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Abstract: This paper aims at the efficient numerical solution of stochastic eigenvalue problems. Such prob-
lems often lead to prohibitively high-dimensional systems with tensor product structure when discretized
with the stochastic Galerkinmethod.Here,we exploit this inherent tensor product structure to develop a glob-
alized low-rank inexact Newton method with which we tackle the stochastic eigenproblem. We illustrate the
effectiveness of our solver with numerical experiments.
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1 Introduction
In many areas of computational science and engineering, eigenvalue problems play an important role. This
is, for example, the case in structural mechanics, where eigenvalue problems typically appear in the context
of vibrations and buckling. For deterministic problems, there are currently well-established algorithms dedi-
cated to the computation of eigenvalues and eigenvectors, see, e.g., [20]. However, in many cases of practical
interest, physical characteristics are not always completely deterministic. For instance, the stiffness of a plate
can locally be reduced by material imperfections, or the velocity of a flow can be influenced by turbulence.
In recent times, an increasingly important way to model such problems is by describing the uncertain prob-
lem characteristics more realistically using random variables. By doing so, one would then gainmore insight
regarding the effect of the uncertainties on the model. This approach then leads to a stochastic eigenvalue
problem (SEVP).

It is worth pointing out that the consequence of modeling the input parameters of a physical problem
as random variables is that the desired output naturally inherits the stochasticity in the model. Gener-
ally speaking, there are two broad techniques for analyzing and quantifying uncertainty in a given model:
simulation-based methods and expansion-based methods. In the simulation-(or sampling-)based methods,
the stochastic moments of the eigenvalues and eigenvectors are obtained by generating ensembles of ran-
dom realizations for the prescribed random inputs and utilizing repetitive deterministic solvers for each
realization. Prominent among this class of methods is the classical Monte Carlo method. This method has
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been applied to many problems and its implementations are straightforward. It is (formally) independent of
the dimensionality of the random space; that is, it is independent of the number of random variables used
to characterize the random inputs. It does, however, exhibit a very slow convergence rate [40]. To acceler-
ate its convergence, several techniques have been developed: the multilevel Monte Carlo method [10], the
quasi-Monte Carlo method [26], the Markov chain Monte Carlo method [19], etc. Although these methods
can improve the efficiency of the traditional Monte Carlo method, additional restrictions are imposed based
on their specific designs and their applicability is limited.

The expansion-based methods for uncertainty analysis and quantification are often designed to retain
the advantages of Monte Carlo simulations; in particular, they enable one to compute the full statistical char-
acteristics of the solution, while reducing the simulation time. A typical example of the expansion-based
methods are the spectral stochastic finite element methods (SFEM) [18, 30]; they rely on the approximation
of the random eigenvalues and eigenvectors by projecting them onto a global basis and are considerably less
expensive than the simulation-based methods. We will, in particular, employ mainly SFEM in this paper.

During the last two decades, there has been a lot of research on SFEM for uncertainty analysis and quan-
tification for solutions of partial differential equations [3, 4, 30]. However, SFEM for SEVPs has been so far
much less addressed in the literature. To a great extent, most research on SEVPs has, in fact, focusedmore on
simulation-based techniques [31, 35]. Nevertheless, relatively few attempts have been made to approximate
the stochasticmoments of both the eigenvalues and eigenvectors through the use of spectralmethods [17, 21,
38, 43]. In [43], the authors propose algorithms based on the inverse power method together with spectral
methods for computing approximate eigenpairs of both symmetric and nonsymmetric SEVPs. Sousedík and
Elman use the inverse subspace iteration method in [38] to tackle the eigenproblem. The method proposed
in [17] essentially rewrites the eigenvalue problem resulting from a spectral discretization (which we hence-
forth refer to as stochastic Galerkin method (SGM)) as a set of nonlinear equations with tensor product struc-
ture, which are then solved using the Newton-Raphson method. In the spirit of [17], this paper presents an
algorithm to determine the spectral expansions of the eigenvalues and the eigenvectors based on a Newton’s
method and SGM. However, unlike [17], this work specifically focuses on the use of a globalized low-rank
inexact Newton method to tackle the eigenproblem.

Now, recall that under certain conditions, the iterates produced by the Newton’s method converge
quadratically to a solution x∗ of a given nonlinear system, and those of the inexact Newton method can
obtain super-linear convergence [1, 14, 36]. Both cases, however, assume an initial guess x0 sufficiently
close to x∗. Generally speaking, globalizing the inexact Newtonmethodmeans augmenting the method with
additional conditions on the choices of iterates {xk} to enhance the likelihood of convergence to x∗, see,
e.g., [36] for details of different globalization techniques. The advantages of globalization notwithstanding,¹
a drawback of Newton-type methods is that for fairly large eigenproblems such as the SEVPs considered in
this work, they require considerable computational effort to solve the linear system arising from eachNewton
step. The aim of this paper is therefore to mitigate this computational challenge by exploiting the inherent
tensor product structure in the SEVP to tackle the stochastic eigenproblem. More precisely, we combine
low-rank Krylov solvers with a globalized inexact Newton method to efficiently solve SEVPs.

The rest of the paper is organized as follows. In Section 2, we present the problem that we would like to
solve in this paper. Next, Section 3 gives an overview of the stochastic Galerkinmethod onwhichwe shall rely
to discretize ourmodel problem. After discussing our globalized low-rank inexact Newton solver in Section 4,
weproceed to Section5 to provide thenumerical results to buttress the efficiency of the proposed solver,while
Section 6 draws some conclusions on the findings in this work.

1 It is important to note that no globalization strategy determines a sequence that converges to a solution for every problem;
rather, globalization techniques are essentially used only to enhance the likelihood of convergence to some solution of the
problem.

Brought to you by | University of Sussex Library
Authenticated

Download Date | 7/24/18 11:32 AM



P. Benner et al., A Low-Rank Inexact Newton–Krylov Method for Stochastic Eigenvalue Problems | 3

2 Problem Statement
Let the triplet (Ω,F,ℙ) denote a complete probability space, where Ω is the set of elementary events,
F ⊂ 2Ω is a σ-algebra on Ω and ℙ : F → [0, 1] is an appropriate probability measure. Let D ⊂ ℝd with
d ∈ {1, 2, 3} be a bounded physical domain. In this paper, we consider the following eigenvalue problem
for an Nx-dimensional real symmetric randommatrix:

A(ω)φ(ω) = λ(ω)φ(ω), (2.1)

subject to the normalization condition
φ(ω)Tφ(ω) = 1, (2.2)

where
λ(ω) ∈ ℝ, φ(ω) ∈ ℝNx , A(ω) ∈ ℝNx×Nx , ω ∈ Ω.

The matrixA(ω) represents, for example, the stiffness matrix in a structural mechanics problem [17]. In this
case, the stochasticity inA(ω) is often inherited from the randomness in the underlying physical system such
as elastic and dynamic parameters. Moreover, we assume that the randomness in the model is induced by
a prescribed finite number of random variables ξ := {ξ1, ξ2, . . . , ξm}, where m ∈ ℕ and ξi(ω) : Ω → Γi ⊆ ℝ+.
We also make the simplifying assumption that each random variable is independent and characterized by
aprobability density function ρi : Γi → ℝ+. If thedistributionmeasure of the randomvector ξ(ω) is absolutely
continuouswith respect to the Lebesguemeasure, there exists a joint probability density function ρ : Γ → ℝ+,
where Γ := Γ1 × Γ2 × ⋅ ⋅ ⋅ × Γm, and ρ factorizes as ρ(ξ) = ∏mi=1 ρi(ξi), with ρ ∈ L∞(Γ). Furthermore,we cannow
replace the probability space (Ω,F,ℙ) with (Ω,𝔹(Γ), ρ(ξ)dξ), where 𝔹(Γ) denotes the Borel σ-algebra on Γ
and ρ(ξ)dξ is the distribution measure of the set ξ . Then the expected value of the product of measurable
functions on Γ determines the Hilbert space L2ρ(Ω,𝔹(Γ), ρ(ξ)dξ), with inner product

⟨u, v⟩ := 𝔼[uv] = ∫
Γ

u(ξ)v(ξ)ρ(ξ) dξ,

where the symbol 𝔼 denotes mathematical expectation.
In this paper, we assume that the randommatrixA(ω) in (2.1) admits the representation

A(ω) = A0 +
m
∑
k=1

ξk(ω)Ak , m ∈ ℕ, Ak ∈ ℝNx×Nx , k = 0, 1, . . . ,m, (2.3)

where {ξk} are independent randomvariables. This is indeed the case if a Karhunen–Loève expansion (KLE) is
used to discretize random stiffness properties; see, e.g., [21, 27, 30]. Furthermore, the stochastic eigenvalues
and eigenvectors in this work are approximated using the so-called generalized polynomial chaos expansion
(gPCE) [3, 27, 44]. More precisely, the ℓth random eigenvalue and eigenvector are given, respectively, as

λℓ(ω) =
Nξ−1
∑
k=0

λ(ℓ)k ψk(ξ(ω)), λ(ℓ)k ∈ ℝ, (2.4)

and

φℓ(ω) =
Nξ−1
∑
k=0

φ(ℓ)k ψk(ξ(ω)), φ(ℓ)k ∈ ℝ
Nx , (2.5)

where {ψi} are multidimensional Legendre basis polynomials expressed as functions of the random vector ξ ,
with properties

𝔼(ψk) = δk0 and 𝔼(ψjψk) = δjk𝔼(ψ2
k).

The spectral expansions (2.4) and (2.5) are the gPCE of the random quantities λℓ(ω) and φℓ(ω), respec-
tively. Throughout this paper, we use normalized Legendre basis polynomials in which case 𝔼(ψ2

i ) = 1, so
that 𝔼(ψiψj) = δij. We remark here that Nξ in (2.4) and (2.5) is chosen in such a way that Nξ > m. In partic-
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ular, using total degree Legendre polynomials ψi yields

Nξ =
(m + r)!
m!r! , (2.6)

where r is the degree of ψi, see, e.g., [30].
In what follows, we will, for notational convenience, omit the index ℓ associated with the ℓth eigenpair.

It is pertinent to note here the difference between the structure of a deterministic and a randomeigenproblem.
In the deterministic case, a typical eigenpair is of the form (λ, φ), where λ ∈ ℝ and φ ∈ ℝNx , with Nx denoting
the size of the deterministic matrix A. In the stochastic case, however, the eigenpair corresponding to ℓth
physical mode consists of the set

x := {λ0, λ1, . . . , λNξ−1, φ0, φ1, . . . , φNξ−1}. (2.7)

3 Stochastic Galerkin Method
The stochastic Galerkin method is based on the projection

⟨Aφ, ψk⟩ = ⟨λφ, ψk⟩, k = 0, . . . , Nξ − 1, ℓ = 1, . . . Nx . (3.1)

Substituting (2.3), (2.4), and (2.5) into (3.1) yields the nonlinear algebraic equations
m
∑
i=0

Nξ−1
∑
j=0
𝔼(ξiψjψk)Aiφj =

Nξ−1
∑
i=0

Nξ−1
∑
j=0
𝔼(ψiψjψk)λiφj , k = 0, . . . , Nξ − 1,

which can be rewritten in Kronecker product notation as

[G0 ⊗ A0 +
m
∑
k=1

Gk ⊗ Ak]
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=: A

Φ = [
Nξ−1
∑
k=0

λk (Hk ⊗ INx )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=: Bk
]Φ, (3.2)

where INx is the identity matrix and

{{{{{{
{{{{{{
{

G0 = diag(⟨ψ2
0⟩, ⟨ψ2

1⟩, . . . , ⟨ψ2
Nξ−1⟩),

Gk(i, j) = ⟨ψiψjξk⟩, k = 1, . . . ,m,
Hk(i, j) = ⟨ψiψjψk⟩, k = 0, . . . , Nξ − 1,

Φ = (φ0, φ1, . . . , φNξ−1) ∈ ℝNxNξ .

Here, the block A0 (as well as A itself) is symmetric and positive definite; it captures the mean information in
themodel and appears on the diagonal blocks of A, whereas the other blocks Ak, k = 1, . . . ,m, represent the
fluctuations in themodel.Moreover, the randomvariables {ξk}mk=1 are centered, normalized and independent;
see, e.g., [30].

Recalling that Nξ > m, we see that (3.2) can also be expressed as
Nξ−1
∑
k=0
[(Gk ⊗ Ak) − λk(Hk ⊗ INx )]Φ

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=: E

= 0, Gk = Ak = 0 for k > m. (3.3)

Now, observe that problem (3.2) can be considered as an eigentuple-eigenvector problem:

AΦ =
Nξ−1
∑
k=0

λkBkΦ, (3.4)

in which one needs to find an eigentuple Λ := (λ0, . . . , λNξ−1) ∈ ℝNξ and an eigenvector Φ ∈ ℝNxNξ , where
A := ∑mk=0 Gk ⊗ Ak and Bk := Hk ⊗ INx . Note that B0 := INξ ⊗ INx . Thus, the case k = 0 in (3.4) corresponds to
the standard deterministic eigenproblem

AΦ = λ0Φ, (3.5)
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which has already been studied extensively [33]. For k = 1 (that is, Nξ = 2), we obtain

(A − λ1B1)Φ = λ0B0Φ, (3.6)

which yields a standard eigenproblem for each fixed value of λ1. Moreover, since A, B0 and B1 are symmet-
ric matrices (with B0 being positive definite), we have a continuum of real solutions λ0(λ1) parameterized
by λ1. The existence of the continuum of real solutions is not surprising since there are 2Nx + 2 = 2(Nx + 1)
unknowns (that is, λ0, λ1 and the components of Φ) in only 2Nx equations. To circumvent this situation, it is
proposed in [17] to prescribe an additional condition via the normalization of the eigenvectors as in (2.1).
This could then make it feasible to determine λ1 and thereby reduce the two-parameter problem (3.6) to
a one-parameter eigenproblem (3.5). Thus, the existence of a continuum of real solutions could make (3.6)
numerically tractable by permitting its reduction to a sequence of solutions of (3.5), see, e.g., [6] for details.

The two-parameter eigenproblem has been considered by Hochstenbach and his co-authors in [22, 23]
following a Jacobi–Davidson approach. However, unlike the problem under consideration in this work, for
which the resulting system is coupled, these authors focused on decoupled systems. Moreover, the approach
that the authors adopted is quite complicated for two-parameter problems and can hardly be applied to the
multi-parameter eigenproblems considered in this paper. The approach considered here follows closely the
framework of [17]. More specifically, our method relies on a Newton–Krylov solution technique, which we
proceed to discuss in Section 4.

4 Newton–Krylov Approaches
In this section, we will discuss how the nonlinear system of equations resulting from the stochastic Galerkin
approach applied to the stochastic eigenvalue problem can be solved using variants of Newton’s method,
where the linear systems in each Newton step are treated with Krylov solvers.

4.1 The Newton System for the Stochastic Eigenvalue Problem

Aswe already pointed out in Section 3, problem (3.4) containsmore unknowns than equations. As suggested
in [17], we incorporate the normalization condition of the eigenvectors so that the random eigenproblem is
posed as a set of

NxNξ + Nξ = (Nx + 1)Nξ (4.1)

nonlinear deterministic equations for each physical mode of the stochastic system. To this end, observe that
SGM discretization of (2.2) yields [17]

Nξ−1
∑
i=0

Nξ−1
∑
j=0
𝔼(ψiψjψk)φTi φj = δk0, k = 0, . . . , Nξ − 1,

or, equivalently,
ΦT(Hk ⊗ INx )Φ = δk0, k = 0, 1, . . . , Nξ − 1. (4.2)

Newton method is a well-established iterative method. For a well-chosen initial iterate, the method
exhibits local quadratic convergence. In this method, (3.3) and (4.2) are simultaneously expressed in the
form F(x) = 0, where x = (Λ, Φ) ∈ ℝ(Nx+1)Nξ is a vector containing the solution set defined in (2.7). More
precisely, we have

F(x) =

[[[[[[[[

[

∑
Nξ−1
k=0 [(Gk ⊗ Ak) − λk(Hk ⊗ INx )]Φ

ΦT(H0 ⊗ INx )Φ − 1
ΦT(H1 ⊗ INx )Φ

...
ΦT(HNξ−1 ⊗ INx )Φ

]]]]]]]]

]

=
[[[[[

[

0
0
...
0

]]]]]

]

.
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The Newton iteration for F(x) = 0 results from a multivariate Taylor expansion about a current point xk :

F(xk+1) = F(xk) + F󸀠(xk)(xk+1 − xk) + higher-oder terms.

Setting the left-hand side to zero and neglecting the terms of higher-order curvature yields a Newtonmethod;
that is, given an initial iterate x0, we obtain an iteration over a sequence of linear systems (or the Newton
equations)

F(xk) + F󸀠(xk)sk = 0, (4.3)

where xk is the current iterate. Moreover, F(x) is the vector-valued function of nonlinear residuals and
J := F󸀠 is the associated Jacobian matrix, x is the state vector to be found, and k is the iteration index.
Forming each element of J requires taking analytic or discrete derivatives of the system of equations with
respect to xk. The solution sk := δxk = xk+1 − xk is the so-called Newton step. Once the Newton step is
obtained, then the next iterate is given by xk+1 = xk + sk and the procedure is repeated until convergence
with respect to the prescribed tolerance is achieved. More specifically, given an initial approximation, say,
(v, λ) := (v0, v1, . . . , vNξ−1, λ0, λ1, . . . , λNξ−1) ≈ (Φ, Λ), the next approximation (v+, λ+) in Newton’s method
is given by

[
v+

λ+
] = [

v
λ
] − [

T(λ) T󸀠(λ)v
Q󸀠(v) 0 ]

−1

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
J:=F󸀠

[
T(λ)v
Q(v)
]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
F

, (4.4)

where [17]

T(λ) =
Nξ−1
∑
k=0
[(Gk ⊗ Ak) − λk(Hk ⊗ INx )] ∈ ℝNxNξ×NxNξ , (4.5)

T(λ)v =
Nξ−1
∑
k=0
[(Gk ⊗ Ak) − λk(Hk ⊗ INx )]v ∈ ℝNxNξ , (4.6)

T󸀠(λ)v = −
Nξ−1
∑
k=0
(Hk ⊗ vk) ∈ ℝNxNξ×Nξ , (4.7)

Q(v) = d := [vT(H0 ⊗ INx )v − 1, . . . , vT(HNξ−1 ⊗ INx )v]
T ∈ ℝNξ , (4.8)

Q󸀠(v) = 2
Nξ−1
∑
k=0
(Hk ⊗ vTk ) ∈ ℝ

Nξ×NxNξ . (4.9)

4.2 Inexact Newton Method

Notwithstanding the locally quadratic convergence and simplicity of implementation of the Newton’s
method, it involves enormous computational cost, particularly when the size of the problem is large. In
order to reduce the computational complexity associated with the method, Dembo, Eisenstat and Steihaug
proposed in [11] the inexact Newton method as given by Algorithm 1, which is a generalization of Newton
method.

The condition in line 5 of the algorithm is the inexact Newton condition. Note that the real number ηk
in Algorithm 1 is the so-called forcing term for the k-th iteration step. At each iteration step of the inexact
Newton method, ηk should be chosen first, and then an inexact Newton step sk is obtained by solving the
Newton equations (4.3) approximatelywith an efficient solver for systems of linear equations. Quite often, the
linear system to be solved at each inexact Newton step is so large that it cannot be solved by direct methods.
Instead, modern iterative solvers such as Krylov subspace methods [32] are typically used to solve the lin-
ear systems approximately. This leads to a special kind of inexact Newton method, commonly referred to as
inexact Newton–Krylov subspace method, which is very popular in many application areas [1, 24, 36].

We point out here that it is nevertheless hard to choose a good sequence of forcing terms. More precisely,
there may be a trade-off between the effort required to solve the linear system to a tight tolerance and the
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Algorithm 1. Inexact Newton Method (INM).
Input: Given x0 ∈ ℝ(Nx+1)Nξ .
1: for k = 0, 1, . . . (until {xk} convergence) do
2: Choose some ηk ∈ [0, 1).
3: Solve the Newton equations (4.3) approximately to obtain a step sk such that
4: ‖F(xk) + F󸀠(xk)sk‖ ≤ ηk‖F(xk)‖.
5: Set xk+1 = xk + sk .
6: end for

resulting required number of nonlinear iterations. Too large a value for ηk results in less work for the Krylov
method but more nonlinear iterations, whereas too small a value for ηk results in more Krylov iterations per
Newton iteration. Examples of this trade-off between total nonlinear iterations and execution time can be
found in, for instance, [24] in the context of solution of Navier–Stokes equations. Several strategies for opti-
mizing the computational work with a variable forcing term ηk are given in [1, 14]. At any rate, it is important
to note that choice of the forcing terms should be related to specific problems and the information of F(x)
should be used effectively [1].

For practical computations, there are some concrete strategies, one of which was proposed originally by
Dembo and Steihaug in [12], namely,

ηk = min{ 1
k + 2 , ‖F(xk)‖}. (4.10)

Moreover, Cai, Gropp, Keyes and Tidriti [9] propose the following constant forcing terms:

ηk = 10−4. (4.11)

Two other popular adaptive strategies were proposed by Eisenstat and Walker in [14]:
(a) Given some η0 ∈ [0, 1), choose

ηk =
{{
{{
{

ζk , η
1
2 (1+√5)
k−1 ≤ 0.1,

max{ζk , η
1
2 (1+√5)
k−1 }, η

1
2 (1+√5)
k−1 > 0.1,

where
ζk =
‖F(xk) − F(xk−1) − F󸀠(xk−1)sk−1‖

‖F(xk−1)‖
, k = 1, 2, . . . ,

or
ζk =
󵄨󵄨󵄨󵄨‖F(xk)‖ − ‖F(xk−1) + F󸀠(xk−1)sk−1‖

󵄨󵄨󵄨󵄨
‖F(xk−1)‖

, k = 1, 2, . . . .

(b) Given some τ ∈ [0, 1), ω ∈ [1, 2), η0 ∈ [0, 1), choose

ηk =
{
{
{

ζk , τηωk−1 ≤ 0.1,
max{ζk , τηωk−1}, τηωk−1 > 0.1,

where
ζk = τ(

‖F(xk)‖
‖F(xk−1)‖

)
ω
, k = 1, 2, . . . .

The numerical experiments in [14] show that the above two choices (a) and (b) can effectively overcome
the “over-solving” phenomenon, and thus improve the efficiency of the inexact Newton method.² In particu-

2 The concept of “over-solving” implies that at early Newton iterations ηk is too small. Then one may obtain an accurate linear
solution to an inaccurateNewton correction. Thismay result in apoorNewtonupdate anddegradation in theNewton convergence.
In [41] it has been demonstrated that in some situations the Newton convergence may actually suffer if ηk is too small in early
Newton iterations.
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lar, the authors added safeguards (bounds) to choice (a) and (b) to prevent the forcing terms from becoming
too small too quickly, so that more concrete strategies are obtained. Besides, choice (a) and choice (b) with
τ ≥ 0.9 and ω ≥ 1

2 (1 + √5) have the best performances. We adopt choice (b) in our numerical experiments.
The inexact Newton method is locally convergent as shown in the following result from [11].

Theorem 4.1 ([11, Theorem 2.3]). Assume that F : ℝn → ℝn is continuously differentiable, x∗ ∈ ℝn such that
F(x∗) = 0 and F󸀠(x∗) is nonsingular. Let 0 < ηk < ηmax < t < 1 be given constants. If the forcing terms {ηk}
in the inexact Newton method satisfy ηk ≤ ηmax < t < 1 for all k, then there exists ε > 0 such that for any
x0 ∈ Nε(x∗) := {x : ‖x − x∗‖ < ε}, the sequence {xk} generated by the inexact Newton method converges to x∗,
and

‖xk+1 − xk‖∗ ≤ t‖x − x∗‖∗,

where ‖y‖∗ = ‖F󸀠(x∗)y‖.

By Theorem 4.1, if the forcing terms {ηk} in the inexact Newton method are uniformly strict less than 1,
then the method is locally convergent. The convergence rate of the inexact Newton method is, moreover,
established in the following result from [11].

Theorem 4.2 ([11, Corollary 3.5]). Assume that F : ℝn → ℝn is continuously differentiable, x∗ ∈ ℝn such that
F(x∗) = 0 and F󸀠(x∗) is nonsingular. If the sequence {xk} generated by inexact Newton method converges to x∗,
then
∙ {xk} → x∗ super-linearly when ηk → 0.
∙ {xk} → x∗ quadratically when ηk = O(‖F(xk)‖) and ‖F󸀠(x)‖ is Lipschitz continuous at x∗.

For more details of local convergence theory and the role played by the forcing terms in inexact Newton
methods, see, e.g., [1, 14]. We proceed next to give an overview of Krylov subspace methods.

4.3 Krylov Subspace Methods

Krylov subspace methods are probably the most popular methods for solving large, sparse linear systems
(see, e.g., [15] and the references therein). The basic idea behind Krylov subspace methods is the following.
Consider, for arbitrary A ∈ ℝm×m and b ∈ ℝm, the linear system

Ax = b. (4.12)

Suppose now that x0 is an initial guess for the solution x of (4.12), and define the initial residual r0 = b − Ax0.
Krylov subspace methods are iterative methods whose kth iterate xk satisfies³

xk ∈ x0 + 𝕂k(A, x0), k = 1, 2, . . . , (4.13)

where
𝕂k(A, x0) := span{r0, Ar0, . . . , Ak−1r0}

denotes the kth Krylov subspace generated by A and r0. The Krylov subspaces form a nested sequence that
ends with dimension d = dim(𝕂m(A, r0)) ≤ m, i.e.,

𝕂1(A, r0) ⊂ ⋅ ⋅ ⋅ ⊂ 𝕂d(A, r0) = ⋅ ⋅ ⋅ = 𝕂m(A, r0).

In particular, for each k ≤ d, the Krylov subspace 𝕂k(A, r0) has dimension k. Because of the k degrees of
freedom in the choice of the iterate xk, k constraints are required to make xk unique. In Krylov subspace

3 Krylov methods require only matrix-vector products to carry out the iteration (not the individual elements of A) and this is key
to their use with the Newton’s method, as will be seen below.

Brought to you by | University of Sussex Library
Authenticated

Download Date | 7/24/18 11:32 AM



P. Benner et al., A Low-Rank Inexact Newton–Krylov Method for Stochastic Eigenvalue Problems | 9

methods this is achieved by requiring that the kth residual rk = b − Axk is orthogonal (with respect to the
Euclidean inner product) to a k-dimensional space Ck, called the constraints space:

rk = b − Axk ∈ r0 + A𝕂k(A, r0), (4.14)

where rk ⊥ Ck. It can be shown [5] that there exists a uniquely defined iterate xk of the form (4.13) and for
which the residual rk = b − Axk satisfies (4.14) if
(a) A is symmetric positive definite and Ck = 𝕂k(A, r0), or
(b) A is nonsingular and Ck = A𝕂k(A, r0).
In particular, (a) characterizes the conjugate gradient (CG)method [15]whereas (b) characterizes theminimal
residual (MINRES)method [28], the generalizedminimal residual (GMRES)method [34], and the bi-conjugate
gradient stabilized (BiCGstab) method [42].

A vast majority of fully coupled nonlinear applications of primary interest (including the one considered
herein) result in Jacobian matrices that are nonsymmetric. A further point of discrimination is whether the
method is derived from the long-recurrence Arnoldi orthogonalization procedure, which generates orthonor-
mal bases of the Krylov subspace, or the short-recurrence Lanczos bi-orthogonalization procedure, which
generates nonorthogonal bases for nonsymmetric matrices A.

Note that GMRES is an Arnoldi-based method. In GMRES, the Arnoldi basis vectors form the trial sub-
space out of which the solution is constructed. One matrix-vector product is required per iteration to create
each new trial vector, and the iterations are terminated based on a by-product estimate of the residual that
does not require explicit construction of intermediate residual vectors or solutions – a major beneficial fea-
ture of the algorithm. GMRES has a residual minimization property in the Euclidean norm (easily adaptable
to any inner-product norm) but requires the storage of all previous Arnoldi basis vectors. Full restarts, seeded
restarts, and moving fixed sized windows of Arnoldi basis vectors are all options for fixed-storage versions.
Full restart is simple and historically the most popular, though seeded restarts show promise. The BiCGstab
methods [42] are Lanczos-based alternatives to GMRES for nonsymmetric problems. In BiCGstab methods,
the Lanczos basis vectors are normalized, and two matrix-vector products are required per iteration. How-
ever, these methods enjoy a short recurrence relation, so there is no requirement to store many Lanczos basis
vectors. Thesemethods donot guaranteemonotonically decreasing residuals.We refer to [15] formore details
on Krylov methods, and for preconditioning for linear problems.

4.4 Inexact Newton–Krylov Method with Backtracking

In practice, globalization strategies leading from a convenient initial iterate into the ball of convergence of
Newton’smethod around the desired root are often required to enhance the robustness of the inexact Newton
method. More precisely, globalization implies augmenting Newton’s method with certain auxiliary proce-
dures that increase the likelihood of convergence when good initial approximate solutions are not available.
Newton–Krylov methods, like all Newton-like methods, must usually be globalized. Globalizations are typ-
ically structured to test whether a step gives satisfactory progress towards a solution and, if necessary, to
modify it to obtain a step that does give satisfactory progress [29]. Amajor class of globalization approaches⁴
which we consider in this paper are the backtracking (line-search, damping) methods. In these methods, the
step lengths are adjusted (usually shortened) to obtain satisfactory steps. On the one hand, backtracking
methods have the attractive feature of the relative ease with which they can be implemented; on the other
hand, each step direction in thesemethods is restricted to be that of the initial trial step, whichmay be aweak
descent direction, especially if the Jacobian is ill-conditioned [36].

The inexact Newton backtracking method (INBM) is given in Algorithm 2. In this algorithm, the back-
tracking globalization resides in the while-loop, in which steps are tested and shortened as necessary until
the acceptability condition

‖F(xk + sk)‖ ≤ [1 − t(1 − ηk)]‖F(xk)‖ (4.15)

4 See, e.g., [29, 36] for a detailed discussion on other globalization strategies such as trust-region methods.
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Algorithm 2. Inexact Newton Backtracking Method (INBM).
Input: x0 ∈ ℝ(Nx+1)Nξ , ηmax ∈ [0, 1), t ∈ (0, 1), and 0 < θmin < θmax < 1.
1: for k = 0, 1, . . . (until {xk} convergence) do
2: Choose initial ηk ∈ [0, ηmax) and solve (4.3) approximately to obtain sk such that
3: ‖F(xk) + F󸀠(xk)sk‖ ≤ ηk‖F(xk)‖.
4: While ‖F(xk + sk)‖ > [1 − t(1 − ηk)]‖F(xk)‖
5: Choose θ ∈ [θmin, θmax].
6: Update sk ← θsk and ηk ← 1 − θ(1 − ηk).
7: Set xk+1 = xk + sk .
8: end for

holds. As noted in [13], if F is continuously differentiable, then this globalization produces a step for which
(4.15) holds after a finite number of passes through the while-loop; furthermore, the inexact Newton condi-
tion (cf. line 5 in Algorithm 1) still holds for the final sk and ηk. The condition (4.15) is a “sufficient-decrease”
condition on ‖F(xk + sk)‖.

In [14], the authors show with experiments that backtracking globalization significantly improves the
robustness of aNewton-GMRESmethodwhenapplied to nonlinear problems, especiallywhen combinedwith
adaptively determined forcing terms. In this work, we combine the backtracking globalization with low-rank
techniques to tackle the high-dimensional stochastic eigenproblem. Our motivation for employing low-rank
techniques stems from the fact that despite the advantages of the INKMwith backtracking in solving nonlin-
ear problems, for the stochastic problem (2.1)–(2.2) under consideration, the dimensions of the Jacobian
quickly become prohibitively large with respect to the discretization parameters. As a consequence, one
expects overwhelming memory and computational time requirements, as the block-sizes of the Jacobian
matrix become vast. This is a major drawback of the SGM. In this paper, we propose to tackle this curse of
dimensionalitywith a low-rank version of INKM. Low-rank strategies have proven to be quite efficient in solv-
ing problems of really high computational complexity arising, for instance, fromdeterministic and stochastic
time-dependent optimal control problems [2, 4, 39], PDEswith random coefficients [3, 27], etc. The low-rank
technique presented here only needs to store a small portion of the vectors in comparison to the full problem
and we want present this approach in the sequel.

4.5 Low-Rank Inexact Newton–Krylov Method

As we have already noted earlier, we will use a Krylov solver algorithm as an optimal solver for the Newton
equation (cf. (4.3) in line 3 in Algorithm 2) in each INKM iteration. In particular, our approach is based on the
low-rank version of the chosen Krylov solver. Although the low-rank method discussed herein can be easily
extended to other Krylov solvers [3, 4, 39], we focusmainly on BiCGstab [25]. In this section, we proceed first
to give a brief overview of this low-rank iterative solver. Now, recall first that

vec(WXV) = (VT ⊗W)vec(X), (4.16)

where vec(X) = (x1, . . . , xp)T ∈ ℝnp×1 is a column vector obtained by stacking the columns of the matrix
X = [x1, . . . , xp] ∈ ℝn×p on top of each other. Observe also that each Newton equation (4.3) can be rewrit-
ten as JX = R, where

J := F󸀠 = [
[

∑
Nξ−1
i=0 [(Gi ⊗ Ai) − λi(Hi ⊗ INx )] −∑

Nξ−1
i=0 Hi ⊗ vi

2∑Nξ−1i=0 Hi ⊗ vTi 0
]

]
,

X := s = [vec(Y)vec(Z)] ,

R := −F = [vec(R1)vec(R2)
] ,
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and

R1 = vec−1 (
Nξ−1
∑
i=0
[(Gi ⊗ Ai) − λi(Hi ⊗ INx )]v), R2 = vec−1(d),

where d is as given by (4.8). Hence, (4.16) implies that

JX = vec(
Nξ−1
∑
i=0
[
(AiYGTi − λi INxYH

T
i ) −viZHTi

2vTi YHTi
]) = vec([R1

R2
]). (4.17)

Our approach is essentially based on the assumption that both the solution matrix X admits a low-rank
representation; that is,

{
{
{

Y = WYVTY withWY ∈ ℝ(Nx+1)×k1 , VY ∈ ℝNξ×k1 ,
Z = WZVTZ withWZ ∈ ℝ(Nx+1)×k2 , VZ ∈ ℝNξ×k2 ,

(4.18)

where k1,2 are small relative toNξ . Substituting (4.18) in (4.17) and ignoring the vec operator,we then obtain⁵
Nξ−1
∑
i=0
[
(AiWYVTYG

T
i − λi INxWYVTYH

T
i ) −viWZVTZH

T
i

2vTi WYVTYH
T
i

] = [
R11RT12
R21RT22
] , (4.19)

where R11RT12 and R21RT22 are the low-rank representations of R1 and R2, respectively.
The attractiveness of this approach lies therefore in the fact that one can rewrite the two block rows on

the left-hand side in (4.19), respectively, as

{{{{{{
{{{{{{
{

(first row)
Nξ−1
∑
i=0
[AiWY −INxWY −viWZ][

[

VTYGi − λiV
T
YHi

VTZHi
]

]
,

(second row)
Nξ−1
∑
i=0
[2vTi WY] [VTYHi]

(4.20)

(since thematrices Gi and Hi are symmetric), so that the low-rank nature of the factors guarantees fewermul-
tiplications with the submatrices whilemaintaining smaller storage requirements. More precisely, keeping in
mind that

x = vec([X11X
T
12

X21XT22
]) (4.21)

corresponds to the associated vector x from a vector-based version of the Krylov solver, matrix-vector multi-
plication in our low-rank Krylov solver is given by Algorithm 3.

Note that an important feature of low-rank Krylov solvers is that the iterates of the solution matrices Y
and Z in the algorithm are truncated by a truncation operator Tϵ with a prescribed tolerance ϵ. This could be
accomplished via QR decomposition as in [25] or truncated singular value decomposition (SVD) as in [3, 39].
The truncation operation is necessary because the new computed factors could have increased ranks com-
pared to the original factors in (4.20). Hence, a truncation of all the factors after the matrix-vector products,

Algorithm 3. Jacobian-Vector Multiplication in Low-Rank Format Amult.
Input: W11,W12,W21,W22.
Output: X11, X12, X21, X22.
1: X11 = ∑

Nξ−1
i=0 [AiW11 −INxW11 −viW21].

2: X12 = [GiW12 −λiHiW12 HiW22], i = 0, . . . , Nξ − 1.
3: X21 = ∑

Nξ−1
i=0 [2vTi W11].

4: X22 = [HiW12], i = 0, . . . , Nξ − 1.

5 Note that vi in (4.19) comes from the previous low-rank iterate of the nonlinear Newton solver.
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is used to construct new factors; for instance,

[X̃11, X̃12] := Tϵ(
Nξ−1
∑
i=0
[AiWY −INxWY −viWZ] [

VTYGi − λiV
T
YHi

VTZH
T
i
]).

Moreover, in order to ensure that the inner products within the iterative low-rank solver are computed
efficiently, we use the fact that ⟨x, y⟩ = vec(X)T vec(Y) = trace(XTY) to deduce that

trace(XTY) = trace((X11XT12)
T

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Large

(Y11YT12)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Large
+ (X21XT22)

T
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Large
(Y21YT22)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Large
)

= trace(YT12X12⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Small

XT11Y11⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Small
+ YT22X22⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Small
XT21Y11⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Small
),

where X and Y are as given in (4.21), which allows us to compute the trace of small matrices rather than of
the ones from the full model.

For more details on implementation issues, we refer the interested reader to [3, 39].

4.6 Preconditioning

The purpose of preconditioning the INBM is to reduce the number of Krylov iterations, as manifested by effi-
ciently clustering eigenvalues of the iteration matrix. Traditionally, for linear problems, one chooses a few
iterations of a simple iterative method (applied to the system matrix) as a preconditioner. Throughout this
paper, we will focus mainly on mean-based block-diagonal preconditioners. More specifically, we precondi-
tion the Jacobian matrix J (cf. (4.4)) in the INBM algorithm with a preconditioner P of the form

P := [E 0
0 S
] , (4.22)

where
S = CE−1B (4.23)

is the (negative) Schur complement. Moreover, E := T(Λ), B := T󸀠(Λ)v and C := Q󸀠(v) as given, respectively,
by (4.5), (4.7) and (4.9). We note here that (4.22) is only an ideal preconditioner for the Jacobian in the
sense that it is not cheap to solve the system with it. In practice, one often has to approximate its two dia-
gonal blocks in order to use P with Krylov solvers. Here, we propose to approximate the (1, 1) blocks with
(G0 − λ0H0) ⊗ (A0 − INx )which is easy to invert: if we use the normalized Legendre polynomial chaos to com-
pute the matrices Gi and Hi, then (G0 − λ0H0) = (1 − λ0)INξ so that action of the approximated (1, 1) block is
just Nξ copies of (A0 − INx ). To approximate the Schur complement S, that is, block (2, 2), poses more diffi-
culty, however. One possibility is to approximate S by dropping all but the first terms in B, C and E to obtain

S0 := 2(1 − λ0)−1(INξ ⊗ v0)T(INξ ⊗ (A0 − INx )−1)(INξ ⊗ v0)
= 2(1 − λ0)−1INξ ⊗ [vT0 (A0 − INx )−1v0].

This is the version we use in our experiments, and its implementation details are provided in Algorithm 4.

Algorithm 4. Preconditioner Implementation in Low-Rank Krylov Solver.
Input: W11,W12,W21,W22.
Output: X11, X12, X21, X22.
1: Solve: (A0 − INx )X11 = W11.
2: Solve: (1 − λ0)X12 = W12.
3: Solve: [vT0 (A0 − INx )−1v0]X21 = W21.
4: Solve: 2(1 − λ0)−1X22 = W12.
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5 Numerical Results
In this section, we present some numerical results obtainedwith the proposed inexact Newton–Krylov solver
for the stochastic eigenproblem (2.1). The numerical experiments were performed on a Linux machine with
80GB RAM using MATLAB® 7.14 together with a MATLAB version of the algebraic multigrid (AMG) code
HSL MI20 [7]. We implement our mean-based preconditioner using one V-cycle of AMG with symmetric
Gauss–Seidel (SGS) smoothing to approximately invert A0 − INx . We remark here that we apply themethod as
a black-box in each experiment and the set-up of the approximation to A0 − INx only needs to be performed
once.Unless otherwise stated, in all the simulations, BiCGstab is terminatedwhen the relative residual error is
reduced to tol = 10−5. Note that tol should be chosen such that the truncation tolerance trunctol ≤ tol; other-
wise, one would be essentially iterating on the “noise” from the low-rank truncations. In particular, we have
chosen herein trunctol = 10−6. We have used the Frobenius norm throughout our numerical experiments.

Before proceeding to present our numerical example, it is perhaps pertinent to highlight certain factors
that often influence the convergence of the inexact Newton method [16]:
∙ the proximity of the initial guess. Here, we employ uniformly distributed samples for our initial guess.
∙ the globalization technique employed, e.g., backtracking or trust region. In this paper, we use only back-

tracking and it works quite well for our considered problem.
∙ the discretization of the SEVPs — failure of the spatial discretization to adequately reflect the under-

lying physics of the continuous problem can cause convergence difficulties for globalizedNewton–Krylov
methods.

∙ the convergence of the Krylov solver and preconditioning strategy employed — using nonlinear precon-
ditioning techniques can be an alternative [8].
For our numerical example, let D = (0, 1) × (0, 1). We consider the stochastic eigenproblem of finding

the functions λ : Ω → ℝ and φ : Ω × D → ℝ such that, ℙ-almost surely, the following holds:

{
−∇ ⋅ (a( ⋅ , ω)∇φ( ⋅ , ω)) = λ(ω)φ( ⋅ , ω) inD × Ω,

φ( ⋅ , ω) = 0 on ∂D × Ω,
(5.1)

where a : D × Ω → ℝ is a random coefficient field. We assume that there exist positive constants amin and
amax such that

ℙ(ω ∈ Ω : a(x, ω) ∈ [amin, amax] for all x ∈ D) = 1.

Here, the random input a( ⋅ , ω) admits a KLE and has a covariance function given by

Ca(x, y) = σ2a exp(−
|x1 − y1|
ℓ1
−
|x2 − y2|
ℓ2
) for all (x, y) ∈ [−1, 1]2,

with correlation lengths ℓ1 = ℓ2 = 1, and themean of the randomfield a in themodel is𝔼[a] = 1. The forward
problemhas been extensively studied in, for instance, [30]. The eigenpairs of theKLEof the randomfield a are
given explicitly in [18]. Note then that discretizing in space yields the expression (2.1)with the randommatrix
A(ω) having the explicit expression (2.3). In particular, the stiffness matrices Ak ∈ ℝNx×Nx , k = 0, 1, . . . ,m,
in (2.3) are given, respectively, by

A0(i, j) = ∫
D

𝔼[a](x)∇ϕi(x)∇ϕj(x) dx,

Ak(i, j) = σa√γk ∫
D

ϑk(x)∇ϕi(x)∇ϕj(x) dx, k > 0,

where σa is the standard deviation of a. Here, {γk} and {ϑk(x)} are, respectively, the eigenvalues and eigen-
functions corresponding to a covariance function associated with a. Also, {ϕj(x)} are Q1 spectral elements
whichwehaveused to discretize problem (5.1) in the spatial domainD.Moreover,we choose ξ = {ξ1, . . . , ξm}
such that ξk ∼ U[−1, 1], and {ψk} arem-dimensional Legendre polynomials with support in [−1, 1]m. In par-
ticular, we have Nξ = 210 (with m = 6 and r = 4; cf. (2.6)).
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k 0 1 2 3 4 5 6 7
λ(2)k 1.4121 0.5492 0.7009 0.5492 −0.02013 0.0952 −0.03537 0.0594

Table 1: The first eight coefficients of the spectral expansion gPCE of the second eigenvalue with using INBM.
Here, k stands for the index of the basis function in the expansion (2.4).

ηk INS BINS #iter t R mem(LR) mem(FM)

I 22 1.5 22 16.5 9 18.7 82.03
II 22 1.5 22 17.5 10 20.8 82.03
III 22 1.5 23 17.2 10 20.8 82.03

Table 2: Performance of the INBM solver for dim(J) = 10,500 with σa = 0.01. Here, I, II, and III represent the different
forcing parameter choices (4.10), (4.11), and (b) in Section 4.2.

ηk INS BINS #iter t R mem(LR) mem(FM)

I 34 3.6 39 12123.4 51 156,551.7 OoM (644,281.6)
II 32 3.5 43 12112.8 51 156,551.7 OoM (644,281.6)
III 33 3.5 42 12200.1 51 156,551.7 OoM (644,281.6)

Table 3: Performance of the INBM solver for dim(J) = 82,468,050 with σa = 0.1. Here, I, II, and III represent the different
forcing parameter choices (4.10), (4.11), and (b) in Section 4.2.

In what follows, we consider two cases. First, in Table 2, we set σa = 0.01 and Nx = 49, so that from (4.1)
and (4.4), we have a Jacobian matrix J of dimension dim(J) := (Nx + 1)Nξ = 10,500. Though the dimension
of the Jacobian is quite small in this setting, and as such can as well be handledwithout the low-rankmethod
proposed in this paper, this example is basically intended to provide a first proof of concept. A more difficult
case is provided in Table 3 where we have increased σa and Nx to σa = 0.1 and Nx = 392,704, respectively.
Hence, we obtain a Jacobian of size dim(J) := (Nx + 1)Nξ = 82,468,050 at each inexact Newton iteration!
We note here that, besides the increased dimension, increasing the variability (σa ) in the problem equally
increases the complexity of the linear system to be solved [3].

The methods discussed in the previous sections have many parameters that must be set, e.g., the max-
imum number of BiCGstab iterations, maximum forcing term, etc. These parameters affect the performance
of the methods. We chose parameters commonly used in the literature. In particular, for the forcing terms ηk,
we set η0 = 0.9, ηmax = 0.9, ηmin = 0.1. For the backtracking parameters, we used θmax = 0.1, θmax = 0.5;
the maximum number of backtracks allowed is 20.

Now,we consider the first case; that is, when dim(J) := (Nx + 1)Nξ = 10,500.We note here that the INBM
algorithm presented in this paper computes one eigenvalue nearest to the initial guess. To compute two or
more distinct (or multiple) roots of F(x) = 0 for an SEVP would require some specialized techniques, which
can be a lot more involved. Nevertheless, this task is currently under investigation, and an algorithm for the
computation of other eigenvalues will be presented in a subsequent paper.

All the eigenvalues of the deterministicmatrix (i.e., A0) are shown in Figure 1. The first six smallest eigen-
values ofA0 are 0.5935, 1.4166, 1.4166, 2.1143, 2.6484, 2.6484.Wenote here thatmost of the eigenvalues
of the matrix A0 are repeated. Observe in particular that 1.4166 and 2.6484 are repeated eigenvalues.

In Figure 2, we show the convergence of the low-rank INBM to the second stochastic eigenvalue λ2(ω).
The figure confirms the super-linear convergence of the inexact Newton algorithm as we reported earlier. In
Table 1 and Figure 3, we have shown the first eight coefficients of the spectral expansion gPCE and the prob-
ability density function (pdf) of the second eigenvalue, respectively. Observe here that the pdf is as expected
centered at the mean of the stochastic eigenvalue, i.e., 1.4121. This quantity can also be obtained from the
first coefficient of the gPCE in Table 1, since from (2.4), we have

𝔼(λ2(ω)) =
Nξ−1
∑
k=0

λ(2)k 𝔼(ψk(ξ(ω))) = λ
(2)
0 ,
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Figure 1: Eigenvalues of the deterministic matrix A0.

2 4 6 8 10 12 14 16 18 20 22
10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

102

Inexact Newton iterations

R
es

id
ua

ls
 (|

|F
||)

Figure 2: Convergence of low-rank INBM for the second stochastic eigenvalue λ2(ω).
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due to the orthogonality of the basis polynomials {ψk}. We remark here also that this mean value of the sec-
ond eigenvalue is quite close to the eigenvalue computed from the associated deterministic problem, i.e.,
1.4166. If we increased the order of the Legendre polynomials, then the INBM would converge to the exact
deterministic value. However, this would come at a higher computational expense, as the quantity Nξ would
also need to be increased accordingly. This kind of observation has earlier been extensively verified by the
authors in the context of linear systems arising from PDEs with uncertain inputs [3, 27].

Next, in Tables 2 and 3, we show the performance of the INBM solver in the two cases; that is, for
dim(J) = 10,500 and dim(J) = 82,468,050. Here, the Newton equations (cf. (4.3)) are solved using low-rank
BiCGstab, as well as using the standard preconditioned BiCGstab method which we have denoted as full
model (FM), that is, without low-rank truncation. The CPU times reported are the total time it took the solver
to compute the spectral coefficients of the eigenpair (λ2(ω), φ2(ω)). Here, for each choice of the forcing
terms {ηk} discussed in Section 4.2, we report inexact Newton steps (INS), average of the total backtracks
per inexact Newton step (BINS), total BiCGstab iterations (iter), total CPU times (t) in seconds, ranks of the
solution (R), memory in kilobytes of the full method solution

mem(FM) := 8 ∗ dim(J)/1024
and that of the low-rank solution mem(LR). By the memory requirement of a low-rank solution X = WVT , we
mean the sum of the two separate computer memories occupied by its factorsW and VT , since X is computed
and stored in this format, unlike the solution from FM. From the two tables, we see that for this problem,
the performance of the INBM algorithm is independent of the choice of the forcing terms {ηk}. In particular,
Table 2 shows that the algorithm could compute the solution within a few seconds in the first case. Besides,
the INBM algorithm reduces the storage requirement of the solution to one-quarter of memory required to
compute the full solution. In fact, as shown in [3, 4], for a fixed Nξ , low-rank Krylov solvers typically provide
more storage benefits as Nx →∞.

Finally, as in the first case, we have also computed only the second stochastic eigenvalue λ2(ω) of the
matrixA(ω) (cf. (2.3)) for the case where dim(J) = 82,468,050. Again, themean λ(2)0 of this stochastic eigen-
value corresponds to the second eigenvalue of the deterministic matrix A0, which in this case is 0.003. Note
in particular from Table 3 that with the FM, MATLAB indeed fails as the size of the Jacobian matrix J at each
inexact Newton step is now increased to more than 82 million degrees of freedom. Yet, INBM handles this
task in about 200minutes; that is, roughly 6minutes per Newton step. Here, the solution from FM terminates
with “out of memory”, which we have denoted as “OoM”.

6 Conclusions
In computational science and engineering, there are certain problems of growing interest for which random
matrices are considered as random perturbations of finite-dimensional operators. These random matrices
are usually not obtained from a finite-dimensional representation of a partial differential operator, and in
a number of interesting cases, closed-form expressions of the statistical moments and probability density
functions of their eigenvalues and eigenvectors are available; see, e.g., [37]. The matrices of interest in the
present paper, on the other hand, are the result of a finite-dimensional approximation of an underlying con-
tinuous system and their stochasticity is intrinsically tied to the uncertainty in the parameters of this system.
For such systems, closed-form expressions are generally not available for the solution of the SEVPs.

In this paper, we have presented a low-rank Newton-type algorithm for approximating the eigenpairs
of SEVPs. The numerical experiments confirm that the proposed solver can mitigate the computational com-
plexity associatedwith solving high dimensional Newton systems in the considered SEVPs. More specifically,
the low-rank approach guarantees significant storage savings [3, 4, 39], thereby enabling the solution of
large-scale SEVPs that would otherwise be intractable.

Funding: The work was performed while Martin Stoll was at the Max Planck Institute for Dynamics of
Complex Technical Systems.
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