
ar
X

iv
:1

71
0.

09
47

0v
1 

 [
m

at
h.

N
A

] 
 2

5 
O

ct
 2

01
7

AN INEXACT NEWTON-KRYLOV METHOD FOR STOCHASTIC

EIGENVALUE PROBLEMS

PETER BENNER∗, AKWUM ONWUNTA† AND MARTIN STOLL‡

Abstract. This paper aims at the efficient numerical solution of stochastic eigenvalue problems.
Such problems often lead to prohibitively high dimensional systems with tensor product structure
when discretized with the stochastic Galerkin method. Here, we exploit this inherent tensor product
structure to develop a globalized low-rank inexact Newton method with which we tackle the stochastic
eigenproblem. We illustrate the effectiveness of our solver with numerical experiments.
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1. Introduction. In many areas of computational science and engineering, eigen-
value problems play an important role. This is, for example, the case in structural
mechanics, where eigenvalue problems typically appear in the context of vibrations
and buckling. For deterministic problems, there are currently well-established algo-
rithms dedicated to the computation of eigenvalues and eigenvectors, see, e.g., [20].
However, in many cases of practical interest, physical characteristics are not always
completely deterministic. For instance, the stiffness of a plate can locally be reduced
by material imperfections, or the velocity of a flow can be influenced by turbulence. In
recent times, an increasingly important way to model such problems is by describing
the uncertain problem characteristics more realistically using random variables. By
doing so, one would then gain more insight regarding the effect of the uncertainties
on the model. This approach then leads to a stochastic eigenvalue problem (SEVP).

It is worth pointing out that the consequence of modeling the input parameters of
a physical problem as random variables is that the desired output naturally inherits
the stochasticity in the model. Generally speaking, there are two broad techniques
for analyzing and quantifying uncertainty in a given model: simulation-based meth-
ods and expansion-based methods. In the simulation- (or sampling-) based methods,
the stochastic moments of the eigenvalues and eigenvectors are obtained by generat-
ing ensembles of random realizations for the prescribed random inputs and utilizing
repetitive deterministic solvers for each realization. Prominent among this class of
methods is the classical Monte Carlo method. This method has been applied to many
problems and its implementations are straightforward. It is (formally) independent of
the dimensionality of the random space; that is, it is independent of the number of ran-
dom variables used to characterize the random inputs. It does, however, exhibit a very
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2 Efficient solvers for stochastic eigenvalue problems

slow convergence rate [39]. To accelerate its convergence, several techniques have been
developed: the multilevel Monte Carlo method [10], the quasi-Monte Carlo method
[26], the Markov chain Monte Carlo method [19], etc. Although these methods can
improve the efficiency of the traditional Monte Carlo method, additional restrictions
are imposed based on their specific designs and their applicability is limited.

The expansion-based methods for uncertainty analysis and quantification are of-
ten designed to retain the advantages of Monte Carlo simulations; in particular, they
enable one to compute the full statistical characteristics of the solution, while reduc-
ing the simulation time. A typical example of the expansion-based methods are the
spectral stochastic finite element methods (SFEM) [18, 30]; they rely on the approxi-
mation of the random eigenvalues and eigenvectors by projecting them onto a global
basis and are considerably less expensive than the simulation-based methods. We
will, in particular, employ mainly SFEM in this paper.

During the last two decades, there has been a lot of research on SFEM for un-
certainty analysis and quantification for solutions of partial differential equations
[3, 4, 30]. However, SFEM for SEVPs has been so far much less addressed in the
literature. To a great extent, most research on SEVPs has, in fact, focused more on
simulation-based techniques [31, 35]. Nevertheless, relatively few attempts have been
made to approximate the stochastic moments of both the eigenvalues and eigenvec-
tors through the use of spectral methods [17, 21, 42]. In [42], the authors propose
algorithms based on the inverse power method together with spectral methods for
computing approximate eigenpairs of both symmetric and non-symmetric SEVPs.
The method proposed in [17] essentially rewrites the eigenvalue problem resulting
from a spectral discretization (which we henceforth refer to as stochastic Galerkin
method (SGM)) as a set of nonlinear equations with tensor product structure, which
are then solved using the Newton-Raphson method. In the spirit of [17], this paper
presents an algorithm to determine the spectral expansions of the eigenvalues and
the eigenvectors based on a Newton’s method and SGM. However, unlike [17], this
work specifically focuses on the use of a globalized low-rank inexact Newton method to
tackle the eigenproblem.

Now, recall that under certain conditions, the iterates produced by the Newton’s
method converge quadratically to a solution x∗ of a given nonlinear system, and those
of the inexact Newton method can obtain super-linear convergence [1, 14, 36]. Both
cases, however, assume an initial guess x0 sufficiently close to x∗. Generally speaking,
globalizing the inexact Newton method means augmenting the method with additional
conditions on the choices of iterates {xk} to enhance the likelihood of convergence to
x∗, see e.g. [36] for details of different globalization techniques. The advantages
of globalization notwithstanding1, a drawback of Newton-type methods is that for
fairly large eigenproblems such as the SEVPs considered in this work, they require
considerable computational effort to solve the linear system arising from each Newton
step. The aim of this paper is therefore to mitigate this computational challenge by
exploiting the inherent tensor product structure in the SEVP to tackle the stochastic
eigenproblem. More precisely, we combine low-rank Krylov solvers with a globalized
inexact Newton method to efficiently solve SEVPs.

The rest of the paper is organized as follows. In Section 2, we present the problem
that we would like to solve in this paper. Next, Section 3 gives an overview of the

1It is important to note that no globalization strategy determines a sequence that converges to a
solution for every problem; rather, globalization techniques are essentially used only to enhance the
likelihood of convergence to some solution of the problem.
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stochastic Galerkin method on which we shall rely to discretize our model problem.
After discussing our globalized low-rank inexact Newton solver in Section 4, we pro-
ceed to Section 5 to provide the numerical results to buttress the efficiency of the
proposed solver, while Section 6 draws some conclusions on the findings in this work.

2. Problem statement. Let the triplet (Ω,F ,P) denote a complete probability
space, where Ω is the set of elementary events, F ⊂ 2Ω is a σ-algebra on Ω and
P : F → [0, 1] is an appropriate probability measure. Let D ⊂ R

d with d ∈ {1, 2, 3},
be a bounded physical domain. In this paper, we consider the following eigenvalue
problem for an Nx-dimensional real symmetric random matrix

A(ω)ϕ(ω) = λ(ω)ϕ(ω),(2.1)

subject to the normalization condition

ϕ(ω)Tϕ(ω) = 1,(2.2)

where

λ(ω) ∈ R, ϕ(ω) ∈ R
Nx , A(ω) ∈ R

Nx×Nx , ω ∈ Ω.

The matrix A(ω) represents, for example, the stiffness matrix in a structural me-
chanics problem [17]. In this case, the stochasticity in A(ω) is often inherited from
the randomness in the underlying physical system such as elastic and dynamic pa-
rameters. Moreover, we assume that the randomness in the model is induced by a
prescribed finite number of random variables ξ := {ξ1, ξ2, . . . , ξm}, where m ∈ N and
ξi(ω) : Ω → Γi ⊆ R. We also make the simplifying assumption that each random vari-
able is independent and characterized by a probability density function ρi : Γi → [0, 1].
If the distribution measure of the random vector ξ(ω) is absolutely continuous with
respect to the Lebesgue measure, then there exists a joint probability density function
ρ : Γ → R

+, where ρ(ξ) =
∏m

i=1 ρi(ξi), and ρ ∈ L∞(Γ). Furthermore, we can now
replace the probability space (Ω,F ,P) with (Ω,B(Γ), ρ(ξ)dξ), where B(Γ) denotes the
Borel σ-algebra on Γ and ρ(ξ)dξ is the finite measure of the vector ξ. Then, the ex-
pected value of the product of measurable functions on Γ determines the Hilbert space
L2
ρ(Ω,B(Γ), ρ(ξ)dξ), with inner product

〈u, v〉 := E[uv] =

∫

Γ

u(ξ)v(ξ)ρ(ξ)dξ,

where the symbol E denotes mathematical expectation.
In this paper, we assume that the random matrix A(ω) in (2.1) admits the rep-

resentation

A(ω) = A0 +

m∑

k=1

ξk(ω)Ak, m ∈ N, Ak ∈ R
Nx×Nx , k = 0, 1, . . . ,m,(2.3)

where {ξk} are independent random variables. This is indeed the case if a Karhunen-
Loève expansion (KLE) is used to discretize random stiffness properties; see, e.g.,
[21, 30, 27]. Furthermore, the stochastic eigenvalues and eigenvectors in this work
are approximated using the so-called generalized polynomial chaos expansion (gPCE)
[3, 27, 43]. More precisely, the ℓth random eigenvalue and eigenvector are given,
respectively, as

λℓ(ω) =

Nξ−1
∑

k=0

λ
(ℓ)
k ψk(ξ(ω)), λ

(ℓ)
k ∈ R,(2.4)
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and

ϕℓ(ω) =

Nξ−1
∑

k=0

ϕ
(ℓ)
k ψk(ξ(ω)), ϕ

(ℓ)
k ∈ R

Nx ,(2.5)

where {ψi} are multidimensional Legendre basis polynomials expressed as functions
of the random vector ξ, with properties

E(ψk) = δk0 and E(ψjψk) = δjkE(ψ
2
k).

The spectral expansions (2.4) and (2.5) are the gPCE of the random quantities λℓ(ω)
and ϕℓ(ω), respectively. Throughout this paper, we use normalized Legendre basis
polynomials in which case E(ψ2

i ) = 1, so that E(ψiψj) = δij . We remark here that
Nξ in (2.4) and (2.5) is chosen in such a way that Nξ > m. In particular, using total
degree Legendre polynomials ψi yields

Nξ = (m+ r)!/m!r!,(2.6)

where r is the degree of ψi, see e.g. [30].
In what follows, we will, for notational convenience, omit the index ℓ associated

with the ℓth eigenpair. It is pertinent to note here the difference between the structure
of a deterministic and a random eigenproblem. In the deterministic case, a typical
eigenpair is of the form (λ, ϕ), where λ ∈ R and ϕ ∈ R

Nx , with Nx denoting the
size of the deterministic matrix A. In the stochastic case, however, the eigenpair
corresponding to ℓth physical mode consists of the set

x := {λ0, λ1, . . . , λNξ−1, ϕ0, ϕ1, . . . , ϕNξ−1}.(2.7)

3. Stochastic Galerkin method. The stochastic Galerkin method is based on
the projection

〈Aϕ, ψk〉 = 〈λϕ, ψk〉 , k = 0, . . . , Nξ − 1, ℓ = 1, . . .Nx.(3.1)

Substituting (2.3), (2.4), and (2.5) into (3.1) yields the nonlinear algebraic equations

m−1∑

i=0

Nξ−1
∑

j=0

E(ξiψjψk)Aiϕj =

Nξ−1
∑

i=0

Nξ−1
∑

j=0

E(ψiψjψk)λiϕj , k = 0, . . . , Nξ − 1,(3.2)

which can be rewritten in Kronecker product notation as

[

G0 ⊗A0 +
m∑

k=1

Gk ⊗Ak

]

︸ ︷︷ ︸

:=A

Φ =






Nξ−1
∑

k=0

λk (Hk ⊗ I)
︸ ︷︷ ︸

:=Bk




Φ,(3.3)

where I is the identity matrix and







G0 = diag
(〈
ψ2
0

〉
,
〈
ψ2
1

〉
, . . . ,

〈

ψ2
Nξ−1

〉)

,

Gk(i, j) = 〈ψiψjξk〉 , k = 1, . . . ,m,

Hk(i, j) = 〈ψiψjψk〉 , k = 0, . . . , Nξ − 1,

Φ =
(
ϕ0, ϕ1, . . . , ϕNξ−1

)
∈ R

NxNξ .

(3.4)
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Here, the block A0 (as well as A itself) is symmetric and positive definite; it captures
the mean information in the model and appears on the diagonal blocks of A, whereas
the other blocks Ak, k = 1, . . . ,m, represent the fluctuations in the model. Moreover,
the random variables {ξk}mk=1 are centered, normalized and independent; see e.g., [30].

Recalling that Nξ > m, we see that (3.3) can also be expressed as

Nξ−1
∑

k=0

[(Gk ⊗Ak)− λk(Hk ⊗ I)] Φ

︸ ︷︷ ︸

:=E

= 0, Gk = Ak = 0, for k > m.(3.5)

Now, observe that the problem (3.3) can be considered as an eigentuple-eigenvector
problem:

AΦ =

Nξ−1
∑

k=0

λkBkΦ,(3.6)

in which one needs to find an eigentuple Λ := (λ0, . . . , λNξ−1) ∈ R
Nξ and an eigen-

vector Φ ∈ R
NxNξ , where A :=

∑m
k=0Gk ⊗ Ak and Bk := λk(Hk ⊗ I). Note that

B0 := H0 = G0 = I. Thus, the case k = 0 in (3.6) corresponds to the standard
deterministic eigenproblem

AΦ = λ0Φ,(3.7)

which has already been studied extensively [33]. For k = 1 (that is, Nξ = 2), we
obtain

(A− λ1B1)Φ = λ0B0Φ,(3.8)

which yields a standard eigenproblem for each fixed value of λ1. Moreover, since A,B0

and B1 are symmetric matrices (with B0 being positive definite), we have a continuum
of real solutions λ0(λ1) parameterized by λ1. The existence of the continuum of real
solutions is not surprising since there are 2Nx + 2 = 2(Nx + 1) unknowns (that is,
λ0, λ1 and the components of Φ) in only 2Nx equations. To circumvent this situation,
it is proposed in [17] to prescribe an additional condition via the normalization of the
eigenvectors as in (2.1). This could then make it feasible to determine λ1 and thereby
reduce the two-parameter problem (3.8) to a one-parameter eigenproblem (3.7). Thus,
the existence of a continuum of real solutions could make (3.8) numerically tractable
by permitting its reduction to a sequence of solutions of (3.7), see e.g. [6] for details.

The two-parameter eigenproblem has been considered by Hochstenbach and his
co-authors in [22, 23] following a Jacobi-Davidson approach. However, unlike the
problem under consideration in this work, for which the resulting system is coupled,
these authors focused on decoupled systems. Moreover, the approach that the authors
adopted is quite complicated for two-parameter problems and can hardly be applied
to multi-parameter eigenproblems considered in this paper. The approach considered
here follows closely the framework of [17]. More specifically, our method relies on a
Newton-Krylov solution technique, which we proceed to discuss in Section 4.
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4. Newton-Krylov approaches.

4.1. The Newton system for stochastic eigenvalue problem. As we al-
ready pointed out in Section 3, the problem (3.6) contains more unknowns than
equations. As suggested in [17], we incorporate the normalization condition of the
eigenvectors so that the random eigenproblem is posed as a set of

NxNξ +Nξ = (Nx + 1)Nξ(4.1)

non-linear deterministic equations for each physical mode of the stochastic system.
To this end, observe that SGM discretization of (2.2) yields [17]

Nξ−1
∑

i=0

Nξ−1
∑

j=0

E(ψiψjψk)ϕ
T
i ϕj = δk0, k = 0, . . . , Nξ − 1,(4.2)

or, equivalently,

ΦT (Hk ⊗ I)Φ = δk0, k = 0, 1, . . . , Nξ − 1.(4.3)

The Newton’s method is a well-established iterative method. For a well-chosen
initial iterate, the method exhibits local quadratic convergence. In this method, (3.5)
and (4.3) are simultaneously expressed in the form F (x) = 0, where x = (Λ,Φ) ∈
R

(Nx+1)Nξ is a vector containing the solution set defined in (2.7). More precisely, we
have

F (x) =










∑Nξ−1
k=0 [(Gk ⊗Ak)− λk(Hk ⊗ I)] Φ

ΦT (H0 ⊗ I)Φ− 1
ΦT (H1 ⊗ I)Φ

...
ΦT (HNξ−1 ⊗ I)Φ










=








0
0
...
0







.(4.4)

The Newton iteration for F (x) = 0 results from a multivariate Taylor expansion
about a current point xk :

F (xk+1) = F (xk) + F ′(xk)(xk+1 − xk) + higher-oder terms.

Setting the left-hand side to zero and neglecting the terms of higher-order curvature
yields a Newton method; that is, given an initial iterate x0, we obtain an iteration
over a sequence of linear systems (or the Newton equations)

F (xk) + F ′(xk)sk = 0,(4.5)

where xk is the current iterate. Moreover, F (x) is the vector-valued function of non-
linear residuals and J := F ′ is the associated Jacobian matrix, x is the state vector to
be found, and k is the iteration index. Forming each element of J requires taking ana-
lytic or discrete derivatives of the system of equations with respect to xk. The solution
sk := δxk = xk+1−xk is the so-called Newton step. Once the Newton step is obtained,
then the next iterate is given by xk+1 = xk + sk and the procedure is repeated until
convergence with respect to the prescribed tolerance is achieved. More specifically,
given an initial approximation, say, (v, θ) := (v0, v1, . . . , vNξ

, θ0, θ1, . . . , θNξ
) ≈ (Φ,Λ),

the next approximation (v+, θ+) in the Newton’s method is given by
[
v+

θ+

]

=

[
v
θ

]

−
[
T (θ) T ′(θ)v
Q′(v) 0

]−1

︸ ︷︷ ︸

J :=F ′

[
T (θ)v
Q(v)

]

︸ ︷︷ ︸

F

,(4.6)
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where [17]

T (θ) =

Nξ−1
∑

k=0

[(Gk ⊗Ak)− θk(Hk ⊗ I)] ∈ R
NxNξ×NxNξ ,(4.7)

T (θ)v =

Nξ−1
∑

k=0

[(Gk ⊗Ak)− θk(Hk ⊗ I)] v ∈ R
NxNξ ,(4.8)

T ′(θ)v = −
Nξ−1
∑

k=0

(Hk ⊗ vk) ∈ R
NxNξ×Nξ ,(4.9)

Q(v) = d :=
[
vT (H0 ⊗ I)v − 1, · · · , vT (HNξ−1 ⊗ I)v

]T ∈ R
Nξ ,(4.10)

and

Q′(v) = 2

Nξ−1
∑

k=0

(Hk ⊗ vTk ) ∈ R
NxNξ×Nξ .(4.11)

4.2. Inexact Newton method. Notwithstanding the locally quadratic conver-
gence and simplicity of implementation of the Newton’s method, it involves enormous
computational cost, particularly when the size of the problem is large. In order to
reduce the computational complexity associated with the method, Dembo, Eisenstat
and Steihaug proposed in [11] the inexact Newton method as given by Algorithm 1,
which is a generalization of the Newton’s method.

The condition in line 5 of the algorithm is the inexact Newton condition. Note that
the real number ηk in Algorithm 1 is the so-called forcing term for the k-th iteration
step. At each iteration step of the inexact Newton method, ηk should be chosen first,
and then an inexact Newton step sk is obtained by solving the Newton equations
(4.5) approximately with an efficient solver for systems of linear equations. Quite
often, the linear system to be solved at each inexact Newton step is so large that it
cannot be solved by direct methods. Instead, modern iterative solvers such as Krylov
subspace methods [32] are typically used to solve the linear systems approximately.
This leads to a special kind of inexact Newton method, commonly referred to as
inexact Newton-Krylov subspace method, which is very popular in many application
areas [1, 25, 36].

We point out here that it is nevertheless hard to choose a good sequence of forcing
terms. More precisely, there may be a trade-off between the effort required to solve
the linear system to a tight tolerance and the resulting required number of nonlinear
iterations. Too large a value for ηk results in less work for the Krylov method but more
nonlinear iterations, whereas too small a value for ηk results in more Krylov iterations
per Newton iteration. Examples of this trade-off between total nonlinear iterations
and execution time can be found in, for instance, [25] in the context of solution of
Navier-Stokes equations. Several strategies for optimizing the computational work
with a variable forcing term ηk are given in [1, 14]. At any rate, it is important to
note that that choice of the forcing terms should be related to specific problems and
the information of F (x) should be used effectively [1].
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Algorithm 1 Inexact Newton Method (INM)

1: Given x0 ∈ R
(Nx+1)Nξ

2: for k = 0, 1, . . . (until {xk} convergence) do
3: Choose some ηk ∈ [0, 1).
4: Solve the Newton equations (4.5) approximately to obtain a step sk such that
5: ||F (xk) + F ′(xk)sk|| ≤ ηk||F (xk)||.
6: Set xk+1 = xk + sk.

7: end for

For practical computations, there are some concrete strategies, one of which was
proposed originally by Dembo and Steihaug in [12], namely,

ηk = min{1/(k + 2), ||F (xk)||}.(4.12)

Moreover, Cai et. al in [9] propose the following constant forcing terms:

ηk = 10−4.(4.13)

Two other popular adaptive strategies were proposed by Eisenstat and Walker in [14]:
(a) Given some η0 ∈ [0, 1), choose

ηk =







ζk, η
(1+

√
5)/2

k−1 ≤ 0.1,

max
{

ζk, η
(1+

√
5)/2

k−1

}

, η
(1+

√
5)/2

k−1 > 0.1,

where

ζk =
||F (xk)− F (xk−1)− F ′(xk−1)sk−1||

||F (xk−1)||
, k = 1, 2 . . .

or

ζk =
| ||F (xk)|| − ||F (xk−1) + F ′(xk−1)sk−1|| |

||F (xk−1)||
, k = 1, 2 . . .

(b) Given some τ ∈ [0, 1), ω ∈ [1, 2), η0 ∈ [0, 1), choose

ηk =

{

ζk, τηωk−1 ≤ 0.1,

max
{
ζk, τη

ω
k−1

}
, τηωk−1 > 0.1,

where

ζk = τ

( ||F (xk)||
||F (xk−1)||

)ω

, k = 1, 2 . . .

The numerical experiments in [14] show that the above two choices (a) and (b) can
effectively overcome the ‘over-solving’ phenomenon, and thus improve the efficiency of
the inexact Newton method2. In particular, the authors added safeguards (bounds) to

2The concept of ‘over-solving’ implies that at early Newton iterations ηk is too small. Then one
may obtain an accurate linear solution to an inaccurate Newton correction. This may result in a
poor Newton update and degradation in the Newton convergence. In [40] it has been demonstrated
that in some situations the Newton convergence may actually suffer if ηk is too small in early Newton
iterations.
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choice (a) and (b) to prevent the forcing terms from becoming too small too quickly,
so that more concrete strategies are obtained. Besides, choice (a) and choice (b) with
τ ≥ 0.9 and ω ≥ (1 +

√
5)/2 have the best performances. We adopt choice (b) in our

numerical experiments.
The inexact Newton method is locally convergent as shown in the following result

from [11].
Theorem 4.1. [11, Theorem 2.3] Assume that F : Rn → R

n is continuously
differentiable, x∗ ∈ R

n such that F (x∗) = 0 and F ′(x∗) is nonsingular. Let 0 < ηk <
ηmax < t < 1 be given constants. If the forcing terms {ηk} in the inexact Newton
method satisfy ηk ≤ ηmax < t < 1 for all k, then there exists ε > 0, such that for
any x0 ∈ Nε(x

∗) := {x : ||x − x∗|| < ε}, the sequence {xk} generated by the inexact
Newton method converges to x∗ , and

||xk+1 − xk||∗ ≤ t||x− x∗||∗,

where ||y||∗ = ||F ′(x∗)y||.
By Theorem 4.1, if the forcing terms {ηk} in the inexact Newton method are

uniformly strict less than 1, then the method is locally convergent. The convergence
rate of the inexact Newton method is, moreover, established in the following result
from [11].

Theorem 4.2. [11, Corollary 3.5] Assume that F : Rn → R
n is continuously

differentiable, x∗ ∈ R
n such that F (x∗) = 0 and F ′(x∗) is nonsingular. If the sequence

{xk} generated by inexact Newton method converges to x∗, then
• {xk} → x∗ super-linearly when ηk → 0.
• {xk} → x∗ quadratically when ηk = O(||F (xk)||) and ||F ′(x)|| is Lipschitz
continuous at x∗.

For more details of local convergence theory and the role played by the forcing
terms in inexact Newton methods, see e.g., [1, 14]. We proceed next to give an
overview of Krylov subspace methods.

4.3. Krylov subspace methods. Krylov subspace methods are probably the
most popular methods for solving large, sparse linear systems (see e.g. [15] and the
references therein). The basic idea behind Krylov subspace methods is the following.
Consider, for arbitrary A ∈ R

m×m and b ∈ R
m, the linear system

Ax = b.(4.14)

Suppose now that x0 is an initial guess for the solution x of (4.14), and define the
initial residual r0 = b − Ax0. Krylov subspace methods are iterative methods whose
kth iterate xk satisfies 3

xk ∈ x0 +Kk(A, x0), k = 1, 2, . . . ,(4.15)

where

Kk(A, x0) := span
{
r0, Ar0, . . . , A

k−1r0
}

(4.16)

denotes the kth Krylov subspace generated by A and r0. The Krylov subspaces form
a nested sequence that ends with dimension d = dim(Km(A, r0)) ≤ m, i.e.,

K1(A, r0) ⊂ . . . ⊂ Kd(A, r0) = · · · = Km(A, r0).

3Krylov methods require only matrix-vector products to carry out the iteration (not the individ-
ual elements of A) and this is key to their use with the Newton’s method, as will be seen below.
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In particular, for each k ≤ d, the Krylov subspace Kk(A, r0) has dimension k. Because
of the k degrees of freedom in the choice of the iterate xk, k constraints are required
to make xk unique. In Krylov subspace methods this is achieved by requiring that the
kth residual rk = b−Axk is orthogonal (with respect to the Euclidean inner product)
to a k-dimensional space Ck, called the constraints space:

rk = b−Axk ∈ r0 +AKk(A, r0),(4.17)

where rk ⊥ Ck. It can be shown [5] that there exists a uniquely defined iterate xk of
the form (4.15) and for which the residual rk = b−Axk satisfies (4.17) if

(a) A is symmetric positive definite and Ck = Kk(A, r0), or
(b) A is nonsingular and Ck = AKk(A, r0).

In particular, (a) characterizes the conjugate gradient (CG) method [15] whereas (b)
characterizes the minimal residual (MINRES) method [28], the generalized minimal
residual (GMRES) method [34], and the bi-conjugate gradient stabilized (BiCGstab)
method [41].

A vast majority of fully coupled nonlinear applications of primary interest (includ-
ing the one considered herein) result in Jacobian matrices that are non-symmetric.
A further point of discrimination is whether the method is derived from the long-
recurrence Arnoldi orthogonalization procedure, which generates orthonormal bases
of the Krylov subspace, or the short-recurrence Lanczos bi-orthogonalization proce-
dure, which generates non-orthogonal bases for non-symmetric matrices A.

Note that GMRES is an Arnoldi-based method. In GMRES, the Arnoldi ba-
sis vectors form the trial subspace out of which the solution is constructed. One
matrix-vector product is required per iteration to create each new trial vector, and
the iterations are terminated based on a by-product estimate of the residual that
does not require explicit construction of intermediate residual vectors or solutions – a
major beneficial feature of the algorithm. GMRES has a residual minimization prop-
erty in the Euclidean norm (easily adaptable to any inner-product norm) but requires
the storage of all previous Arnoldi basis vectors. Full restarts, seeded restarts, and
moving fixed sized windows of Arnoldi basis vectors are all options for fixed-storage
versions. Full restart is simple and historically the most popular, though seeded
restarts show promise. The BiCGstab methods [41] are Lanczos-based alternatives
to GMRES for non-symmetric problems. In BiCGstab methods, the Lanczos basis
vectors are normalized, and two matrix-vector products are required per iteration.
However, these methods enjoy a short recurrence relation, so there is no requirement
to store many Lanczos basis vectors. These methods do not guarantee monotonically
decreasing residuals. We refer to [15] for more details on Krylov methods, and for
preconditioning for linear problems.

4.4. Inexact Newton-Krylov method with backtracking. In practice, glob-
alization strategies leading from a convenient initial iterate into the ball of convergence
of Newton’s method around the desired root are often required to enhance the robust-
ness of the inexact Newton method. More precisely, globalization implies augmenting
Newton’s method with certain auxiliary procedures that increase the likelihood of con-
vergence when good initial approximate solutions are not available. Newton-Krylov
methods, like all Newton-like methods, must usually be globalized. Globalizations
are typically structured to test whether a step gives satisfactory progress towards a
solution and, if necessary, to modify it to obtain a step that does give satisfactory
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Algorithm 2 Inexact Newton Backtracking Method (INBM)

1: Let x0 ∈ R
(Nx+1)Nξ , ηmax ∈ [0, 1), t ∈ (0, 1), and 0 < θmin < θmax < 1, be given.

2: for k = 0, 1, . . . (until {xk} convergence) do

3: Choose initial ηk ∈ [0, ηmax) and solve (4.5) approximately to obtain sk such that
4: ||F (xk) + F ′(xk)sk|| ≤ ηk||F (xk)||.
5: While ||F (xk + sk)|| > [1− t(1− ηk)]||F (xk)||
6: Choose θ ∈ [θmin, θmax].
7: Update sk ← θsk and ηk ← 1− θ(1− ηk).
8: Set xk+1 = xk + sk.

9: end for

progress [29]. A major class of globalization approaches4 which we consider in this
paper are the backtracking (line-search, damping) methods. In these methods, the
step lengths are adjusted (usually shortened) to obtain satisfactory steps. On the one
hand, backtracking methods have the attrative feature of the relative ease with which
they can be implemented; on the other hand, each step direction in these methods is
restricted to be that of the initial trial step, which may be a weak descent direction,
especially if the Jacobian is ill-conditioned [36].

The inexact Newton backtracking method (INBM) is given in Algorithm 2. In
this algorithm, the backtracking globalization resides in the while-loop, in which steps
are tested and shortened as necessary until the acceptability condition

||F (xk + sk)|| ≤ [1− t(1− ηk)]||F (xk)||,(4.18)

holds. As noted in [13], if F is continuously differentiable, then this globalization
produces a step for which (4.18) holds after a finite number of passes through the
while-loop; furthermore, the inexact Newton condition (cf. line 5 in Algorithm 1) still
holds for the final sk and ηk. The condition (4.18) is a ‘sufficient-decrease’ condition
on ||F (xk + sk)||.

In [14], the authors show with experiments that backtracking globalization sig-
nificantly improves the robustness of a Newton-GMRES method when applied to
nonlinear problems, especially when combined with adaptively determined forcing
terms. In this work, we combine the backtracking globalization with low-rank tech-
niques to tackle the high-dimensional stochastic eigenproblem. Our motivation for
employing low-rank techniques stems from the fact that despite the advantages of the
INKM with backtracking in solving nonlinear problems, for the stochastic problem
(2.1) – (2.2) under consideration, the dimensions of the Jacobian quickly become pro-
hibitively large with respect to the discretization parameters. As a consequence, one
expects overwhelming memory and computational time requirements, as the block-
sizes of the Jacobian matrix become vast. This is a major drawback of the SGM. In
this paper, we propose to tackle this curse of dimensionality with a low-rank version
of INKM. Low-rank strategies have proven to be quite efficient in solving problems
of really high computational complexity arising, for instance, from deterministic and
stochastic time-dependent optimal control problems [2, 4, 38], PDEs with random
coefficients [3, 27], etc. The low-rank technique presented here only needs to store a
small portion of the vectors in comparison to the full problem and we want present
this approach in the sequel.

4See e.g. [29, 36] for a detailed discussion on other globalization strategies such as trust-region
methods.
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4.5. Low-rank inexact Newton-Krylov method. As we have already noted
earlier, we will use a Krylov solver algorithm as an optimal solver for the Newton
equation (cf. (4.5) in step 3 in Algorithm 2) in each INKM iteration. In particular,
our approach is based on the low-rank version of the chosen Krylov solver. Although
the low-rank method discussed herein can be easily extended to other Krylov solvers
[3, 4, 38], we focus mainly on BiCGstab [24]. In this section, we proceed first to give
a brief overview of this low-rank iterative solver. Now, recall first that

vec(WXV ) = (V T ⊗W )vec(X),(4.19)

where vec(X) = (x1, . . . , xp)
T ∈ R

np×1 is a column vector obtained by stacking the
columns of the matrix X = [x1, . . . , xp] ∈ R

n×p on top of each other. Observe then
that, using (4.19), each Newton equation (4.5) can be rewritten as JX = R, where

J := F ′ =







Nξ−1∑

i=0

[(Gi − λiHi)⊗ (Ai − INx
)] −

Nξ−1∑

i=0

Hi ⊗ vi

2
Nξ−1∑

i=0

Hi ⊗ vTi 0






,

X := s =

[
vec(Y )
vec(Z)

]

, R := −F =

[
vec(R1)
vec(R2)

]

,

and

R1 = vec−1





Nξ−1
∑

i=0

[(Gi − λiHi)⊗ (Ai − INx
)] v



 , R2 = vec−1(d),

where d is as given by (4.10). Hence, (4.19) implies that

JX = vec





Nξ−1
∑

i=0

[

(Ai − INx)Y (Gi − λiHi)
T − viZHT

i

2vTi Y HT

i

]



 = vec

([

R1

R2

])

.(4.20)

Our approach is essentially based on the assumption that both the solution matrix
X admits a low-rank representation; that is,

{

Y =WY V
T
Y , with WY ∈ R

(Nx+1)×k1 , VY ∈ R
Nξ×k1

Z =WZV
T
Z , with WZ ∈ R

(Nx+1)×k2 , VZ ∈ R
Nξ×k2

(4.21)

where k1,2,3 are small relative to Nξ. Substituting (4.21) in (4.20) and ignoring the
vec operator, we then obtain5

Nξ−1
∑

i=0

[
(Ai − INx

)WY V
T
Y (Gi − λiHi)

T − viWZV
T
Z H

T
i

2vTi WY V
T
Y H

T
i

]

=

[
R11R

T
12

R21R
T
22

]

,(4.22)

where R11R
T
12 and R21R

T
22 are the low-rank representations of R1 and R2, respectively.

5Note that vi in (4.22) comes from the previous low-rank iterate of the nonlinear Newton solver.
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Algorithm 3 Jacobian-vector multiplication in low-rank format Amult

1: Input: W11,W12,W21,W22

2: Output: X11, X12, X21, X22

3: X11 =
Nξ−1∑

i=0

[ (Ai − I)W11 − viW21 ]

4: X12 = [ (Gi − λiHi)W12 · · · HiW22 ] , i = 0, · · · , Nξ − 1.

5: X21 =
Nξ−1∑

i=0

[
2vTi W11

]

6: X22 = [ HiW12 ] , i = 0, · · · , Nξ − 1.

The attractiveness of this approach lies therefore in the fact that one can rewrite
the three block rows in the left hand side in (4.22), respectively, as







(first block row)
Nξ−1
∑

i=0

[ (Ai − I)WY − viWZ ]

[

V T

Y (Gi − λiHi)
T

V T

Z HT

i

]

,

(second block row)
Nξ−1
∑

i=0

[ 2viWY ]
[

V T

Y HT

i

]

,

(4.23)

so that the low-rank nature of the factors guarantees fewer multiplications with the
submatrices while maintaining smaller storage requirements. More precisely, keeping
in mind that

(4.24) x = vec

([
X11X

T
12

X21X
T
22

])

corresponds to the associated vector x from a vector-based version of the Krylov solver,
matrix-vector multiplication in our low-rank Krylov solver is given by Algorithm 3.

Note that an important feature of low-rank Krylov solvers is that the iterates of
the solution matrices Y and Z in the algorithm are truncated by a truncation operator
Tǫ with a prescribed tolerance ǫ. This could be accomplished via QR decomposition as
in [24] or truncated singular value decomposition (SVD) as in [3, 38]. The truncation
operation is necessary because the new computed factors could have increased ranks
compared to the original factors in (4.23). Hence, a truncation of all the factors after
the matrix-vector products, is used to construct new factors; for instance,

[X̃11, X̃12] := Tǫ ([X11, X12]) = Tǫ





Nξ−1
∑

i=0

[ (Ai − I)WY − viWZ ]

[

V T

Y (Gi − λiHi)
T

V T

Z HT

i

]



 .

Moreover, in order to ensure that the inner products within the iterative low-rank
solver are computed efficiently, we use the fact that

〈x, y〉 = vec (X)
T
vec (Y ) = trace

(
XTY

)

to deduce that

trace
(
XTY

)
= trace






(
X11X

T
12

)T

︸ ︷︷ ︸

Large

(
Y11Y

T
12

)

︸ ︷︷ ︸

Large

+
(
X21X

T
22

)T

︸ ︷︷ ︸

Large

(
Y21Y

T
22

)

︸ ︷︷ ︸

Large






= trace



Y T
12X12

︸ ︷︷ ︸

Small

XT
11Y11

︸ ︷︷ ︸

Small

+ Y T
22X22

︸ ︷︷ ︸

Small

XT
21Y11

︸ ︷︷ ︸

Small



 ,(4.25)
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Algorithm 4 Preconditioner implementation in low-rank Krylov solver

1: Input: W11,W12,W21,W22

2: Output: X11, X12, X21, X22

3: Solve: (A0 − INx
)X11 =W11

4: Solve: (1− λ0)X12 =W12

5: Solve:
[
v0(A0 − INx

)−1vT0
]
X21 =W21

6: Solve: 2(1− λ0)
−1X22 =W12

where X and Y are as given in (4.24), which allows us to compute the trace of small
matrices rather than of the ones from the full model.

For more details on implementation issues, we refer the interested reader to [3, 38].

4.6. Preconditioning. The purpose of preconditioning the INBM is to reduce
the number of Krylov iterations, as manifested by efficiently clustering eigenvalues
of the iteration matrix. Traditionally, for linear problems, one chooses a few itera-
tions of a simple iterative method (applied to the system matrix) as a preconditioner.
Throughout this paper, we will focus mainly on mean-based block-diagonal precondi-
tioners. More specifically, we precondition the Jacobian matrix J (cf. (4.6) ) in the
INBM algorithm with a preconditioner P of the form

P :=

[
E 0
0 S

]

,(4.26)

where

S = CE−1B(4.27)

is the (negative) Schur complement. Moreover, E := T (Λ), B := T ′(Λ) and C :=
Q′(Φ) as given, respectively, by (4.7), (4.9) and (4.11). We note here that (4.26)
is only an ideal preconditioner for the Jacobian in the sense that it is not cheap to
solve the system with it. In practice, one often has to approximate its two diagonal
blocks in order to use P with Krylov solvers. Here, we propose to approximate the
(1, 1) blocks with (G0 − λ0H0) ⊗ (A0 − INx

) which is easy to invert: if we use the
normalized Legendre polynomial chaos to compute the matrices Gi and Hi, then
(G0 − λ0H0) = (1− λ0)INξ

so that action of the approximated (1, 1) block is just Nξ

copies of (A0 − INx
). To approximate the Schur complement S, that is, block (2, 2),

poses more difficulty, however. One possibility is to approximate S by dropping all
but the first terms in B,C and E to obtain

S0 := 2(1− λ0)
−1(INξ

⊗ v0)(INξ
⊗ (A0 − INx

)−1)(INξ
⊗ v0)

T

= 2(1− λ0)
−1INξ

⊗
[
v0(A0 − INx

)−1vT0
]
.(4.28)

This is the version we use in our experiments, and its implementation details are
provided in Algorithm 4.

5. Numerical results. In this section, we present some numerical results ob-
tained with the proposed inexact Newton-Krylov solver for the stochastic eigenprob-
lems (2.1). The numerical experiments were performed on a Linux machine with 80
GB RAM using MATLAB R© 7.14 together with a MATLAB version of the algebraic
multigrid (AMG) code HSL MI20 [7]. We implement our mean-based preconditioner



Efficient solvers for stochastic eigenvalue problems 15

using one V-cycle of AMG with symmetric Gauss-Seidel (SGS) smoothing to approx-
imately invert A0 − INx

. We remark here that we apply the method as a black-box in
each experiment and the set-up of the approximation to A0 − INx

only needs to be
performed once. Unless otherwise stated, in all the simulations, BiCGstab is termi-
nated when the relative residual error is reduced to tol = 10−5. Note that tol should
be chosen such that the truncation tolerance trunctol ≤ tol; otherwise, one would be
essentially iterating on the ‘noise’ from the low-rank truncations. In particular, we
have chosen herein trunctol = 10−6. We have used the Frobenius norm throughout
our numerical experiments.

Before proceeding to present our numerical example, it is perhaps pertinent to
highlight certain factors that often influence the convergence of the inexact Newton
method [16]:

• the proximity of the initial guess. Here, we have employed uniformly dis-
tributed samples for our initial guess.

• The globalization technique employed, (e.g. backtracking, or trust region).
In this paper, we have used only backtracking and it worked quite well for
our considered problem.

• The discretization of the SEVPs – failure of the spatial discretization to ad-
equately reflect the underlying physics of the continuous problem can cause
convergence difficulties for globalized Newton-Krylov methods.

• The convergence of the Krylov solver and preconditioning strategy employed
– using nonlinear preconditioning techniques can be an alternative [8].

For our numerical example, let D = (0, 1) × (0, 1). We consider the stochastic
eigenproblem of finding the functions λ : Ω → R and ϕ : Ω × D → R such that,
P-almost surely, the following holds:

{

−∇ · (a(·, ω)∇ϕ(·, ω)) = λ(ω)ϕ(·, ω), in D × Ω,

ϕ(·, ω) = 0, on ∂D × Ω,
(5.1)

where a : D×Ω → R is a random coefficient field. We assume that there exist positive
constants amin and amax such that

P (ω ∈ Ω : a(x, ω) ∈ [amin, amax], ∀x ∈ D) = 1.(5.2)

Here, the random input a(·, ω) admits a KLE and has a covariance function given by

Ca(x,y) = σ2
a exp

(

−|x1 − y1|
ℓ1

− |x2 − y2|
ℓ2

)

, ∀(x,y) ∈ [−1, 1]2,

with correlation lengths ℓ1 = ℓ2 = 1 and mean of the random field a in the model
E[a] = 1. The forward problem has been extensively studied in, for instance, [30].
The eigenpairs of the KLE of the random field a are given explicitly in [18]. Note
then that discretising in space yields the expression (2.1) with the random matrix
A(ω) having the explicit expression (2.3). In particular, the stiffness matrices Ak ∈
R

Nx×Nx , k = 0, 1, . . . ,m, in (2.3) are given, respectively, by

A0(i, j) =

∫

D
E[a](x)∇φi(x)∇φj(x) dx,(5.3)

Ak(i, j) = σa
√
γk

∫

D
ϑk(x)∇φi(x)∇φj(x) dx, k > 0,(5.4)
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where σa is the standard deviation of a. Here, {γk} and {ϑk(x)} are, respectively,
the eigenvalues and eigenfunctions corresponding to a covariance function associated
with a. Also, {φj(x)} are Q1 spectral elements which we have used to discretize the
problem (5.1) in the spatial domain D. Moreover, we choose ξ = {ξ1, . . . , ξm} such
that ξk ∼ U [−1, 1], and {ψk} are m-dimensional Legendre polynomials with support
in [−1, 1]m. In particular, we have Nξ = 210 (with m = 6 and r = 4; cf. (2.6) ).

In what follows, we consider two cases. First, in Table 5.2, we set σa = 0.01 and
Nx = 49, so that from (4.1) and (4.6), we have a Jacobian matrix J of dimension
dim(J ) := (Nx + 1)Nξ = 10, 500. Admittedly, one would argue that this dimension
of the Jacobian is small, and as such can as well be handled without the low-rank
method proposed in this paper! Such an arguement is understandably valid. However,
this is basically intended to provide a first and simple insight as to how the algorithm
works. A more difficult case is provided in Table 5.3 where we have increased σa and
Nx to σa = 0.1 and Nx = 392, 704, respectively. Hence, we obtain a Jacobian of size
dim(J ) := (Nx+1)Nξ = 82, 468, 050 at each inexact Newton iteration! We note here
that, besides the increased dimension, increasing the variability (σa ) in the problem
equally increases the complexity of the linear system to be solved [3].

The methods discussed in the previous sections have many parameters that must
be set, e.g., the maximum BiCGstab iterations, maximum forcing term, etc. These
parameters affect the performance of the methods. We chose parameters commonly
used in the literature. In particular, for the forcing terms ηk, we set η0 = 0.9, ηmax =
0.9, ηmin = 0.1. For the backtracking parameters, we used θmax = 0.1, θmax = 0.5;
the maximum number of backtracks allowed is 20.

Now, we consider the first case; that is, when dim(J ) := (Nx+1)Nξ = 10, 500.We
note here that the INBM algorithm presented in this paper computes one eigenvalue
nearest to the initial guess. To compute two or more distinct (or multiple) roots of
F (x) = 0 for an SEVP would require some specialized techniques, which can be a
lot more involved. Nevertheless, this task is currently under investigation, and an
algorithm for the computation of other eigenvalues will be presented in a subsequent
paper.

All the eigenvalues of the deterministic matrix (i.e. A0) are shown in Figure 5.1.
The first six smallest eigenvalues ofA0 are 0.5935, 1.4166, 1.4166, 2.1143, 2.6484, 2.6484.
We note here that most of the eigenvalues of the matrix A0 are either repeated or quite
clustered. Observe in particular that 1.4166 and 2.6484 are repeated eigenvalues.

In Figure 5.2, we show the convergence of the low-rank INBM to the second
stochastic eigenvalue λ2(ω). The figure confirms the super-linear convergence of the
inexact Newton algorithm as we reported earlier. In Table 5.1 and Figure 5.3, we have
shown the first eight coefficients of the spectral expansion gPCE and the probability
density function (pdf) of the second eigenvalue, respectively. Observe here that the
pdf is as expected centered at the mean of the stochastic eigenvalue, i.e 1.4121. This
quantity can also be obtained from the first coefficient of the gPCE in Table 5.1, since
from (2.4), we have

E(λ2(ω)) =

Nξ−1
∑

k=0

λ
(2)
k E(ψk(ξ(ω))) = λ

(2)
0 ,

due to the orthogonality of the basis polynomials {ψk}. We remark here also that
this mean value of the second eigenvalue is quite close to the eigenvalue computed
from the associated deterministic problem, i.e., 1.4166. If we increased the order of
the Legendre polynomials, then the INBM would converge to the exact deterministic
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Fig. 5.1: Eigenvalues of the deterministic matrix A0
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Fig. 5.2: Convergence of low-rank INBM for the second stochastic eigenvalue λ2(ω).
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value. However, this would come at a higher computational expense, as the quantity
Nξ would also need to be increased accordingly. This kind of observation has earlier
been extensively verified by the authors in the context of linear systems arising from
PDEs with uncertain inputs [3, 27].

Table 5.1: The first eight coefficients of the spectral expansion gPCE of the second
eigenvalue with using INBM. Here, k stands for the index of the basis function in the
expansion (2.4).

k 0 1 2 3 4 5 6 7

λ
(2)
k 1.4121 0.5492 0.7009 0.5492 −0.02013 0.0952 −0.03537 0.0594
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Fig. 5.3: Probability density function (pdf) estimate of the second eigenvalue obtained
with σa = 0.1
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Next, in Tables 5.2 and 5.3, we show the performance of the INBM solver in the
two cases; that is, for dim(J ) = 10, 500 and dim(J ) = 82, 468, 050. Here, the Newton
equations (cf. (4.5)) are solved using low-rank BiCGstab, as well as using the standard
preconditioned BiCGstab method which we have denoted as full model (FM), that
is, without low-rank truncation. The CPU times reported are the total time it took
the solver to compute the spectral coefficients of the eigenpair (λ2(ω), ϕ2(ω)). Here,
for each choice of the forcing terms {ηk} discussed in Section 4.2, we report inexact
Newton steps (INS), backtracks per inexact Newton step (BINS), total BiCGstab
iterations (iter), total CPU times (t) in seconds, ranks of the solution (R), memory
in kilobytes of the low-rank solution (LR) and full method solution (FM). By the
memory requirement of a low-rank solution X =WV T , we mean the sum of the two
separate computer memories occupied by its factors W and V T , since X is computed
and stored in this format, unlike the solution from FM. From the two tables, we see
that for this problem, the performance of the INBM algorithm is independent of the
the choice of the forcing terms {ηk}. In particular, Table 5.2 shows that the algorithm
could compute the solution within a few seconds in the first case. Besides, the INBM
algorithm reduces the storage requirement of the solution to one-quarter of memory
required to compute the full solution. In fact, as shown in [3, 4], for a fixed Nξ,
low-rank Krylov solvers typically provide more storage benefits as Nx → ∞.

Finally, as in the first case, we have also computed only the second stochas-
tic eigenvalue λ2(ω) of the matrix A(ω) (cf. (2.3)) for the case where dim(J ) =

82, 468, 050. Again, the mean λ
(2)
0 of this stochastic eigenvalue corresponds to the

second eigenvalue of the deteministic matrix A0, which in this case is 0.003. Note in
particular from Table 5.3 that with the FM, MATLAB indeed fails as the size of the
Jacobian matrix J at each inexact Newton step is now increased to more than 82
million degrees of freedom. Yet, INBM handles this task in about 200 minutes; that
is, roughly 6 minutes per Newton step. Here, the solution from FM terminates with
‘out of memory’, which we have denoted as ‘OoM’.
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Table 5.2: Performance of the INBM solver for dim(J ) = 10, 500 with σa = 0.01.
Here, I, II, and III represent the different forcing parameter choices (4.12), (4.13),
and (b) in Section 4.2.

ηk INS BINS # iter t R mem(LR) mem(FM)

I 22 1.5 22 16.5 9 18.7 84
II 22 1.5 22 17.5 10 20.8 84
III 22 1.5 23 17.2 10 20.8 84

Table 5.3: Performance of the INBM solver for dim(J ) = 82, 468, 050 with σa = 0.1.
Here, I, II, and III represent the different forcing parameter choices (4.12), (4.13),
and (b) in Section 4.2.

ηk INS BINS # iter t R mem(LR) mem(FM)

I 34 3.6 39 12123.4 51 156551.7 OoM
II 32 3.5 43 12112.8 51 156551.7 OoM
III 33 3.5 42 12200.1 51 156551.7 OoM

6. Conclusions. In computational science and engineering, there are certain
problems of growing interest for which random matrices are considered as random
perturbations of finite-dimensional operators. These random matrices are usually not
obtained from a finite-dimensional representation of a partial differential operator, and
in a number of interesting cases, closed-form expressions of the statistical moments
and probability density functions of their eigenvalues and eigenvectors are available;
see e.g., [37]. The matrices of interest in the present paper, on the other hand, are
the result of a finite-dimensional approximation of an underlying continuous system
and their stochasticity is intrinsically tied to the uncertainty in the parameters of this
system. For such systems, closed-form expressions are generally not available for the
solution of the SEVPs.

In this paper, we have presented a low-rank Newton-type algorithm for approx-
imating the eigenpairs of SEVPs. The numerical experiments confirm that the pro-
posed solver can mitigate the computational complexity associated with solving high
dimensional Newton systems in the considered SEVPs. More specifically, the low-
rank approach guarantees significant storage savings [3, 4, 38], thereby enabling the
solution of large-scale SEVPs that would otherwise be intractable.

Acknowledgement. The authors would like to thank Sergey Dolgov for fruitful
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Stoll was at the Max Planck Institute for Dynamics of Complex Technical Systems.
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