Supplementary Table 1 | Modeling of yeast TFIIH subunits, domains and regions.

Subunit / Chain ID	Domain	Residue range (yeast)	Initial model	PDB- template for initial model	Modeling algorithm	Changes to initial model	Density assigned in Extended Data Figure 4c / Color
Rad3 / 0	N-terminus	1-17	not modeled	-	-	-	yes / yellow
Rad3 / 0	Lobe 1	18-108, 204-248, 441-484	homology-/ <i>ab-initio</i> model	2VSF:A	I-Tasser		-
Rad3 / 0	FeS cluster	109-203	homology-/ <i>ab-initio</i> model	2VSF:A	I-Tasser		-
Rad3 / 0	ARCH	249-293, 327-425, 429-440	 (1) de-novo modeling of a- helices (2) homology-/ 	(1) <i>de-novo</i> modeling of a Gorgon r helices a-helix PDB from c (2) homology-/ Gorgon		MDFF and manual corrections, PHENIX	-
		420 440	<i>ab-initio</i> model	5IVW:W, 5IVW:A, 5IY9:W	I-Tasser	geometry minimization	-
Rad3 / 0	ARCH linker	294-326	poly-alanine model	-	-		-
Rad3 / 0	Lobe 2	485-723	homology-/ <i>ab-initio</i> model	2VSF:A	I-Tasser		-
Rad3 / 0	C-terminus	724-778	not modeled	-	-	-	yes / yellow
Tfb1 / 1	PHD	1-121	yeast NMR- structure	1Y5O:A	-	PHENIX geometry minimization	-
Tfb1 / 1	PH-linker	122-175	not modeled	-	-	-	no
Tfb1 / 1	BSD1	176-218	homology-/ <i>ab-initio</i> model	2DII:A	I-Tasser		-
Tfb1 / 1	Linker	219-251	poly-alanine model loop	-	-		-
Tfb1 / 1	BSD2	252-294	homology-/ <i>ab-initio</i> model	2DII:A	I-Tasser	MDFF and	-
Tfb1 / 1	Linker	295-307	poly-alanine model loop	-	-	corrections, PHENIX	-
Tfb1 / 1	Rad3 anchor (α-Helix 1)	308-330	poly-alanine model a-helix	-	-	geometry minimization	-
Tfb1 / 1	Linker	331-353	poly-alanine model loop	-	-		-
Tfb1 / 1	Rad3 anchor (α-Helix 2)	369-394	poly-alanine model α-helix	-	-		-
Tfb1 / 1	Ridge	395-464	not modeled	-	-	-	partially / purple
Tfb1 / 1	Tfb4 anchor (α-Helix 1)	465-483	poly-alanine model a-helix	-	-	MDFF and manual corrections	-
Tfb1 / 1	Linker	484-494	poly-alanine model loop	-	-	PHENIX geometry	-

RESEARCH	SUPPLEMENTARY INFORMATION
----------	---------------------------

T 661 / 1	Tfb4 anchor	405 510	poly-alanine			minimization	
	(a-Helix 2)	495-519	model a-helix	-	-		-
Tfb1 / 1	Linker	520-543	not modeled	-	-	-	no
			(1) <i>ab-initio</i> model	-	QUARK		
Tfb1 / 1	3-helix bundle	544-639	(2) homology-/ <i>ab-initio</i> model	PDB output from QUARK 2W6D:A, 1WRD:A, 4M70:A, 5F8P:A,	I-Tasser	MDFF and manual corrections, PHENIX geometry minimization	-
Tfb1 / 1	C-terminus	640-643	not modeled	-	-	-	no
Tfb2 / 2	N-terminus	1-2	not modeled	-	-	-	no
Tfb2 / 2	α	3-40	poly-alanine model a-helix	-	-		-
Tfb2 / 2	HTH-1	41-113	homology-/ <i>ab-initio</i> model	1U2W:A	SWISS		-
Tfb2 / 2	۵	114-131	poly-alanine model loop	-	-	MDFF and	-
Tfb2 / 2	α	132-159	poly-alanine model α- helix/loop	-	-	corrections, PHENIX	-
Tfb2 / 2	HTH-2	160-194	homology-/ <i>ab-initio</i> model	2MC3:A	SWISS	minimization	-
Tfb2 / 2	HTH-2	195-213	poly-alanine model α-helix	-	-		-
Tfb2 / 2	HTH-3	214-281	homology-/ <i>ab-initio</i> model	5BOX:A	SWISS		-
Tfb2 / 2	Linker	282-336	not modeled	-	-	-	no
Tfb2 / 2	Clutch	337-419	poly-alanine model α- helix/β-sheet (partially)	-	-	MDFF and manual corrections, PHENIX geometry minimization	-
Tfb2 / 2	Linker	420-432	not modeled	-	-	-	yes / blue
Tfb2 / 2	Dimerization domain	433-450	poly-alanine model α-helix	-	-	MDFF and manual corrections, PHENIX geometry minimization	-
Tfb2 / 2	Dimerization domain	451-508	yeast crystal structure	3DGP:A	-	PHENIX geometry minimization	-
Tfb2 / 2	C-terminus	509-513	not modeled	-	-	-	no
Tfb3 / 3	N-terminus	1-7	not modeled	-	-	_	no

SUPPLEMENTARY INFORMATION RESEARCH

Tfb3 / 3	RING	8-70	homology-/ <i>ab-initio</i> model	1G25:A, 3M62:A	I-Tasser		-
			(1) <i>ab-initio</i> model	-	QUARK	MDFF and manual	
Tfb3 / 3	ARCH 71-145 anchor		(2) homology/ <i>ab-initio</i> model	OUTPUT from QUARK; 2W6D:A, 3NIX:A, 5EQZ:A, 2EWF:A	I-Tasser	corrections, PHENIX geometry minimization	-
Tfb3 / 3	C-terminus	146-321	not modeled	-	-	-	no
Tfb4 / 4	N-terminus	1-21	not modeled	-	-	-	no
Tfb4 / 4	vWA	22-88	homology-/ <i>ab-initio</i> model	4PN7:A, 4CRN:X, 4PLA:A, 4OKU:A, 5IY9:3	I-Tasser	MDFF and manual corrections, PHENIX	-
Tfb4 / 4	vWA insertion	89-97	poly-alanine model loop	-	-	geometry minimization	-
Tfb4 / 4	vWA insertion	98-102	not modeled	-	-	-	no
Tfb4 / 4	vWA insertion	103-114	poly-alanine model loop	-	-		-
Tfb4 / 4	vWA	115-256	homology-/ <i>ab-initio</i> model	4PN7:A, 4CRN:X, 4PLA:A, 4OKU:A, 5IY9:3	I-Tasser	MDFF and manual corrections, PHENIX	-
Tfb4 / 4	Linker	257-273	poly-alanine model loop	-	-	geometry minimization	-
Tfb4 / 4	eZnF / C-terminus	274-323	homology-/ <i>ab-initio</i> model	3LRQ:D	Robetta		-
Tfb4 / 4	C-terminus	324-338	not modeled	-	-	-	no
Tfb5 / 5	N-terminus	1	not modeled	-	-	-	no
Tfb5 / 5	Dimerization domain	2-64	yeast crystal structure	3DGP:B	-	PHENIX geometry minimization	-
Tfb5 / 5	C-terminus	65-68	poly-alanine model loop	-			-
Tfb5 / 5	C-terminus	69-72	not modeled	-	-	-	no
Ssl1 / 6	unstructured NTE	1-73	not modeled	-	-	-	no
Ssl1 / 6	α	74-122	not modeled	-	-	-	yes / green
Ssl1 / 6	vWA	123-308	yeast crystal structure	4WFQ:A	-	PHENIX geometry minimization	-

Ssl1 / 6	Linker	309-324	poly-alanine model loop	-	-		-
Ssl1 / 6	eZnF	325-372	homology-/ <i>ab-initio</i> model	1NNQ:A	Robetta	MDFF and	-
Ssl1 / 6	α	373-386	poly-alanine model a-helix	-	-	corrections, PHENIX	-
Ssl1 / 6	RING	387-457	homology-/ <i>ab-initio</i> model	1Z60:A 1Z60:A	Robetta SWISS	minimization	-
Ssl1 / 6	C-terminus	458-461	not modeled	-	-	-	no
Ssl2 / 7	NTE	1-110	-	-	-	-	no
Ssl2 / 7	Clutch and DRD	111-362	not modeled	-	-	-	yes / pink
Ssl2 / 7	Lobe 1	363-425	homology-/ <i>ab-initio</i> model	2FWR:A	SWISS		-
Ssl2 / 7	Lobe 1	426-451	homology model / poly-alanine model	-	-	MDFF and manual	-
Ssl2 / 7	Lobe 1	452-462	homology-/ <i>ab-initio</i> model	2FWR:A	SWISS	corrections, PHENIX geometry	-
Ssl2 / 7	Lobe 1	463-481	poly-alanine model a- helix/loop	-	-	minimization	-
Ssl2 / 7	Lobe 1	482-548	homology-/ <i>ab-initio</i> model	2FWR:A	SWISS		-
Ssl2 / 7	Lobe 2	549-691	homology-/ <i>ab-initio</i> model	4ERN:A	Robetta		-
Ssl2 / 7	Lobe 2	692-702	poly-alanine model α- helix/loop	-	-	MDFF and manual corrections,	-
Ssl2 / 7	Lobe 2	703-712	homology-/ <i>ab-initio</i> model	4ERN:A	Robetta	PHENIX geometry minimization	-
Ssl2 / 7	Extension	713-770	homology-/ <i>ab-initio</i> model	4ERN:A	Robetta		-
Ssl2 / 7	C-Terminus	771-843	not modeled	-	-	-	no

TFIIE / W	E-bridge	259-266	poly-alanine model β- strand	-	-	MDFF and manual	-
TFIIE / W	E-bridge	267-289	poly-alanine model α-helix	-	-	corrections, PHENIX geometry	-
TFIIE / W	E-floater	349-373	poly-alanine model a-helix	-	-	minimization	-
TFIIE / W	Acidic peptide	407-417	<i>homo sapiens</i> NMR structure	2RNR:A	-	amino acid replacement MDFF, PHENIX geometry minimization	-

Supplementary Table 2 I Compilation of published BS3- and SBAT-crosslinking information.

a.

Study	Link type	Protein 1	Protein 2	Residue 1	Residue 2	Distance (Å)	Used for modeling	Remark
Robinson 2016	intra	Rad3	Rad3	30	476	16.4	х	-
Murakami 2013, Luo 2016, Robinson 2016	intra	Rad3	Rad3	30	481	14.8	х	-
Luo 2015	intra	Rad3	Rad3	81	673	19.5	х	-
Robinson 2016	intra	Rad3	Rad3	95	125	39.0	-	-
Murakami 2013, Luo 2015, Robinson 2016	intra	Rad3	Rad3	112	125	5.9	х	-
Robinson 2016	intra	Rad3	Had3	112	132	10.7	х	-
Robinson 2016	intra	Rada	Had3	112	142	24.0	x	-
RODINSON 2016 Murakami 2012, Lua 2015, Dahingan 2016	intra	Rada	Rad3	112	180	10.0	x	-
Murakami 2013, Luo 2015, Robinson 2016	intra	Rado Rado	Rado Rado	112	125	19.0	X	-
Luo 2015 Robinson 2016	intra	Dad3	Rad3	122	120	0.0	×	-
	intra	Rad3	Rad3	125	588	26.2	×	-
Luo 2015	intra	Rad3	Rad3	144	276	20.2	×	-
Luo 2015	intra	Rad3	Rad3	144	281	18.5	× v	_
Luo 2015	intra	Rad3	Bad3	173	68	17.3	Y	_
Bobinson 2016	intra	Rad3	Bad3	183	112	15.0	x	-
Robinson 2016	intra	Rad3	Rad3	188	180	11.6	x	-
Luo 2015	intra	Rad3	Rad3	228	68	9.7	x	-
Luo 2015, Robinson 2016	intra	Rad3	Rad3	336	343	10.5	х	-
Luo 2015, Robinson 2016	intra	Rad3	Rad3	347	343	6.2	х	-
Luo 2015	intra	Rad3	Rad3	357	372	13.7	х	-
Luo 2015, Robinson 2016	intra	Rad3	Rad3	364	372	11.7	х	-
Luo 2015	intra	Rad3	Rad3	447	476	11.9	х	-
Luo 2015	intra	Rad3	Rad3	447	636	24.9	х	-
Luo 2015	intra	Rad3	Rad3	476	30	16.3	х	-
Luo 2015	intra	Rad3	Rad3	476	481	16.4	х	-
Robinson 2016	intra	Rad3	Rad3	476	636	28.4	х	-
Robinson 2016	intra	Rad3	Rad3	490	476	37.6	-	low score
Robinson 2016	intra	Rad3	Rad3	490	636	43.2	-	-
Luo 2015	intra	Rad3	Rad3	499	489	24.5	х	-
Robinson 2016	intra	Rad3	Rad3	588	636	44.9	-	-
Luo 2015, Robinson 2016	intra	Rad3	Rad3	605	125	18.4	х	-
Luo 2015	intra	Had3	Rad3	605	588	21.4	х	-
Luo 2015, Robinson 2016	intra	Rad3	Had3	605	636	24.3	х	-
Luo 2015	Intra	Rada	Rad3	673	112	38.0	-	-
Luo 2015	intra	Rado Dedo	Raus Dod2	673	120	39.0	-	low score
Luo 2015 Robinson 2016	intra	Dad2	Rad3	673	409	7.1	X	-
	intra	Dad3	Dad3	673	490 588	24.4	x	-
Luo 2015	intra	Dad3	Dad3	673	500	24.4 12.8	X	-
Luo 2015	intra	Rad3	Rad3	695	481	42.0	v	
Luo 2015	intra	Rad3	Rad3	695	490	12.0	x x	_
Luo 2015	intra	Rad3	Rad3	695	673	15.5	x	-
Luo 2015	inter	Rad3	Ssl2	499	372	29.2	x	-
Robinson 2016	inter	Rad3	Tfb1	180	334	14.3	x	-
Luo 2015	intra	Ssl1	Ssl1	139	201	17.4	x	-
Luo 2015	intra	Ssl1	Ssl1	139	205	14.7	х	-
Luo 2015	intra	Ssl1	Ssl1	197	201	7.2	х	-
Robinson 2016	intra	Ssl1	Ssl1	312	321	24.9	х	-
Murakami 2013, Luo 2015, Robinson 2016	intra	Ssl1	Ssl1	397	414	17.4	х	-
Murakami 2013, Luo 2015	intra	Ssl1	Ssl1	397	420	15.3	х	-
Murakami 2013, Luo 2015, Robinson 2016	intra	Ssl1	Ssl1	414	420	4.6	х	-
Luo 2015	intra	Ssl1	Ssl1	433	397	10.6	х	-
Robinson 2016	inter	Ssl1	Tfa1	201	284	21.9	х	-
Luo 2015	inter	Ssl1	Tfb1	201	101	54.8	-	-
Robinson 2016	inter	Ssl1	Tfb1	201	238	33.2	-	positional variants
Luo 2015	inter	Ssl1	Tfb2	197	415	29.2	х	-
Murakami 2013, Luo 2015, Robinson 2016	inter	Ssl1	Tfb2	201	415	27.4	х	-
Murakami 2013, Luo 2015, Robinson 2016	inter	Ssl1	Tfb2	201	418	22.1	х	-
Luo 2015, Robinson 2016	inter	Ssl1	Tfb2	201	419	22.4	х	-
Luo 2015	inter	Ssl1	I fb4	197	1/3	34.0	-	-
Luo 2015	inter	SSIT		197	207	27.4	x	-
Murakami 2013, Luo 2015, Robinson 2016	inter	SSII	Tfb 4	315	319	17.8	x	-
RODINSON 2016 Murakami 2012, Lua 2015, Dahingan 2016	inter	SSII	Tfb4	321	319	11.4	x	-
Murakami 2013, Luo 2015, Robinson 2016	inter	Solt	TID4	321	323	10.5	X	-
Murakami 2013, Luo 2013, Hubilison 2010	inter	Col1	Tfb4	397	95	20.0	X	-
Robinson 2016	inter	Sel2	Rnh5	414	95	23.2	×	-
	intra	Sel2	Sel2	523	372	25.7	× v	_
Luo 2015	intra	Ssl2	Ssl2	766	624	22.3	x x	_
Bobinson 2016	inter	Ssl2	Tfa2	472	277	62.7	-	only 1 spectral count
Luo 2015	inter	Ssl2	Tfb2	734	415	19.6	x	-
Bobinson 2016	inter	Tfa1	Tfb1	355	186	13.2	x	-
Murakami 2013. Robinson 2016	inter	Tfa1	Tfb1	366	179	12.7	x	-
Murakami 2013, Robinson 2016	inter	Tfa1	Tfb1	367	581	19.2	x	-
Luo 2015	inter	Tfb1	Rad3	73	125	83.1	-	low score
Luo 2015	inter	Tfb1	Rad3	101	95	87.3	-	-
Luo 2015	inter	Tfb1	Rad3	120	125	60.0	-	low score
Robinson 2016	inter	Tfb1	Rad3	334	183	14.4	x	-
Robinson 2016	inter	Tfb1	Rad3	334	588	13.7	х	-
Luo 2015	inter	Tfb1	Rad3	335	112	13.4	х	-
Luo 2015	inter	Tfb1	Rad3	335	588	16.1	х	-
Luo 2015	inter	Tfb1	Rad3	376	125	24.0	х	-
Luo 2015	inter	Tfb1	Rad3	390	588	10.3	х	-
Robinson 2016	inter	Tfb1	Rpb1	73	1093	116.7	-	only 1 spectral count, low score
Luo 2015	inter	Tfb1	Ssl1	120	201	33.2	-	-
Luo 2015, Robinson 2016	inter	Tfb1	Ssl1	238	205	21.4	х	-

Luo 2015	inter	Tfb1	Ssl1	246	205	26.7	x	-
Bobinson 2016	inter	Tfb1	Ssl1	255	201	28.7	x	-
Murakami 2013 Luo 2015 Bobinson 2016	inter	Tfb1	Ssl1	255	205	18.6	x	-
Robinson 2016	intor	Tfb1	Tfa1	587	203	24.0	~	
	intro	Tfb1	Tfb1	47	101	11 5	~	-
Luo 2015 Debineen 0016	intro	Tfb1	Tfb1	47	110	11.5	X	-
Robinson 2016	intra		TIDI	47	112	9.0	X	-
Robinson 2016	intra	1 fD1		57	65	24.3	х	-
Robinson 2016	intra	I fb1	I fb1	73	65	15.8	х	-
Murakami 2013, Luo 2015, Robinson 2016	intra	Tfb1	Tfb1	73	70	9.0	х	-
Robinson 2016	intra	Tfb1	Tfb1	73	71	6.5	х	-
Luo 2015	intra	Tfb1	Tfb1	73	120	30.5	х	-
Robinson 2016	intra	Tfb1	Tfb1	83	47	15.8	х	-
Murakami 2013, Luo 2015, Robinson 2016	intra	Tfb1	Tfb1	83	70	11.7	х	-
Luo 2015	intra	Tfb1	Tfb1	83	71	13.0	x	-
Luo 2015	intra	Tfh1	Tfb1	83	291	41.3	-	<u>.</u>
Luo 2015 Bobinson 2016	intra	Tfb1	Tfb1	101	110	16.1	v	_
Luc 2015, Nobinson 2016	intra	Tfb 1	Tfb 1	101	100	10.1	*	-
Luo 2015, Robinson 2016	Intra			101	120	28.4	x	-
Luo 2015	intra	I fD1		101	335	62.1	-	-
Robinson 2016	intra	Tfb1	Tfb1	112	65	14.0	х	-
Luo 2015, Robinson 2016	intra	Tfb1	Tfb1	120	65	21.6	х	-
Luo 2015	intra	Tfb1	Tfb1	120	70	21.7	х	-
Murakami 2013, Robinson 2016	intra	Tfb1	Tfb1	120	246	16.2	х	-
Luo 2015	intra	Tfb1	Tfb1	120	279	14.8	х	-
Luo 2015	intra	Tfb1	Tfb1	120	291	24.3	х	-
Murakami 2013 Robinson 2016	intra	Tfb1	Tfb1	171	574	23.1	x	-
Murakami 2013	intra	Tfb1	Tfb1	171	581	22.1	x	<u>-</u>
Bobinson 2016	intra	Tfb1	Tfb1	227	170	20.7	x	_
Debinson 2016	intra	Tibl	Tfb1	227	175	20.7	~	
HUDIIISUII 2010	intra	Tibi	That	227	200	14.4	×	-
Luo 2015, Robinson 2016	Intra			227	267	20.6	x	
Luo 2015	intra	1 tb1	1101	238	101	31.7	-	low score
Robinson 2016	intra	Tfb1	Tfb1	238	120	26.3	х	-
Murakami 2013, Luo 2015, Robinson 2016	intra	Tfb1	Tfb1	238	255	11.2	х	-
Robinson 2016	intra	Tfb1	Tfb1	238	279	23.5	х	-
Luo 2015	intra	Tfb1	Tfb1	246	101	20.7	х	-
Murakami 2013, Luo 2015, Robinson 2016	intra	Tfb1	Tfb1	246	255	17.6	x	-
Luo 2015	intra	Tfb1	Tfb1	246	276	26.1	x	-
Luo 2015 Bobinson 2016	intra	Tfb1	Tfb1	246	279	19.5	×	_
Luo 2015	intra	Tfb1	Tfb1	240	201	16.0	×	
Luo 2015	intra	TIDI	That	240	291	10.3	x	-
Robinson 2016	intra	1 dt 1	1101	255	186	28.9	х	-
Robinson 2016	intra	I fb1	I fb1	255	300	23.9	х	-
Robinson 2016	intra	Tfb1	Tfb1	268	279	14.8	х	-
Murakami 2013, Luo 2015, Robinson 2016	intra	Tfb1	Tfb1	268	324	15.2	х	-
Robinson 2016	intra	Tfb1	Tfb1	268	334	35.2	-	only 1 spectral count
Luo 2015	intra	Tfb1	Tfb1	276	291	19.5	х	-
Luo 2015	intra	Tfb1	Tfb1	291	70	39.9	-	-
Luo 2015 Bobinson 2016	intra	Tfb1	Tfb1	291	295	59	x	-
Luo 2015, Bobinson 2016	intra	Tfb1	Tfb1	291	300	10.4	x	-
Bobinson 2016	intra	Tfb1	Tfb1	201	324	20.3	×	_
	intra	Tfb1	Tfb1	291	024	20.0	^	-
Lu0 2015	intra		TIDI	300	335	37.9	-	low score
Robinson 2016	intra	I fb1	Ifb1	300	384	23.6	х	-
Robinson 2016	intra	Tfb1	Tfb1	324	267	15.9	х	-
Luo 2015, Robinson 2016	intra	Tfb1	Tfb1	324	384	11.9	х	-
Luo 2015	intra	Tfb1	Tfb1	335	384	19.6	х	-
Luo 2015	intra	Tfb1	Tfb1	335	390	22.3	х	-
Luo 2015	intra	Tfb1	Tfb1	376	384	12.3	х	-
Robinson 2016	intra	Tfb1	Tfb1	384	268	20.4	x	-
Luo 2015	intra	Tfb1	Tfb1	384	295	17.1	x	-
Luo 2015	intra	Tfb1	Tfb1	498	508	15.0	v	_
Luo 2015	intro	Tfb1	Tfb1	430	500	10.0	~	
Luo 2015 Murahami 0040 Luo 0045 Dahiaran 0040	intra	TIDI	TIDI	508	501	10.2	X	-
Murakami 2013, Luo 2015, Robinson 2016	intra	1 fb1	1fb1	508	515	9.9	x	
Luo 2015	inter	Tfb1	Tfb3	291	10	51.1	-	low score
Luo 2015	inter	Tfb1	Tfb4	83	323	95.4	-	-
Robinson 2016	inter	Tfb1	Tfb4	101	323	92.4	-	only 1 spectral count, low score
Luo 2015	inter	Tfb1	Tfb4	120	323	68.0	-	-
Murakami 2013, Robinson 2016	intra	Tfb1	Tfb4	171	319	23.2	х	-
Luo 2015	inter	Tfb1	Tfb4	483	108	6.8	х	-
Murakami 2013 Luo 2015 Bobinson 2016	intra	Tfb2	Tfb2	238	262	12.4	x	-
Luo 2015 Bobinson 2016	intra	Tfb2	Tfb2	415	419	65	×	_
Murakami 2013, Luo 2015, Pobinson 2016	inter	Tfb2	Tfb5	405	6	8.0	×	
Murakami 2012, Luo 2015, Robinson 2016	intro	Tfb2	Tfb5	506	6	10.1	×	_
Wurdkami 2013, Luo 2013, Hobinson 2010	intra		TID3	500	105	10.1	X	-
Luo 2015	Inter	1103	Rada	10	125	44.7	-	
Luo 2015	inter	Ttb3	Rad3	17	125	50.0	-	low score
Robinson 2016	inter	Tfb3	Rad3	119	276	17.7	х	-
Luo 2015, Robinson 2016	intra	Tfb3	Tfb3	17	57	11.8	х	-
Luo 2015	intra	Tfb3	Tfb3	27	65	16.4	х	-
Luo 2015	intra	Tfb3	Tfb3	61	67	14.9	х	-
Luo 2015	intra	Tfb3	Tfb3	86	67	16.9	х	-
Murakami 2013	intra	Tfb3	Tfb3	94	132	17.2	x	-
Murakami 2013 Luo 2015	intra	Tfhq	Tfh3	110	132	87	Ŷ	-
	intro	Tfho	Tfho	1/1	65	20.5	^ v	-
	intra	THO	THO	141	00	29.0	*	-
LUO 2015	intra	1103	1103	141	6/	20.0	x	-
Luo 2015	intra	1103	11D3	141	132	14.0	х	-
Luo 2015	inter	Tfb4	Ssl1	108	397	42.3	-	-
Luo 2015, Robinson 2016	inter	Tfb4	Tfb2	108	238	24.6	х	-
Murakami 2013, Luo 2015, Robinson 2016	intra	Tfb4	Tfb4	84	138	19.4	х	-
Luo 2015	intra	Tfb4	Tfb4	95	108	23.6	х	-
Murakami 2013. Luo 2015. Robinson 2016	intra	Tfb4	Tfb4	95	138	29.4	x	-
Murakami 2013. Luo 2015. Robinson 2016	intra	Tfb4	Tfb4	131	138	15.9	x	-
Luo 2015 Robinson 2016	intra	Tfh4	Tfh4	165	207	14.8	x	-
Murakami 2013 Luo 2015 Robinson 2016	intra	Tfh4	Tfh4	173	207	10.1	Ŷ	-
Luo 2015	intra	Tfh4	Tfh/	310	202	66	× v	-
	intro	1104 Tfb 4	1104 Tfb /	204	323	0.0 E 7	*	-
100 0016		/1	4 1 1 1 / 1			5 /	¥	-

Luo 2015	inter	Tfb5	Ssl1	6	201	73.2	-	-
Luo 2015	inter	Tfb5	Ssl2	60	721	17.0	х	-
Robinson 2016	intra	Tfb5	Tfb5	46	6	13.7	х	-
Bobinson 2016	intra	Tfb5	Tfb5	60	51	14 4	x	-

b.

Study	Link type	Protein 1	Protein 2	Residue 1	Residue 2
Robinson 2016	inter	Tfa1	Ssl2	301	711
Robinson 2016	intra	Tfa1	Tfa1	284	295
Robinson 2016	intra	Tfa1	Tfa1	286	301
Robinson 2016	inter	Tfa1	Tfb2	295	415
Murakami 2013	inter	Tfa1	Tfb2	301	427

a. TFIIH crosslinks from previous studies^{10,24,25} utilizing BS3 and SBAT and respective C α -distances within the PIC-cMed model obtained in this study. Crosslinks used to verify various TFIIH regions are indicated. For details also refer to main text and Methods.

b. TFIIH crosslinks from previous studies^{10,24,25} that were located up to 12 residues from the next residue modeled in our study. These crosslinks were additionally used to confirm TFIIH regions. For details also refer to **Extended Data Fig. 6**.

Supplementary Table 3 I Newly obtained EDC-crosslinks.

PIC-cMed components	Total number of crosslinks	Number of crosslinks mappable on the PIC- cMed structure
Total crosslinks	262	158
Inter-protein crosslinks		
Total	109	65
Pol II – Pol II	18	15
Pol II – TFIIB	8	4
Pol II – TFIIE	8	3
Pol II – TFIIF	4	2
Pol II – TFIIH	4	0
Pol II – cMed	2	2
TFIIA – TFIIA	2	2
TFIIA – TFIIE	1	0
TFIIA – TBP	1	0
TFIIB – TBP	1	0
TFIIA – TFIIF	3	0
TFIIE – TFIIE	1	0
TFIIE – TFIIF	2	1
TFIIF – TFIIF	14	9
TFIIE – TFIIH	11	10
TFIIH – TFIIH	19	13
TFIIH – cMed	3	0
cMed – cMed	7	4
Intra-protein crosslinks		
Total	153	93
Pol II	35	34
TFIIA	4	3
TFIIB	5	4
TBP	8	0
TFIIE	3	3
TFIIF	22	6
TFIIH	59	34
cMed	17	9

b.

a.

Link type	Protein 1	Protein 2	Residue 1	Residue 2	Total Count	Score	Distance (Å)	Alternative residue
Intra	Ccl1	Ccl1	45	286	2	3,93	NA	-
Intra	Kin28	Kin28	32	37	2	6,72	NA	-
Intra	Med1	Med1	375	389	1	8,88	NA	-
Intra	Med1	Med1	377	389	1	8,01	NA	-
Intra	Med14	Med14	420	544	2	3,84	7.8	418
Intra	Med14	Med14	539	544	2	10,84	8.0	-
Intra	Med17	Med17	386	416	1	9,73	9.5	413
Intra	Med17	Med17	386	418	2	13,55	NA	-
Intra	Med17	Med17	418	427	3	11,05	NA	-
Intra	Med17	Med17	419	427	2	15,78	NA	-
Intra	Med17	Med17	421	427	2	23,03	5.2	424
Intra	Med17	Med17	579	608	1	3,74	12.6	-
Intra	Med17	Med17	581	608	12	18,05	13.1	580
Inter	Med17	Med22	548	118	1	5,51	9.6	-
Inter	Med17	Med22	608	105	4	11,67	5.4	-
Inter	Med17	Med22	608	106	1	15,05	8.6	-
Inter	Med17	Med22	608	109	3	11,46	7.4	-
Inter	Med17	Med7	75	191	1	4,83	NA	-
Inter	Med17	Med7	78	191	1	7,28	NA	-
Intra	Med20	Med20	2	187	1	3,69	13.2	-
Intra	Med20	Med20	10	183	3	4,31	8.0	-
Intra	Med21	Med21	107	113	1	8,04	10.0	-
Intra	Med4	Med4	34	39	2	14.65	NA	-
Intra	Med7	Med7	93	103	3	8,82	NA	-
Intra	Med8	Med8	189	210	2	3.31	NA	-
Inter	Med9	Med4	117	26	1	4,75	NA	-
Inter	Med9	Rpb1	88	977	3	4.77	9.9	-
Inter	Med9	Rpb1	99	918	6	5.74	15.9	-
Inter	Rad3	Med7	389	1	2	9,7	NA	-
Intra	Rad3	Rad3	68	225	8	10.59	13.3	-
Intra	Rad3	Rad3	132	269	1	12,46	23.4	-
Intra	Rad3	Rad3	268	336	2	3.21	10.1	-
Intra	Rad3	Rad3	269	336	2	8.01	13.7	-
Intra	Rad3	Rad3	276	389	3	7.67	15.8	-
Intra	Bad3	Rad3	276	394	1	3,91	24.3	-
Intra	Bad3	Bad3	281	389	35	14.94	12.8	-
Intra	Rad3	Rad3	336	340	6	18.42	5.9	-
Intra	Rad3	Rad3	578	605	2	5.13	11.8	-
Intra	Bad3	Rad3	605	608	1	12.22	8.9	-
Intra	Bad3	Rad3	605	674	1	3.3	28.7	-
Intra	Rad3	Rad3	613	673	3	6.58	11.7	-
Intra	Rad3	Rad3	636	640	4	4.69	6.0	-
Inter	Rad3	Tfb1	112	340	2	7.25	13.6	-
Inter	Rad3	Tfb1	605	340	1	4.94	7.0	-
Inter	Bad3	Tfb1	605	345	3	10.12	16.7	-
Inter	Rad3	Tfb1	605	346	1	5.3	17.8	-
Inter	Bad3	Tfb3	336	77	18	15 55	9.8	-
Inter	Bad3	Tfb3	343	74	3	8.51	8.9	-
Intra	Bpb1	Rnb1	39	49	11	10.7	7.0	-
Intra	Rob1	Rob1	186	193	4	9.02	4.3	197
Intra	Rob1	Rob1	186	195	5	8.77	4.3	197
Intra	Rob1	Rob1	368	398	5	5.71	10.2	-
Intra	Bob1	Bob1	724	728	3	3 73	6.0	-
Intra	Bpb1	Bob1	833	1102	13	13	9.0	-
			000				0.0	

	D 1 4	D 1 4	051	1000		0 7 4		
Intra	Rpb1	Rpp1	951	1290	1	9,74	9.9	-
Intra	Rpb1	Rpb1	1093	1074	13	6,87	24.9	-
Intra	RpD1	Rpo1	1093	1309	3	6,16	10.0	-
Intra	Rpbi	Rpoi	1132	1206	12	10,42	10.2	-
Inter	RpD1	RpD11	368	8	6	15,99	16.8	-
Inter	Rpbi	Rpb2	481	987	1	6,02	10.7	-
Inter	Rpp I Deb1	Rpb2	483	987	8	5,53	0.4	-
Inter	npui Babi	Rpb2	400	9/9	6	5,71	12.3	-
Inter	Rpb1	Rpb2	400	262	47	6.27	0.3	-
Inter	Rpb1	Rpb5	045	202	47	0,27	9.4	
Inter	Rpb1	Rpb7	343	201	1	12 21	15.6	-
Inter	Rpb1	Rpb9	1253	20	1	8.65	12.6	1254
Inter	Rpb1	Tfo1	102	20	1	6,05	10.2	1234
Inter	Rpb1	Tfo1	195	71	4	7 99	19.2	197
Inter	Rpb1	Tfa1	106	71	10	7,00	10.2	107
Inter	Rpb10	Dob12	190	22	10	4,21	0.1	197
Inter	Rpb10	Ppb12	69	50	2	10.54	19.0	65
Inter	Ppb10	Pob11	14	20	0	10,34	14.6	05
Intra	Ppb11	Pob11	16	20	1	10.22	0.1	
Intra	Ppb11	Ppb11	20	20	3	16.04	9.1	
Intra	Ppb11	Rpb11	20	30	3	3 20	24.0	
Intra	Bpb12	Rpb12	58	68	1	1 11	17.2	65
Inter	Bpb2	Rpb1	507	833	3	4,44	NA	
Inter	Bpb2	Rpb1	979	485	3	4.68	10.4	_
Intra	Bpb2	Bpb2	975	183	5	7.89	12.6	_
Intra	Bpb2	Rpb2	131	134	3	15.45	9.9	_
Intra	Bpb2	Bpb2	133	138	1	6 14	17.0	
Intra	Bpb2	Rpb2	227	262	2	6.32	11.0	-
Intra	Bpb2	Rpb2	239	507	1	9 19	NA	-
Intra	Bpb2	Bpb2	246	468	2	4 57	19.2	467
Intra	Bpb2	Bpb2	391	393	1	5 15	5.5	-
Intra	Bpb2	Bpb2	393	621	1	4 57	9.9	-
Intra	Bpb2	Rpb2	886	908	14	8 94	8.8	-
Intra	Bpb2	Bpb2	886	909	1	64	9.3	-
Intra	Bpb2	Bnb2	923	934	4	61	12.2	
Intra	Bpb2	Bpb2	924	934	1	4 61	12.2	-
Intra	Bpb2	Bnb2	1057	1061	1	5.25	6.2	
Inter	Bpb2	Tfa2	441	279	4	7 24	4.7	
Inter	Bpb2	TEIIB	438	108	2	3 19	27.9	-
Inter	Bpb2	TEIIB	438	112	2	5 73	25.8	-
Inter	Bpb2	TEIIB	921	224	3	8.51	NA	-
Inter	Bpb2	TEIIB	922	224	8	12 19	NA	-
Inter	Bpb2	TEIIB	923	155	3	7.88	23.9	-
Inter	Bpb3	Rob10	149	67	1	3.23	10.3	65
Inter	Bpb3	Rob11	137	118	51	15.25	NA	-
Inter	Rpb3	Rpb11	266	84	2	11.79	9.9	265
Inter	Bpb3	Rob11	266	88	1	8.84	12.3	265
Intra	Bpb3	Bpb3	90	160	4	12.77	11.5	
Intra	Rpb4	Rpb4	127	142	2	9.93	6.1	-
Intra	Bpb4	Bnb4	131	142	13	17 27	8.2	-
Intra	Bpb5	Bpb5	161	172	5	8 86	9.5	-
Intra	Bpb5	Rpb5	191	194	1	16.46	5.9	
Intra	Bpb5	Bpb5	194	201	6	72	23.0	-
Inter	Bpb6	Bpb5	62	171	4	11.2	NA	-
Intra	Bpb6	Bpb6	112	123	20	6 75	9.6	-
Inter	Bpb9	Tfa1	9	400	6	16.92	8.4	-
Intra	Ssl1	Ssl1	262	303	3	10.3	10.7	-
Intra	Ssl1	Ssl1	387	430	8	4 45	9.5	-
Inter	Ssl1	Tfa1	201	270	2	5 16	19.0	-
Inter	Ssl1	Tfa1	201	275	2	4.32	14.3	-
Inter	Ssl1	Tfa1	205	270	1	5.04	14.6	-
Inter	Ssl1	Tfa1	205	275	2	9.84	15.2	-
Inter	Ssl1	Tfb4	401	95	9	25.87	13.1	-
Inter	Ssl1	Tfb4	439	165	16	7.22	9.8	-
Inter	Ssl1	Tfb4	441	165	7	8.88	14.7	-
Inter	Ssl1	Tfb4	446	165	2	4.76	15.2	-
Inter	Ssl2	Med7	520	1	4	18.53	NA	-
Inter	Ssl2	Ssl1	351	52	1	3,64	NA	-
Intra	Ssl2	Ssl2	46	65	2	6,51	NA	-
Intra	Ssl2	Ssl2	90	334	6	13,37	NA	-
Intra	Ssl2	Ssl2	228	304	4	4,61	NA	-
Intra	Ssl2	Ssl2	510	520	2	10,53	25.1	-
Intra	Ssl2	Ssl2	510	521	2	3,71	23.7	-
Intra	Ssl2	Ssl2	617	624	1	6,12	10.7	-
Intra	Ssl2	Ssl2	758	827	2	3,71	NA	-
Intra	Ssl2	Ssl2	762	791	3	5,79	NA	-
Intra	Ssl2	Ssl2	762	827	2	3,82	NA	-
Intra	Ssl2	Ssl2	768	827	1	3,28	NA	-
Intra	Ssl2	Ssl2	774	835	1	3,53	NA	-
Intra	TBP	TBP	2	27	1	6,94	NA	-
Intra	TBP	TBP	2	44	1	7,29	NA	-
Intra	TBP	TBP	2	188	2	6,77	NA	-
Intra	TBP	TBP	27	35	3	4,88	NA	-
Intra	TBP	TBP	27	47	2	10,36	NA	-
Intra	TBP	TBP	47	52	1	3,83	NA	-
Intra	TBP	TBP	47	54	2	4,22	NA	-
Intra	TBP	TBP	47	108	1	9,2	NA	-
Inter	Tfa1	Rpb1	222	188	10	3,21	NA	-
Inter	Tfa1	Rpb1	222	193	18	11,9	NA	-
Inter	Tfa1	Rpb1	222	195	16	9,64	NA	-
Inter	Tfa1	Rpb1	222	196	47	9,75	NA	-
Intra	Tfa1	Tfa1	1	195	2	11,53	10.7	4,194
Inter	Tfa1	Tfb1	345	189	2	6,08	11.7	349
Inter	Tfa1	Tfb1	347	189	1	6,74	11.7	349
Inter	Tfa1	Tfb1	349	189	14	9,55	11.7	-
Inter	Tfa1	Tfb1	350	189	11	9,59	12.6	-
Inter	Tfa2	Rpb1	294	193	1	4,4	NA	-
Inter	Tfa2	Tfa1	294	195	3	9,73	NA	-

Intra	Tfo9	Tfo9	140	1/0	5	7 23	15.7	_
Intra	Tfa2	Tfa2	273	277	1	6.41	6.1	-
Inter	Tfa2	Tfa2	133	335	2	6.42	8.3	-
Inter	Tfb1	Tfa1	57	411	1	3,4	8.3	-
Inter	Tfb1	Tfa1	57	412	1	3,44	9.4	-
Intra	Tfb1	Tfb1	65	118	2	11,74	17.7	-
Intra	Tfb1	Tfb1	118	279	3	8,85	11.2	-
Intra	Tfb1	Tfb1	166	173	2	3,86	6.3	168
Intra	Tfb1	Tfb1	268	320	7	15,09	12.4	-
Intra	Ifb1	Ifb1	291	305	2	5,17	10.0	-
Intra	I TD1	TTD1	322	324	1	11,97	5.3	-
Inter	ITD1 Tfb1	Tfb4	458	43	1	3,13	NA 14.4	-
Inter	Tfb2	Tib4 Tfa1	149	301	7	11,53	ΝΔ	_
Intra	Tfb2	Tfb2	168	175	19	21.6	70	-
Inter	Tfb2	Tfb4	326	166	1	7.8	NA	-
Inter	Tfb2	Tfb5	449	51	9	12,01	12.0	-
Inter	Tfb2	Tfb5	463	1	2	7,28	7.5	2
Inter	Tfb3	Med6	154	143	4	8,37	NA	-
Inter	Tfb3	Rad3	156	357	5	6,45	NA	-
Inter	Tfb3	Rpb4	25	1	1	5,51	NA	-
Inter	1fb3	Rpb4	226	186	32	13,88	NA	-
Inter		Rpb4	235	186	1	4,72	NA	-
Inter	Tfb2		220	60	7	3,57	NA	-
Intra	Tfb3	JSIZ Tfh3	44 27	40	1	4 1	5.8	-
Intra	Tfb3	Tfb3	57	204	1	4 11	NA	-
Intra	Tfb3	Tfb3	80	121	11	17.24	7.0	-
Intra	Tfb3	Tfb3	94	154	2	5,27	NA	-
Intra	Tfb3	Tfb3	94	156	1	3,39	NA	-
Intra	Tfb3	Tfb3	159	163	2	7,5	NA	-
Intra	Tfb3	Tfb3	180	192	4	7,51	NA	-
Intra	Tfb3	Tfb3	180	226	1	5,66	NA	-
Intra	Tfb3	Tfb3	181	192	1	6,38	NA	-
Intra	1103	Ttb3	182	192	3	6,44	NA	-
Intra	Tfb2	Tfb3	182	226	3	8,35		-
Intra	Tfb2	Tfb2	192	204	2	0,01	NA	-
Intra	Tfb3	Tfb3	192	207	1	9,90 8 02	NA	_
Intra	Tfb3	Tfb3	204	235	1	5 41	NA	-
Intra	Tfb3	Tfb3	207	235	2	8.48	NA	-
Intra	Tfb3	Tfb3	226	265	1	5,4	NA	-
Intra	Tfb4	Tfb4	84	127	5	5	12.1	-
Intra	Tfb4	Tfb4	84	128	16	5,86	8.4	-
Intra	Tfb4	Tfb4	89	102	1	9,98	15.0	103
Intra	Tfb4	Tfb4	102	123	2	10,97	9.1	103
Intra	Tfb4	Tfb4	102	127	1	7,97	10.9	103
Intra	Itb4	Itb4	108	123	7	14,01	10.8	-
Intra		I fD4	108	127	10	11,52	14.4	-
Inter	Tfo1	5SIZ Tfo1	01	40	2	3,24		-
Inter	Tfa1	Tfa1	91	209	1	3,09	NA	-
Intra	Tfa1	Tfa1	60	69	3	12 16	NA	-
Intra	Tfa1	Tfa1	89	97	2	5 16	NA	-
Intra	Tfg1	Tfa1	274	411	1	12.18	NA	-
Intra	Tfg1	Tfg1	274	416	1	9,12	NA	-
Intra	Tfg1	Tfg1	280	289	8	15,2	NA	-
Intra	Tfg1	Tfg1	281	289	1	9,22	NA	-
Intra	Tfg1	Tfg1	411	419	2	9,31	7.6	415
Intra	Tfg1	Tfg1	658	671	5	14,2	NA	-
Intra	Itg1	Ifg1	658	672	3	11,72	NA	-
Intra	Itg1	I fg1	6/1	704	2	8,68	NA	-
Inter	Tfo1	Tig2	93	99	1	4,99	5.8 10.7	97
Inter	Tfa1	Tfg2	93	103	3	6 24	10.7	97
Inter	Tfa1	Tfa2	97	94	1	5.98	15.9	-
Inter	Tfg1	Tfa2	97	99	16	6.18	5.8	-
Inter	Tfg1	Tfg2	100	94	2	3,47	6.4	-
Inter	Tfg1	Tfg2	125	130	5	14,97	9.1	-
Inter	Tfg1	Tfg2	126	130	35	17,99	6.1	-
Inter	Itg1	Tfg2	126	132	5	14,32	10.0	-
Inter	11g2	HPD1	2	196	1	6,84	NA	-
Inter	Tig2	HPD1 Tfa1	100	196	3 1	0,03	NA NA	-
Inter	Tfa2	Tfa1	100	92	7	15 12	NA	-
Inter	Tfa2	Tfa1	110	92	1	10,12	NA	_
Inter	Tfa2	Tfa1	114	91	1	3.2	NA	-
Inter	Tfg2	Tfa1	194	411	1	4.8	NA	-
Intra	Tfg2	Tfg2	23	54	1	12,75	NA	-
Intra	Tfg2	Tfg2	31	206	1	3,28	NA	-
Intra	Tfg2	Tfg2	38	142	2	5,73	NA	-
Intra	Tfg2	Tfg2	38	206	1	6,03	NA	-
Intra	Tfg2	Tfg2	54	141	6	15,33	11.5	58,138
Intra	Itg2	Itg2	54	142	5	9,35	11.5	58,138
Intra	Tfg2	Tfg2	/9	245	1	5,75	15.5	244
Intra	Tto2	i tg2 Tfa2	80	114	1	3,59	13.0	110
initia Intra	riy∠ Tfa2	riy∠ Tfa2	1∠0 308	130	1	4,30 9.57	10.1 ΝΔ	-
Intra	Tfa2	Tfa2	356	360	1	4 04	NA	-
Inter	TFIIB	Rob2	100	470	2	9.2	NA	-
Inter	TFIIB	Rpb2	184	865	8	3,85	14.2	-
Inter	TFIIB	Rpb2	224	923	4	5,8	NA	-
Inter	TFIIB	TBP	343	241	2	3,82	NA	-
Intra	TFIIB	TFIIB	75	147	1	3,12	NA	-
Intra	TFIIB	TFIIB	88	155	5	11,85	9.8	-
Intra	TFIIB	TFIIB	103	108	1	5,13	9.3	-
Intra	TFIIB	TFIIB	155	219	4	6,87	14.8	218
Intra	IFIIB	I FIIB	160	217	1	12,22	12.3	-
Inter	1081	IBP	169	110	2	3,83	NA	-

SUPPLEMENTARY INFORMATION RESEARCH

RESEARCH SUPPLEMENTARY INFORMATION

Inter	Toa1	Tfg2	23	2	2	17,06	NA	-
Inter	Toa1	Tfg2	24	2	1	12,39	NA	-
Inter	Toa1	Tfg2	26	2	1	15,32	NA	-
Intra	Toa1	Toa1	44	48	1	5,18	5.0	47
Intra	Toa1	Toa1	144	167	2	4,02	NA	-
Inter	Toa1	Toa2	2	101	7	11,21	12.1	104
Inter	Toa1	Toa2	45	21	17	10,62	8.7	-
Inter	Toa2	Tfa2	24	20	2	7,93	NA	-
Intra	Toa2	Toa2	2	42	2	5,4	9.6	5
Intra	Toa2	Toa2	59	88	9	15,94	4.8	-

a. Summary and statistics of EDC-crosslinks in the PIC-cMed complex obtained in this study. **b.** List of single EDC-crosslinks. 'Total Count' refers to sum of spectral counts originating from both replicates and 'score' refers to highest detected score value (Methods). C α distances are indicated if structural information was available within a range of 4 residues from the cross-linked residue. Several crosslinks were used to guide TFIIE density interpretation and to confirm TFIIE-TFIIH interactions. For details also refer to main text and **Extended Data Fig. 6**.

Factor/Subunit / Chain ID	Initial Model	PDB-template for initial model	Modeling algorithm	Changes to initial model
Pol II / A-L	yeast high resolution EM structure	5FYW:A-L	-	rigid body fit of clamp region (residues 1-346 in chain A) and peripheral regions in Rpb3 (residues 22-44, 73- 97), Rpb6 (residues 72-154), Rpb8 (residues 2-146), Rpb9 (residues 20- 43, 55-117) and Rpb12 (residues 26- 65); MDFF correction of stalk (chain D, G), PHENIX geometry minimization
TFIIA / U-V	yeast high resolution EM structure	5FYW:U-V	-	rigid body fit, PHENIX geometry minimization
TFIIB / M	yeast high resolution EM structure	5FYW:M	-	extension by residues 59-123 based on PDB 4bbr:M; MDFF correction of this range, PHENIX geometry minimization
TBP / O	yeast high resolution EM structure	5FYW:O	-	PHENIX geometry minimization
TFIIE / W-X	homology model	5GPY:A-B	I-Tasser SWISS	MDFF correction of homology model, PHENIX geometry minimization
TFIIF / Q-R	yeast high resolution EM structure	5FYW:Q-R	-	rigid body fit of residues 329-415 in chain Q and residues 58-244 in chain R; extension of linker (residues 245- 250) in chain R, PHENIX geometry minimization

Supplementary Table 4 | Adaptation and extension of yeast cPIC and cMed models.

cMed model originates from *S. cerevisiae* homology model of PDB 5n9j (Nozawa et. al, 2017) and was subjected to alterations listed below; complete cMed model was subjected to PHENIX geometry minimization routine

Med4 / h	homology model	5N9J:H	-	extension of a-helix in residue range 118-126; <i>de-novo</i> modeling of a-helix in residue range 130-145; MDFF correction of homology model
Med7 / i	yeast crystal structure	1YKE:A	-	extension of α-helix in residue range 206-211; MDFF correction of homology model
Med14 / I	homology model	5N9J:L	-	truncation of residues 341-345; MDFF correction of homology model
Med21 / j	yeast crystal structure	1YKE:B	-	extension of α-helix in residue range 128-138; MDFF correction of homology model
Med31 / o	yeast crystal structure	3FBI:B	-	truncation of residues 94-110; replacement by <i>de-novo</i> modeled α- helix (SSE predicted); MDFF correction of homology model