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ABSTRACT

The stability of mRNA is one of the major determinants of gene expression. Although a wealth of sequence elements regulating
mRNA stability has been described, their quantitative contributions to half-life are unknown. Here, we built a quantitative
model for Saccharomyces cerevisiae based on functional mRNA sequence features that explains 59% of the half-life variation
between genes and predicts half-life at a median relative error of 30%. The model revealed a new destabilizing 3′′′′′ UTR motif,
ATATTC, which we functionally validated. Codon usage proves to be the major determinant of mRNA stability. Nonetheless,
single-nucleotide variations have the largest effect when occurring on 3′′′′′ UTR motifs or upstream AUGs. Analyzing mRNA
half-life data of 34 knockout strains showed that the effect of codon usage not only requires functional decapping and
deadenylation, but also the 5′′′′′-to-3′′′′′ exonuclease Xrn1, the nonsense-mediated decay genes, but not no-go decay. Altogether,
this study quantitatively delineates the contributions of mRNA sequence features on stability in yeast, reveals their functional
dependencies on degradation pathways, and allows accurate prediction of half-life from mRNA sequence.
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INTRODUCTION

The stability of messenger RNAs is an important aspect of
gene regulation. It influences the overall cellular mRNA con-
centration, as mRNA steady-state levels are the ratio of syn-
thesis and degradation rate. Moreover, low stability confers
high turnover to mRNA and, therefore, the capacity to rapid-
ly reach a new steady-state level in response to a transcrip-
tional trigger (Shalem et al. 2008). Hence, stress genes,
which must rapidly respond to environmental signals, show
low stability (Miller et al. 2011; Zeisel et al. 2011; Marguerat
et al. 2014; Rabani et al. 2014). In contrast, high stability pro-
vides robustness to variations in transcription. Accordingly, a
wide range of mRNA half-lives is observed in eukaryotes,
with typical variations in a given genome spanning one to
two orders of magnitude (Schwanhäusser et al. 2011; Eser
et al. 2016; Schwalb et al. 2016). Also, significant variability
in mRNA half-life among human individuals could be dem-
onstrated for about a quarter of genes in lymphoblastoid cells
and estimated to account for more than a third of the gene
expression variability (Duan et al. 2013).

How mRNA stability is encoded in a gene sequence has
long been a subject of study. Cis-regulatory elements
(CREs) affecting mRNA stability are mainly encoded in the

mRNA itself. Here we use the formal definition of CRE,
i.e., a regulatory element affecting expression of the gene it
belongs to in an allele-specific manner (Rockman and Kru-
glyak 2006; Skelly et al. 2009). CREs affecting mRNA stability
include but are not limited to secondary structure (Rabani
et al. 2008; Geisberg et al. 2014), sequence motifs present
in the 3′ UTR including binding sites of RNA-binding pro-
teins (Olivas and Parker 2000; Duttagupta et al. 2005; Shalgi
et al. 2005; Hogan et al. 2008; Hasan et al. 2014), and, in high-
er eukaryotes, microRNAs (Lee et al. 1993). Moreover, trans-
lation-related features are frequently associated with mRNA
stability. For instance, inserting strong secondary structure
elements in the 5′ UTR or modifying the translation start co-
don context strongly destabilizes the long-lived PGK1mRNA
in S. cerevisiae (Muhlrad et al. 1995; LaGrandeur and Parker
1999). Codon usage, which affects the translation elongation
rate, also regulates mRNA stability (Hoekema et al. 1987; Pre-
snyak et al. 2015; Bazzini et al. 2016; Mishima and Tomari
2016). Further correlations between codon usage and
mRNA stability have been reported in E. coli and S. pombe
(Boël et al. 2016; Harigaya and Parker 2016). Adjacent codon
pairs were also demonstrated to associate with mRNA decay
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in addition to individual codons in S. cerevisiae (Harigaya and
Parker 2017).
Since the RNA degradationmachineries are well conserved

among eukaryotes, the pathways have been extensively stud-
ied using S. cerevisiae as a model organism (Garneau et al.
2007; Parker 2012). The general mRNA degradation pathway
starts with the removal of the poly(A) tail by the Pan2/Pan3
(Brown et al. 1996) and Ccr4/Not complexes (Tucker et al.
2001). Subsequently, mRNA is subjected to decapping car-
ried out by Dcp2 and promoted by several factors, including
Dhh1 and Pat1 (Pilkington and Parker 2008; She et al. 2008).
The decapped and deadenylated mRNA can be rapidly de-
graded in the 3′ to 5′ direction by the exosome (Anderson
and Parker 1998) or in the 5′ to 3′ direction by Xrn1 (Hsu
and Stevens 1993). Further mRNA degradation pathways
are triggered when aberrant translational status is detected,
including nonsense-mediated decay (NMD), no-go decay
(NGD), and nonstop decay (NSD) (Garneau et al. 2007;
Parker 2012).
Despite all this knowledge, prediction of mRNA half-life

from a gene sequence is still not established. Moreover,
most of the mechanistic studies so far were only performed
on individual genes or reporter genes. It is therefore unclear
how the measured effects generalize genome-wide. A recent
study showed that translation-related features can be predic-
tive for mRNA stability (Neymotin et al. 2016). Although this
analysis supported the general correlation between transla-
tion and stability (Lackner et al. 2007),
the model was not based purely on se-
quence-derived features. It also con-
tained measured transcript properties
such as ribosome density and normalized
translation efficiencies. Hence, the ques-
tion of how half-life is genetically encod-
ed in mRNA sequence remains to be
addressed.
Additionally, the dependencies of

sequence features to distinct mRNA deg-
radation pathways have not been sys-
tematically studied. One example of this
is codon-mediated stability control.
Although a causal link from codon usage
to mRNA half-life has been shown for a
wide range of organisms (Hoekema et
al. 1987; Presnyak et al. 2015; Bazzini et
al. 2016; Mishima and Tomari 2016),
the underlying mechanism remains
poorly understood. In S. cerevisiae, re-
porter gene experiments showed that co-
don-mediated stability control depends
on the RNA helicase Dhh1 (Radha-
krishnan et al. 2016). However, it is un-
clear whether this generalizes to all
mRNAs genome-wide. Also, the role of
other closely related degradation path-

ways has not been systematically assessed with genome-
wide half-life data.
Here, we mathematically modeled mRNA half-life as a

function of its sequence. Applied to S. cerevisiae, our model
can explain most of the between-gene half-life variance
from sequence alone. Using a semimechanistic model, we
could interpret individual sequence features in the 5′ UTR,
coding region, and 3′ UTR. Quantification of the respective
contributions revealed that codon usage is the major contrib-
utor to mRNA stability. Applying the modeling approach to
S. pombe supports the generality of these findings. Moreover,
we systematically assessed the dependencies of these sequence
elements onmRNA degradation pathways using half-life data
for 34 knockout strains. This analysis revealed in particular
novel pathways through which codon usage affects half-life.

RESULTS

To study cis-regulatory determinants of mRNA stability in S.
cerevisiae, we chose the data set by Sun et al. (2013), which
provides genome-wide half-life measurements for 4388 ex-
pressed genes of a wild-type laboratory strain and 34 strains
knocked out for RNA degradation pathway genes (Fig. 1;
Supplemental Table S1). When applicable, we also investi-
gated half-life measurements of S. pombe for 3614 expressed
mRNAs in a wild-type laboratory strain from Eser et al.
(2016). We considered sequence features within five

FIGURE 1. Study overview. The goal of this study is to discover and integrate cis-regulatory
mRNA elements affecting mRNA stability and assess their dependence on mRNA degradation
pathways. (Data) We obtained S. cerevisiae genome-wide half-life data from wild-type (WT) as
well as from 34 knockout strains from Sun et al. (2013). Each of the knockout strains has one
gene closely related to mRNA degradation pathways knocked out. (Analysis) We systematically
searched for novel sequence features associating with half-life from 5′ UTR, start codon context,
CDS, stop codon context, and 3′ UTR. Effects of previously reported cis-regulatory elements were
also assessed. Moreover, we assessed the dependencies of different sequence features on degrada-
tion pathways by analyzing their effects on the knockout strains. (Integrative model) We built a
statistical model to predict genome-wide half-life solely from mRNA sequence. This allowed the
quantification of the relative contributions of the sequence features to the overall variation across
genes and assessing the sensitivity of mRNA stability with respect to single-nucleotide variants.

CREs explain most of the mRNA stability variation
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overlapping regions: the 5′ UTR, the start codon context, the
coding sequence, the stop codon context, and the 3′ UTR.We
assessed their effects in the wild type and in the 34 knockout
strains (Fig. 1). Finally, we fitted a joint model to assess the
contribution of individual sequence features and their sin-
gle-nucleotide effects (Fig. 1). In all analyses, we considered
the logarithm of half-life as the response variable rather
than half-life in the natural scale. The primary motivation
for choosing a logarithmic scale is that measurement noise
for half-life is typically multiplicative. Also, the data did not
provide supportive evidence discriminating between multi-
plicative or additive effects of the cis-regulatory elements on
half-life (Supplemental Information). For simplicity, we
used linear regressions, i.e., due to the logarithmic response,
multiplicative models.

The correlations between sequence lengths, GC contents
and folding energies (Materials and Methods) with half-life
and corresponding P-values are summarized in Supplemen-
tal Table S2 and Supplemental Figures S1–S3. In general, se-
quence lengths correlated negatively with half-life and
folding energies correlated positively with half-life in both
yeast species, whereas correlations of GC content varied
with species and gene regions.

In the following subsections, we describe first the findings
for each of the five gene regions and then a model that inte-
grates all these sequence features.

Upstream AUGs destabilize mRNAs by triggering
nonsense-mediated decay

Occurrence of an upstream AUG (uAUG) associated signifi-
cantly with shorter half-life (median fold-change = 1.37, P <
2 × 10−16). This effect was strengthened for genes with two or
more AUGs (Fig. 2A,B). Among the 34 knock-out strains, the
association between uAUG and shorter half-life was almost
lost only for mutants of the two essential components of
the nonsense-mediated mRNA decay (NMD) UPF2 and
UPF3 (Leeds et al. 1992; Cui et al. 1995), and for the general
5′ to 3′ exonucleaseXrn1 (Fig. 2A; Supplemental Fig. S6). The
dependence on NMD suggested that the association might be
due to the occurrence of a premature stop codon. Consistent
with this hypothesis, the association of uAUG with decreased
half-lives was only found for genes with a premature stop co-
don cognate with the uAUG (Fig. 2C). This held not only for
cognate premature stop codons within the 5′ UTR, leading to
a potential upstream ORF, but also for cognate premature

FIGURE 2. Upstream AUG codons (uAUG) destabilize mRNA. (A) Distribution of mRNA half-lives for mRNAs without uAUG (left) and with at
least one uAUG (right). From left to right: wild type, XRN1, UPF2, and UPF3 knockout S. cerevisiae strains. Median fold-change (Median FC) calcu-
lated by dividing themedian of the groupwithout uAUGwith the groupwith uAUG. A complete view of the effect of uAUG across different knockouts
is provided in Supplemental Figure S6. (B) Distribution of mRNA half-lives for mRNAs with zero (left), one (middle), or more (right) uAUGs in S.
cerevisiae. (C) Distribution of mRNA half-lives for S. cerevisiae mRNAs with, from left to right: no uAUG, with one in-frame uAUG but no cognate
premature termination codon, with one out-of-frame uAUG and one cognate premature termination codon in the CDS, and with one uAUG and one
cognate stop codon in the 5′ UTR (uORF). (D) Same as inC for S. pombemRNAs. All P-values were calculated withWilcoxon rank-sum test. Numbers
in the boxes indicate number of members in the corresponding group. Boxes represent quartiles, whiskers extend to the highest or lowest value within
1.5 times the interquartile range, and horizontal bars in the boxes represent medians. Data points falling further than 1.5-fold the interquartile distance
are considered outliers and are shown as dots.
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stop codons within the ORF, which occurred almost always
for uAUG out-of-frame with the main ORF (Fig. 2C). This
finding likely holds for many other eukaryotes as we found
the same trends in S. pombe (Fig. 2D). These observations
are consistent with a single-gene study demonstrating that
translation of upstream ORFs can lead to RNA degradation
by NMD (Gaba et al. 2005) and that uORFs are enriched in
NMD substrates (Celik et al. 2017). Altogether, these results
show that uAUGs are mRNA destabilizing elements as they
almost surely match with cognate premature stop codons,
which, whether in frame or not with the gene, and within
the UTR or in the coding region, trigger NMD.

Translation initiation sequence features associate
with mRNA stability

Several sequence features in the 5′ UTR including the start
codon context associated with mRNA half-life (Supplemen-
tal Information; Supplemental Figs. S4–S5). This indicates
that 5′ UTR elements may affect mRNA stability by altering
translation initiation. However, none of these sequence
features remained significant in the final joint model. Our
analysis is therefore not conclusive on this point. A detailed
analysis is provided in the Supplemental Information for in-
terested readers.

Codon usage regulates mRNA stability through common
mRNA decay pathways

When using frequency of each codon as an independent co-
variate, codon usage marginally explained 55% of the be-
tween-gene half-life variation in S. cerevisiae on test data
(linear regression, Materials and Methods, Fig. 3A). The spe-
cies-specific tRNA adaptation index (sTAI) (Sabi and Tuller
2014) significantly positively correlated with the coefficients
for codons in this regression [Supplemental Fig. S4E, r =
0.48 with log(sTAI), P = 0.0001, Materials and Methods],

confirming the association between codon optimality and
mRNA stability (Presnyak et al. 2015; Harigaya and Parker
2016). We also performed regression against gene-level
sTAI. However, it yielded to significant yet less accurate pre-
dictions (40% explained variance on test data). We therefore
proceeded with modeling frequency of each codon as an in-
dependent covariate.
Next, we quantified how much variation of mRNA half-

life can be explained by codons in different knockout strains
using the out-of-folds explained variance as a summary
statistic (Supplemental Methods). The effect of codon usage
exclusively depended on the genes from the common dead-
enylation- and decapping-dependent 5′ to 3′ mRNA decay
pathway and the NMD pathway (all FDR < 0.1, Fig. 3B). In
particular, all assessed genes of the Ccr4–Not complex, in-
cluding CCR4, NOT3, CAF40, and POP2, were required for
wild-type level effects of codon usage on mRNA decay.
Among them, CCR4 has the largest effect. This confirmed a
recent study in zebrafish showing that accelerated decay of
nonoptimal codon genes requires deadenylation activities
of Ccr4–Not (Mishima and Tomari 2016). In contrast to
genes of the Ccr4–Not complex, PAN2/3 genes that also en-
code deadenylation enzymes were not found to be essential
for the coupling between codon usage and mRNA decay
(Fig. 3B).
Furthermore, our results not only confirm the dependence

on Dhh1 (Radhakrishnan et al. 2016), but also on its interact-
ing partner Pat1. The difference might come from the fact
that we analyzed genome-wide half-life data, whereas
mRNA half-life measurements from Radhakrishnan and col-
leagues were only performed on reporter genes.
Our systematic analysis revealed two additional novel de-

pendencies: First, on the common 5′ to 3′ exonuclease
Xrn1, and second, onUPF2 andUPF3 genes, which are essen-
tial players of NMD (all FDR < 0.1, Fig. 3B). Consistently,
previous studies have shown that UPF genes are involved in
more than just the degradation of nonsense messages, but

FIGURE 3. Codon usage regulates mRNA stability through common mRNA decay pathways. (A) Predicted mRNA half-life using only codons as
features (linear regression) versus measured mRNA half-life. (B) mRNA half-life explained variance (y-axis, Materials and Methods) in wild-type
(WT) and across all 34 knockout strains (grouped according to their functions). Each blue dot represents one replicate; bar heights indicate means
across replicates. Bars with a red star are significantly different from the wild-type level (FDR < 0.1, Wilcoxon rank-sum test, followed by Benjamini–
Hochberg correction).
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rather target a wide range of mRNAs, including aberrant and
normal ones (He et al. 2003; Hug et al. 2015). In line with this,
substrates of Upf proteins have lower codon optimality (Celik
et al. 2017). Furthermore, we did not observe any change of
effect upon knockout of DOM34 and HBS1 (Fig. 3B), which
are essential genes for the No-Go decay pathway. This implies
that the effect of codon usage is unlikely due to stalled ribo-
somes at nonoptimal codons.

Altogether, our analysis indicates that the so-called “co-
don-mediated decay” (Mishima and Tomari 2016) is not
an mRNA decay pathway itself, but a regulatory mechanism
of the common mRNA decay pathways.

Stop codon context associates with mRNA stability

The first nucleotide 3′ of the stop codon significantly associ-
ated with mRNA stability. This association was observed for
each of the three possible stop codons, and for each codon a
cytosine significantly associated with lower half-life (Supple-
mental Fig. S4, also for P-values and fold-changes). However,
this feature was not significant in the joint model, and anal-
ysis of the knockout strains did not reveal clear pathway
dependencies for it (Supplemental Fig. S6). A detailed de-
scription is provided in the Supplemental Information for in-
terested readers.

Sequence motifs in 3′′′′′ UTR

De novo motif search identified four motifs in the 3′ UTR to
be significantly associated with mRNA stability (Fig. 4A,
Materials and Methods). These include three described mo-
tifs: the Puf3 binding motif TGTAAATA (FDR = 3.2 × 10−5,
median fold-change 1.29) (Gerber et al. 2004; Gupta et al.
2014), the Whi3 binding motif TGCAT (FDR = 7 × 10−4,
median fold-change 1.24) (Colomina et al. 2008; Cai and
Futcher 2013), and a poly(U) motif TTTTTTA (FDR =
0.09, median fold-change 1.20), which can be bound by
Pub1 (Duttagupta et al. 2005), or is part of the long poly(U)
stretch that forms a looping structure with a poly(A) tail
(Geisberg et al. 2014). Moreover, an uncharacterized motif,
ATATTC, was associated with lower mRNA half-life (FDR
= 2 × 10−5, median fold-change 1.24). Genes harboring the
ATATTC motif are significantly enriched for genes involved
in oxidative phosphorylation (Bonferroni corrected P < 0.01,
4.4-fold enrichment, Gene Ontology analysis, Supplemental
Methods; Supplemental Table S3). The motif ATATC prefer-
entially localizes in the vicinity of the poly(A) site (Fig. 4B),
and functionally depends on Ccr4 (FDR < 0.1, Supplemental
Fig. S6), suggesting a potential interaction with deadenyla-
tion factors. Notably, the motif ATATTC was found in
13% of the genes (591 out of 4388) and significantly co-
occurred with the other two destabilizing motifs found in
3′ UTR: Puf3 motif (FDR = 0.01) and Whi3 motif (FDR =
3 × 10−3) binding motifs (Fig. 4F). This 3′ UTR motif had
been computationally identified by conservation analysis

(Kellis et al. 2003), by regression of steady-state expression
levels (Foat et al. 2005), and by enrichment analysis within
gene expression clusters (Elemento et al. 2007). The motif
was suggested to be named as PRSE (positive response to
starvation element), because of its enrichment among genes
that are up-regulated upon starvation (Foat et al. 2005).
However, it was not experimentally validated for controlling
of mRNA stability.
We validated the 3′ UTR motif ATATTC with a reporter

assay on two different genes, SFG1 and NYV1. Given the pre-
dicted small effect of a single motif, we generated constructs
with two instances of the motif and compared them to con-
structs harboring two scrambled motifs at the same locations
(Fig. 4G, Materials and Methods). Both reporter genes
showed decreased expression levels compared to scrambled
controls (P = 0.019 for SFG1, P = 0.00016 for NYV1,
Wilcoxon rank-sum test). Since the 3′ UTR motif ATATTC
is not significantly associated with mRNA synthesis rate (P
= 0.38, Wilcoxon rank-sum test, synthesis rate of genes with-
out motif versus genes with motif), we conclude that this de-
creased expression is due to decreased stability.
Consistent with the role of Puf3 in recruiting deadenyla-

tion factors, Puf3 binding motif localized preferentially close
to the poly(A) site (Fig. 4B). The effect of the Puf3 motifs was
significantly lower in the knockout of PUF3 (FDR < 0.1,
Supplemental Fig. S6). We also found a significant depen-
dence on the deadenylation (CCR4, POP2) and decapping
(DHH1, PAT1) pathways (all FDR < 0.1, Supplemental Fig.
S6), consistent with previous single gene experiments show-
ing that Puf3 binding promotes both deadenylation and
decapping (Olivas and Parker 2000; Goldstrohm et al.
2007). Strikingly, the Puf3 binding motif switched to a stabi-
lization motif in the absence of Puf3 and Ccr4 (all FDR < 0.1,
Supplemental Fig. S6), suggesting that deadenylation of the
Puf3 motif containing mRNAs is not only facilitated by
Puf3 binding, but also depends on it.
Whi3 plays an important role in cell cycle control (Garí

et al. 2001). Binding of Whi3 leads to destabilization of the
CLN3mRNA (Cai and Futcher 2013). A subset of yeast genes
are up-regulated in the Whi3 knockout strain (Cai and
Futcher 2013). However, so far it was unclear whether
Whi3 generally destabilizes mRNAs upon its binding. Our
analysis showed that mRNAs containing the Whi3 binding
motif (TGCAT) have a significantly shorter half-life (FDR
= 6.9 × 10−04, median fold-change 1.24). Surprisingly, this
binding motif is extremely widespread, with 896 out of
4388 (20%) genes that we examined containing the motif
on the 3′ UTR region, which enriched for genes involved in
several processes (Supplemental Table S3). Functionality of
the Whi3 binding motif was found to be dependent on
Ccr4 (FDR < 0.1, Supplemental Fig. S6).
The mRNAs harboring the TTTTTTA motif tended to be

more stable (FDR = 0.086, median fold-change 1.22) and en-
riched for translation (P = 1.34 × 10−3, twofold enrichment;
Supplemental Table S3). No positional preferences were

Cheng et al.

1652 RNA, Vol. 23, No. 11

 Cold Spring Harbor Laboratory Press on October 30, 2017 - Published by rnajournal.cshlp.orgDownloaded from 

http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.062224.117/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.062224.117/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.062224.117/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.062224.117/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.062224.117/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.062224.117/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.062224.117/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.062224.117/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.062224.117/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.062224.117/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.062224.117/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.062224.117/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.062224.117/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.062224.117/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.062224.117/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.062224.117/-/DC1
http://rnajournal.cshlp.org/
http://www.cshlpress.com


FIGURE 4. 3′ UTR half-life determinant motifs in S. cerevisiae. (A) Distribution of half-lives for mRNAs grouped by the number of occurrence(s) of
the motif ATATTC, TGCAT (Whi3), TGTAAATA (Puf3), and TTTTTTA (Pub1), respectively, in their 3′ UTR sequence. Numbers in the boxes rep-
resent the number of members in each box. FDR were reported from the linear mixed effect model (Materials and Methods). (B) Fraction of tran-
scripts containing themotif (y-axis) within a 20-bp window centered at a position (x-axis) with respect to poly(A) site for differentmotifs (facet titles).
Positional bias was not observed when aligning 3′ UTRmotifs with respect to the stop codon. (C) Prediction of the relative effect on half-life (y-axis)
for single-nucleotide substitution in the motif with respect to the consensus motif (y = 1, horizontal line). The motifs were extended two bases at each
flanking site (positions +1, +2, −1, −2). (D) Nucleotide frequency within motif instances, when allowing for one mismatch compared with the con-
sensus motif. (E) Mean conservation score (phastCons, Materials andMethods) of each base in the consensus motif with two flanking nucleotides (y-
axis). (F) Co-occurrence significance (FDR, Fisher test P-value corrected with Benjamini–Hochberg) between different motifs (left). Number of oc-
currences among the 4388 mRNAs (right). (G) Steady-state expression level of SFG1 and NYV1 (normalized by ACT1 and TUB2 expression,
Supplemental Methods). Bar height represents mean of each group, error bars represent ± one standard error of the mean, each dot represents
one biological replicate (jittered at x-axis to avoid overlapping). P-values were calculated by comparing the normalized expression level of constructs
with two scrambled motifs embedded versus that with two functional ATATTC motifs embedded (Wilcoxon rank-sum test).
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observed for this motif (Fig. 4B). The
effect of this motif depends on genes
from Ccr4–Not complex and Xrn1
(Supplemental Fig. S6).

An additional four lines of evidence
further supported the functionality of
our identified motifs. First, single-nucle-
otide deviations from the motif’s consen-
sus sequence associated with decreased
effects on half-life (Fig. 4C, linear regres-
sion allowing for one mismatch,
Materials and Methods). Moreover, the
flanking nucleotides did not show fur-
ther associations indicating that the
whole lengths of the motifs were recov-
ered (Fig. 4C). Second, when allowing
for one mismatch, the motif still showed
strong preferences (Fig. 4D). Third, the
motif instances were more conserved
than their flanking bases from the 3′

UTR (Fig. 4E). Fourth, all four motifs
show significant effects in the RNA
half-life data set generated by Miller
et al. (2011), which is also based on 4sU
labeling, as well as in the data set of
Presnyak et al. (2015), which is in con-
trast based on transcriptional arrest
(Supplemental Fig. S7).

Fifty-nine percent between-gene
half-life variation can be explained
by sequence features

We next asked how well one could pre-
dict mRNA half-life from these mRNA
sequence features, and what their respec-
tive contributions were when considered
jointly. To this end, we performed a
multivariate linear regression of the loga-
rithm of the half-life against the identified sequence features.
The predictive power of the model on unseen data was as-
sessed using 10-fold cross-validation (Materials and Meth-
ods; a complete list of model features and their P-values is
provided in Supplemental Table S4). To prevent overfitting,
we performed motif discovery on each of the 10 training sets
and observed the same set of motifs across all the folds. Alto-
gether, 59% of S. cerevisiae half-life variance in the logarith-
mic scale can be explained by simple linear combinations of
the above sequence features (Fig. 5A; Supplemental Table
S5). The median out-of-folds relative error across genes is
30%. A median relative error of 30% for half-life is remark-
ably low because it is in the order of magnitude of the expres-
sion variation that is typically physiologically tolerated, and it
is also about the amount of variation observed between rep-
licate experiments (Eser et al. 2016). To make sure that our

findings are not biased to a specific data set, we fitted the
same model to a data set using RATE-seq (Neymotin et al.
2014), a modified version of the protocol used by Sun et al.
(2013). On these data, the model was able to explain 51%
of the variance (Supplemental Fig. S8). Moreover, the same
procedure applied to S. pombe explained 45% of the total
half-life variance, suggesting the generality of this approach.
Because the measures also entail measurement noise, these
numbers are conservative underestimations of the total bio-
logical variance explained by our model.
The uAUG, 5′ UTR length, 5′ UTR GC content, 61 coding

codons, CDS folding energy, all four 3′ UTR motifs, and 3′

UTR length remained significant in the joint model, indicat-
ing that they contributed individually to half-life (Supple-
mental Table S4). Most of them showed decreased effect in
a joint model compared to marginal effects (Fig. 5C), likely

FIGURE 5. Genome-wide prediction of mRNA half-life from sequence features and analysis of
the contributions. (A,B) mRNA half-life predicted (x-axis) versus measured (y-axis) for S. cere-
visiae (A) and S. pombe (B), respectively. (C) Contribution of each sequence feature individually
(Individual), cumulatively when sequentially added into a combinedmodel (Cumulative), and ex-
plained variance drop when each single feature is removed from the full model separately (Drop).
Values reported are the mean of 100 times of cross-validated evaluation (Materials andMethods).
(D) Expected half-life fold-change of single-nucleotide variations on sequence features. For
length and GC, dots represent median half-life fold-change of one nucleotide shorter or one
G/C to A/T transition, respectively. For codon usage, each dot represents median half-life fold-
change of one type of synonymous mutation; all kinds of synonymous mutations are considered.
For uAUG, each dot represents median half-life fold-change of mutating out one uAUG. For mo-
tifs, each dot represents median half-life fold-change of one type of nucleotide transition at one
position on the motif (Materials and Methods). Medians are calculated across all mRNAs.
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because they correlate with each other. In contrast, start co-
don context, stop codon context, 5′ folding energy, the 5′

UTR motif AAACAAA (Supplemental Fig. S5), CDS length,
and 3′ UTR GC content dropped below the significance
when considered in the joint model (Supplemental Table
S4). This loss of statistical significance may be due to lack
of statistical power. Another possibility is that the marginal
association of these sequence features with half-life is a con-
sequence of a correlation with other sequence features.
Among all sequence features, codon usage as a group is the
best predictor both in a univariate model (55.29%) and in
the joint model (44.63 %) (Fig. 5C). This shows that, quan-
titatively, codon usage is the major determinant of mRNA
stability in yeast. This explains why only a small fraction of
mRNA stability variation can be explained by RNA-binding
proteins (Hasan et al. 2014). The variance analysis quantifies
the contribution of each sequence feature to the variation
across genes. Features that vary a lot between genes, such as
UTR length and codon usage, favorably contribute to the var-
iation. However, this does not reflect the effect on a given
gene of elementary sequence variations in these features.
For instance, a single-nucleotide variant can lead to the cre-
ation of an uAUG with a strong effect on half-life, but a sin-
gle-nucleotide variant in the coding sequence may have little
impact on overall codon usage. We used the joint model to
assess the sensitivity of each feature to single-nucleotide mu-
tations as median fold-change across genes, simulating sin-
gle-nucleotide deletions for the length features and single-
nucleotide substitutions for the remaining ones (Materials
and Methods). Single-nucleotide variations typically altered
half-life by <10%. The largest effects were observed in the
3′ UTRmotifs and uAUG (Fig. 5D). Notably, although codon
usage was the major contributor to the variance, synonymous
variation on codons typically affected half-life by <2% (Fig.
5D; Supplemental Fig. S9). For those synonymous variations
that changed half-life by more than 2%, most of them were
variations that involved the most nonoptimized codons
CGA or ATA (Supplemental Fig. S9; Presnyak et al. 2015).
Altogether, our results show that most of yeast mRNA

half-life variation can be predicted from
mRNA sequence alone, with codon usage
being the major contributor. However,
single-nucleotide variation at 3′ UTR
motifs or uAUG had the largest expected
effect on mRNA stability.

DISCUSSION

We systematically searched formRNA se-
quence features associating with mRNA
stability and estimated their effects at
single-nucleotide resolution in a joint
model. Up to GC content and length, all
elements of the joint model are causal.
One of them, the 3′ UTR motif

ATATTC has been validated in this study. Overall, the joint
model showed that 59% of the variance could be predicted
from mRNA sequence alone in S. cerevisiae. This analysis
showed that translation-related features, in particular codon
usage, contributed most to the explained variance. This find-
ing strengthens further the importance of the coupling
between translation and mRNA degradation (Roy and
Jacobson 2013; Huch and Nissan 2014; Radhakrishnan and
Green 2016). Moreover, we assessed the dependencies of
each sequence element on RNA degradation pathways. Re-
markably, we identified that codon-mediated decay is a regu-
latory mechanism of the canonical decay pathways, including
deadenylation- and decapping-dependent 5′ to 3′ decay and
NMD (Figs. 3B, 6).
Predicting various steps of gene expression from sequence

alone has long been a subject of study (Beer and Tavazoie
2004; Vogel et al. 2010; Zur and Tuller 2013; Wang et al.
2016). To this end, two distinct classes of models have been
proposed: the biophysical models on the one hand and the
machine learning models on the other hand (Zur and
Tuller 2016). Biophysical models provide detailed under-
standing of the processes. On the other hand, machine learn-
ing approaches can reach much higher predictive accuracy
but are more difficult to interpret. Also, machine learning ap-
proaches can pick up signals with predictive power that are
correlative but not causal. Here we adopted an intermediate,
semimechanistic modeling approach. We used a simple line-
ar model that is interpretable. Also, all elements are function-
al, up to two covariates: GC content and length.
Our approach was based on the analysis of endogenous se-

quence, which allowed the identification of a novel cis-regula-
tory element. An alternative approach to the modeling of
endogenous sequence is to use large-scale synthetic libraries
(Dvir et al. 2013; Shalem et al. 2015; Wissink et al. 2016).
Although very powerful to dissect known cis-regulatory ele-
ments or to investigate small variations around select genes,
the sequence space is so large that these large-scale perturba-
tion screens cannot uncover all regulatory motifs. It would be
interesting to combine both approaches and design large-

FIGURE 6. Overview and summary of conclusions from this study.
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scale validation experiments guided by insights coming from
modeling of endogenous sequences as we developed here.

Recently, Neymotin et al. (2016) showed that several trans-
lation-related transcript properties associated with half-life.
This study derived a model explaining 50% of the total vari-
ance using many transcript properties including some not
based on sequence (ribosome profiling, expression levels,
etc.). Although non-sequence based predictors can facilitate
prediction, they may do so because they are consequences
rather than causes of half-life. For instance, increased half-
life causes higher expression level. Also, increased cytoplas-
mic half-life, provides a higher ratio of cytoplasmic over nu-
clear RNA, and thus more RNAs available to ribosomes.
Hence both expression level and ribosome density may
help making good predictions of half-life, but not necessarily
because they causally increase half-life. In contrast, we aimed
here to understand howmRNA half-life is encoded in mRNA
sequence and derived a model that is based on functional el-
ements. This avoided using transcript properties that could
be consequences of mRNA stability. Hence, our present anal-
ysis confirms the quantitative importance of translation in
determining mRNA stability that Neymotin and colleagues
quantified, and anchors it into pure sequence elements.

Confounding associations of sequence elements with
mRNA stability could arise because of selection on expression
levels acting at multiple stages of gene expression. For in-
stance, genes that are selected for high protein expression lev-
els may be enriched for elements that enhance translation and
for elements that enhance mRNA stability. Functional valida-
tions are therefore needed to disentangle causality fromco-se-
lection. The sequence elements of our joint model, up to GC
content and length, are all functional. However, we reported
further elements that associate marginally with half-life. One
of the interesting sequence elements that we found associated
with half-life but did not turn out significant in the jointmod-
el is the start codon context. Given its established effect on
translation initiation (Kozak 1986; Dvir et al. 2013), the gen-
eral coupling between translation and mRNA degradation
(Roy and Jacobson 2013; Huch and Nissan 2014; Radha-
krishnan and Green 2016), as well as several observations
directly on mRNA stability for single genes (LaGrandeur
and Parker 1999; Schwartz and Parker 1999), the start codon
context may nonetheless functionally affect mRNA stability.
Consistent with this hypothesis, large-scale experiments
that perturb 5′ sequence secondary structure and start codon
context indeed showed a wide range of mRNA level changes
in the direction that we would predict (Dvir et al. 2013).

We are not aware of previous studies that systematically as-
sessed the effects of cis-regulatory elements in the context of
knockout backgrounds, as we did here. This part of our anal-
ysis turned out to be very insightful. By assessing the depen-
dencies of codon usage mediated mRNA stability control
systematically and comprehensively, we generalized results
from recent studies on the Ccr4–Not complex and Dhh1,
but also identified important novel ones including NMD fac-

tors, Pat1 and Xrn1. With the growing availability of knock-
out or mutant background in model organisms and human
cell lines, we anticipate this approach to become a fruitful
methodology to unravel regulatory mechanisms.

MATERIALS AND METHODS

Data and genomes

Wild-type and knockout genome-wide S. cerevisiae half-life data
were obtained from Sun et al. (2013), whereby all strains are histi-
dine, leucine, methionine, and uracil auxotrophs. A complete list
of knockout strains used in this study is provided in Supplemental
Table S1. S. cerevisiae gene boundaries were taken from the bound-
aries of the most abundant isoform quantified by Pelechano et al.
(2013). Reference genome fasta file and genome annotationwere ob-
tained from the Ensembl database (release 79). UTR regionswere de-
fined by subtracting out gene body (exon and introns from the
Ensembl annotation) from the gene boundaries. Processed S. cerevi-
siae UTR annotation is provided in Supplemental Table S6.

Genome-wide half-life data of S. pombe as well as refined tran-
scription unit annotation were obtained from Eser et al. (2016).
Reference genome version ASM294v2.26 was used to obtain se-
quence information. Half-life outliers of S. pombe (half-life less
than 1 or larger than 250 min) were removed.

For both half-life data sets, onlymRNAs withmapped 5′ UTR and
3′ UTR were considered. mRNAs with 5′ UTR length shorter than 6
nt were further filtered out.

Codon-wise species-specific tRNA adaptation index (sTAI) of
yeasts were obtained from Sabi and Tuller (2014). Gene-wise
sTAIs were calculated as the geometric mean of sTAIs of all its co-
dons (stop codon excluded).

Analysis of knockout strains

The effect level of an individual sequence feature was compared
against the wild-type withWilcoxon rank-sum test followed bymul-
tiple hypothesis testing P-value correction (FDR < 0.1). For details,
see Supplemental Methods.

Motif discovery

Motif discovery was conducted for the 5′ UTR, the CDS and the 3′

UTR regions. A linear mixed effect model was used to assess the ef-
fect of each individual k-mer while controlling the effects of the oth-
ers and for the region length as a covariate as described previously
(Eser et al. 2016). For CDS we also used codons as further covariates.
In contrast to Eser and colleagues, we tested the effects of all possible
k-mers with lengths from 3 to 8. The linear mixed model for motif
discovery was fitted with GEMMA software (Zhou et al. 2013).
P-values were corrected for multiple testing using Benjamini–
Hochberg’s FDR. Motifs were subsequently manually assembled
based on overlapping significant (FDR < 0.1) k-mers.

Folding energy calculation

RNA sequence folding energy was calculated with RNAfold from
ViennaRNA version 2.1.9 (Lorenz et al. 2011), with default
parameters.
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S. cerevisiae conservation analysis

The phastCons (Siepel et al. 2005) conservation track for S. cerevisiae
was downloaded from the UCSC Genome Browser (http://
hgdownload.cse.ucsc.edu/goldenPath/sacCer3/phastCons7way/).
Motif single-nucleotide level conservation scores were computed as
the mean conservation score of each nucleotide (including two ex-
tended nucleotides at each side of themotif) across all motif instanc-
es genome-wide (removing NA values).

Linear regression model for codon usage

Throughout the study, we modeled codon usage in the linear model
with each codon as an independent covariate using its frequency.

log(yg ) = b0 +
∑

c[Codons

bcxc + 1g , (1)

where xc = nc
Lg
, nc is the number of codon c in gene g. Lg is the CDS

length of gene g.

Relation between codon regression coefficient and sTAI

The coefficients of codon frequencies have an analogous interpreta-
tion as species-specific tRNA adaptation index (sTAI). The same ap-
plies also to tAI. The sTAI of a gene is defined as the geometric mean
of the sTAIs of all its coding codons (Sabi and Tuller 2014). For a
gene g with N number of codons, its sTAI is defined as follows:

sTAIg =
∏N

i=1

wi

( ) 1

N= �������������
w1w2 . . .wN

N
√

, (2)

where wi represent the sTAI of the ith codon in the gene.
The logarithm of a gene sTAI with N codons is

log(sTAIg ) = 1

N

∑N

i=1

log(wi)
( )

=
∑

c[Codons

3log(wc) nc
3N

=
∑

c[Codons

3log(wc)xc , (3)

where xc is defined in Equation 1, 3N = Lg is the CDS length, nc is the
number of codon c in gene g, wc is the sTAI of codon c. Hence, in a
linear model the regression coefficient βc of Equation 1 has an anal-
ogous interpretation to the log of sTAI [log(wc)].

Linear model for genome-wide half-life prediction

Multivariate linear regression models were used to predict genome-
wide mRNA half-life on the logarithmic scale from sequence fea-
tures. Only mRNAs that contain all features were used to fit the
models, resulting in 3838 mRNAs for S. cerevisiae and 3360
mRNAs for S. pombe. Out-of-fold predictions were applied with
10-fold cross validation for any prediction task in this study. For
each fold, a linear model was first fitted to the training data with
all sequence features as covariates, then a stepwise model selection
procedure was applied to select the best model with Bayesian
Information Criterion as criteria [step function in R, with k = log

(n)]. L1 or L2 regularization was not necessary, as they did not im-
prove the out-of-fold prediction accuracy (tested with the glmnet R
package [Friedman et al. 2010]). Motif discovery was performed
again at each fold. The same set of motifs was identified within
each training set only. For details, see Supplemental Methods.

Analysis of sequence feature contribution

Linear models were first fitted on the complete data with all se-
quence features as covariates, nonsignificant sequence features
were then removed from the final models, ending up with 69 fea-
tures for the S. cerevisiae model and 76 features for S. pombe (each
single-coding codon was fitted as a single covariate). The contribu-
tion of each sequence feature was analyzed individually as a univar-
iate regression and also jointly in a multivariate regression model.
The contribution of each feature individually was calculated as the
variance explained by a univariate model. Features were then added
in a descending order of their individual explained variance to a
joint model; “cumulative” variances explained were then calculated.
The “drop” quantifies the drop of variance explained as leaving out
one feature separately from the full model. All contribution statistics
were quantified by taking the average of 100 times of 10-fold cross-
validation.

Single-nucleotide variant effect predictions

The same model used in sequence feature contribution analysis was
used for single-nucleotide variant effect prediction. For motifs, ef-
fects of single-nucleotide variants were predicted with the linear
model modified from Eser et al. (2016). When assessing the effect
of a given motif variation, instead of estimating the marginal effect
size, we controlled for the effect of all other sequence features using a
linear model with the other features as covariates. For details, see
Supplemental Methods. For other sequence features, effects of sin-
gle-nucleotide variants were predicted by introducing a single-nu-
cleotide perturbation into the full prediction model for each gene,
and summarizing the effect with the median half-life change across
all genes. For details, see Supplemental Methods.

Construction of SFG1 and NYV1 mutant strains

One hundred base pair primers (IDT) containing the respective 3′

UTRmutations were used to amplify the kanMX cassette from plas-
mid pFA6a-KanMX6 (Euroscarf). PCR products were used for
transformation of strain BY4741 (MATa his3Δ1 leu2Δ0 met15Δ0
ura3Δ0, Euroscarf) by homologous recombination, and transform-
ants were selected on G418 plates. Correct clones were confirmed by
sequencing. Details of the reporter assay design are provided in the
Supplemental Methods. Sequences of the constructs are given in
Supplemental Table S7.

Quantitative PCR

Cells were grown to OD600 0.8 in YPD from overnight cultures in-
oculated from single colonies. Cells were centrifuged at 4000 rpm
for 1 min at 30°C and pellets were flash-frozen in liquid nitrogen.
RNA was phenol/chloroform purified. cDNA synthesis was per-
formed with 1.5 µg RNA using the Maxima Reverse Transcriptase
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(Thermo Fisher). qPCR was performed on a qTower 2.2 (Analytik
Jena) using a 2-min denaturing step at 95°C, followed by 39 cycles
of 5 sec at 95°C, 10 sec at 64°C, and 15 sec at 72°C with a final
step at 72°C for 5 min. qPCR was performed using the SensiFAST
SYBR No-ROX Kit (Bioline). Primer efficiencies were determined
by performing standard curves for all primer combinations. All
primer pairs had efficiencies of 95% or higher. Sequence informa-
tion of primer pairs and efficiencies are provided in Supplemental
Table S7. Ct data from nine biological and three technical replicates
were used for analysis. Details of analyzing qPCR data are described
in Supplemental Methods.

DATA DEPOSITION

Analysis scripts are available at https://github.com/gagneurlab/
Manuscript_Cheng_RNA_2017.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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