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Abstract Gene transcription can be activated by decreasing the duration of RNA polymerase II

pausing in the promoter-proximal region, but how this is achieved remains unclear. Here we use a

‘multi-omics’ approach to demonstrate that the duration of polymerase pausing generally limits the

productive frequency of transcription initiation in human cells (‘pause-initiation limit’). We further

engineer a human cell line to allow for specific and rapid inhibition of the P-TEFb kinase CDK9,

which is implicated in polymerase pause release. CDK9 activity decreases the pause duration but

also increases the productive initiation frequency. This shows that CDK9 stimulates release of

paused polymerase and activates transcription by increasing the number of transcribing

polymerases and thus the amount of mRNA synthesized per time. CDK9 activity is also associated

with long-range chromatin interactions, suggesting that enhancers can influence the pause-initiation

limit to regulate transcription.

DOI: https://doi.org/10.7554/eLife.29736.001

Introduction
Transcription in metazoan cells is often regulated at the level of promoter-proximal pausing

(Core et al., 2008; Day et al., 2016; Henriques et al., 2013; Nechaev et al., 2010; Rougvie and

Lis, 1988; Strobl and Eick, 1992), which can be detected by measuring the occupancy with paused

Pol II by ChIP-seq (Johnson et al., 2007), GRO-seq (Core et al., 2008), (m)NET-seq (Mayer et al.,

2015; Nojima et al., 2015), or PRO-seq (Kwak et al., 2013). Genes with paused Pol II are conserved

across mammalian cell types and states (Day et al., 2016). The mechanisms underlying how Pol II

pausing can regulate RNA transcript synthesis remain unclear.

Transcription of a human protein-coding gene of average length takes at least half an hour to be

completed. The duration of pausing however lies in the range of minutes (Jonkers et al., 2014) and

does not considerably change the overall time it takes to complete a transcript. Thus, how can

changes in the pause duration lead to synthesis of a different number of RNA transcripts per time? It

has been suggested that a decreased pause duration goes along with a higher initiation frequency,

because occupancy peaks for promoter-proximal Pol II can increase upon gene activation

(Boehm et al., 2003) or can remain high even when pausing is impaired (Henriques et al., 2013).

The height of Pol II occupancy peaks however cannot directly inform on initiation frequency or

pause duration because it depends not only on the number of polymerases that pass the pause site

but also on their residence time (Ehrensberger et al., 2013). A kinetic model of transcription pre-

dicted that pause duration delimits the initiation frequency and suggested that paused Pol II steri-

cally interferes with initiation (Ehrensberger et al., 2013). Indeed, modeling reveals that a paused

polymerase positioned up to around 50 bp downstream of the TSS could sterically interfere with

Gressel et al. eLife 2017;6:e29736. DOI: https://doi.org/10.7554/eLife.29736 1 of 24

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.29736.001
https://doi.org/10.7554/eLife.29736
https://creativecommons.org/
https://creativecommons.org/
http://elifesciences.org/
http://elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


formation of the Pol II initiation complex (Figure 1—figure supplement 1). Even if a paused poly-

merase is located further downstream, it may still interfere with initiation if one or more additional

elongating polymerases line up behind it.

The critical relationship between pausing and initiation could thus far not be tested experimen-

tally, as no methods were available to measure initiation frequencies. A recently developed method,

transient transcriptome sequencing (TT-seq) (Schwalb et al., 2016), now allows to unveil the flow of

polymerases as it measures local RNA synthesis rates genome-wide at nucleotide resolution.

Here we investigate whether changes in pause duration alter initiation frequency in living cells.

We specifically inhibit the kinase CDK9, which facilitates Pol II pause release (Laitem et al., 2015;

Marshall and Price, 1992; Peterlin and Price, 2006), and monitor RNA synthesis and initiation fre-

quencies by TT-seq. A combination of TT-seq data with mNET-seq data allows us to derive pause

durations for active genes. We conclude that the duration of pausing can control transcription initia-

tion at human genes, and derived determinants for CDK9-dependent pause release and initiation

activation.

Results

CRISPR-Cas9-engineered mutation allows for specific CDK9 inhibition
To specifically inhibit CDK9, we used a chemical biology approach (Lopez et al., 2014) that circum-

vents off-target effects of standard CDK9 inhibitors (Morales and Giordano, 2016). We introduced

a CDK9 analog sensitive mutation (CDK9as) into human Raji B cells by CRISPR-Cas9 (Materials and

methods, Figure 1—figure supplement 2A–B). This allows for rapid and highly specific CDK9 inhibi-

tion with the adenine analog 1-NA-PP1 (Lopez et al., 2014), which does not have any effect on wild

type cells (Figure 1—figure supplement 2C). CDK9 protein levels were unchanged in CDK9as

mutant cells compared to wild type cells (Figure 1—figure supplement 2D). After 72 hr of incuba-

tion with 1-NA-PP1, growth of CDK9as cells ceased, whereas wild type cells grew normally (Fig-

ure 1—figure supplement 2E).

eLife digest Genes can contain the coded instructions to make proteins. These instructions

must first be copied, or transcribed, into an intermediate molecule called a messenger RNA by an

enzyme known as RNA polymerase II. Shortly after it begins, this enzyme – which is called Pol II for

short – pauses, and it only starts again after it recruits other proteins, including one called CDK9.

The number of RNA copies made of a gene depends upon how many Pol II enzymes begin

transcription. Pol II pausing also has an effect – if the enzymes pause for longer, less messenger

RNA is transcribed. But why does this happen? One hypothesis is that paused Pol II enzymes

interfere with other Pol II enzymes initiating transcription. Yet, until recently it was not possible to

measure if this actually happens in living cells.

Now, Gressel, Schwalb et al. used a new biochemical method together with a compound that

blocks CDK9 to measure pausing and transcription initiation for active genes in living human cells.

The CDK9 inhibitor was used to make Pol II enzymes pause for longer than normal. Gressel, Schwalb

et al. found that different genes responded differently to CDK9 inhibition, meaning that some

remained paused for longer than others. The number of Pol II enzymes that initiated transcription

was calculated by measuring how many RNA copies had been made locally at that the site of

transcription. These experiments showed that blocking the release of paused Pol II strongly reduced

the number of RNA copies made.

Gressel, Schwalb et al. conclude that Pol II pausing can control initiation of transcription. Cells

may use Pol II pausing to adjust how many copies of an RNA are made, helping to ensure that

different cell types make the appropriate number of RNA copies from a gene. Many diseases are

associated with gene transcription being incorrectly regulated. This and future studies will help

scientists to better understand how Pol II pausing contributes to the control of transcription in both

normal and diseased cells.

DOI: https://doi.org/10.7554/eLife.29736.002
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TT-seq monitors immediate response to CDK9 inhibition
We treated CDK9as cells with 5 mM of 1-NA-PP1 for 10 min and monitored changes in RNA synthesis

by TT-seq (Schwalb et al., 2016), using a RNA labeling time of 5 min (Figure 1A). TT-seq data were

highly reproducible (Spearman correlation coefficient 1) and monitored transcription activity before

and after CDK9 inhibition (Figure 1B). CDK9 inhibition resulted in reduced TT-seq signals at the

beginning of genes, indicating that less Pol II was released into gene bodies (Figure 1B, Figure 2—

figure supplement 1A–B). This gave rise to a ‘response window’ revealing the distance traveled by

Pol II during 10 min inhibitor treatment (Figure 1C). Downstream of the response window, the TT-

seq signal was largely unchanged, indicating continued RNA synthesis from Pol II elongation com-

plexes that had been released before CDK9 inhibition.

To determine the relative response of genes to CDK9 inhibition, we calculated response ratios for

those transcribed units (TUs, Materials and methods) that synthesized RNA, harbored a single TSS,

and exceeded 10 kbp in length (2,538 TUs). The response ratio of TUs varied between 0% to 100%

(fully responding TUs) with a median of 58% (Figure 1C–E). A remaining TT-seq signal in the

response window likely reflects the proportion of polymerases that move to productive elongation

without CDK9 kinase activity, but we cannot exclude that it stems from incomplete CDK9 inhibition.

However, based on the assumption that the inhibitor is evenly distributed across cells and within,

the portion of CDK9 that has not been fully inhibited must be very low.

Pol II elongation velocity is gene-specific
The width of the response window differs between TUs (Figure 1D) and informs on Pol II elongation

velocity (Materials and methods). The average width of the response window was 23 kbp, and thus

the average elongation velocity was 2.3 kbp/min (Figure 2A–B), which agrees with previous esti-

mates (Fuchs et al., 2014; Jonkers et al., 2014; Saponaro et al., 2014; Veloso et al., 2014). Gene-

specific elongation velocities (Figure 2C, Figure 2—figure supplement 1A–B) were significantly

higher in TUs with longer first introns (Figure 2D, Wilcoxon rank sum test, p-value<1.916�10�11),

consistent with faster transcription of introns (Jonkers et al., 2014). Elongation velocity correlated

positively with nucleosome density, and negatively with the stability of the DNA-RNA hybrid, CpG

density and topoisomerase occupancy (Figure 2—figure supplement 1C).

Promoter-proximal pausing occurs at sequences that give rise to weak
DNA-RNA hybrids
To study the kinetics of CDK9-dependent Pol II pause release, we generated mNET-seq data that

map the RNA 3’-end of engaged Pol II and extracted the position of paused polymerases (Materials

and methods). mNET-seq data were highly reproducible (Spearman correlation coefficient 0.93). Of

the above TUs, 2135 (84 %) showed mNET-seq signal peaks above background (Materials and meth-

ods). The called pause sites were distributed around a maximum located ~84 bp downstream of the

TSS (Figure 3A, Figure 3—figure supplement 1A). At these sites we detected an enrichment for G/

C-C/G dinucleotides (Figure 3—figure supplement 1B) with a strongly conserved cytosine at the

RNA 3’-end (Figure 3B). We also observed a minimum of the predicted melting temperature of the

DNA-RNA hybrid (Materials and methods) immediately downstream of the pause site (Figure 3C). A

weak DNA-RNA hybrid in the active center of Pol II is known to destabilize the elongation complex

(Kireeva et al., 2000), and could be a major determinant for establishing the paused state.

Multi-omics analysis provides pause duration d and initiation frequency
I
To quantify pausing, we defined the pause duration d as the time a polymerase needs to pass

through a 200 bp ‘pause window’ located ±100 bp around the pause site. The pause duration d can

now be derived from a combination of mNET-seq and TT-seq data. In particular, the mNET-seq sig-

nal corresponds to the number of polymerases in the pause window, which is determined by d and

by the initiation frequency I (Figure 4A) (Ehrensberger et al., 2013). Thus, d is proportional to the

ratio of the mNET-seq signal over I. To calculate I we integrated TT-seq signals over exons, exclud-

ing the first exon (Materials and methods). This provides the ‘productive initiation frequency’, that is

the number of polymerases that initiate and successfully exit from the pause window. We use the

term ‘productive’ because we do not know whether there is a small fraction of polymerases
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Figure 1. CDK9 inhibition decreases RNA synthesis in the 5’-region of genes. (A) Experimental design. TT-seq was

carried out with CDK9as cells after treatment with solvent DMSO (control) or 1-NA-PP1 (CDK9as inhibited). (B) TT-

seq signal before (black) and after (red) CDK9 inhibition at the ABHD17C gene locus (75,937 [bp]) on chromosome

15. Two biological replicates were averaged. The grey box depicts the transcript body from the transcription start

site (TSS, black arrow) to the polyA site (pA). (C) Schematic representation of changes in TT-seq signal showing the

definition of the response window. Colors are as in (B). (D) Metagene analysis comparing the average TT-seq

signal before and after CDK9 inhibition. The TT-seq coverage was averaged for 954 out of 2538 investigated TUs

that exceed 50 [kbp] in length (Materials and methods). TUs were aligned with their TSS. Shaded areas around the

average signal (solid lines) indicate confidential intervals (Materials and methods). (E) Violin plot showing the

relative response to CDK9 inhibition for 2538 investigated TUs defined as 1 - (CDK9as inhibited/Control) �100 for a

window from the TSS to 10 [kbp] downstream, excluding the first 200 [bp] (C). A red line indicates the median

response (58%).

Figure 1 continued on next page

Gressel et al. eLife 2017;6:e29736. DOI: https://doi.org/10.7554/eLife.29736 4 of 24

Research article Computational and Systems Biology

https://doi.org/10.7554/eLife.29736


terminating within the pause window. Finally, to derive absolute values of d, we scaled the reciprocal

Figure 1 continued

DOI: https://doi.org/10.7554/eLife.29736.003

The following figure supplements are available for figure 1:

Figure supplement 1. Model of a paused polymerase positioned up to around 50 bp downstream of the TSS.

DOI: https://doi.org/10.7554/eLife.29736.004

Figure supplement 2. CRISPR-Cas9 directed engineering, cellular and biochemical characterization of CDK9as Raji

B cell line.

DOI: https://doi.org/10.7554/eLife.29736.005
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Figure 2. Pol II elongation velocity. (A) Schematic representation of observed response window of TT-seq signal

with CDK9as inhibitor (red) or control (black) for TUs of three different length classes (short TUs < 25 [kbp],

medium-length TUs 25–50 [kbp] and long TUs > 100 [kbp]). (B) Scatter plot of the ratio of transcribed bases

(CDK9as inhibited/control) (Materials and methods) against the length of the TUs in nucleotides [kbp] revealed that

the schematic representation in (A) holds true for 2443 investigated TUs (Materials and methods). Modeling of the

observed relation allows estimation of a robust average elongation velocity of 2.3 [kbp/min] (solid black line,

Materials and methods). (C) Distribution of gene-wise elongation velocity depicted as a histogram (mean 2.7 [kbp/

min], median 2.4 [kbp/min]). (D) Distributions of elongation velocity [kbp/min] depicted for 513 TUs with short first

intron (<50% quantile, left) and 514 TUs with long first intron (>50% quantile, right).

DOI: https://doi.org/10.7554/eLife.29736.006

The following figure supplement is available for figure 2:

Figure supplement 1. Example genome browser views of TT-seq signals in CDK9as cells with estimated response

window and genomic features correlating with elongation velocity.

DOI: https://doi.org/10.7554/eLife.29736.007
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of d (the elongation velocity in the pause window) according to the elongation velocity obtained

from CDK9 inhibition (Materials and methods).

We obtained a mean productive initiation frequency of 2.7 polymerases cell�1min�1, and pause

durations in the range of minutes, with strong variations between TUs. The pause durations are gen-

erally consistent with reported half-lives of paused Pol II in mouse (Jonkers et al., 2014) and Dro-

sophila cells (Buckley et al., 2014; Henriques et al., 2013) but slightly shorter. Pause durations

were also consistent with kinetic modeling of TT-seq data alone. At TUs with long pause durations

we observed less labeled RNA in the short region between the TSS and the pause site (Figure 4—

figure supplement 1). This confirms that indeed initiation frequencies are altered. It also indicates

that the fraction of Pol II enzymes that terminate within the pause window is low, in agreement with

previous findings (Henriques et al., 2013). For strongly CDK9-responding TUs, we obtained a signif-

icantly longer pause duration (Wilcoxon rank sum test, p-value<10�12) and lower initiation frequen-

cies (Figure 4B–C).
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Figure 3. Distribution and sequence of promoter-proximal pause sites. (A) Distribution of pause site distance from

the TSS for 2135 investigated TUs depicted as a histogram (mean 128 [bp], median 112 [bp], mode 84 [bp]). Two

biological replicates were averaged. (B) Position weight matrix (PWM) logo representation of bases at positions –

10 to +10 [bp] around the pause site (position 0). (C) Mean melting temperature of the DNA-RNA and DNA-DNA

hybrid aligned at the TSS and the pause site (signal between the TSS and the pause site is scaled to common

length of 100 [bp]). Shaded areas around the average signal (solid lines) indicate confidence intervals.

DOI: https://doi.org/10.7554/eLife.29736.008

The following figure supplement is available for figure 3:

Figure supplement 1. Features of underlying DNA sequence around promoter-proximal pause sites.

DOI: https://doi.org/10.7554/eLife.29736.009
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Pause-initiation limit

Impossible combinations

of pause duration

and initiation frequency

initiation frequency I 

elongation velocity v

Figure 4. Pol II pausing generally limits transcription initiation (‘pause-initiation limit’). (A) Schematic

representation of polymerase flow in the promoter-proximal region. The mNET-seq signal (top) is the ratio of the

initiation frequency I over the elongation velocity v. The TT-seq signal (bottom) corresponds to initiation frequency

I. Thus, v can be derived from the ratio of the TT-seq over the mNET-seq signal, and the reciprocal of v in the

pause window corresponds to the pause duration d. (B) Distributions of gene-wise pause duration d [min] for TUs

with a CDK9 response ratio >75% quantile (574 TUs) and TUs with a response ratio <25% quantile (469 TUs). (C)

Distributions of gene-wise initiation frequency I [cell�1min�1] for TUs with a CDK9 response ratio >75% quantile

(635 TUs) and TUs with a response ratio <25% quantile (635 TUs). (D) Scatter plot between the initiation frequency

I [cell�1min�1] and the pause duration d [min] for 2135 common TUs with color-coded density estimation. The grey

shaded area depicts impossible combinations of I and d according to published kinetic theory

(Ehrensberger et al., 2013) and assuming that steric hindrance occurs below a distance of 50 [bp] between the

active sites of the initiating Pol II and the paused Pol II.

DOI: https://doi.org/10.7554/eLife.29736.010

The following figure supplements are available for figure 4:

Figure supplement 1. A longer pause duration but not promoter-proximal termination of polymerase leads to

shortage of labeled RNA in the region between TSS and pause site.

DOI: https://doi.org/10.7554/eLife.29736.011

Figure supplement 2. Verification of anti-correlation between initiation frequency I and pause duration d

including ‘pause-initiation limit’.

DOI: https://doi.org/10.7554/eLife.29736.012
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Human genes have a ‘pause-initiation limit’
These results prompted us to ask whether the pause duration is generally related to the initiation fre-

quency. We indeed found a robust anti-correlation between I and d in normally growing cells, and

an upper boundary for combinations of I and d which we call ‘pause-initiation limit’. (Figure 4D, Fig-

ure 4—figure supplement 2A). Thus, genes with shorter pausing show higher initiation frequencies

and more RNA synthesis. This fundamental relationship can be verified by calculating the pause

duration d without the initiation frequency I, d̂ (Materials and methods, Figure 4—figure supple-

ment 2B–C,E). Repeated random shuffling of mNET-seq signal assignment to TUs abolishes the cor-

relation between d̂ and I (Figure 4—figure supplement 2D). It also shows that the observation of

impossible combinations of pause duration d and initiation frequency I (points above ‘pause-initiation

limit’) are minimal (Figure 4—figure supplement 2F). In conclusion, independent mNET-seq and

TT-seq data led to independent measures of pause duration and productive initiation frequency for

each gene, which were then observed to be globally anti-correlated.

These findings now allowed us to test directly whether longer pause durations lead to lower initia-

tion frequencies, by analyzing TT-seq data after CDK9 inhibition. CDK9 inhibition resulted in signifi-

cantly reduced labeled RNA in the short region between the TSS and the pause site (Wilcoxon rank

sum test, p-value<10�16) (Figure 5A–B). Productive initiation frequencies were significantly downre-

gulated after CDK9 inhibition (Wilcoxon rank sum test, p-value<10�16) (Figure 5C). Because CDK9

specifically targets paused Pol II, and not initiating polymerase, these results show that pausing limits

initiation, and not the other way around. Thus, human genes have a ‘pause-initiation limit’.

To monitor the occupancy of engaged Pol II we generated mNET-seq data before and after

CDK9 inhibition (Materials and methods). CDK9 inhibition resulted in increased mNET-seq signal at

the beginning of genes and decreased signal in the gene body, indicating that less Pol II was

A

B C

Control CDK9as inhibitedT
T

-s
e
q
 c

o
ve

ra
g
e
 u

p
s
tr

e
a
m

 o
f 
th

e
 p

a
u
s
e
 s

it
e

Control CDK9as inhibited

In
iti

a
tio

n
 fr

e
q
u
e
n
cy

 [
c
e
ll-1

 m
in

-1
]

***
***

(*** P-value < 10-16)

Response window

TSS

Downregulated initiation frequency

Control
CDK9as inhibited

Pause site

Reduction of

labeled RNA

Reduction of

labeled RNA

Downregulated initiation frequency

0
2

4
6

8

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 5. Increasing Pol II pause duration decreases the frequency of transcription initiation. (A) Schematic

representation of observed decrease in TT-seq signal upon CDK9 inhibition, upstream and downstream of the

pause site. (B) Distributions of gene-wise mean TT-seq signals in the region between the TSS and the pause site,

before (control) and after CDK9 inhibition, normalized to the initiation frequency before CDK9 inhibition. (C)

Distributions of gene-wise initiation frequencies before (control) and after CDK9 inhibition.

DOI: https://doi.org/10.7554/eLife.29736.013
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released from the pause site (Figure 6A). Indeed, calculation of pause durations from mNET-seq

and TT-seq data after CDK9 inhibition showed that Pol II resides significantly longer at the pause

site after CDK9 inhibition (Wilcoxon rank sum test, p-value<10�16) (Figure 6B). Taken together,

CDK9 inhibition increases the pause duration and decreases the initiation frequency at human genes

(Figure 6C–D).

Determinants of promoter-proximal pausing
To investigate possible reasons for polymerase pausing and its consequences, we compared differ-

ent properties of TUs with long and short pause durations. For the 5’-region of TUs with longer

pause durations, the transcript adopts more RNA secondary structure in vivo and in silico (Wilcoxon

rank sum test, p-value<10�16) (Figure 7A, Figure 7—figure supplement 1A) (Rouskin et al., 2014).

TUs with longer pause durations were also enriched for hyper-methylated CpG islands

(ENCODE Project Consortium, 2012) upstream of the pause site (Figure 7B), consistent with a
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Figure 6. CDK9 inhibition leads to increased pause duration. (A) Metagene analysis comparing the average

mNET-seq signal before and after CDK9 inhibition. Two biological replicates were averaged. The mNET-seq

coverage was averaged for 2538 investigated TUs (Materials and methods). TUs were aligned with their TSS.

Shaded areas around the average signal (solid lines) indicate confidentiality intervals (Materials and methods). (B)

Distributions of gene-wise pause duration d [min] before (control) and after CDK9 inhibition. (C) Scatter plot

between the initiation frequency I [cell�1min�1] and the pause duration d [min] after CDK9 inhibition for 2135

common TUs with color-coded density estimation. The grey shaded area depicts impossible combinations of I and

d (Ehrensberger et al., 2013) assuming that steric hindrance occurs below a distance of 50 [bp] between the

active sites of the initiating Pol II and the paused Pol II. (D) Schematic of changes in pause duration (Dd) and

initiation frequency (DI) upon CDK9 inhibition. As a consequence, data points in panel (D) are moved to the left

and upwards.

DOI: https://doi.org/10.7554/eLife.29736.014
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previous report (Hendrix et al., 2008). Comparison of strongly and weakly CDK9-responding TUs

around the pause site showed that TUs that responded strongly to CDK9 inhibition showed a higher

tendency to establish long-range chromatin interactions (Figure 7C) as observed by Hi-C (Ma et al.,

2015). This is consistent with the idea that interactions of an enhancer with its target promoter can

stimulate Pol II pause release (Ghavi-Helm et al., 2014; Rahl et al., 2010). This tendency however

seems to be independent of the pause duration as comparing TUs with long and short pause dura-

tions leads to no observable difference in Hi-C signal.

Finally, we investigated which factors preferentially occupy pause windows with longer pause

durations. This is now possible because ChIP-seq signals can be normalized with the productive initi-

ation frequency. Without such normalization, ChIP-seq derived factor occupancies are artificially high

in pause windows with long pause durations (Ehrensberger et al., 2013). Correlation of such
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Figure 7. Determinants of CDK9-dependent promoter-proximal pausing. (A) Distribution of gene-wise mean in

vivo DMS-seq signals (detecting RNA secondary structure) for a window between �65 and �15 [bp] upstream of

the pause site for TUs with long pause durations (pause duration >75% quantile, 534 TUs) and with short pause

durations (pause duration <25% quantile, 534 TUs) normalized to denatured DMS-seq coverage (Materials and

methods). (B) Metagene analysis comparing the average Bisulfite-seq signal (detecting methylated DNA) for

subsets as in (A) aligned at the pause site (red, long pause duration, and black, short pause duration). Shaded

areas around the average signal (solid lines) indicate confidence intervals. (C) Metagene analysis comparing the

average Hi-C signal (detecting long-range chromatin interactions) for strongly CDK9-responding TUs (red,

response ratio >75% quantile, 552 TUs) and weakly CDK9-responding TUs (black, response ratio <25% quantile,

440 TUs) aligned at the pause site. Shaded areas around the average signal (solid lines) indicate confidence

intervals (Materials and methods, Supplementary file 1).

DOI: https://doi.org/10.7554/eLife.29736.015

The following figure supplement is available for figure 7:

Figure supplement 1. Features of promoter-proximal pausing.

DOI: https://doi.org/10.7554/eLife.29736.016
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normalized ChIP-seq signals in the pause window with pause durations (Figure 7—figure supple-

ment 1B–C) resulted in a positive correlation for Pol II phosphorylation at sites that are associated

with elongation, and also for NELF-E, CDK9, and Brd4, which are all factors involved in Pol II pausing

and release.

Discussion
Taken together, our results show that Pol II pausing can control transcription initiation and demon-

strate the central role of CDK9 in controlling pause duration and thereby the productive initiation

frequency. Our results have implications for understanding gene regulation. Genes that show initia-

tion frequencies below the pause-initiation limit may be activated by increasing the initiation fre-

quency without changing pause duration. However, activation of genes that are transcribed at the

pause-initiation limit requires a decrease in pause duration, that is stimulation of pause release, to

enable higher initiation frequencies. We suggest that pause-controlled initiation evolved because

mutations in the promoter-proximal region can change pause duration, and thereby limit initiation,

but do not compromise a high initiation capacity of the core promoter around the TSS. This may

have enabled the evolution of genes that remain highly inducible but can be efficiently

downregulated.

After our work had been completed, a publication appeared that concluded that polymerase

pausing inhibits new transcription initiation (Shao and Zeitlinger, 2017). The conclusion in this paper

is consistent with our general finding of an interdependency of Pol II pausing and transcription initia-

tion, but the two studies differ in three aspects. First, we used human cells whereas the published

work was conducted in Drosophila cells. Second, our work uses a multi-omics approach to enable a

kinetic description, whereas the published work is based on changes in factor occupancy. Third, we

selectively inhibited CDK9 using CRISPR-Cas9-based engineering and chemical biology, whereas the

published work used small molecule inhibitors that may target multiple kinases. Despite these differ-

ences, the general conclusion that promoter-proximal pausing of Pol II sets a limit to the frequency

of transcription initiation holds for both human and Drosophila cells and is likely a general feature of

metazoan gene regulation.

Materials and methods

Key resources table

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

cell line (Homo sapiens; male) Raji B lymphocyte cells
(wild type)

DSMZ DSMZ Cat# ACC-319;
RRID:CVCL_0511

cell line (Homo sapiens; male) Raji B lymphocyte cells
(CDK9as)

This paper Raji B cells were obtained
from DSMZ Cat# ACC-319,
RRID:CVCL_0511. Homozygous
mutation of F103 at the
CDK9 gene loci in Raji B
cells was performed using
the CRISPR-Cas9 system.

antibody anti-CDK9 Santa Cruz, Dallas,
TX USA

sc-484

antibody anti-alpha-tubulin Sigma-Aldrich,
St. Louis, MO USA

DM1A

antibody anti-Pol II
(total, unphos + phos)

BIOZOL, Eching,
Germany

MABI0601

commercial assay or kit CellTiter 96 AQueous One
Solution Cell Proliferation
Assay (MTS)

Promega, Madison,
WI USA

G3582

commercial assay or kit Plasmo Test Mycoplasma
Detection Kit

InvivoGen, San Diego,
CA USA

rep-pt1

Continued on next page
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

commercial assay or kit Ovation Universal
RNA-Seq System

NuGEN, Leek,
The Netherlands

0343–32

commercial assay or kit TruSeq Small RNA
Library Prep Kit

Illumina, Massachusetts
USA

RS-200–0012

chemical compound, drug CDK9as inhibitor;
1-NA-PP1

Calbiochem, EMD
Millipore, Danvers,
MA USA

529579 CAS 221243-82-9

chemical compound, drug Solvent control;
DMSO

Sigma-Aldrich,
St. Louis, MO USA

D8418

chemical compound, drug 4-thiouracil (4sU) Sigma-Aldrich,
St. Louis, MO USA

T4509

chemical compound, drug empigen BB
detergent

Sigma-Aldrich,
St. Louis, MO USA

30326

Cell lines and cell culture
Raji B cells were obtained from DSMZ (DSMZ no.: ACC 319; RRID:CVCL_0511). CDK9as Raji B cells

were generated in this study by CRISPR-Cas9-based engineering of Raji B cells obtained from DSMZ

(DSMZ no.: ACC 319; RRID:CVCL_0511). Raji B cells and CDK9as Raji B cells were grown in RPMI

1640 medium (Thermo Fisher Scientific, Waltham, MA USA) supplemented with 10% foetal calf

serum (bio-sell, Nürnberg, Germany), 100 U/mL penicillin and 100 mg/mL streptomycin (Thermo

Fisher Scientific, Waltham, MA USA), and 2 mM L-glutamine (Thermo Fisher Scientific, Waltham, MA

USA) at 37˚C and 5% CO2. Cells were verified to be free of mycoplasma contamination using Plasmo

Test Mycoplasma Detection Kit (InvivoGen, San Diego, CA USA).

Generation of human CDK9asRaji B cell line
CDK9as contains a point mutation of the so-called gatekeeper residue that enables the kinase active

site to accept bulky ATP analogs (1-NA-PP1) (4-Amino-1-tert-butyl-3-(1’-naphthyl)pyrazolo[3,4-d]

pyrimidine). To identify the gatekeeper residue (Lopez et al., 2014), the amino acid sequence of the

human CDK9 kinase (UniProt, P50750-1) was aligned with sequences of previously characterized kin-

ases carrying analog sensitive mutations. Multiple sequence alignment was performed with the web

tool Clustal Omega 1.2.4 (Sievers et al., 2011). For the canonical isoform of CDK9, phenylalanine

(F) 103 was identified as the gatekeeper residue and selected for mutation to alanine (A). Mutation

of F103 at the CDK9 gene loci in Raji B cells was performed using the CRISPR-Cas9 system

(Doudna and Charpentier, 2014; Hsu et al., 2014) as described (Mulholland et al., 2015) with

minor modifications. Briefly, the single guide RNA (sgRNA) for editing CDK9 was designed by using

the web tool Optimized CRISPR design (http://crispr.mit.edu/), and was incorporated to pSpCas9

(BB)�2A-GFP (PX458) vector by BpiI restriction sites (Addgene plasmid # 48138) (Ran et al., 2013).

For nucleotide replacement (gttc to cgcg), 200 nt single-stranded DNA oligonucleotides (ssODNs)

were synthesized by Integrated DNA Technologies (IDT, Leuven, Belgium) and used as homology-

directed repair (HDR) template. A BstUI cutting site was incorporated into the HDR template for

screening. The vector and HDR template were introduced into human Raji B cells using Amaxa

Mouse ES Cell Nucleofector Kit (Lonza, Basel, Switzerland) according to the manufacturer’s instruc-

tions. Two days after transfection, GFP positive cells were single cell sorted into 96 well plates using

FACS Aria II instrument (Becton Dickinson, Franklin Lakes, NJ USA). After two weeks, individual colo-

nies were expanded for genomic DNA isolation. The mutant lines were validated by PCR using

respective primers, BstUI digestion (Figure 1—figure supplement 2A) and DNA sequencing (Fig-

ure 1—figure supplement 2B).

HDR template (A103 is underlined, BstUI cutting site in small letters):

AAAGTGTGTTGGGTGTGGTTTTCTTGACTTTTTCTTCTTTCTATTCCTGCCTCAGCTTCCCCCTA

TAACCGCTGCAAGGGTAGTATATACCTGGTcgcgGACTTCTGCGAGCATGACCTTGCTGGGCTG

TTGAGCAATGTTTTGGTCAAGTTCACGCTGTCTGAGATCAAGAGGGTGATGCAGATGCTGC

TTAACGGCCT
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Primers for sgRNA generation and screening:

CDK9-sgRNA-F: 5’-CACCGGCTCGCAGAAGTCGAACACC-3’

CDK9-sgRNA-R: 5’-AAACGGTGTTCGACTTCTGCGAGCC-3’

CDK9-screen-F: 5’-CCCCGTAGCTGGTGCTTCCTCG-3’

CDK9-screen-R: 5’-CCCCAGCAGCCTTCATGTCCCTAT-3’

Antibodies and western blot analysis
Proteins equivalent to 1 � 105 Raji B cells were loaded in Laemmli buffer and subjected to SDS-

PAGE before transfer to nitrocellulose. Unspecific binding of antibodies was blocked by incubation

of the membrane with 5% milk in Tris-buffered saline containing 1% Tween. Primary antibodies were

anti-CDK9 (sc-484) (Santa Cruz, Dallas, TX USA) and anti-a-tubulin (DM1A) (Sigma-Aldrich, St. Louis,

MO USA). Fluorophore-coupled secondary antibodies (Rockland Immunochemicals Inc., Pottstown,

PA USA) were used and blots were visualized using the Odyssey system (LI-COR, Lincoln, NE USA).

MTS assay
Cell proliferation at increasing 1-NA-PP1 inhibitor concentrations was measured in four biological

replicates using the CellTiter 96 AQueous One Solution Cell Proliferation Assay System (Promega,

Madison, WI USA). Cells were seeded in a 96-well plate and increasing concentrations of 1-NA-PP1

(Calbiochem, EMD Millipore, Danvers, MA USA) or DMSO (Sigma-Aldrich, St. Louis, MO USA) were

added. After 72 hr, MTS tetrazolium compound was added to each well for one hour. Subsequently,

the quantity of the MTS formazan product was measured as absorbance at 490 nm with a Sunrise

photometer (TECAN, Männedorf, Switzerland) that was operated using the Magellan data analysis

software (v7.2, TECAN, Männedorf, Switzerland). Relative signals for each concentration were calcu-

lated by dividing the signals of the CDK9as inhibitor treated cells by the corresponding signals of the

control.

TT-seq
Two biological replicates of reactions including RNA spike-ins were performed essentially as

described (Schwalb et al., 2016). Briefly, 3.3 � 107 Raji B (CDK9as or wild type) cells were treated

for 15 min with solvent DMSO (control) or 5 mM of 1-NA-PP1 (CDK9as inhibitor). After 10 min of

treatment, labeling was performed by adding 500 mM of 4-thiouracil (4sU) (Sigma-Aldrich, St. Louis,

MO, USA) for 5 min at 37˚C and 5% CO2. Cells were harvested by centrifugation at 3000 x g for 2

min. Total RNA was extracted using QIAzol according to the manufacturer’s instructions. RNAs were

sonicated to generate fragments of <1.5 kbp using AFAmicro tubes in a S220 Focused-ultrasonicator

(Covaris Inc., Woburn, MA USA). 4sU-labeled RNA was purified from 150 mg total fragmented RNA.

Separation of labeled RNA was achieved with streptavidin beads (Miltenyi Biotec, Bergisch Glad-

bach, Germany) as described in (Schwalb et al., 2016). Prior to library preparation, 4sU-labeled

RNA was purified and quantified. Enrichment of 4sU-labeled RNA was analyzed by RT-qPCR as

described (Schwalb et al., 2016). Input RNA was treated with HL-dsDNase (ArcticZymes, Tromsø,

Norway) and used for strand-specific library preparation according to the Ovation Universal RNA-

Seq System (NuGEN, Leek, The Netherlands). The size-selected and pre-amplified fragments were

analyzed on a Fragment Analyzer before clustering and sequencing on the Illumina HiSeq 1500.

TT-seq data preprocessing and global normalization
Paired-end 50 base reads with additional 6 base reads of barcodes were obtained for each of the

samples, that is two TT-seq replicates with 1-NA-PP1 (CDK9as inhibitor) and two TT-Seq replicates

with DMSO (control) treatment. Reads were demultiplexed and mapped with STAR 2.3.0

(Dobin and Gingeras, 2015) to the hg20/hg38 (GRCh38) genome assembly (Human Genome Refer-

ence Consortium). Samtools (Li et al., 2009) was used to quality filter SAM files, whereby alignments

with MAPQ smaller than 7 (-q 7) were skipped and only proper pairs (-f2) were selected. Further

data processing was carried out using the R/Bioconductor environment. We used a spike-in (RNAs)

normalization strategy essentially as described (Schwalb et al., 2016) to allow observation of global

shifts and antisense bias determination (ratio of spurious reads originating from the opposite strand

introduced by the RT reactions). Read counts for spike-ins were calculated using HTSeq
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(Anders et al., 2015). Sequencing depth calculations did not detect global differences. Antisense

bias ratios were calculated for each sample j according to

cj ¼
i

median
kantisenseij

ksenseij

 !

for all available spike-ins i.

Definition of transcription units (TUs)
For each annotated gene, transcription units (TUs) were defined as the union of all existing inherent

transcript isoforms (UCSC RefSeq GRCh38). Read counts for all features were calculated using

HTSeq (Anders et al., 2015) and corrected for antisense bias using antisense bias ratios cj calculated

as described above. The real number of read counts sij for transcribed unit i in sample j was calcu-

lated as

sij ¼
Sij� cjAij

1� c2j

where Sij and Aij are the observed number of read counts on the sense and antisense strand.

Read counts per kilobase (RPK) were calculated upon bias corrected read counts falling into the

region of a transcribed unit divided by it’s length in kilobases. Based on the antisense bias corrected

RPKs a subgroup of expressed TUs was defined to comprise all TUs with an RPK of 100 or higher in

two summarized replicates of TT-seq without inhibitor treatment. An RPK of 100 corresponds to

approximately a coverage of 10 per sample due to an average fragment size of 200. This subset was

used throughout the analysis unless stated otherwise.

Calculation of the number of transcribed bases
Aligned duplicated fragments were discarded for each sample. Of the resulting unique fragment iso-

forms only those were kept that exhibited a positive inner mate distance. The number of transcribed

bases (tbj) for all samples was calculated as the sum of the coverage of evident (sequenced) frag-

ment parts (read pairs only) for all fragments smaller than 500 bases in length and with an inner

mate interval not entirely overlapping a Refseq annotated intron (UCSC RefSeq GRCh38, ~96% of all

fragments) in addition to the sum of the coverage of non-evident fragment parts (entire fragment).

Size factor normalization
We first checked that no significant global shifts were detected in a comparison of two TT-seq repli-

cates with 1-NA-PP1 (CDK9as inhibitor) treatment against two TT-seq replicates with DMSO treat-

ment (control) in the above described spike-ins normalization strategy. Then all samples were

subjected to an alternative, more robust normalization procedure. For each sample j the antisense

bias corrected number of transcribed bases tbj was calculated on all expressed TUs i exceeding 125

kbp in length. 50 kbp were truncated from each side of the selected TUs to avoid influence of the

response to CDK9as inhibition (Laitem et al., 2015). On the resulting intervals, size factors for each

sample j were determined as

sj ¼
i

median
tbij

Qm
v¼1

tbij
� �1=m

 !

where m denotes the number of samples. This formula has been adapted (Anders and Huber,

2010) and was used to correct for library size and sequencing depth variations.

Calculation of response ratios
For each condition j (control or CDK9as inhibited) the antisense bias corrected number of transcribed

bases tbji was calculated on all expressed TUs i exceeding 10 kbp in length. Of all remaining TUs only

those were kept harboring one unique TSS given all Refseq annotated isoforms (UCSC RefSeq

GRCh38). Response ratios were calculated for a window from the TSS to 10 kbp downstream

(excluding the first 200 bp) for each TU i as
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ri ¼ 1� tbCDK9
as inhibited

i 0:2 ; 10 kbp½ �
=tbControli 0:2 ; 10 kbp½ �

where negative values were set to 0.

Estimation of robust common elongation velocity
For each condition j (control or CDK9as inhibited) the antisense bias corrected number of transcribed

bases tb
j
i was calculated on all expressed TUs i with a given response ratio ri, excluding the first 200

bp. All TUs were truncated by 5 kbp in length from the 3’ end prior to calculation to avoid influence

of some alterations in signal around the pA site after CDK9as inhibition (Laitem et al., 2015). A

robust common elongation velocity estimate was calculated by finding an optimal fit for all TUs i

between 25 to 200 kbp in length Li, that is minimizing the function

loss¼
i

median 1�
tbCDK9

as inhibited
i

tbControli

�
riv t� � tð Þ

Li

�

�

�

�

�

�

�

�

� �

on the interval [0,10000] with inhibitor treatment duration t*=15 [min] and labeling duration t = 5

[min], given that

tbCDK9
as inhibited

i � tbControli ¼ ri
tbControli

Li
vi t

� � tð Þ

that is the difference of transcribed bases obtained by the CDK9as inhibitor treatment equals the

number of transcribed bases per nucleotide tbControli =Li times the number of nucleotides traveled

vi t
� � tð Þ in t� � t minutes corrected by the amount of the response ri.

Estimation of gene-wise elongation velocity
For each condition j (control or CDK9as inhibited) the antisense bias corrected number of transcribed

bases tb
j
i was calculated on all expressed TUs i exceeding 35 kbp in length, excluding the first 200

bp. All TUs were truncated by 5 kbp in length from the 3’ end prior to calculation to avoid influence

of some alterations in signal around the pA site after CDK9as inhibition (Laitem et al., 2015). Of all

remaining TUs only those were kept harboring one unique TSS given all Refseq annotated isoforms

(UCSC RefSeq GRCh38). For each TU i with ri>0:25 the elongation velocity vi [kbp/min] was calcu-

lated as

vi ¼
tbControli � tb CDK9as inhibited

i

tbControli � ri
Li

t� � tð Þ

with inhibitor treatment duration t*=15 [min] and labeling duration t = 5 [min].

mNET-seq
Two biological replicates of reactions including empigen BB detergent treatment during immuno-

precipitation (IP) were performed essentially as described (Nojima et al., 2016; Schlackow et al.,

2017), with minor modifications. Briefly, 1.6 � 108 Raji B (CDK9as) cells were treated for 15 min with

solvent DMSO (control) or 5 mM of 1-NA-PP1 (CDK9as inhibitor). Cell fractionation was performed as

described (Conrad and Ørom, 2017). Isolated chromatin was digested with micrococcal nuclease

(MNase) (NEB, Ipswich, MA USA) at 37˚C and 1,400 rpm for 90 s. To inactivate MNase, EGTA was

added to a final concentration of 25 mM. Digested chromatin was collected by centrifugation at 4˚C
and 13,000 rpm for 5 min. The supernatant was diluted tenfold with IP buffer containing 50 mM Tris-

HCl pH 7.5, 150 mM NaCl, 0.05% (vol/vol) NP-40, and 1% (vol/vol) empigen BB (Sigma-Aldrich, St.

Louis, MO USA). For each IP, 50 mg of Pol II antibody clone MABI0601 (BIOZOL, Eching, Germany)

was conjugated to Dynabeads M-280 Sheep Anti-Mouse IgG (Thermo Fisher Scientific, Waltham,

MA USA). Pol II antibody-conjugated beads were added to diluted sample. IP was performed on a

rotating wheel at 4˚C for 1 hr. The beads were washed six times with IP buffer (50 mM Tris-HCl pH

7.5, 150 mM NaCl, 0.05 % NP-40, and 1% empigen BB) and once with 500 mL of PNKT buffer con-

taining 1 x T4 polynucleotide kinase (PNK) buffer (NEB, Ipswich, MA USA) and 0.1% (vol/vol) Tween-

20 (Sigma-Aldrich, St. Louis, MO USA). Beads were incubated in 100 mL of PNK reaction mix
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containing 1 x PNK buffer, 0.1% (vol/vol) Tween-20, 1 mM ATP, and T4 PNK, 3’ phosphatase minus

(NEB, Ipswich, MA USA) at 37˚C for 10 min. Beads were washed once with IP buffer. RNA was

extracted with TRIzol reagent. RNA was precipitated with GlycoBlue co-precipitant (Thermo Fisher

Scientific, Waltham, MA USA) and resolved on 6% denaturing acrylamide containing 7 M urea (Pan-

Reac AppliChem, Darmstadt, Germany) gel for size purification. Fragments of 35–100 nt were eluted

from the gel using elution buffer containing 1 M NaOAc, 1 mM EDTA, and precipitated in ethanol.

RNA libraries were prepared according to the TruSeq Small RNA Library Kit (Illumina, Massachusetts

USA) and as described (Nojima et al., 2016). The size-selected and pre-amplified fragments were

analyzed on a Fragment Analyzer before clustering and sequencing on an Illumina HiSeq 2500

sequencer.

mNET-seq data preprocessing and normalization
Paired-end 50 base reads with additional 6 base reads of barcodes were obtained for each of the

samples, that is mNET-seq samples with 1-NA-PP1 (CDK9as inhibitor) and with DMSO (control) treat-

ment. Reads were demultiplexed and mapped with STAR 2.3.0 (Dobin and Gingeras, 2015) to the

hg20/hg38 (GRCh38) genome assembly (Human Genome Reference Consortium). Samtools

(Li et al., 2009) was used to quality filter SAM files, whereby alignments with MAPQ smaller than 7

(-q 7) were skipped and only proper pairs (-f2) were selected. Further data processing was carried

out using the R/Bioconductor environment. Antisense bias (ratio of spurious reads originating from

the opposite strand introduced by the RT reactions) was determined using positions in regions with-

out antisense annotation with a coverage of at least 100 according to Refseq annotated genes

(UCSC RefSeq GRCh38). mNET-seq coverage tracks were size factor normalized on 260 TUs that

showed a response of less than 5% (ri<0:05) in the TT-seq signal upon 1-NA-PP1 (CDK9as inhibitor)

treatment. The response ratio ri was determined as described above including also TUs with multiple

TSS to extend the number of TUs for normalization. Note that variation of the response ratio cutoff

and thereby the number of TUs available for normalization does virtually not change the normaliza-

tion parameters. Coverage tracks for further analysis were restricted to the last nucleotide incorpo-

rated by the polymerase in the aligned mNET-seq reads.

Detection of pause sites
For all expressed TUs i exceeding 10 kbp in length with one unique TSS given all Refseq annotated

isoforms (UCSC RefSeq GRCh38) the pause site m* was calculated for all bases m in a window from

the TSS to the end of the first exon (excluding the last 5 bases) via maximizing the function

�i ¼
m

maxpim

where �i needed to exceed 5 times the median of the signal strength pim for all non-negative anti-

sense bias corrected mNET-seq coverage values (Nojima et al., 2015). Note that all provided cover-

age tracks were used.

DNA-RNA and DNA-DNA melting temperature calculation
The gene-wise mean melting temperature of the DNA-RNA and DNA-DNA hybrid was calculated

from subsequent melting temperature estimates of 8-base pair DNA-RNA and DNA-DNA duplexes

tiling the respective area according to (SantaLucia, 1998; Sugimoto et al., 1995).

Molecular weight conversions
The known sequence and mixture of the utilized spike-ins allows to calculate a conversion factor to

RNA amount per cell [cell�1] given their molecular weight assuming perfect RNA extraction. The

number of spike-in molecules per cell N [cell�1] was calculated as

N ¼
m

Mn
NA

with the number of spike-ins m 25.10�9 [g], the number of cells n 3.27.107, the Avogadro constant

NA 6.02214085774.1023 [mol�1] and molar-mass (molecular weight) of the spike-ins M [g mol�1] cal-

culated as
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M ¼ An � 329:2 þ 1� tð Þ �Un � 306:2 þ Cn � 305:2 þ Gn � 345:2 þ t � 4sUn � 322:26 þ 159

where An, Un, Cn, Gn and 4sUn are the number of each respective nucleotide within each spike-in

polynucleotide. t - 1 is set to 0.1 in case of a labeled spike-in and 0 otherwise. The addition of 159

to the molecular weight takes into account the molecular weight of a 5’ triphosphate. Provided the

above the conversion factor to RNA amount per cell k - 1 [cell�1] can be calculated as

k¼ mean
i

median
tbi

Li �N

� �� �

for all labeled spike-in species i with length Li. Note that imperfect RNA extraction efficiency

would lead to an underestimation of cellular labeled RNA in comparison to the amount of added

spike-ins and thus to an underestimation of initiation frequencies. In case of a strong underestima-

tion however the real initiation frequencies would lie above the pause-initiation limit, which is theo-

retically impossible. Thus we assume this effect to be insignificant.

Estimation of initiation frequency I
The antisense bias corrected number of transcribed bases tbControli was calculated on all expressed

TUs i exceeding 10 kbp in length. Of all remaining TUs only those were kept harboring one unique

TSS given all Refseq annotated isoforms (UCSC RefSeq GRCh38). For each TU i the productive initia-

tion frequency Ii [cell
�1min�1], which corresponds to the pause release rate, was calculated as

Ii ¼
1

k

�
tbControli

t �Li

with labeling duration t = 5 [min] and length Li. Note that tbControli and Li were restricted to regions

of non-first constitutive exons (exonic bases common to all isoforms).

Estimation of pause duration d
For all expressed TUs i exceeding 10 kbp in length with one unique TSS given all Refseq annotated

isoforms (UCSC RefSeq GRCh38) the pause duration di [min] was calculated as the residing time of

the polymerase in a window ±100 bases m around the pause site (see above) as

di ¼

P

þ=�100
pim

Ii
:

i
median

vi

Iiviðt� � tÞ=
P

response window pim

 !

with pause release rate Ii and the number of polymerases pim (antisense bias corrected mNET-seq

coverage values [Nojima et al., 2015]) in a window ±100 bases around the pause site. For pause

sites below 100 bp downstream of the TSS the first 200 bp of the TU were considered. Note that

the right part of the formula is restricted to mNETseq instances above the 50% quantile for robust-

ness and adjusts di to an absolute scale by comparing the CDK9 derived elongation velocities vi with

those derived from combining mNET-seq and TT-seq data in the response window 200;vi t
� � tð Þ½ �.

Pause-initiation limit
The previously derived inequality from (Ehrensberger et al., 2013)

v

I
� 50 bp½ �

states that new initiation events into productive elongation are limited by the velocity of the poly-

merase in the promoter-proximal region and that steric hindrance occurs below a distance of 50 bp

between the active sites of the initiating Pol II and the paused Pol II. Given the calculations of pause

duration d and (productive) initiation frequency I above, we can reformulate this inequality to

200 bp½ �

d � I
� 50 bp½ �

with 200 [bp] being the above defined pause window.
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Simulation of TT-seq data based on elongation velocity profiles
Based on the following model we simulated TT-seq coverage values by providing elongation velocity

profiles v tð Þ, a labeling duration tlab and a uracil content dependent labeling bias

lf ¼ 1� 1� plab
� �#uf

plab denotes the labeling probability (set to 0.05) and #uf the number of uracil residues of a given

fragment f (set to 0.28 times fragment length). The elongation velocity profile v tð Þ can be used to

calculate the number of elongated positions of the polymerase t tð Þ at timepoint t as

t tð Þ ¼

Z t

0

v tð Þdt

Given the transcription start site t 0ð Þ the number of elongated positions t tð Þ can be used to

determine the end of an emerging nascent fragment f . Based on that we determined the start posi-

tion of a fragment as t max t� tlab;0
� �� �

for each labeling duration tlab as the position of the polymer-

ase at the beginning of the labeling process. Subsequently, we used the number of uracil residues

present in the RNA fragment #uf to weight the amount of coverage contributed by this fragment as

lf . Additionally, we applied a size selection similar to that in the original protocol for fragments

below 80 bp in length with a sigmoidal curve that mimics a typical size selection spread. Given a

pause position of 80 bp downstream of the TSS and pause duration of 1 or 2 min we adjusted the

elongation velocity profile to simulate polymerase pausing. Note that neither reasonable changes in

labeling probability, size selection probability nor changes in uracil residue content change the gen-

eral observation that longer pause durations induce a greater shortage of TT-seq coverage in the

region between the TSS and the pause site.

Estimation of gene-wise elongation velocity (without of response ratio)
For each condition j (control or CDK9as inhibited) the antisense bias corrected number of transcribed

bases tb
j
i was calculated on all expressed TUs i exceeding 35 kbp in length, excluding the first 200

bp. All TUs were truncated by 5 kb in length from the 3’ end prior to calculation to avoid influence

of some alterations in signal around the pA site after CDK9as inhibition (Laitem et al., 2015). Of all

remaining TUs only those were kept harboring one unique TSS given all Refseq annotated isoforms

(UCSC RefSeq GRCh38). For each TU i with ri>0:25 the cumulative sums of the difference of the

number of transcribed bases tbji for each base k was calculated as

S0 ¼ 0 Sn ¼ Sn�1 þ tbControli � tbCDK9
as inhibited

i

starting at the unique TSS (position 0) to n¼ Li the length of the TU. A elongation length estimate

L
response window
i was then calculated by finding an optimal fit for n between 0 to Li, that is maximizing

the function

gain¼ n
max Sn �Li

n¼1::Li
max Sn

� nþ 1

0

@

1

A

on the interval [0, Li]. In words, finding the maximum of the cumulative sums of difference in cov-

erage rotated 45 degrees clockwise. The elongation velocity v̂i [kbp/min] was subsequently calcu-

lated as

v̂i ¼
L
response window
i

t�� tð Þ

with inhibitor treatment duration t*=15 [min] and labeling duration t = 5 [min].
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Estimation of pause duration d̂ (without of initiation frequency).
For all expressed TUs i exceeding 10 kb in length with one unique TSS given all Refseq annotated

isoforms (UCSC RefSeq GRCh38) the pause duration d̂i [min] was calculated as the residing time of

the polymerase in a window ±100 bases m around the pause site (see above) as

d̂i ¼

P

þ=�100
pim:L

response window
i

P

response window pim:v̂i

with elongation length estimate L
response window
i and the number of polymerases pim (antisense bias

corrected mNET-seq coverage values) in a window ±100 bases around the pause site. For pause

sites below 100 bp downstream of the TSS the first 200 bp of the TU were considered. Note that d̂i
was adjusted to the height as di by a single proportionality factor for visualization purposes.

In vivo RNA secondary structure (DMS-seq [Rouskin et al., 2014])
The gene-wise DMS-seq coverage (300 ml in vivo) for a window of [�15,–65] bp upstream of the

pause site was normalized by subtraction from the respective DMS-seq coverage (denatured) allow-

ing for maximal 5% negative values which were set to 0 (sequencing depth adjustment). The gene-

wise mean values were subsequently normalized by dividing with the initiation frequency. Note that

the latter normalization has an insignificant effect.

Prediction of RNA secondary structure
The gene-wise mean minimum free energy for a window of [�15,–65] bp upstream of the pause site

was calculated from subsequent minimum free energy estimates of 13-base pair RNA fragments til-

ing the respective area using RNAfold from the ViennaRNA package (Lorenz et al., 2011).
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