allows a
single delocalized spin excitation to be mapped to a spatial
EPR-like superposition state, thus providing a way to
distribute or generate entanglement between (distant) atoms
[cf. Fig. 1(c)]. Finally, we discuss the design of nonlinear
spin lenses, adding finite-range (repulsive) spin-spin inter-
actions to the spin-lensHamiltonian. Thus, focusing dynam-
ics is conditional on the number of initial spin excitations,
and an initial quantum superposition state of delocalized
spins is mapped to a superposition of spatial spin patterns
[cf. Fig. 1(d)]. Remarkably, this provides a tool to manipu-
late the individual terms (corresponding to a specific
excitation number) in the superposition state by spatial
addressing in the atomic medium. As noted above, the
relevant spin models are naturally implemented in existing
atomic and solid-state quantum optical setups, and we
illustrate this below with the examples of neutral atoms
with Rydberg-mediated spin-spin interactions in 1D, 2D,
and 3D atomic lattices [21–24] using laser-dressing tech-
niques [25–28], as well as with strings of trapped ions [7,8].

II. LINEAR QUANTUM SPIN LENSES: FOCUSING
DYNAMICS OF SINGLE SPIN EXCITATIONS

We are interested here in a scenario illustrated in
Fig. 1(a), where an incident wave packet E, representing

a qubit αj0i þ βj1i as a superposition of vacuum and a
one-photon wave packet, is stored as a delocalized spin
excitation in amediumofN two-level atoms. These two-level
systems can be physically represented by long-lived atomic
hyperfine ground states two-level atoms jgi; jei, with all
atoms initially prepared in the ground state, and we assume
atoms trapped in an array. Storage of a photonic qubit in the
atomic medium is achieved, for example, in a Raman process
[29,30], where the incident photon is absorbed and atoms
initially prepared in jgi transfer to jei. Writing to atomic
quantum memory thus corresponds to a mapping of the
photonic qubit to the atomic state αjGi þ βŜþjGi. Here,
Ŝþ ¼ P

N
n¼1 ψnσ̂

ðnÞ
þ , a sum of Pauli-raising operators for

atoms n, creates a delocalized excitation distributed over
the atoms according to an amplitudeψn, acting on thevacuum
state jGi≡ jg1;…; gNiwith all atoms in theground state. For
a low enough excitation density in the atomic medium these
spin excitations are essentially noninteracting and behave as
bosons up to corrections ∼1=N.
A quantum spin lens aims to achieve a mapping of the

delocalized atomic spin excitation to (ideally) a single atom,

ŜþjGi → σ̂
ðnfÞ
þ jGi in a coherent quantum process, and

preserving the superposition character of the qubit. Below,
we first discuss spin-lens Hamiltonians that focus a single
initially delocalized spin excitation during the associated
unitary time evolution, which we call a linear spin lens.
Nonlinear spin lenses which focus multiple interacting spin
excitations are discussed in the following section.

FIG. 1. (a)–(d) Various scenarios of a quantum light-atom interface illustrating a quantum spin lens. Incident photonic qubits are
initially stored as delocalized spin excitations in an atomic array, and focused to single atoms (see Sec. II). (a) Basic process of write and
focusing operations (see Secs. II A and II B). Qubits stored in single atoms allow quantum gate operations to be implemented between
adjacent atoms, e.g., via Rydberg gates. (b) 1D setup with atomic ensemble stored inside a cavity (see Sec. II D). (c) Generation of EPR-
type states by constructing lenses with multiple focal points (see Sec. II C). (d) Focusing dynamics with a nonlinear spin lens with
repulsive spin-spin interactions with range rB, illustrated for two spin excitations (see Sec. III). (e) Density plots illustrating focusing
dynamics of spin excitations in 2D arrays as a function of time t according to spin-lens Hamiltonians Eqs. (1) or (10). (i) Focusing of an
initially delocalized “qubit 2” in the presence of a hole (representing, e.g., a previously stored “qubit 1”) (see Sec. II). (ii) Two-focus lens
illustrating generation of EPR pairs (see Sec. IIC). Parameters: 50 × 50 lattice, initial width of the Gaussian wave packet σ0 ¼ 10a
lattice spacings. (iii) Focusing of two spin excitations with a nonlinear quantum lens with repulsive spin-spin interactions of range rB.
The two excitations are focused to a ring, reminiscent of a quantum crystal. Parameters: 31 × 31 lattice (see Sec. III).
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The focusing of single spin excitations discussed
below can be generalized immediately to k photonic qubits,
provided we store and focus them sequentially, i.e., incident
photonic qubits are absorbed and focused in the atomic
medium one by one in spatially separated atoms n1;…; nν
representing a quantum register [31]. Because of the spatial
localization, these atomic qubits can now be individually
addressed, and we can operate on them with single- and
two-qubit gate operations, implemented, for example, as
Rydberg gates [see Fig. 1(a) and panel (i) of Fig. 1(e)].

A. Spin-lens Hamiltonian with nearest-neighbor
flip-flop interactions

Focusing of a delocalized excitation in a spin chain is
achieved with the Hamiltonian

Ĥ ¼ −J
X
n

½σ̂ðnÞþ σ̂ðnþ1Þ
− þ H:c:� þ

X
n

Vnσ̂
ðnÞ
z ; ð1Þ

where σ̂ðnÞμ are Pauli spin-1=2 operators at lattice site n. The
first term describes hopping of the spin excitation (kinetic
energy), which for the moment we take as nearest-neighbor
hopping, while the second term is a spatially dependent
energy shift Vn ¼ v0ðn − nfÞ2. While in Eq. (1) we write a
1D model, the present discussion can in a straightforward
way be generalized to higher dimensions.
The Hamiltonian Eq. (1) is motivated by analogy to an

optical lens with Vn imprinting a phase on the nth spin
centered around lattice site nf, reminiscent of the refractive
material of a lens [32,33]. The analogy to an optical lens is
best illustrated by visualizing the focusing dynamics of
single spin excitations with a Wigner phase space distri-
bution as a function of time [see Fig. 1(e) and upper panels
of Figs. 2(a) and 2(b)]. We write the wave function of the

single spin excitation as jψðtÞi ¼ P
nψnðtÞσ̂ðnÞþ jGi with

amplitude ψnðtÞ initially delocalized as a wave packet of

spatial width σ0 over the lattice, and we define a Wigner
function on the lattice as [34,35] (ℏ ¼ 1)

Wlatðxn; kÞ ¼
a
π

Z
π=2a

−π=2a
dqhk − qjψihψ jkþ qie−2iqxn :

Here, xn ¼ an (n ∈ Z) are discrete lattice positions with a
the lattice spacing, and momentum ka ∈ ð−π; πÞ is 2π

periodic, and we denote by jki ¼ ða=2πÞ1=2Pne
ikxn σ̂ðnÞþ jGi

spin waves with momentum k on an infinite lattice.
A momentum space representation of the time-dependent
Schrödinger equation with Hamiltonian Eq. (1) shows that
the dynamics is the one of a quantum pendulum. The first
term in Eq. (1) gives rise to a Bloch band dispersion relation
ϵðkÞ ¼ 2J½1 − cosðkaÞ�, and the quadratic potential term
maps to a Laplacian in k, i.e., a kinetic energy term.
Focusing dynamics is best illustrated in the continuum

limit, i.e., we assume that the spin dynamics is smooth
on the scale of the lattice spacing, and the wave func-
tion in momentum space remains localized to a region at
the bottom of the Bloch band. Thus, the dispersion relation
is well approximated by ϵðkÞ ≈ JðkaÞ2 þOðkaÞ4 for
small momenta ka ≪ 1, and the Wigner function
Wlatðxn; kÞ maps to the standard Wigner function Wðx; pÞ
for the continuous variables xn → x ∈ R and k → p ∈ R.
The Hamiltonian Eq. (1) becomes an effective harmonic
oscillator, H ¼ p2=ð2mÞ þmω2x2=2, with momentum p
and position x. Here, we define a frequency ω ¼
2

ffiffiffiffiffiffiffi
v0J

p
, mass m ¼ 1=ð2Ja2Þ, and we denote by l ¼

ðℏ=mωÞ1=2 the harmonic oscillator length. Under this
Hamiltonian an initial Wigner function, Wðx; p; 0Þ, simply
performs a (classical) rigid rotation in phase space,
Wðx; p; tÞ ¼ W(x̄ðx; p; tÞ; p̄ðx; p; tÞ; 0), where position,
x̄ðx; p; tÞ ¼ mωx cosωt − p sinωt, and momentum,
p̄ðx; p; tÞ ¼ p cosωtþmωx sinωt, describe elliptical tra-
jectories in phase space as a function of time. Thus, an initial
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FIG. 2. Time evolution of an initially delocalized spin excitation on a lattice according to the spin-lens Hamiltonian Eq. (1) for the
(a) thick and (b) thin lens for a 1D string of L ¼ 800 spins as a function of time t. The red line, σðtÞ, indicates the continuum result. Insets
1–4 above illustrate the dynamics of the Wigner function at four specific times. (c) Zoom to illustrate the final optimized spatial
excitation probability per atom illustrating that focusing on the scale of (essentially) single atoms can be obtained. The green bars
correspond to a focusing dynamics of the thick lens with initial width σ0 ¼ 100a and final width σf ¼ 2.7a. The yellow bars correspond
to a second focusing stage with a thin lens starting with σ0 ¼ 2.7a to final width σf ¼ 1.2a. (d) Bloch oscillations in focusing dynamics
at the edge σBO of the lens (see text).
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wave packet with width σ0 in position space is transformed
after a quarter of period, tf ¼ π=ð2ωÞ, to a spatially
localized state with width σf ¼ l2=σ0 ≪ l, as familiar
from squeezed states [2,36].
In this continuum approximation the single particle

Schrödinger equation from Eq. (1) is formally equivalent
to the paraxial Helmholtz equation [33]. The role of time in
the Schrödinger equation is replaced by the axial dimension
in the paraxial Helmholtz equation, and the potential
translates to a spatially dependent refractive index. This
allows us to interpret most of the focusing dynamics in the
language of classical optics. So far, we consider focusing of
a delocalized excitation in a potential Vn, which is “on”
during the whole dynamics. In analogy to optics this
corresponds to light propagating in a graded index multi-
mode fiber. In the following, we refer to this dynamics as a
thick lens. This is to distinguish from a second scenario,
discussed below, where focusing is achieved by a thin lens.
In Fig. 2(a), we illustrate focusing dynamics of a thick

lens for spin excitations with the lattice model Eq. (1) in a
parameter regime where the continuum approximation is
well justified (see below for details). For an initial Gaussian
wave packet with spatial width σ0, corresponding to a
(in the continuum limit) cigar-shaped Wigner function
Wðx; p; 0Þ ¼ ð1=πÞ exp½−ðx=σ0Þ2 − ðσ0pÞ2�, the spatial
width σðtÞ2 ¼ σ20½cos2ωtþ ðl=σ0Þ4sin2ωt� starts oscillat-
ing as a function of time [see red line in Fig. 2(a)] and has
periodic minima at every quarter of a period ωtf ¼ π=2,
where σf ≡ σðtfÞ ¼ l2=σ0. The final width in real space
(after a quarter of a period) corresponds to the Fourier
transform of the initial wave function, i.e., ψðx; tfocÞ ¼
F x0 fψðx0; 0Þgðx=l2Þ, as for an optical lens. The focusing in
real space is illustrated in Fig. 2, where panels 1–4 show the
corresponding phase space dynamics of the Wigner
function.
Instead of the “always-on” Hamiltonian Eq. (1) of the

thick lens, focusing can also be obtained in a pulsed
scheme, where the quadratic potential term is switched
on for a short time only. This imprints a position-dependent
momentum kick Δka ¼ −2ϕ0ðn − nfÞ (with ϕ0 > 0) onto
the initial wave function via the quadratic phase shift Ûϕ0

¼
exp½−iϕ0

P
nðn − nfÞ2σ̂ðnÞz �, followed by a free evolution of

the spin system via Eq. (1) with v0 ¼ 0, as illustrated in
Fig. 2(b). This is in analogy with a thin lens in classical
optics, where a thin refractive material imprints a position-
dependent phase onto the incoming plane wave. The
Wigner function in phase space first acquires a momentum
kick p → p − 2ϕ0x=a2, followed by free evolution corre-
sponding to a shear motion of the Wigner function, i.e.,
Wðx; p; tÞ ¼ Wðx − pt=m; p; 0Þ, as illustrated in panels 1–
4 of Fig. 2(b). In contrast to the thick lens there is a single
focal time Jtf ¼ 2ðσ0=aÞ4ϕ0=½4ϕ2

0ðσ0=aÞ4 þ 1� [≈1=ð2ϕ0Þ
for σ0 ≫ a], where a Gaussian wave function has its
minimum width σf ¼ σ0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ϕ2

0ðσ0=aÞ4 þ 1
p

.

Figure 2(c) shows the spatial excitation probability for
lattice sites around the focus. The green bars correspond to
the dynamics illustrated in Fig. 2(a). An excitation initially
delocalized over σ0=a ¼ 100 lattice sites gets localized on
σf=a ¼ 2.7 lattice sites using a thick lens including
corrections up to sixth order (described in Sec. II B).
One can improve the focusing by using multiple pulses
or even combining the two different schemes. For example,
we can further focus the spin excitation from σ0=a ¼ 2.7
lattice sites to σf=a ¼ 1.2 lattice sites, shown as the yellow
bars in Fig. 2(c), by adjusting the lens strength to the new
initial condition.

B. Lattice corrections: Dephasing
and Bloch oscillations

Corrections to the continuum limit become important
when the delocalized excitation is focused to a spatial
region on the order of the lattice spacing, and the Wigner
function extends close to the border of the first Brillouin
zone. This happens for sufficiently strong potential in
Eq. (1), which leads to aberration and Bloch oscillations
due to deviation from a quadratic dispersion relation. In
the following, we discuss the limitations this imposes on
the achievable final width and show how the effects of the
nonquadratic dispersion relation can be compensated using
nonparabolic lens potentials.
The main results are summarized in Fig. 3(a), where the

numerically obtained final width σf is plotted as a function
of the initial width σ0 and lens strength v0 or ϕ0 for the
(i) thick and (ii) thin lens on a lattice, respectively.
Simulations have been performed on a 1D chain with
L ¼ 106 (L ¼ 105) spins according to Eq. (1) for the thin
(thick) lens setup. In contrast to the continuum picture,
where a stronger lens leads to a tighter spatial focus and a
faster focusing time, the numerical results show that there
exist optimal lens potentials (see below) scaling as

vopt ∼
�
a
σ0

�
8=3

and ϕopt ∼
�
a
σ0

�
4=3

; ð2Þ

for the thick and thin lens setups, illustrated as black dashed
lines in Fig. 3(a). At this optimal lens strength, the final
achievable width scales as

σf ¼ aκ

�
σ0
a

�
1=3

: ð3Þ

for both the thick and thin lens with κ obtained numerically.
Focusing works well below this optimal lens strength, in
excellent agreement with Figs. 2(a) and 2(b). The scaling of
Eq. (3) (black line) is in perfect agreement with the
numerically evaluated final width (blue dots) shown in
Fig. 3(b) for (i) the thick and (ii) the thin lens with κ ¼ 0.68
and κ ¼ 0.80, respectively.
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In the following we discuss the two main effects of the
lattice: aberration, giving rise to the optimal lens potentials
of Eq. (2), and Bloch oscillations at the edge of the lens
shown in Fig. 2(d). We show that the corresponding
aberration can be addressed using potentials and pulse
shapes that include quartic and higher-order terms.

1. Aberration

Deviations from the continuum model can be understood
as arising from the nonlinear group velocity vgðkÞ ¼
2Ja sinðkaÞ on the lattice, which implies that wave packets
with large momenta propagate more slowly than in the

continuum limit, where vðcÞg ðkÞ ¼ 2Ja2k. This results in a

path difference ΔsðkÞ ¼ ½vðcÞg ðkÞ − vgðkÞ�tf at the focal
time tf between the lattice and the continuum model.
If this path difference becomes of the order of the final
width, i.e., ΔsðkÞ ∼ σf, the continuum approximation
breaks down and the wave packet will broaden again.
Evaluating this equation at the maximum momentum 1=σf
and expanding the path difference up to third order,
ΔsðkÞ ¼ −aJtf½ðkaÞ3=3þOðkaÞ5�, one obtains Eq. (2)
(see also Appendix A). The difference in the group
velocities further explains the S-shaped distortion of the
Wigner function observed in panels 1–4 of Figs. 2(a)
and 2(b) as the nonlinear group velocity induces a nonrigid
rotation in phase space.

2. Bloch oscillations

At an even larger potential strength, the wings of the
wave packet with an extension larger than

σBO ¼ 2a

ffiffiffiffiffi
J
v0

s
ð4Þ

will undergo Bloch oscillations (see Appendix A), as
illustrated in Fig. 2(d). This limits the lens strength to
values well below vBO ¼ 4Jða=σ0Þ2, indicated as a red
dashed line in Fig. 3(a). At this critical lens potential the
(local) potential gradient V 0

n ¼ 2v0ðn − nfÞ gives rise to
Bloch oscillations with an amplitude Δn ¼ 2J=V 0

n and
frequency ωBO ¼ V 0

n=2 [37]. If this frequency becomes
of the order of the focusing time, focusing becomes
ineffective. A similar argument for the thin lens yields the
maximum pulse strength ϕBO ∼ a=σ0. In contrast to Bloch
oscillations in the thick lens, for the thin lens focusing is
limited by phase wraps as the momentum kicks imparted by
the pulse extend beyond the first Brillouin zone.

3. Correction of aberration

Quartic deviations from the dispersion relation limit the
final width of the spin wave to σf ∼ ðσ0=aÞ1=3. Similar to
aspherical lenses, the effect of dephasing due to the
nonquadratic dispersion relation can be compensated using
more general potentials (thick lens) and imprinted phase
profiles (thin lens), of the form

Vn ¼
XQ=2

q¼1

v2qðn − nfÞ2q; ð5Þ

including additionally quartic (Q ¼ 4), sixth (Q ¼ 6),
or even higher-order terms. Such higher-order terms will
accelerate the wings of the wave packet stronger. This
allows to compensate the smaller group velocities on the
lattice. Using a similar argument as in Appendix A, one can
show that for an appropriate choice of v2q this leads to an
improved scaling:

σf ∼
�
σ0
a

�
1=ðQþ1Þ

: ð6Þ

Figure 3(b) plots the final width as a function of the initial
width for (i) the thin and (ii) the thick lens setup using a lens
strength up to Q ¼ 2, 4, and 6. The numerically obtained
final width agrees well with the scaling of Eq. (6).
For the thin lens an optimized form of Eq. (5) can be

derived analytically using a semiclassical model with
continuous spatial variable an → x and a Bloch band
dispersion ϵðkÞ giving rise to a nonlinear group velocity
vgðkÞ. Given the imprinted phase profile ϕðxÞ, the initial
wave packet receives a position-dependent momentum kick
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(i) potential strength v0 or (ii) phase ϕ0 for the (i) thick and (ii) thin
lens setup. Dephasing due to the nonquadratic dispersion relation
starts to dominate at v0 ¼ voptðσ0Þ and ϕ0 ¼ ϕoptðσ0Þ (black
dashed line) while Bloch oscillations start at v0 ¼ vBOðσ0Þ and
ϕ0 ¼ ϕBOðσ0Þ (red dashed line) for thick and thin lenses, respec-
tively. (b) Minimum final width σf for the optimized lens strength
as a function of initial width for (i) thick and (ii) thin lens setup.
Dark blue dots, light blue squares, and green triangles correspond
to the numerically obtained final width for a quadratic, quartic, and
sixth-order potential, respectively. The black lines are a guide to
the eye, showing the respective scalings of Eq. (6).
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ϕ0ðxÞ=a. In order to focus all parts of the wave packet to the
focal point xf ¼ 0 at the same time tf, we require
x ¼ vg(kðϕ0Þ)tf, which yields

ϕðxÞ ¼ −ðx=aÞ arcsin½ϕ0ðx=aÞ� −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2
0 − ðx=aÞ2

q
; ð7Þ

with tf ¼ 1=ð2Jϕ0Þ. Panel (ii) of Fig. 3(b) shows the final
width obtained using Eq. (7), with x ¼ na on a lattice
(yellow diamonds), which shows a clear improvement over
the parabolic phase profile. Note that ϕðxÞ is only real
valued up to jx=aj ¼ ϕ0 due to the maximum group
velocity vgðπ=2Þ ¼ 2J on a lattice, since only parts of
the wave packets with distance x < 2Jtf can be focused
within the focusing time.

C. Multifocal lenses and generation of EPR states

Instead of the single focus lens, as in Eq. (1), we can
employ double-well, or multiwell potentials. The corre-
sponding potentials can be generated as spin-dependent
optical potentials, and an array of spin lenses can be
realized with large spacing optical lattices. A multifocal
lens operating on a single initial delocalized spin excitation
will generate a superposition state of excitations at the
focal points. For two foci, for example, we can generate an
EPR-type state

ŜþjGi → ðσ̂ðn1Þþ þ σ̂ðn2Þþ ÞjGi: ð8Þ

Thus, we generate a superposition (EPR state) between
spins at lattice site n1 and n2, as schematically illustrated in
panel (ii) of Fig. 1(c).
The time evolution of the corresponding multifocal

lens is visualized in panel (ii) of Fig. 1(e). In the upper
half plane (yn > 0) we use the 2D potential Vðxn; ymÞ ¼
v0½ðxn − xfÞ2 þ ðym − yfÞ2� with focal points ðxf; yfÞ ¼
ð0; ffiffiffi

2
p

× 10Þa, while in the lower half plane (yn < 0) we
use Vðxn; ymÞwith ðxf; yfÞ ¼ ð0;− ffiffiffi

2
p

× 10Þa. Note that in
Fig. 1(e) we rotate the potential by 45 deg. The potential
strength is optimized to v0 ¼ 4.5 × 10−3J for an initially
symmetric Gaussian wave function with radial spatial
width σ0 ¼ 10a on a 2D lattice with Lx ¼ Ly ¼ 50 lattice
sites.

D. Long-range flip-flop interactions

Implementations of Hamiltonian Eq. (1) with Rydberg
atom in optical lattices or strings of trapped ions motivate a
model

Ĥ ¼ −
X
n;m

Jn½σ̂ðmÞ
þ σ̂ðmþnÞ

− þ H:c:� þ
X
n

Vnσ̂
ðnÞ
z ; ð9Þ

with long-range flip-flop interactions Jn ¼ J0=nα. In par-
ticular, dipolar and van der Waals interactions between

Rydberg (dressed) atoms allow us to realize α ¼ 3 and
α ¼ 6 [3], respectively, while 0 < α < 3 can be realized
with strings of ions [5–8]. The first term of Eq. (9) gives rise
to a dispersion relation ϵαðkÞ ¼ 2

P
n½1 − cosðnkaÞ�=nα, as

shown in Fig. 4(a). While for α ¼ 6 the dispersion relation
ϵ006ð0Þ ¼ π4=90 ≈ 1.08 closely resembles the one of the
nearest-neighbor flip-flop interactions of Eq. (1), for α < 3
the dispersion relation exhibits a kink, e.g., ϵ2ðkÞ ¼
ðπ=2Þjkaj − ðkaÞ2=4, resulting in a linear group velocity
at small momenta with a discontinuity at k ¼ 0. This leads
to strong aberration and inefficient focusing. We note that
this can be corrected using an adiabatic lens scheme [36].
Figure 4(b) shows κ ≡ σf=ða2σ0Þ1=3 [see Eq. (3)] for

different realizations of α for the thick lens setups. While
for large values of α the scaling of Eq. (3) agrees with
the numerically obtained final width, for smaller values
the linear dispersion relation leads to strong deviations.
The smallest final width (smallest κ) is obtained for
large values of α and ultimately with nearest-neighbor
interactions, however, α ¼ 6 almost perfectly resembles
nearest-neighbor interactions.

III. NONLINEAR QUANTUM SPIN LENS:
FOCUSING AND SPATIAL SORTING OF

MULTIPHOTON STATES

While the lenses discussed so far are linear lenses
operating on single spin excitations, we can also design
nonlinear lenses, where the focusing dynamics depend on
the number of spin excitations in the medium via spin-spin
interactions. Returning to the light-matter interface we
discuss at the beginning of Sec. II, we now generalize to
an incident multiphoton superposition state jEi ¼P∞

ν¼0 cνjνi. For a write process to atomic quantummemory
using a Raman scheme involving a pair of atomic ground-
state levels (as described in Ref. [38]), this multiphoton
state is mapped to a superposition of (dilute) delocalized
spin excitations, jEi → P

νcνðŜþÞνjGi=
ffiffiffiffi
ν!

p
(representing

hardcore bosons). Repulsive spin-spin interactions, which
become relevant during the focusing dynamics when the

10
17
30
83
100
500
1000

(b)(a)

FIG. 4. (a) Dispersion relation ϵαðkÞ for long-range flip-flop
interactions (see text) for different exponents α and nearest-
neighbor (NN) interactions. (b) Rescaled final width σf=σ

1=3
0 for

different exponents α and for different initial conditions σ0. The
data points on the very right correspond to nearest-neighbor
interactions.
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excitation density increases, will map this superposition
state to a superposition of spatial spin patterns in an atomic
quantum memory. We note that this provides a means of
manipulating the individual terms in the superposition state
by spatially addressing the atomic spins with a laser. These
transformed superposition states of spins can then be
mapped back to photons in a defocusing and read oper-
ation, providing effective nonlinearities and manipulation
of quantum states on the single photon level.
Nonlinear quantum lenses can be implemented by

generalizing the Hamiltonian Eq. (1) to

Ĥ ¼ −J
X
n

½σ̂ðnÞþ σ̂ðnþ1Þ
− þ H:c:� þ

X
n

Vnσ̂
ðnÞ
z

þ
X
n

X
m

JðmÞ
z σ̂ðnÞz σ̂ðnþmÞ

z ; ð10Þ

with the last term a long-range JðmÞ
z ¼ Jz=m6 spin-spin

interaction and blockade distance rB ¼ aðJz=JÞ1=6. We
emphasize that the spin-spin interactions in Eq. (10) arise
naturally in Rydberg (dressed) gases and in trapped ion
spin models. Time evolution according to the above
Hamiltonian will propagate the initial quantum state to a
strongly correlated many-body quantum state,

X∞
ν¼0

cν
1ffiffiffiffi
ν!

p ðŜþÞνjGi →
X∞
ν¼0

cνjψνi; ð11Þ

with

jψνi ¼
X

n1;…;nν

ψ ðνÞ
n1;…;nν σ̂

ðn1Þþ � � � σ̂ðnνÞþ jGi; ð12Þ

and ψ ðνÞ
n1;…;nν the spatial wave functions for ν spin

excitations.
Figure 5 illustrates these focusing dynamics of interact-

ing spins according to Eq. (10) for an initial superposition
state consisting of exactly one, two, or three delocalized
spin excitations as a function of time. We plot the excitation

probability as a function of position in the lattice, pðνÞ
n ≡

trfσ̂ðnÞþ σ̂ðnÞ− jψνihψνjg at lattice site n for ν ¼ 1, 2, 3, which
clearly exhibits the spatial mapping and resolution of spin
patterns associated with jψνi of Eq. (12). This allows us to
perform gate operations on spatially localized atoms, e.g.,
atoms n ¼ �4 or n ¼ �7, in order to manipulate the ν ¼ 2
or ν ¼ 3 contribution of the superposition state individu-
ally. We note that the small excitation fraction between the
peaks, e.g., population of atoms with n ¼ −1, 0, 1 for
ν ¼ 2 (green bars), can be traced back to states in the initial
wave function where two excitations are closer than rB.
This fraction of states becomes smaller by decreasing the
initial excitation density, i.e., increasing the atom number.

The above can be immediately generalized to higher
dimensions. In particular, Fig. 1(e), bottom panel (iii),
illustrates focusing of two spin excitations (ν ¼ 2) in 2D. In
this case, the repulsive spin-spin interactions give rise to a
superposition of states with two excitations separated by a
characteristic distance rB around the single-excitation focus
forming a ring, reminiscent of a quantum crystal.

IV. IMPLEMENTATION WITH RYDBERG
ATOMS IN 2D AND 3D ARRAYS

The quantum spin lenses we propose in the previous
sections can be implemented with atoms stored in optical
trap arrays, including large spacing optical lattices and
optical tweezers [26,39,40] in 1D, 2D, and 3D, or alter-
natively with trapped ions in 1D [5–8].
Below we describe first a realization of a linear spin-lens

Hamiltonians of the type Eq. (1) in 1D, but in particular
also in 2D and 3D with alkali Rydberg atoms, where the
spin degree of freedom of Sec. II is represented by a pair of
levels involving a long-lived atomic hyperfine ground state
and a highly excited Rydberg state. As an example, we
consider 87Rb atoms and choose jgi ¼ j5S1=2; F ¼ 2;
mF ¼ 2i as the spin-down and jsi ¼ jnS1=2; mj ¼ 1=2i
as the spin-up state [see Fig. 6(a)]. Note that in this section
we denote by n the principal quantum number.
Long-range spin exchange interactions JðrijÞ ¼ J=r6ij

between spins i and j in 3D can be achieved by weakly
dressing the atomic ground state jgi by admixing with a
laser a second Rydberg state js0i ¼ jn0S1=2; mj ¼ 1=2iwith
(effective) Rabi frequency Ω and detuning Δ ≫ Ω. This
particular choice of Rydberg states leads to spin couplings
JðrijÞ, which are isotropic in 3D, i.e., a purely radial
dependence as a function of the distance rij ¼ jri − rjj for
a large range of principal quantum numbers [41,42]. We
note that, e.g., dipolar exchange interactions can be
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FIG. 5. (a) Time evolution of the excitation density pðνÞ
n ðtÞ for

(i) ν ¼ 1, (ii) ν ¼ 2, and (iii) ν ¼ 3 initially delocalized spin
excitations according to the nonlinear spin-lens Hamiltonian
Eq. (10) with interaction range rB ¼ 4.1a and Jz ¼ 5 × 103J.

(b) Excitation density pðνÞ
n ðtfÞ at the focal time tf for ν ¼ 1

(yellow bars), ν ¼ 2 (green bars) and ν ¼ 3 (blue bars) excita-
tions, demonstrating spatial spin pattern formation depending on
the number of excitations ν.
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engineered by dressing the ground state with Rydberg
jn0Pj;mji states resulting in anisotropic flip-flop inter-
actions of the form Jij ∼ J=r3ij [43].
To obtain the desired flip-flop term in Eq. (1) we first

consider two atoms and derive an effective Hamiltonian for
the dynamics between the dressed ground state and the
Rydberg state. We start with a microscopic Hamiltonian,

Ĥmic ¼ Ĥð1Þ
A þ Ĥð2Þ

A þ Ĥint, where the first two terms

account for the two driven atoms with ĤðiÞ
A ¼

−Δjsiihsj þ ðΩ=2Þjgiihsj þ H:c:, written in a rotating
frame. A small magnetic field and a circularly polarized
laser beam allow dressing of the ground state with a specific
Zeeman sublevel of the Rydberg state.
The key element of the implementation is the van der

Waals (vdW) interaction ĤvdW between the nS1=2 and
n0S1=2 Rydberg states. Choosing two s states ensures that
the resulting vdW interactions are isotropic in 3D over a
large range of principal quantum numbers n (see
Appendix B). The exchange interaction between the
degenerate states jnS1=2; 1=2i ⊗ jn0S1=2; 1=2i and
jn0S1=2; 1=2i ⊗ jnS1=2; 1=2i dominantly arises via virtual
population of jðn − 1ÞPj;mji ⊗ jðn0 þ 1ÞPj0 ; m0

ji Rydberg
states [see Fig. 6(a)] and strongly depends on n and n0. As a
particular example to demonstrate the tunability of the
resulting spin interactions, we discuss the case n0 ¼ n − 1
for which the exchange process is maximized [see Fig 6(c)].
The interaction has the structure

ĤvdW ¼ 1

r6

0
B@

c11 0 0

0 c12 w12

0 w12 c12

1
CA; ð13Þ

written in the basis of states js; si, js; s0i, and js; s0i, where
we neglect the js0; s0i interactions, since we start initially
with only one excitation (i.e., consider a linear lens). The
generalized vdW coefficients cij ¼ aðni; njjni; njÞ (diago-
nal) and wij ¼ aðni; njjnj; niÞ (exchange) are shown in
Fig. 6(a) and derived in Appendix B. The linear behavior
(on the log scale) of c11 shows the typical n11 scaling of vdW
interactions. The resonances in c12 and w12 for n ¼ 25 and
n ¼ 40 stem from vanishingly small energy differences
between the states jnP3=2; nP1=2i and jnP3=2; nP3=2i,
respectively. Close to one of the Förster resonances
diagonal and off-diagonal interactions become approxi-
mately equal, c12 ≈ w12.
Adiabatic elimination of js0i in the limit Ω ≪ Δ leads to

an effective long-range spin model between the dressed
ground state jgi and the Rydberg state jsi of the form

Ĥeff ¼
X
ij

�
VðijÞ
sg σ̂ðiÞgg σ̂

ðjÞ
ss þ 1

2
WðijÞ

sg σ̂ðiÞgs σ̂
ðjÞ
sg

�
; ð14Þ

with Pauli operators σ̂ij ¼ jiihjj and effective laser

admixed interactions VðijÞ
sg ¼ Ω2=ð4ΔÞ ~VðrijÞ and WðijÞ

sg ¼
Ω2=ð2ΔÞ ~WðrijÞ given by

~V ¼ ~r12 þ ~r6

ð~r6 þ 1Þ2 − ξ2
and ~W ¼ ξ~r6

ð~r6 þ 1Þ2 − ξ2
: ð15Þ

Here, ~r ¼ ðjΔj=c12Þ1=6r (Δ < 0) is a dimensionless dis-
tance and ξ ¼ w12=c12 is the relative exchange strength
(see Fig. 6). Note that we drop the ac-Stark shift, which
affects all dressed states equally. The potentials are shown
in Fig. 6(a) as a function of interatomic distance. As a
particular example we consider dressing to the n0 ¼ 59
Rydberg state with (two-photon) Rabi frequency Ω=2π ¼
10 MHz and detuning Δ=2π ¼ −20 MHz. The lattice
constant a is adjusted to the maximum of ~W which results
in J=2π ¼ 0.36 MHz. For a delocalized spin excitation
with initial width σ0 ¼ 100a the focusing time is tf ¼ 5 μs
which increases linearly with the initial width σ0. This
compares well with the lifetime of the state
jsi ¼ j60S1=2; mj ¼ 1=2i, with τ60S ¼ 252 μs [44], result-
ing in tf=τ60S ≈ 0.02.
The single particle potential of Eq. (9) can be realized via

an ac-Stark shift on the ground state. As a first approxi-
mation, a quadratic potential can be applied using a wide
Gaussian beam with a beam waist on the order of the
system size. Higher-order corrections can be implemented
with more sophisticated beam-shaping techniques using,
for instance, digital micromirror devices.

(a)

(d)

(c)

(b)

FIG. 6. (a) Atomic level scheme (see text). (b) vdW coefficients
between Rydberg nS1=2 and n0S1=2 states as a function of
principal quantum number n. Negative values are plotted as
outlined markers, positive values as filled. (c) Ex-
change interaction strength ξðn; nþ δnÞ≡ aðnþ δnjn; nþ δnÞ=
aðn; nþ δnjn; nþ δnÞ as a function of principal quantum num-
ber n. (d) Effective interaction potentials of Eq. (15) for ξ ¼ 0.5,
0.7, and 0.9, e.g., corresponding to n ¼ 29, 90, and 27,
respectively.
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Instead of the spin models with atomic ground and
Rydberg states representing a spin-1=2 system, one can
also employ dressing schemes, where spin is represented by
a pair of long-lived and trapped atomic ground states, and
spin hopping and interaction terms are obtained by admix-
ing Rydberg interactions with laser light [27,28]. Such
schemes may be convenient for the nonlinear lenses we
describe in Sec. III.

V. EFFECTS OF DISORDER
ON FOCUSING DYNAMICS

In this section, we analyze the robustness of the focusing
dynamics against two types of static disorder in the spin
lattice: (i) holes in the lattice and (ii) static fluctuations of
the atomic position resulting in a random distribution of

long-range spin couplings VðijÞ
sg and WðijÞ

sg in Eq. (14).

A. Nonunity filling

Missing atoms in the lattice may arise due to imperfect
loading or when a previously focused spin wave is stored in
a different hyperfine ground state. In addition to being
excluded from the hopping matrix Wsg, each hole is
surrounded by an effective potential due to the modification
of Vsg in Eq. (14). We numerically investigate the effect of
randomly distributed holes in both one and two dimen-
sions. Figure 7(a) shows the spin-excitation probability
within a radius 3a around the focus of the lens Pfoc for a 1D
and 2D spin lattice of N ¼ 70 and N ¼ 70 × 70 sites,
respectively. Each data point is obtained by averaging over
1000 random hole realizations for the 1D example (400
realizations for 2D), starting with a Gaussian wave function
with initial width σ0 ¼ 14a. The width of the statistical

distribution of the final probability is indicated by the
error bars.
For the 1D case, a single hole already has a significant

detrimental effect on the final wave packet, which we
attribute to the fact that Wsg ∼ 1=r6 closely resembles
nearest-neighbor hopping. By contrast, in 2D the focusing
scheme is almost unaffected by a small number of holes
(≲10), as the spin wave can flow around the holes. This is
further illustrated in panel (i) of Fig. 1(e) as a sequence of
snapshots showing the 2D lattice of spins as a function of
time. We expect the focusing scheme to be even more
robust in three dimensions, as there are more paths to avoid
the holes.

B. Static disorder in atomic positions

As a second form of disorder we analyze the effect of
fluctuations of the long-range spin couplings Vsg and Wsg.
Such models have previously been discussed in the context
of Rydberg atoms trapped in optical tweezers [45]. We
assume that the position of the nth atom is given by rn ¼
rð0Þn þ dn, with rð0Þn the position on a regular lattice and the
displacement dn ∼N ð0; δ2Þ drawn from a normal distri-
bution with zero mean and standard deviation δ. This
results in a change of the interatomic separation rn − rm ¼
rð0Þnm þ dnm, in turn modifying the diagonal and hopping

potentials of Eq. (14) to WsgðrijÞ ≈Wsgðrð0Þij Þ þ
dijW0

sgðrð0Þij Þ and VsgðrijÞ ≈ Vsgðrð0Þij Þ þ dijV 0
sgðrð0Þij Þ. We

note that the first-order term in the expansion of Wsg

may vanish for certain separations, e.g., nearest neighbors,
if the maximum of the interaction potential ~W is commen-
surate with the lattice. However, the first-order term will be
present for all other separations, as well as in the expansion
of Vsg, which exhibits no maximum or minimum as a
function of distance (see Fig. 6).
Disorder tends to localize the eigenstates of the system

and thus prevents focusing when the localization length is
smaller than the initial width of the wave packet [46].
However, the focusing fidelity may be significantly reduced
even if the localization length is large. To quantify the role
of disorder, we estimate the energy broadening of plane
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FIG. 7. (a) Integrated probability Pfoc to find the focused spin
wave inside a circle of radius 3 around the set focal point as a
function of the number of holes in the lattice. (b) Final width σδf of
a spin wave in a disordered system compared to the final width

σð0Þf without disorder as a function of the initial width σ0 and the
disorder strength δ. The results are obtained for a thick lens
including corrections up to sixth order (described in Sec. II B),
where the potential strength and the focusing time are chosen to

minimize σð0Þf for each value of σ0. The line represents
δ ∼ 1=tfoc, indicating the breakdown of focusing due to disorder
(details in text).

−100 −50 0 50 100

50

100

150

200

ei
ge

nv
ec

to
r

xn /a

BO

FIG. 8. Bloch oscillations: eigenfunctions of Hamiltonian
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wave states due to position disorder. In a regular lattice,
plane wave states with momentum k are energy eigenstates
following the dispersion relation ϵðkÞ. In the presence of
weak disorder, states with similar momenta are coupled
together such that the energy of a plane wave acquires an

uncertainty on the order of ΔϵðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hkjðĤ − Ĥ0Þ2jki

q
,

where Ĥ and Ĥ0 denote the Hamiltonian of the disordered
and the clean system, respectively. Since our scheme
sensitively relies on the interference between different
momentum states, we expect that focusing ceases to be
effective when the focusing time exceeds tfoc ≳ 1=Δϵ.
Given that Δϵ ∼ δ to lowest order in δ, this suggests that
there exists a critical disorder strength δc ∼ 1=tfoc above
which the disorder strongly affects the focusing dynamics.
Indeed, this simple argument correctly predicts the break-
down of focusing as demonstrated in Fig. 7(b). We note that
we numerically verify that the argument applies equally
well to the thin lens.

VI. CONCLUSION AND OUTLOOK

In this work we show that lenses for spin qubits can be
designed for atomic lattice gases, allowing focusing of
delocalized spin excitations in quench dynamics to essen-
tially single atoms. In addition, we provide an implementa-
tion of a spin lens based on Rydberg-dressed spin-spin
interactions. The present work defines a novel light-matter
interface, where incoming photons are stored in delocalized
atomic excitations in an atomic medium, with spin focusing
providing the link and mapping to storage of qubits in single
atoms. We note that existing experimental setups with
Rydberg atoms [21–24] enabling the physical realization
of 1D and 2D XY-spin models can provide first proof-
of-principle experiments: here, a single delocalized spin
excitation as initial condition could be generated using
the Rydberg-blockade mechanism in an atomic lattice
[39,43,47], and with focusing dynamics implemented as
we describe in the present work. This scenario could also be
demonstratedwith the spinmodels realizedwith trapped ions
[7,8]. Finally, we expect that optimal coherent control
techniques both for spatial and temporal model parameters
should allow for significant improvement of spin lenses [48].
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APPENDIX A: LATTICE CORRECTIONS

In this Appendix, we discuss dephasing and Bloch
oscillations on the lattice and derive Eq. (2) for the optimal
lens strength and Eq. (3) for the scaling of the final width.

1. Dephasing

The optimal potential strengths vc and optimal pulse
strengthϕc of Eq. (2) for the thick and thin lens, respectively,
can be derived from the Bloch-band dispersion relation
ϵðkÞ ¼ 2J½1 − cosðkaÞ� and its deviations from the quad-
ratic dispersion relation ϵðkÞ − JðkaÞ2 ≈ JðkaÞ4=12þ
OðkaÞ6. If these deviations become of the order of the
inverse focusing time, i.e., JðkaÞ4=12 ∼ t−1focðv0Þ, then plane
wave eigenstates will dephase during the focusing dynam-
ics. This happens for parts of theWigner function exceeding
a critical momentum kca ¼ ½2304v0=ðπ2JÞ�1=8 for the thick
lens and kca ¼ ð24ϕ0Þ1=4 for the thin lens setup. During
focusing the distribution of populatedmomentum states will
become broader with the largest width in momentum space,
i.e., kf ∼ 1=σf, at the focusing time. This limits the mini-
mum final width and restricts the lens potential to values
below vc for the thick lens, as well as the critical pulse
strength ϕc for the thin lens.

FIG. 9. Generalized vdW coefficients of Eq. (B4) as a function of principal quantum number n for the nS1=2 and ðnþ 1ÞS1=2 Rydberg
states.
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2. Bloch oscillations

The onset of Bloch oscillations at σBO of Eq. (4) and the
corresponding critical potential strength vBO can be under-
stood in a semiclassical model for a particle in a quadratic
potential with a Bloch-band dispersion relation, following
the (semiclassical) equations of motion _x ¼ 2Ja sinðkaÞ
and _k ¼ −2v0x for position and momentum, respectively.
These equations are equivalent to a motion of a classical
particle with a quadratic dispersion relation in a modified
potential VBOðxÞ ¼ ½ð2v20x20 − 4v0JÞa2x2 − ðv20a2Þx4�=2.
Depending on its initial position x0 being smaller or larger
than σBO, the particle will experience either a single-well or
a double-well potential. Figure 8 shows the corresponding
eigenfunctions of the lattice Hamiltonian Eq. (1).
Eigenfunctions that have an extension less than σBO are
well described by discretized harmonic oscillator eigen-
functions centered around the origin, while eigenfunctions

with an extension larger than σBO start to get localized at the
minima of the double wells of VBOðxÞ. Thus, Bloch
oscillations start to dominate the focusing dynamics at a
critical potential strength, vBO ¼ 4Jða=σ0Þ2, which is
indicated as the red dashed line in Fig. 3(a).

APPENDIX B: RYDBERG INTERACTION
BETWEEN 87Rb ATOMS IN n1S1=2
AND n2S1=2 RYDBERG STATES

For distances large enough, such that the dipole inter-
action matrix element between two S states and two P
states is larger than the energy difference ΔF between these
pair states, i.e., Vdip > ΔF, we can treat vdW interactions
perturbatively. The vdW interaction Hamiltonian between
n1S1=2 and n2S1=2 Rydberg states can be described by a
16 × 16 matrix of the form

HvdW ¼

0
BBB@

Mðn; njn; nÞ 0 0 0

0 Mðn; n0jn; n0Þ Mðn; n0jn0; nÞ 0

0 Mðn0; njn0; nÞ Mðn0; njn0; nÞ 0

0 0 0 Mðn0; n0jn0; n0Þ

1
CCCA: ðB1Þ

The vdW coefficients are given by

Mðn1; n2jn3; n4Þ ¼ hn1S1=2m1; n2S1=2m2jHvdWjn3S1=2m3; n4S1=2m4i ðB2Þ
which is a 4 × 4 matrix in the subspace of Zeeman levels m ¼ �1=2. The vdW interaction operator

HvdW ¼
X

nα;jα;mα

X
nβ ;jβ ;mβ

VddjnαPjαmα; nβPjβmβihnαPjαmα; nβPjβmβjVdd

En1 þ En2 − Enα − Enβ

; ðB3Þ

couples S states with energy En1 and En2 to intermediate P states with energies Enα and Enβ via dipole-dipole interactions

VddðrÞ ¼ −
ffiffiffiffiffiffiffiffi
24π

5

r
1

r3
X
μ;ν

C1;1;2
μ;ν;μþνY

μþν
2 ðϑ;φÞ�dμdν:

Here, d is the atomic dipole operator and r ¼ ðr; ϑ;φÞ is the vector between the two atoms in spherical coordinates. With
dμ we denote the μth spherical components (μ; ν ∈ f−1; 0; 1g) of the atomic dipole operator, Cj1;j2;J

m1;m2;M
are Clebsch-Gordan

coefficients, and Ym
l are spherical harmonics. Using the Wigner-Eckart theorem the vdW interactions can be split up in an

angular and radial part,

Mðn1; n2jn3; n4Þ ¼
1

r6
½aðn1; n2jn3; n4Þ14 þ bðn1; n2jn3; n4ÞD0�; ðB4Þ

with generalized isotropic and anisotropic vdW coefficients

a ¼ 1

81
½7Cð1Þ

6 þ 25Cð2Þ
6 þ 11ðCð3Þ

6 þ Cð4Þ
6 Þ�; b ¼ 1

27
½Cð3Þ

6 þ Cð4Þ
6 − Cð1Þ

6 − Cð2Þ
6 �; ðB5Þ

and 14 the 4 × 4 identity matrix, and
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D0 ¼

0
BBBBB@

cosð2ϑÞ e−iφ sinð2ϑÞ e−iφ sinð2ϑÞ 2e−2iφsin2ðϑÞ
eiφ sinð2ϑÞ 2

3
− cosð2ϑÞ − cosð2ϑÞ − 5

3
−e−iφ sinð2ϑÞ

eiφ sinð2ϑÞ − cosð2ϑÞ − 5
3

2
3
− cosð2ϑÞ −e−iφ sinð2ϑÞ

2e2iφsin2ðϑÞ −eiφ sinð2ϑÞ −eiφ sinð2ϑÞ cosð2ϑÞ

1
CCCCCA ðB6Þ

written in the basis fj − 1
2
− 1

2
i; j − 1

2
1
2
i; j 1

2
− 1

2
i; j 1

2
1
2
ig of Zeeman states in the j ¼ 1=2 Rydberg manifold and accounting for

the anisotropy and mixing between the Zeeman sublevels. With CðνÞ
6 we denote the radial part of the matrix elements

CðνÞ
6 ðn1; n2jn3; n4Þ ¼

X
nα;nβ

Rα
1R

β
2R

α
3R

β
4

δαβ
; ðB7Þ

which accounts for the overall strength of the interaction
and is independent of the magnetic quantum numbers.
Here, Rk

i ¼
R
drr2ψni;li;jiðrÞ�rψnk;lk;jkðrÞ is the radial

integral and ν accounts for the four channels to intermediate
Pj states.
Figure 9 shows the numerically calculated a and b

coefficients corresponding to the different blocks in
Eq. (B1) as a function of the principal quantum number
n. Both a and b show two Förster resonances around n ≈ 24
and n ≈ 38 where the channels to fnP3=2; nP1=2g and
fnP3=2; nP3=2g states become close in energy, respectively.

Apart from these resonances the anisotropy coefficient b is
several orders smaller than the diagonal coefficient a, which
allows us to safely neglect mixing of Zeeman sublevels and
results in an almost perfect isotropic interaction.
For two atoms initially in the jn1S1=2; 1=2i and

jn2S1=2; 1=2i states, the dynamics can be restricted to the
four S states S1=2 states with principal quantum numbers
jn1; n1i, jn1; n2i, jn2; n1i, and jn2; n2i and magnetic
quantum number 1=2. The corresponding Hamiltonian
restricted to this basis has the form

HvdW ¼ 1

r6

0
BBBBB@

aðn1; n1jn1; n1Þ 0 0 0

0 aðn1; n2jn1; n2Þ aðn1; n2jn2; n1Þ 0

0 aðn2; n1jn2; n1Þ aðn2; n1jn2; n1Þ 0

0 0 0 aðn0; n0jn0; n0Þ

1
CCCCCA; ðB8Þ

with a denoted as C6 in the main text and plotted in
Fig. 6(a) as a function of the principal quantum number n.
For the long-range Hamiltonian of Eq. (14) [cf. Fig. 6(c)]

next-nearest-neighbor hopping is around 10% of the
nearest-neighbor hopping element. In Fig. 4, we compare
the performance of a spin lens implemented with the
potentials arising from the Rydberg interactions, compared
to the case with ideal nearest-neighbor hopping. Our
numerical results indicate that long-range hopping terms
slightly increase the speed of the scheme and decrease the
final width.
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