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Abstract Reservoir models play an important role in rep-
resenting fluxes of matter and energy in ecological sys-
tems and are the basis of most models in biogeochemistry.
These models are commonly used to study the effects of
environmental change on the cycling of biogeochemical
elements and to predict potential transitions of ecosys-
tems to alternative states. To study critical regime changes
of time-dependent, externally forced biogeochemical sys-
tems, we analyze the behavior of reservoir models typical
for element cycling (e.g., terrestrial carbon cycle) with
respect to time-varying signals by applying the mathemat-
ical concept of input to state stability (ISS). In particular,
we discuss ISS as a generalization of preceding stability
notions for non-autonomous, non-linear reservoir models
represented by systems of ordinary differential equations
explicitly dependent on time and a time-varying input sig-
nal. We also show how ISS enhances existing stability
concepts, previously only available for linear time variant
(LTV) systems, to a tool applicable also in the non-linear
case.
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Introduction

Overview

Since ecological systems may undergo critical transitions
that lead to catastrophic regime changes (Scheffer et al.
2001; Beisner et al. 2003; Scheffer and Carpenter 2003;
Lenton et al. 2008), it is important to classify mathemati-
cal models with respect to the possibility of such transitions.
Mathematically, this is achieved through what is commonly
referred to as stability analysis (e.g., Guckenheimer and
Holmes (1983) and Strogatz (1994)). There is a long his-
tory in the ecological sciences concerning the study and
use of stability concepts (e.g., May (1973), Holling (1973),
Ludwig et al. (1978), and Pimm (1984)), which has lead
to considerable confusion about the meaning of the term
“stability” itself (Grimm and Wissel 1997). One particular
aspect of this confusion can be traced back to the supposed
sharp distinction between the concept of stability and that
of resilience, which was introduced more than four decades
ago by Holling (1973). While we do not want to discuss
the complex history of the notion of resilience here, we
do want to point out the possible effect of its original def-
inition unduly narrowing the perceived focus of stability
analysis as restricted to autonomous systems close to equi-
libria only. In a recent review, Meyer (2016) discusses the
concept of resilience exclusively in the light of autonomous
systems. In fact, most of the mathematical tools that have
previously been used to study stability in ecological systems
rely heavily on restrictions imposed by the assumption of an
autonomous system. This raises the following question: Do
ecologically meaningful stability concepts even exist if the
system is

1. Non-autonomous, i.e., explicitly dependent on time
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2. Not in equilibrium, because continually disturbed by a
time-dependent driving signal u(t):

ẋ = h(t, x, u(t)), (1)

where x describes the state of the system and ẋ its
derivative with respect to time expressed by the vector
valued function h of time t , state x, and a driving signal
u(t).

We review here the concept of input to state stability (ISS)
recently developed in control theory (Sontag 2008) as one
such classifying concept by applying it to element cycling
reservoir systems where the ith component of x will usually
denote the content of pool i. In particular, we will show the
following: (a) why a tool able to deal with conditions 1 and 2
is not only useful but essential for many ecological models,
(b) what kind of behavior the ISS systems exhibit, (c) how
the ISS property can be proved for a non-linear example sys-
tem, and (d) how ISS naturally generalizes stability notions
previously used in ecology for both autonomous non-linear
and linear time-varying systems, thereby revealing a large
number of implicit applications.

ISS is not the only concept in this area. Alternatives
include the mathematically more general theory of non-
autonomous systems (Kloeden and Rasmussen 2011) and
much more concrete examples and applications like the
“compost bomb” (Wieczorek et al. 2011). Probabilistic
approaches have also been proposed (Nolting and Abbott
2016). We will be able to point out some connections after
ISS has been properly introduced.

To reach ecologists, we discuss concrete examples in a
general way. To satisfy the more mathematically oriented,
we underpin these claims by proofs. This dichotomy is
reflected in the structure. In the paper, we give an overview
and try to draw the bigger picture. Many of the detailed
definitions, explanations, and actual technical results sub-
stantiating it have been included in the appendices.

Motivation

Note that in the past, many ecological models have been
formulated as autonomous systems of ordinary differential
equations (ODEs) of the form

ẋ = f(x, p), (2)

where ẋ = dx
dt

is the derivative with respect to time and
p is a set of parameters assumed to be fixed (Maynard-
Smith 1978; Kot 2001; Cushing et al. 2003; Pastor 2008;
Soetaert and Herman 2009). These autonomous systems are
a proper subset of dynamical systems, their dynamics con-
sisting solely in their ability to capture the influence of x
on its own rate of change ẋ. If one looks now for invari-

ant sets such as fixed points and conditions ensuring their
stability, one can do so with respect to the dynamic char-
acter of x only. Although stability or existence of invariant
sets can be discussed in view of changing parameters (e.g.,
in bifurcation analysis), the theory of autonomous systems
does not provide tools to capture the influence of the time-
dependent nature (for instance the speed) of such parameter
changes. As a remedy, the parameters p in system (2) are
sometimes assumed to change extremely slowly in compar-
ison to x. However, although very useful when appropriate
(for instance Ludwig et al. (1978)), this quasi-static approx-
imation can be dangerously misleading and hard to justify
beforehand, as the following example shows. The system

ẋ = A(p)x (3)

with

A(p) =
( −1 + 1.5 cos2 p 1 − 1.5 sinp cosp

−1 − 1.5 sinp cosp −1 + 1.5 sin2 p

)
(4)

has a stable fixed point at 0 which is stable for all p ∈ R

since the eigenvalues of A(p), given by λ1,2 = −1±i
√
7

4 ,
have a negative real part. Nevertheless, the solution for the
time-dependent p(t) = t given by

x = �(t)x0,

with

�(t) =
(

e0.5t cos t e−t sin t

−e0.5t sin t e−t cos t

)
,

will in general not even converge to a fixed point (except
when x1(0) = 0), but will instead grow exponentially with
time. This extremely unstable behavior would remain for
any k in p(t) = t

k
. To avoid surprises like this, we have

to consider stability notions for explicitly time-dependent
systems.

Many models in ecosystem ecology and biogeochemistry
use time-dependent functions to modify parameters related
to environmental effects: e.g., photosynthetic carbon fixa-
tion or organic matter inputs to soils (Luo and Weng 2011;
Raupach 2013; Luo et al. 2015; Sierra and Müller 2015).
Capturing only the internal (state induced) dynamics of
these models is obviously insufficient for stability analysis,
and they must instead be represented as non-autonomous
dynamical systems:

ẋ = f(x, p(t)) (5)

= g(x, t). (6)

We can look at this situation from two different perspec-
tives. On one hand, if we are still interested in invariant sets,
Eq. 6 indicates that we nowmust explicitly consider the pos-
sibility that they vanish due to the time dependency. Instead
of merely ignoring this possibility, we now have to check,



Theor Ecol (2017) 10:451–475 453

that it does not occur. For example, systems of form (6) may
still have fixed points, but it is no longer enough to show
this for (even arbitrarily chosen) fixed times. On the other
hand, we do not always expect fixed points, but are instead
interested in how the system responds to a time-dependent
driving signal p(t) as suggested by Eq. 5.

Combining both views, we can choose some components
of p(t) as a driving signal u(t) and absorb others in the def-
inition of h in Eq. 1. For instance, in discussing effects of
time-dependent environmental variability expressed by tem-
perature T (t), precipitation P(t), and photosynthetic carbon
fixation F(t) on the carbon stocks C of an ecosystem, we
could choose p(t) in Eq. 5 as p(t) = (T (t), P (t), F (t)).
We could treat any single term or any combinations of terms
{T , P, F } as a driving signal and represent the others by the
explicit t dependency of h. As the perhaps simplest concrete
example, imagine a single-pool, linear ecosystem model

Ċ = F(t) − k(T (t), P (t))C

with decomposition/respiration rate in product form
k(T , P ) = k0T P and some possible choices of u. We
can choose a three-dimensional driver, for instance u(t) =
(F (t) − F0, T (t) − T0, P (t) − P0) where F0, T0, and P0

denote some constants. This implies that h(u, t) = h(u) =
u1+F0+k0(T0+u2)(P0+u3) depends on t only through u.
We could also choose two-dimensional signals, for instance
u(t) = (T (t) − T0, P (t) − P0) resulting in the explicitly
time-dependent h(u, t) = F(t) + k0(u1 + T0)(u2 + P0).
Of course, u(t) = (F (t) − F0, P (t) − P0), and u(t) =
(F (t) − F0, T − T0) are also possible as well as one-
dimensional definitions like u(t) = F(t) − F0 resulting
in h(u, t) = u − k0P(t)T (t), or u(t) = T (t) − T0 , or
u(t) = P(t) − P0.

Another source for driving signals u is uncertainty in
some parameter. We will see that the ISS framework does
not require smoothness of u, which makes it possible to
include stochastic signals, which are, like Brownian motion,
frequently not smooth.

In ecological reservoir systems, so far only special cases
of Eq. 1 have been discussed, with very different concepts.
For example, Manzoni et al. (2009), although not concerned
with stability directly, applied linear input response theory.
In control theory, the linear response approach can be seen
as a less general predecessor to ISS for linear time invariant
(LTI) systems described by an equation of the form (5) with
f linear in x. Rasmussen et al. (2016) consider stability of
linear time-varying systems of form (6), but not with respect
to a driving signal.

In contrast to this previous work, we will apply the single
concept of ISS, which has become important in non-linear
control theory in recent years and has also found its way
into models of chemical (Chaves 2005) and biological sys-
tems (Chaves et al. 2008). We will use a generalized version

for time-varying systems. We also show that ISS seamlessly
generalizes concepts of stability for LTI and LTV cases.

Definition of ISS

In the remainder of this section, we will introduce some
necessary nomenclature and show how the traditional stabil-
ity notions for autonomous and non-autonomous dynamical
systems are embedded within ISS. Although we decided to
present these notions in Appendix 1, a considerable part of
our work has been spent to formulate them in a way that
especially accommodates their generalization to ISS.

While our derivation in Appendix 1 has concentrated on
versions of stability available for autonomous systems and also
applicable in the non-autonomous cases, the following text
will present extended notions of stability, where fixed points
or invariant sets cannot be maintained against the driving
signal, but act instead as central locations around which the
systems move, with amplitudes controlled by the amplitudes
of the driving forces, and to which the systems return when
the driving forces disappear. This case is the subject of con-
trol theory, where we import the concept of input to state
stability from. The great utility of ISS will be demonstrated
by showing some examples of the multitude of possible
equivalent definitions suitable for different applications.

We divide the presentation into two parts distinguishing
between levels of time dependency.

Some nomenclature

Let R+ denote the non-negative real numbers, R+n
the n-

dimensional, non-negative orthant, and |x|A = infy∈A |x −
y| the distance to a set. The disturbances will be measurable
locally bounded maps in the space U = L∞ ([t0, ∞);Rm)

with the supremum norm ‖u‖t0,∞ = ess supτ∈[t0,t]|u(τ )|.

Definition 1 (Forward complete system) Let x(t, x0, t0, u)

denote the trajectory of the system (1) corresponding to the
initial condition x(t0) = x0 and the input function u. This
solution is uniquely defined on some maximum interval
[t0, Tt0,x0,u). If Tt0,x0,u = ∞, system (1) is called forward
complete.

Definition 2 (Invariant set and zero-invariant set) An
invariant set A of a dynamical system (1) is a region of the
state space that solutions x(t, x0, t0, u) will never leave.

x0 ∈ A =⇒ x(t, x0, t0, u) ∈ A, for all t ≥ t0.

A zero-invariant set A0 of system (1) is an invariant set of
the undisturbed system

x0 ∈ A0 =⇒ x(t, x0, t0, 0) ∈ A0, for all t ≥ t0.
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We will see examples where the minimal zero-invariant
set consists of a single fixed point, although the t depen-
dency of Eq. 1 makes this a rather rare case.

Definition 3 (K∞ and KL functions) A class K function
is a function α : R+ → R

+ that is continuous, is strictly
increasing, and satisfies α(0) = 0.

A class K∞ function is an unbounded class K function
satisfying

α(r) ↗ ∞ as r → ∞.

A class KL function is a function β : R+ × R
+ → R

+
such that

β(·, t) ∈ K∞ for all t and β(r, t) ↘ 0 as t → ∞.

In our examples, solutions of system (1) will develop in
X = R

+n
and the invariant sets A could sometimes touch

the boundaries. Therefore, we give an adapted definition of
the interior of a set in X (Chaves et al. 2008).

Definition 4 (Interior of a set R in X ) For R ⊂ X , we
define the interior ofR by

intXR := {x ∈ R : x ∈ int (R) or x ∈ ∂R ∩ ∂X }

Definitions of ISS where the time dependency is restricted
to the input signal u only

We consider in this section a system of the form

ẋ = h(x, u). (7)

We start with a rather abstract definition of ISS, close to
the one most commonly encountered in textbooks, that we
will use later to establish the connection to linear systems.
Other more illustrating definitions follow.

Remark:
Let X denote the domain in which solutions of Eq. 7

develop. (So, by definition, the set X is also invariant.)
In many standard applications of ISS, X = R

n and X
is not even mentioned. In these cases, the ISS definitions
can focus on the smaller set A, which conceptually is the
essential invariant set. But when the state variables—as in
our examples—describe inherently non-negative masses or
concentrations, X becomes a proper subset of Rn, usually
X = R

+n
. Therefore, the following definition gets a bit

more cumbersome by explicit reference to X and its invari-
ance. Readers yet unfamiliar with ISS are asked not to get
distracted by this technical necessity, but to focus on the
neighborhood of A where the typical ISS behavior can be
observed.

Definition 5 (ISS) Let X be an invariant set of system (1).
If there exists a set D ⊂ X with A ⊂ intX (D) and a KL
function βD, a class K function γD, such that

|x(t, x0, t0, u)|A≤βD(|x0|A, t)+γD(‖u‖t0,∞), for all t ≥0

(8)

for all x0 ∈ D and all inputs u ∈ U , then system (1) is said to
be locally ISS with respect toA. It is said to be input to state
stable, or (globally) ISS, if D = X and Eq. 8 is satisfied for
any initial state x0, and any input u ∈ U .

Note that this local definition already enables the appli-
cation to multi-stable systems. It has been used to prove
ISS for bi-stable biological examples (Chaves et al. 2008)
that are very similar in structure to some non-linear biogeo-
chemical models. To interpret it more easily, note that a very
simple change leads to the following alternative definition.
Since max{a, b} ≤ a + b ≤ max{2a, 2b}, Eq. 8 can be
replaced by

|x(t, x0, t0, u)|A ≤ max
{
β(|x0|A, t), γ (‖u‖t0,∞)

}

with different γ and β. In words: for an ISS system, the dis-
tance of any solution to the setA depends monotonically on
the original distance of the start value |x0|A and the size of
the disturbing input signal ‖u‖t0,∞, where the influence of
the start value decreases with time and vanishes asymptot-
ically, so that the distance will be dominated by the input.
Remarkably, ISS combines both influences quantitatively.

How the asymptotic behavior of an ISS system depends
on start values and inputs is further enlightened by the
“non-linear superposition principle” (Sontag et al. 1996);
the influences of start value and disturbing signal are “super-
imposed” as illustrated in Fig. 1. ISS is equivalent to
the combination of the following 0-globally asymptotically
stable (0-GAS) and “asymptotic gain” (AG) properties:

Definition 6 (0-GAS) System (7) is said to be 0-GAS if the
input-free system (u(t) = 0 for all t) is GAS, as defined in
Appendix 1 for autonomous systems.

Definition 7 (Asymptotic gain property AG) System (7) is
said to exhibit the AG property if there exists a γ ∈ K∞
such that

limt→+∞|x(t, x0, t0, u)|A ≤ γ (‖u‖t0,∞), for all x0, u(.).

Theorem 1 (ISS is 0-GAS + AG, Sontag et al. (1996)) A
system is ISS if and only if it is 0-GAS and AG.

The theorem permits an alternative definition of (global)
ISS that is important for showing that ISS naturally
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Fig. 1 The asymptotic gain property for a fixed point x̄ (left-hand
side) and a zero-invariant set A (right-hand side). Regardless of the
start value x0 = x(t0), every solution will eventually converge to the
region (light grey) defined by the distance to the fixed point x̄ (or the
zero-invariant set A respectively). In the case of x̄, the region is an
n-dimensional ball; in the more general case of an A with more than
one point, it depends on the shape of A. This region could be called

a “region of stability.” Its size is limited by the size of the input sig-
nal. This distance γ (‖u‖t0,∞) is a strictly increasing function γ of the
supremum norm of the driving signal u. Note that by means of trans-
formations, u can be seen as the difference to some default input Id and
will be small if I is close to this default (left-hand side picture inspired
by Sontag (2008))

encompasses the GAS concept known from the analysis of
autonomous systems, and generalizes GAS by incorpora-
tion of the AG property, which deals with the inputs.

Remarks:
Of course, the requirement of global asymptotic stability

is not essential and could be weakened in the same way as
in Definition 5 to a version appropriate for smaller basins of
attraction. (Basin of attraction is defined in Definition 14 in
Appendix 1.1.)

The definition can be generalized to greatly extend the
class of systems for which ISS theory can be applied (Angeli
and Efimov 2015). This generalization is, however, far
beyond the scope of the present work.

A third definition of ISS, which is useful in proofs,
gives a “dissipation characterization” using ISS Lyapunov
functions (Sontag 2008). It transfers the tool of Lyapunov
functions, used to prove stability of autonomous systems, to
the domain of ISS. We will use a generalized version of it
later to prove ISS for one of our examples.

Definition 8 (Storage function) A continuous function V :
R

n → R is a storage function if it is positive definite
(V (0) = 0 and V (x) > 0 for x �= 0) and proper
(V (x) → ∞ as |x| → ∞). Equivalently, V is a stor-
age function if there exist α

¯
, ᾱ ∈ K∞ such that α

¯
(|x|) ≤

V (x) ≤ ᾱ(|x|). When x represents compartmental con-
tents, the domain of V is R+n

, but since we sometimes use
coordinate transformations, this is not always the case.

Theorem 2 (Sontag and Wang (1995)) A system is ISS if
and only if it admits a smooth ISS Lyapunov function, where
an ISS Lyapunov function for Eq. 7 is a smooth storage func-
tion V for which there exist functions γ, α ∈ K∞ such that
the following inequality holds:

V̇ (x, u) ≤ −α(|x|) + γ (|u|)
where V̇ = ∇V · ẋ is the orbital derivative.

Remarks:
The proof of the sufficiency of the existence of an ISS Lyan-

punov function in Sontag and Wang (1995) constructs the
comparison functions β and γ from V and its estimates. This
is important since β and γ can be used quantitatively. We will
not do this for our examples, but want to point out the reference.

We mention, but do not present, further possibilities to
define ISS, for instance the concept of “robust stability.” An
excellent overview can be found in Sontag (2008).

Definitions where the input signal u and the remaining part
of the system depend on time

The ISS definitions presented so far successfully capture
the influence of a time-dependent driving signal on an
otherwise time-independent system. From this viewpoint,
the choice of u(t) in Eq. 7 is limited to functions that capture
all time dependencies. This is a severe limitation if we want
to choose a “driving signal” with a particular ecological
meaning. An example of this situation that will be discussed
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later is a soil organic matter system driven by the input sig-
nal uOM(t) of the mass of organic matter input, but also
by functions dependent on weather conditions that modify
decomposition rates such as temperature uT (t) or moisture
uM(t). If we want to separate the influence of one of these
drivers, for instance by choosing u = uOM , the right-hand
side of the ODE will depend on time not only through u, but
also directly through h. This is expressed by the t in Eq. 1.
The specific form of h will be a consequence of our choice
of the driving signal u. The most general mathematical con-
cept addressing this situation is input to state stability for
time-varying systems (tvISS).

Definition 9 (ISS for time-varying systems) A system is
ISS with respect to a nonempty, closed zero-invariant set A
if there exist β ∈ KL and γ ∈ K such that for each initial
time t0, each initial state x0, each input function u, and all
t ≥ t0

|x(t, x0, t0, u)|A ≤ β(|x0|A, t − t0) + γ
(‖u‖t0,∞

)
holds.

ISS for time-varying systems can again be characterized
by “dissipation”: a forward complete time-varying system
is ISS with respect to A if and only if it admits an ISS
Lyapunov function V with respect to A.

Definition 10 (ISS Lyapunov function) A smooth function
V : Rn ×R → R≥0 is an ISS Lyapunov function for system
(1) with respect to A if there exist K∞ functions α, α, χ ,
and a continuous positive definite function α such that

α(|x|A) ≤ V (t, x) ≤ α(|x|A),

and

|x|A≥ χ(|u|) =⇒ ∂V

∂t
(t, x)+∇V (t, x) ·h(t, x, u)≤ −α(|x|A).

(9)

Theorem 3 (Edwards et al. (2000) Theorem 1) A forward
complete time-varying system (1) is ISS with respect to A
if and only if it admits a smooth ISS Lyapunov function
V with respect to A. In the case when A is compact, the
completeness assumption is redundant.

These definitions serve different purposes in the rest of
the paper. While the “non-linear superposition” (Theorem 1)
and the Lyapunov characterization (Definition 2) are mainly
intended to show theoretical connections, the time-varying
Lyapunov characterization (Definition 10) will be needed in
our most general example application. Definition 5, which
is based on a comparison function, and its time-dependent
variant (Definition 9) will be useful for the connection

to linear time invariant and linear time variant systems,
respectively.

Reservoir models

For the purpose of understanding the examples in this paper,
it suffices to interpret all state variables as contents of
reservoirs. The interpretation easiest to imagine is content
measured in units of mass stored in a reservoir defined
by its spatial boundaries. However, reservoirs as well as
contents can be much more abstract. The concrete exam-
ple that motivated the present work is the class of general
soil organic matter cycling models described in Sierra and
Müller (2015), where the reservoirs are defined by their
rates of decomposition rather than their spatial boundaries.
It generalizes linear as well as non-linear soil models. Lin-
ear examples are as follows: Henin and Dupuis (1945),
Henin et al. (1959), Andren and Kätterer (1997), Coleman
and Jenkinson (1999), Parton et al. (1987), and Fontaine
and Barot (2005). Nonlinear models include the following:
Schimel and Weintraub (2003), Sinsabaugh and Follstad
Shah (2012), Allison et al. (2010), Zelenev et al. (2000),
Wang et al. (2013), and Manzoni and Porporato (2007).
Reservoir models also generalize models of the global car-
bon cycle (Luo and Weng 2011; Rasmussen et al. 2016)
and are also commonly used in systems biology (Anderson
2013). It is therefore useful to discuss ISS with respect to
this general class of models.

It is also worth mentioning that the ISS theory presented
here is in no way limited to models where all state variables
describe contents of pools. In particular, ISS permits to dis-
cuss systems derived from higher order ODEs, where some
of the state variables could still describe reservoir contents.
We give a detailed discussion about reservoir models and
the property of mass balance in Appendix 2.

Applications

A non-linear time-varying soil organic matter
decomposition model driven by mass influx

We start with a prototypical example that shows typical
properties of an ISS system with a minimum of technical
complexity. It is a place holder for ecologically relevant
non-linear systems (Schimel and Weintraub 2003; Sins-
abaugh and Follstad Shah 2012; Allison et al. 2010; Zelenev
et al. 2000; Wang et al. 2013; Manzoni and Porporato 2007)
to be analyzed in the future. Consider the uncoupled system

Ċ1 = I1(t) −
(
C2
1 + C1

)
k1(t), (10)

Ċ2 = I2(t) −
(
C2
2 + C2

)
k2(t), (11)
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where C1 and C2 are the carbon contents of two uncon-
nected pools, and the bounded periodic functions k1 and k2
with

kmin
1 ≤ k1(t) ≤ kmax

1 , (12)

kmin
2 ≤ k2(t) ≤ kmax

2 (13)

describe the seasonal changes in decomposition speed. One
possible choice is

k1 = kmax
1

2
+ kmin

1

2
+ 1

2

(
kmax
1 − kmin

1

)
sin (4t), (14)

k2 = kmax
2

2
+ kmin

2

2
+ 1

2

(
kmax
2 − kmin

2

)
sin (4t). (15)

If the quadratic terms in C2
i + Ci were missing, the model

would be linear and the ki would be called decomposition
rates (Olson 1963). I1 and I2 are mass fluxes to the system.
The system can have a fixed point

C̄ =
(

C̄1

C̄2

)
,

if the input streams have the same period and phase as the
decomposition rates:

I0(t) =
⎛
⎝

(
C̄1

2 + C̄1

)
k1(t)(

C̄2
2 + C̄2

)
k2(t)

⎞
⎠ .

The invariant set of our definitions reduces to one point:

A = {C̄}.
We will now disturb both mass influxes individually by
perturbations u1(t) and u2(t) and get

Ċ1 = I 01 (t) + u1(t) −
(
C2
1 + C1

)
k1(t),

Ċ2 = I 02 (t) + u2(t) −
(
C2
2 + C2

)
k2(t).

Note that the equivalence I = I0 + u should be read from
right to left: u = I − I0. For an arbitrary given I(t), the
choice of I0(t) implicitly defines u(t). As a consequence,
even the most ideal choice of a reference is not artificial
at all. It just defines what we call a disturbance. Inside the
ISS framework, it is enough to know its size ‖u‖t0,∞. For
instance, imagine that the fluxes are given as time series
data. By subtracting a reference I0(t), one gets a time series
for the perturbations u(t) with respect to the reference.
‖u‖t0,∞ is just the biggest value of the |u| time series. We
could also choose a constant reference input:

I0 = const. =
(

z1
z2

)
.

The system then no longer has a fixed point for u = 0, but
a rectangular invariant set

A =
{
(C1, C2) : C̄min

1 ≤ C1(t) ≤ C̄max
1 ,

C̄min
2 ≤ C2(t) ≤ C̄max

2

}

where C̄min
1 and C̄max

1 are the fixed points of the two
minimum and maximum k1 rate systems:

0 = −kmin
1

(
C̄min2

1 + C̄min
1

)
+ z1,

0 = −kmax
1

(
C̄max2

1 + C̄max
1

)
+ z1

and C̄min
2 and C̄max

2 are the fixed points of the two respective
minimum and maximum k2 rate systems:

0 = −kmin
2

(
C̄min2

2 + C̄min
2

)
+ z2,

0 = −kmax
2

(
C̄max2

2 + C̄max
2

)
+ z2.

Aswe will prove later, both versions of the system exhibit
the ISS property. We can draw a number of interesting
conclusions from this system (Fig. 2).

1. The four plots at the top show the disturbances.

(a) The upper left shows the absolute value of two dif-
ferent disturbances in different colors as functions
of time. The graphs fit into semi-transparent rect-
angles. The height of the rectangles is given by the
infinity norm of the absolute value of the distur-
bance and is the only relevant information that the
ISS statements will refer to.

(b) The lower left and upper right plots show the arbi-
trarily chosen components of u given by functions
of the form ui(t) = Ai sin(ωit). The height of the
u2 rectangle, and the width of the u1 rectangle are
given by the infinity norm of the absolute value of
u, which is not the smallest possible upper bound,
as the picture shows, since the graphs do not fill the
whole height or width the rectangle would allow.

(c) The lower right plot shows how an upper bound
of the infinity norm confines trajectories of distur-
bances in the �u-space to disks. The y-axis is shared
with the plot for u2 to the left and the x-axis with
the plot for u1 above. Looking at the confined com-
ponents, suggestively plotted to the left and on top,
one expects the regions for the disturbances in the
(u1, u2)-plane to be rectangles. While this expecta-
tion is correct, it is not used in the ISS definition,
which refers to the infinity norm of the vector u.

2. The next four plots in the middle show the effect of
these disturbances on the solutions for the system with
a fixed point.

(a) The upper left plot shows the absolute value of
the deviations of solutions from the fixed point as
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Fig. 2 Effects of disturbances with respect to different I0. The upper
panels show the disturbances, the middle panels show the effect of
the disturbance on the system with a fixed point, and the lower

panels show the effect of the disturbances on the system that has
no fixed points. See the main text for a detailed explanation of the
plots
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functions of time. We choose two different start
positions (C1, C2) with different distances to the
fixed point (C̄1, C̄2). For every start position, we
compute the undisturbed solution, represented by
the black graph, and one for each of the two dis-
turbances represented by the same color as the
disturbance influencing it. At the beginning, the
influence of the start position is clearly discernible,
but as time goes on, this influence decreases, and
we can predict the distance of the solution to the
fixed point to be bounded by a similar rectangle.
For an ISS system, the height of this rectangle is a
monotone function γ of ‖u‖t0,∞ with γ (0) = 0.
We can formulate both statements in the reservoir
language of our example: A limited disturbance in
the mass fluxes will eventually lead to a limited
aberration of the pool contents from the equilib-
rium value. We can predict the (eventual) aberration
of the pool sizes to be smaller for the smaller dis-
turbance. The fact that γ (0) = 0 means that our
system will converge to its fix point if we do not
disturb it.

(b) The lower left and upper right plots show the effect
of the disturbances on the components of C. Since
|C| has to approach a limited region, so too must its
components. We also see again that a tight bound
on |C| is not necessarily tight on the components.

(c) The lower right plot shows how an upper bound of
the norm confines trajectories in the phase space
to disks. The y-axis is shared with the plot for
C2 to the left and the x-axis with the plot for
C1 above. Looking at the confined components,
one again expects the regions to be rectangles, but
since ISS does not make any statements about the
components, but about the norm of the whole vec-
tor, the rectangles we could construct would again
only circumscribe the disks, thereby weakening the
statement. Translated into reservoir terms, we can
expect the reservoir contents with the blue distur-
bance of the influx to end up in the blue region of
the state space. For the bigger green disturbance,
we can expect the solution eventually somewhere
in the bigger green disk.

3. The four plots at the bottom show the effect of these
disturbances on the solutions for the system, which no
longer has a fixed point, but at least a zero-invariant set.

(a) The upper left plot shows the absolute value of
the deviations of solutions from the invariant set as
functions of time. The plot states the same result as
its counterpart for the fixed point. The only differ-
ence is that the distance to a point is replaced by
the distance to a set. This distance is what ISS is

concerned with. Eventually, all solutions will end
up in the vicinity of the invariant set regardless of
the start value. The smaller the disturbance is, the
closer to the set they will be.

(b) The lower left and upper right plots show the effect
of the disturbances on the components of C. Let us
first look at the undisturbed (black) solutions only.
In our example, the combination of constant mass
influxes to both reservoirs and a time dependent
decomposition leads to changing pool contents.
The plot suggests that the contents of the reser-
voirs follow the oscillations of the decomposition,
and more importantly, they vary only in a certain
range. For this simple example, it is straightforward
to show that these ranges can be established. We
can show that once an unperturbed solution enters
the region defined by the ranges, it will never leave
it. The region is invariant. The ISS property does
not tell us anything about this region, but about
the distances of solutions to it. The big green dis-
turbance leads to a big boundary layer around the
invariant set. The smaller blue disturbance leads to
solutions ending up in the smaller blue boundary
layer. All solutions, regardless of their start values,
will eventually end up there.

(c) The lower right plot shows how an upper bound on
the norm of the distance confines trajectories in the
phase space. The invariant set is a rectangle due to
the fact that in our simple example, the reservoir
contents are not coupled. In general, the invariant
set can have a different shape; the ISS property just
ensures that we will eventually find solutions in
an area defined by a distance to the set depending
monotonically on the size of the disturbance.

Up to now, we have only argued that our system looks like
an ISS system since the expected properties show up in the
plots. Of course, we have to prove this. The idea of the proof
is suggested by the result of Theorem 3: We have to find
an ISS Lyapunov function in the sense of Definition 10.
We first note that the positive orthant is an invariant set for
the system defined by Eqs. 10 and 11 since it is a reservoir
system and so derivatives point inward at the boundaries
(Jacquez and Simon 1993). That A = [C̄min

1 , C̄max
1 ] ×

[C̄min
2 , C̄max

2 ] is zero invariant does not have to be proved
separately if we find an ISS Lyapunov function for this set.
We propose V = 1

2 |C|2A as such a Lyapunov candidate. We
do not need to make it explicitly time dependent although
this would provide additional freedom in some cases. Note
first that V is smooth, positive definite, and we can easily
choose equal lower and upper limiting functions

α(|C|A) = α(|C|A) = V (C).
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We now show that we can find α, χ ∈ K∞ such that for
|C|A ≥ χ(|u|) (inputs small enough in comparison to the
distance), the orbital derivative can be estimated by V̇ ≤
−α(|C|A).

The piecewise definition of V leads to the piecewise-
defined derivative:

V̇ = |C|A d

d t
|C|A

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 : C̄min
i ≤ Ci ≤ C̄max

i i ∈ {1, 2}
(C̄min

1 − C1)Ċ1 + (C2 − C̄max
2 )Ċ2 : C1 < C̄min

1 and C2 > C̄max
2

(C̄max
2 − C2)Ċ2 : C̄min

1 ≤ C1 ≤ C̄max
1 and C2 > C̄max

2
(C1 − C̄max

1 )Ċ1 + (C2 − C̄max
2 )Ċ2 : C1 > C̄max

1 and C2 > C̄max
1

(C1 − C̄max
1 )Ċ1 : C1 > C̄max

1 and C̄min
2 < C2 < C̄max

2
(C1 − C̄max

1 )Ċ1 − (C̄min
2 − C2)Ċ2 : C1 > C̄max

1 and C2 < C̄min
2

−(C̄min
2 − C2)Ċ2 : C2 < C̄min

2 and C̄min
1 < C1 < C̄max

1
−(C̄min

1 − C1)Ċ1 − (C̄min
2 − C2)Ċ2 : C1 < C̄min

1 and C2 < C̄min
2

−(C̄min
1 − C1)Ċ1 : C1 < C̄min

1 and C̄min
2 < C2 < C̄max

2 .

Since our system is uncoupled, the following estimates
can be derived by combining estimates from scalar systems
of the form

Vi = |Ci |2A =
⎧⎨
⎩
0 : C̄min ≤ Ci ≤ C̄max

(Ci − C̄min
i )2 : Ci < C̄min

i

(Ci − C̄max
i )2 : Ci > C̄max

i .

with V (|C|A) = V1(|C1|A) + V2(|C2|A). In particular, we
have

V̇ ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 : C̄min
i ≤ Ci ≤ C̄max

i i ∈ {1, 2}
− (

(C̄min
1 − C1)

2 + (C̄max
2 − C2)

2
) : C̄min

1 ≤ C1 ≤ C̄max
1 and C2 > C̄max

2|u1| < c1 = (C̄min
1 − C1)(1 + kmax

1 ) |u2| < c2 = (C̄min
2 − C2)(k

min
2 [3C̄max

2 + 1] + 1)
−(C̄max

2 − C2)
2 : C1 > C̄max

1 and C2 > C̄max
1|u2| < c2

− (
(C̄max

1 − C1)
2 + (C̄max

2 − C2)
2
) : C1 > C̄max

1 and C̄min
2 < C2 < C̄max

2|u1| < c3 = (C1 − C̄max
1 )(kmin

2 [3C̄max
1 + 1] + 1)

|u2| < c2
−(C̄max

1 − C1)
2 : C1 > C̄max

1 and C̄min
2 < C2 < C̄max

2|u1| < c3
− (

(C̄max
1 − C1)

2 + (C̄min
2 − C2)

2
) : C2 < C̄min

2 and C̄min
1 < C1 < C̄max

1|u1| < c3
|u2| < c4 = (C̄min

2 − C2)(1 + kmax
2 )

−(C̄min
2 − C2)

2 : C1 < C̄min
1 and C2 < C̄min

2|u2| < c4
− (

(C̄min
1 − C1)

2 + (C̄min
2 − C2)

2
) : C1 < C̄min

1 and C̄min
2 < C2 < C̄max

2|u1| < c1|u2| < c4
−(C̄min

1 − C1)
2 : C1 < C̄min

1 and C2 < C̄max
2|u1| < c1 = (C̄min

1 − C1)(1 + kmax
1 ) .

We can choose μ(|u|) = |u|
c

with c = max{c1, · · · , c4}
and α(|C|A) = |C|2A. The proof for the fixed point is
implicitly included. In this case, C̄min

i = C̄max
i = C̄i and

kmin
i = kmax

i .
Remarks:

It is interesting to ask what we could learn about
the examples by classical stability theory for autonomous

systems. The first thing we would have to do is to get rid
of the time dependency. But it turns out that the rate of
change of the state variables in a quasi-static approximation
is comparable to the rate of change of the driving signal and
the rate of change of the parameters in the compartmental
matrix. Consequently, a quasi-static approximation would
be misleading and is therefore not an option.
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Another thing one could try is to consider averaging with
respect to time. Incidentally, the example encourages this
through the periodicity of the driving signal and the param-
eter changes. Of course, this would not help to find out
how much the state variables, the contents of the pools,
change with time. To get an idea about the amplitude of
such changes, one could try to choose minimal and maxi-
mal values for input and decomposition rates and observe
the behavior of the resulting systems in the phase plane.
For the examples and their extremely regular and periodic
parameter changes, the results would not be too misleading.
This is, however, not always the case as the simple exam-
ple in the introduction showed. Resonance effects cannot be
taken into account in the autonomous view, but could lead
to diverging solutions.

Another question is how one would approach the prob-
lem from a non-autonomous perspective. Here the stability
of a trajectory is a more natural concept than the stability of
a point (Kloeden and Rasmussen 2011). In the compartmen-
tal model of the example, we do not expect a fixed point but
periodic solutions for periodic inputs, caused for instance by
seasonal cycles. We could now interpret the input as a con-
trol and the whole system following this control. Instead of
treating the whole seasonal variation as deviation, we could
consider the deviation from the expected solution under the
influence of a given uncertainty in the driving input. An
ISS system will stay close to the expected solution. ISS was
originally developed in control theory to guarantee that a
feedback designed to stabilize a system still does so if the
feedback is not completely correct, but exhibits a bounded
uncertainty. ISS for time-varying systems has been applied
to tracking problems (Tsinias and Karafyllis 1999).

A non-linear influx controlled compartmental model
that is not ISS

It is important to see that not all compartmental models are
ISS. For instance, we give the following example describ-
ing an enzyme-controlled degradation of some substrate S

according to Michaelis-Menten kinetics:

Ṡ = I − V max S

KM + S
, (16)

where V max is the maximum rate of the reaction and the
Michaelis constant KM is the substrate concentration at
which the reaction rate is 1

2V
max . For a constant I 0 <

V max , the equation has a fixed point

S̄ = I KM

V max − I 0
.

It is easy to see that this fixed point is GAS in R
+, for

instance by Jacquez and Simon (1993) Theorem 5, which
covers compartmental systems whose Jacobian is itself a
compartmental matrix (Definition 18 in Appendix 2). In this

simple one-dimensional case, the Jacobian is the derivative
dṠ
dS

= − KV max

(K+S)2
, which is itself a one-dimensional “com-

partmental matrix,” but it is clear that the input-controlled
system

Ṡ = u(t) + I 0 − V max S

KM + S

cannot be ISS, since for any constant u0 > V max − I 0, S

would increase beyond all bounds.
Remarks:

If additional knowledge of the bounds of ‖u‖t0,∞ is avail-
able (in this example ‖u‖t0,∞ ≤ α = min{V max − I 0, I 0}),
one could make the ISS definition more specific by a condi-
tion on the size of ‖u‖t0,∞. For practical purposes, it might
be enough to show that a system is ISS for ‖u‖t0,∞ < α. For
this simple example, this conditional ISS property could be
achieved.

In this case, classical bifurcation analysis with respect to
the parameter I 0 representing a constant input shows that
the fixed point disappears for I 0 > V max , which helps to
exclude ISS. However, as we have seen in the introduction,
classical methods are not sufficient to establish ISS. Note
that ISS is a form of stability denoted as bounded input
bounded states (BIBS).

Definition 11 (BIBS stability) System (1) is BIBS if
bounded inputs lead to bounded states:

‖u‖t0,∞ < δ =⇒ ‖x‖t0,∞ < ε.

For autonomous compartmental systems, a necessary and
sufficient condition for BIBS is the following (Bastin 1999):
Let qi(x) denote the output flux from pool i and M = ∑

i xi

the overall mass of the system. Assume that the input I(t)
is bounded 0 ≤ Ii(t) ≤ Imax

i for t ≥ t0 i ∈ 1, . . . , n.

Assume further that the cumulative outflux
∑

i qi depends
on the cumulative mass M in such a way that for any Imax ,
we can find a mass M0 such that M(x) > M0 =⇒∑

i qi(x) > Imax. Then the state x is bounded and the
simplex 
 = {x ∈ R

+n : M(x) ≤ M0} is an invariant set.
In our case, where M = x = S, and limS→∞ q(S) =

V max , this condition is clearly violated and the output flux
cannot compensate inputs I > V max even if S → ∞. Of
course, such systems cannot be ISS.

While this criterion might be very useful to exclude the
possibility of ISS, it also raises the question what the sim-
plest system that can compensate arbitrary inputs would
look like. To see this, let us temporarily adopt the mind-set
of control theory and consider the task to stabilize an input-
controlled compartmental system at a prescribed fixed point
x̄. For any fixed I , we look for a control law u(x) such that
the influx is compensated. The most intuitive approach is to
make the control proportional and opposite in direction to
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the misfit of the state, u = −k(x − x̄) with k > 0. We write
the equilibrium condition in the following way:

ẋ = 0

= I + u(x̄)

= I − k(x − x̄)

= Ĩ − k(x).

The resulting system is linear, with Ĩ = I − kx̄. If we read
the last equations backward, they say that a linear system
can “control” its inputs with respect to its fixed point, by
scaling countermeasures according to the misfit. It is easy
to see that such systems fulfill the abovementioned condi-
tion for BIBS and are therefore good candidates for ISS and
a motivation for the next subsection. Linear systems will
serve as a prototype that guides the search for ISS systems.
On the other hand, the example reveals an important implicit
assumption of linear models, namely the ability to increase
the size of the counteracting signal to any size demanded
by the influx. A control engineer can guarantee such an
idealized controller usually only in a specific interval of
operation. It is certainly wise to keep this in mind for natural
systems too.

Linear models

Linear time variant models

Many reservoir models (Coleman and Jenkinson 1999;
Anderson 2013; Xia et al. 2013; Raupach 2013; Sierra and
Müller 2015) can be written in the general form:

Ċ = f(t,C, I(t)) = A(t)C + I(t)

To establish the connection to the last example and the
nomenclature of control theory, we choose a fixed point C̄,
a fitting I0(t) = −A(t)C̄, and a new variable x = C − C̄, so
that our system now reads

ẋ = A(t)x + A(t)C̄ + I0(t) + u(t)

= A(t)x + u(t).

The fixed point is now x = 0. In control theory, linear mod-
els are usually written a little bit more general by allowing
a linear transformation of the signal:

ẋ(t) = A(t)x(t) + B(t)u(t). (17)

Although for the influx-controlled systems we have been
looking at so far B = 1, we will adopt the more general
notation here to allow the reader to use another input signal.
One can write the solution of Eq. 17 in the form

x(t) = �(t, t0)x0 +
∫ t

t0

�(t, τ )B(τ )u(τ ) dτ, (18)

where �, defined by �(t, t0)x(t0) = x(t), is called the state
transition matrix. Most interestingly, � can be derived from
the input-free system

ẋ(t) = A(t)x(t),

and is therefore independent of u. We prove the follow-
ing simple theorem that connects linear control to ISS. Its
importance does not consist in its mathematical depth, but
in the connection it establishes to a large class of models
that we want to study.

Let ‖·‖ denote some matrix norm, for instance the Frobe-
nius norm, induced by the Euclidean vector norm. (Due to
the equivalence of norms onRn, any pair of vector norm and
induced matrix norm is possible.)

Theorem 4 (sufficient condition for ISS for linear time-
varying systems)

The linear system (17) is ISS if it is uniformly asymptoti-
cally stable and B(t) is bounded, i.e.,

∃η, λ > 0 : ‖�(t, t0)‖ ≤ ηe−λ[t−t0], for all t ≥ t0 (19)

∃kB > 0 : ‖B(t)‖ ≤ kB, for all t. (20)

Proof We have to show that we can find β ∈ KL and γ ∈
K:

|x(t)| =
∣∣∣∣�(t, t0)x0 +

∫ t

t0

�(τ, t0)B(τ )u(τ ) dτ

∣∣∣∣
≤ ηe−λ[t−t0]|x0| +

∫ t

t0

ηe−λ[t−τ ]kB ‖u‖t0,∞ dτ

= ηe−λ[t−t0]|x0| + ηkB ‖u‖t0,∞
λ

[
1 − e−λ(t−t0)

]

≤ ηe−λ[t−t0]|x0|︸ ︷︷ ︸
β(|x0|,t)

+ ηkB ‖u‖t0,∞
λ︸ ︷︷ ︸

≤γ (‖u‖t0,∞)

.

Remarks:
Up to now, we have referred to the comparison functions

β and γ in a qualitative way only. The very explicit form
they take in the last line of the proof presents the opportu-
nity to point out that they are very useful in a quantitative
way too: given the start value and the size of the input they
confine solutions at any given time.

Uniform asymptotic stability is stronger than ISS. It fol-
lows that if we were concerned with linear systems only, we
would not need ISS. We present it here since ISS extends
familiar notions of stability to the non-linear case. Consid-
ering a given non-linear system, it can also be very useful to
find a linear system with a weaker stabilizing feedback that
is already sufficient for stability. We will use this reasoning
for one of our examples.
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In applications, it is easy to check Eq. 20. In the case of
influx-controlled systems, B(t) = 1.

A nice (but not necessary) starting position to prove
Eq. 19 would be a closed expression for �(t, t0). This is
unfortunately not available in general, but some very use-
ful special cases are related to properties of compartmental
systems:

1. If A is diagonal, so is �:

A(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a1(t) 0 · · · 0
0

. . .
. . .

...
...

. . .
. . . 0

0 . . . 0 an(t)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(21)

=⇒ �(t, t0) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�(t, t0) 0 · · · 0
0

. . .
. . .

...
...

. . .
. . . 0

0 · · · 0 �n(t, t0)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

with

�i(t, t0) = e

∫ t
t0

ai (τ ) dτ
. (22)

So for parallel linear models, where all the reservoirs of
the model have only connections to the environment via
inputs and outputs, but not to other reservoirs, Eq. 19
can be checked component-wise for the elements (22),
which is a huge simplification. If, for example, one has
mint>t0 a(t) < −b < 0, Eq. 19 holds.

2. If A is triangular so is �:

A(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a1,1(t) 0 · · · 0
...

. . .
. . .

...
...

. . . 0
an,1(t) · · · · · · an,n(t)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=⇒

�(t, t0) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�1,1(t, t0) 0 · · · 0
...

. . .
. . .

...
...

. . . 0
�n,1(t, t0) · · · · · · �n,n(t, t0)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

with �i,i(t, t0) = e

∫ t
t0

ai,i (τ ) dτ
and �i,j (t, t0) for j �= i

by back-substitution into the ODE. The triangular struc-
ture of A reflects an ordering of reservoirs where con-
tent moves only in the direction of pools with increasing
indices. Such an ordering can be achieved, for exam-
ple, if it is known that energy or mass flows only in
one direction, leading to a special (linear) cascade (see
“Cascades of ISS systems” section).

3. If there exists some constant matrix M such that A =
a(t)M, then � is given as the matrix exponential

�(t, t0) = e

[∫ t
t0

a(τ) dτM
]
.

In the special cases mentioned, Eq. 19 can be established
by looking at the concrete components ai,j (t) of the model.
The ai,j (t)may be under restriction by ecological principles
and an upper bound might be derived from the expres-
sion for �. Even without the knowledge of �, ecologically
implied properties of A can be successfully exploited. A
very interesting example has recently been proved in Ras-
mussen et al. (2016), which requires the following definition
to state it.

Definition 12 (Strict diagonal dominance) The m × m

matrix B(t) is called strictly diagonally dominant if there
exists a δ > 0 such that

1. B(t)i,i < 0 for all t and i ∈ {1, . . . m}
2. B(t)i,j ≥ 0 for all t and i �= j ∈ {1, . . . m}
3.

∑m
j=1 B(t)i,j ≤ −δ for all t and i ∈ {1, . . . m}

If A is a lower triangular block matrix of strictly diago-
nally dominant blocks (including the case that A is the only
block), then there exist constants K ≥ 1 and γ > 0 such
that

‖�(t, t0)‖ ≤ Ke−γ (t−t0).

This result generalizes an older one for linear time-
dependent, donor-controlled systems (where the outflows
of pool j only depend on Cj instead of the whole vec-
tor C, which is always the case for linear systems) with
strict diagonal dominance (Mulholland and Keener 1974),
where the one block version was used to investigate peri-
odic systems. In Appendix 2.2, we show that assuming
strict diagonal dominance is justified for soil organic matter
(SOM) decomposition models where microbial activity and
respiration never stop in any of the pools.

Linear time invariant models

For LTI models, A and B do not depend on time and the
state transition operator is known explicitly as the matrix
exponential:

ẋ = Ax + Bu(t) (23)

�(t, t0) = e(t−t0)A.

If we based our discussion on Eq. 18 only, we could state
that if A is Hurwitz (all eigenvalues have negative real
parts), ISS follows. Since Eq. 18 is sufficient, but in the gen-
eral time-dependent case not necessary, it is interesting to
see if we can weaken it for LTI systems. For fixed points, it
is well known that this is not the case and it is also necessary
that the real parts of all eigenvalues are smaller than zero.
If we were only interested in ISS with respect to equlibria,
we could close this section by a reference to the original
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proof and avoid the discussion of zero real part eigenvalues
completely. It is however interesting to discover the physi-
cal meaning of such eigenvalues for compartmental systems
(Definition 17 in Appendix 2). This will enable us to imag-
ine invariant sets larger than equilibria. Furthermore, some
textbooks (Braun 1993) (correctly) claim stability of LTI
systems for cases of eigenvalues with zero real part. The
closer look that we are going to take reveals that the defini-
tion of stability used there is not adequate for systems with
inputs. Therefore, we discuss reservoir models along two
lines.

1. Cases of invariant sets, the ISS property can be estab-
lished for

(a) A fixed point
(b) A linear subspace of the phase space

2. Cases of the eigenvector structure (represented by the
Jordan normal form (JNF)) of A:

(a) All eigenvalues {λi} of A have negative real part.
(b) A has no eigenvalues with positive real part, but

there are eigenvalues with zero real part.

i. The geometric multiplicity of the eigen-
values with zero real part is equal to their
algebraic multiplicity.

A. The imaginary part is zero for
all eigenvalues where the real
part is.

B. There are eigenvalues with zero
real part and non-zero imagi-
nary part.

ii. The geometric multiplicity of the eigen-
values with zero real part is smaller than
their algebraic multiplicity.

(c) There are eigenvalues with positive real part.

Some cases under 2 are incompatible with compartmental
matrices. Hearon (1963) and Hearon (1953) has shown that
eigenvalues of compartmental systems have non-positive
real parts and cannot be purely imaginary. This excludes 2c
and 2biB. According to the discussion of the proof of The-
orem 2 in Jacquez and Simon (1993), the case 2bii is also
not possible for LTI compartmental systems, which have as
many compartments without outflow (simple traps) as zero
eigenvalues with linear independent eigenspaces.

We start our discussion with the combination 1a 2a.
Although the result could have been derived from Sontag
(1998b), we state and prove it in the ISS context as

Theorem 5 System (23) has the ISS property with respect
to a fixed point (of the input-free system) if and only if all

eigenvalues {λi} of A have negative real part.

Remark:
While we consider u = u(t) for ISS, we mean the fixed

point resulting from u = 0. Since a variable transformation
is always possible, this covers any fixed influx I0.

Proof =⇒ (negative real parts imply ISS)
According to Theorem 4, it is sufficient to show that the

system is uniformly asymptotically stable. We have to show

∃λ, γ > 0 such that

‖�(t, t0)‖ = ‖e(t−t0)A‖ ≤ γ e−λ[t−t0], for all t ≥ t0.

We can choose λ as the largest real part: λ = max{�(λi)}
and γ = 1.
⇐= (negative real parts are implied by ISS)
To show that negative real parts are also necessary for

ISS, we first note that the cases under point 2 form a parti-
tion. No other cases are possible. We now have to look at the
concrete form of e(t−t0)A for each of them. From the discus-
sion above, we know that the cases 2c, 2bii, and 2biB do not
occur for compartmental systems. For 2bi, the system has at
least one trap and the input-free system can have (infinitely
many) fixed points (namely the initial values of the pools in
the traps), but the integral term in Eq. 18 does not generally
vanish for u �= 0. The restriction of e(t−t0)A on the subspace,
spanned by the eigenvectors for eigenvalue 0, becomes the
identity 1 and even for a constant u, limt→∞

∫ t

t0
1 B u(τ ) dτ

will not exist even though ‖u‖t0,∞ and B are bounded (as in
our case where ‖B‖ = ‖1‖ = 1).

The existence of traps in compartmental systems shows
that robust mass balance does not exclude zero eigenvalues
(2biA). As mentioned above, this excludes the possibility
of ISS with respect to fixed points. However, in this work,
we also consider ISS with respect to invariant sets. And
while up to now those sets have always been regions of the
phase space bounded in all directions, we can also look at
the possibility of invariant sets as big as linear subspaces.
Let us develop this idea starting from the following artificial
example of a single pool without outflow:

Ċ = 0 C + I (t).

It is robustly mass balanced and, for I = 0, stable in the
sense of Lyapunov for all start values C0; but of course
unstable (in the sense of both Lyapunov and ISS) for all
I (t) �= 0 since it is a trap that never releases anything that
went into it. Let us extend the system to a parallel two-pool
model:(

Ċ1

Ċ2

)
=

(
0 0
0 −λ

)(
C1

C2

)
+

(
I1(t)

I2(t)

)
.
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Pool 1 is still a trap. Every point on the C1 axis is a
fixed point for the input-free system, but none of them is
stable with respect to inputs with I1(t) �= 0. So we do not
have any control about the C1 values, but we do know that
C2 → 0 as t → ∞. The C1 axis is clearly an invariant set
for I2(t) = 0 and it would be possible to show ISS with
respect to this set. To further generalize and connect to the
eigenvector properties, now consider this system to be the
Jordan normal form of an originally given reservoir system
like( −λ1

2
λ2
2

λ1
2 −λ2

2

)
,

with eigenvalues
{
0, −λ = − 1

2 (λ1 + λ2)
}

. The original

system will have an ISS invariant set given by the subspace
spanned by the eigenvectors belonging to 0 (in the exam-

ple
(

λ2
λ1

, 1
)T

). In case of more than one zero eigenvalue, an

invariant set can be chosen as the span of all the eigenvec-
tors belonging to a zero real part eigenvalue. As mentioned
above (Jacquez and Simon 1993), every zero eigenvector
corresponds to a simple trap. An example of a compartment
model with a trap is given by the RothC model (Coleman
and Jenkinson 1999). However, the trap in this case turns
out to be completely disconnected from the rest of the sys-
tem, receiving inputs neither from the outside nor from any
other pool.

General remarks on non-linear influx controlled systems

We have already seen one example of a compartmental
model that is not ISS. This is true for many compartmen-
tal systems. Even the subclass of systems governed by
mass action kinetics provides a lot of unbounded examples
(Angeli 2011). Actually, conservation of mass is not such a
severe constraint on its own with respect to stability. Under
the heading of “Anything can happen” (Theorem 4 Jacquez
and Simon (1993)) show that every bounded autonomous n-
dimensional system can be mapped to a (n+1)-dimensional
compartmental system, which means that anything (ranging
from GAS, over several equilibria, limit cycles to diver-
gence and chaos) that can happen in a bounded autonomous
system can also happen in compartmental systems. On the
other hand, our closer look at (uniformly asymptotically sta-
ble) linear systems has revealed their remarkable property
of a linear negative control feedback that stabilizes the equi-
librium. It is easy to imagine non-linear systems that exhibit
a similar or even stronger negative feedback. One can then
conjecture that these systems are good candidates for ISS. It
is usually much harder to prove this though.

We do not know of any general result guaranteeing ISS for
influx controlled non-linear compartmental systems, not
even for a subclass.

The question arises if there is some assistance in estab-
lishing the desired ISS result for a given system. To find an
ISS Lyapunov function for our non-linear example (Eq. 10
et seq.), we conjectured that if we find a Lyapunov func-
tion for a linear system that exhibits a weaker feedback
towards its invariant set than our non-linear system, then this
Lyapunov function might still work for the non-linear case.

Accordingly, we derived the Lyapunov function for the
linear system by the textbook procedure described below
and then checked that the resulting Lyapunov candidate still
worked for our non-linear, non-autonomous system.

To understand the approach for autonomous linear sys-
tems, let us first assume that the Lyapunov function can
be expressed by a (yet unknown) quadratic form: V (x) =
xT Px, where x is the deviation from the equilibrium. The
derivative of V along solutions is then given by V̇ (x) =
ẋT Px + xT Pẋ = xT AT Px + xT PAx. Next, we observe that
a positive definite quadratic form Q fulfills xT Qx ≤ α|x|2
for some α > 0. So if P solves the Lyapunov equation
AT P+PA−Q = 0, this implies V̇ = xT AT Px+xT PAx =
−xT Qx ≤ −α|x|2 for all x. It is well known that such a P
can be found for any positive definite Q if A is a Hurwitz
matrix. It is also clear that any arbitrarily chosen positive
definite P implies a positive definiteQwith its largest eigen-
value α > 0. So we can choose P = 1 implying V = x2.
This most simple Lyapunov function will work for every
stable LTI system. For non-linear systems, this is not cer-
tain, but still possible as proved for our first example. Note
that V = x2, or more generally V = xT Px, is also smooth,
which is essential to prove ISS in contrast to GAS where we
do not need this property.

Our example can also be seen as an instance of a more
general heuristic approach towards a proof of ISS: One
can first attempt to prove 0-GAS by means of a smooth
Lyapunov function and and then try to reuse it for ISS.

We are therefore particularly interested in systems for
which the construction of Lyapunov functions can be allevi-
ated. An example is given by “port-controlled Hamiltonian
systems.” Due to their inherent mass balance, compartmen-
tal systems can always be written in this form with the total
mass replacing the energy as the storage function. The exact
translation can be found in Bastin (1999). The procedure
to obtain a Lyapunov function described in Maschke et al.
(2000) does, however, not succeed automatically. It fails for
our example.

There are several more cases of reservoir systems for
which 0-GAS can be proved by exploiting more special
properties of the systems. For an overview, we point in
particular to Jacquez and Simon (1993) and Bastin (1999)
particularly the appendix of the later and the references
therein. Unfortunately, the Lyapunov candidates are not
always suitable for ISS since they are in many cases not
smooth. If they are, one can use them as a starting point
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and check if they fulfill the additional requirements for
an ISS Lyapunov function. Concluding, one can say that
proving ISS for non-linear systems is difficult to achieve
and will require knowledge of special properties that can
be exploited. It would be somewhat misleading if we only
presented examples where we know what to do.

However, the difficulty of establishing ISS for bigger
subclasses of compartmental models with influxes is also
revealing: Although the cumulative mass of a compartmen-
tal system is a Lyapunov function for the closed system
(without influx), it does not remain one for a system with
influx since there are clearly trajectories that at least tem-
porarily increase the overall mass. This underlines that ISS
is a different property than mass conservation. The input
signal in influx controlled systems is of a different dimen-
sion (mass per time) than the conserved property. There
is actually the related but fundamentally different concept
of integrated input to state stability, iISS (Sontag 2008;
1998a), that is natural for the integrated influx. Implicitly,
we already drew one conclusion from the iISS property:
the conservation of mass we assumed from the start. Influx
controlled systems that are ISS have to do more: instead of
maintaining a bounded state for a bounded integrated influx
(mass), they must be able to cope with just a bounded flux
(mass per time). Clearly, not all compartmental systems can
do this; some fill up.

The general idea behind the construction of Lyapunov
functions is to exploit any conserved property (originally
energy). In search of an ISS Lyapunov function, one should
therefore also look beyond mass. In modeling and con-
trolling continuous stirred tank reactors, entropy or other
thermodynamic potentials are used (see for instance Hoang
et al. (2011)). To mention an ecological example, we point
to Appendix A4 of Bastin (1999), who studies a special con-
servative Lotka-Volterra system that is also compartmental.

Zero deficiency networks driven by changes in reaction
rates

Up to now, the driving signal has always been the time-
dependent change in the influx of mass. We now present
an example where the ISS framework can be used to
study the effect of time-dependent temperature changes
on flux rates. Instead of constructing an example from
scratch, we use the opportunity to introduce a more gen-
eral result (Chaves 2005), which is based on the theory of
zero deficiency networks of chemical reactions (Horn and
Jackson 1972; Feinberg 1977; 1987). A detailed expla-
nation for the terms deficiency or zero deficiency can be
found in Feinberg (1987). To show that it is a property eas-
ily checked and interpreted from an application-centered
viewpoint (in this case chemical), we give an abbreviated
definition.

A reaction network consists of complexes and reaction
arrows between them. Not all complexes need to be con-
nected by reaction arrows. A group of connected complexes
is called a linkage class. The trajectories describing the
evolution of concentrations of the species in the reactions
are geometrically confined by stoichiometry. They can only
evolve on the stoichiometric manifold. The dimension of
this manifold is given by the number of the linear inde-
pendent stoichiometric reaction vectors. It can be checked
immediately by linear algebra after writing down the com-
position of the complexes with respect to the species in a
matrix. Let n denote the number of complexes, l the number
of linkage classes, and s the dimension of the stoichiomet-
ric manifold. Then the deficiency d of the network is given
by d = n − s − l.

The stability of the system (in this case ISS) can be
predicted by checking this essential chemical criterion. It
would be extremely interesting to have such criteria based
on physical or in our case even ecological properties of sys-
tems. When we started to compare compartmental systems
with respect to their stability properties, we hoped that the
conservation of mass might be such a property. We have
already seen that this is not enough, and proving ISS turns
out to be much more difficult. Actually, one needs all the
help one can get. The result of Chaves (2005) provides such
valuable assistance for a special kind of non-linear non-
autonomous compartmental systems based on stoichiometry
and therefore has potential for ecological applications. It
incorporates mass action and Michaelis-Menten kinetics,
which occur in ecological soil models (e.g., Wang et al.
(2012) and Manzoni and Porporato (2007)). Its main lim-
itation for reservoir models consists in its dependency on
the zero deficiency property, which guarantees the existence
of a unique non-boundary equilibrium, but is usually lost
for reaction networks with mass influx from outside. While
this fact renders a lot of applications more difficult, the
result is still very general and potentially helpful as a start-
ing point. All the underlying mathematical results, including
the appropriately refined definition of ISS for this applica-
tion and its proof, are developed in Chaves (2005) and are
beyond the scope of this paper. However, the basic introduc-
tion we have given so far should make the original paper
accessible.

While Chaves (2005) focuses on the biochemical exam-
ple of receptor ligand complex formation, we give a minimal
application that could represent processes taking place in the
eutrophication of a lake. Consider the following chemical
reactions:

C6H12O6 + 6O2 � 6CO2 + 6H2O,

CH4 + 12O2 � 6CO2 + 12H2O.

By adding 6H2O to both sides of the first equation (a
dilution), we can combine the two equations. The five
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species C6H12O6, O2, CO2, H2O, and CH4 form the three
complexes

I = C6H12O6 + 6O2 + 6H2O,

II = 6CO2 + 12H2O,

III = CH4 + 12O2,

and can be written in one equation:

C6H12O6+6O2+6H2O
a1,2
�
a2,1

6CO2+12H2O
a2,3
�
a3,2

CH4+12O2.

Assuming mass action kinetics and using the abbreviation
(C1, C2, C3, C4, C5)

T = (
CC6H12O6 , CO2, CCO2, CH2O,

CCH4

)T for the concentrations, this leads to the following
highly non-linear system:

⎛
⎜⎜⎜⎝

Ċ1
Ċ2
Ċ3
Ċ4
Ċ5

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

− C1C
6
4C

6
2a2,1(T ) + C6

3C
12
4 a1,2(T )

−6C1C
6
4C

6
2a2,1(T ) − 12C6

5C
12
2 a2,3(T ) + 6C6

3C
12
4 a1,2(T ) + 12C6

3C
12
4 a3,2(T )

6C1C
6
4C

6
2a2,1(T ) + 6C6

5C
12
2 a2,3(T ) − 6C6

3C
12
4 a1,2(T ) − 6C6

3C
12
4 a3,2(T )

6C1C
6
4C

6
2a2,1(T ) + 12C6

5C
12
2 a2,3(T ) − 6C6

3C
12
4 a1,2(T ) − 12C6

3C
12
4 a3,2(T )

− 6C6
5C

12
2 a2,3(T ) + 6C6

3C
12
4 a3,2(T )

⎞
⎟⎟⎟⎟⎠ ,

where T is temperature and ai,j (T ) a temperature-
dependent rate. If we assume that T is time dependent,
the system becomes non-autonomous. Just looking at the
definitions in Feinberg (1987), one finds that there are
three complexes. The stoichiometric space of this exam-
ple is of dimension two, the number of linkage classes is
one, and the deficiency is equal to zero. Therefore, Fein-
berg (1987) ensures that a non-boundary equilibrium exists,
while Chaves (2005) proves that it is ISS.

To demonstrate the signature behavior of an ISS system
by numerical experiments (Fig. 3), we choose the following

X0_0_const

X0_0_small

X0_0large

X0_1_const

X0_1_small

X0_1large

trace 7

Fig. 3 Three-dimensional projection of the five-dimensional phase
portrait. For each of the two start vectors, we show three trajectories:
black undisturbed, blue with small temperature variation, green with
large temperature variation. The fixed point of the undisturbed sys-
tem is visible as red dot. The two disturbed solutions can be seen to
stay in neighborhoods depending on the size of the disturbance. Due
to the stoichiometric constraints, all trajectories of the example sys-
tem are confined to a two-dimensional stoichiometric manifold inR+5

.
The projection to the three plotted dimensions C1, C3, and C5 is made
visible as transparent red plane

Arrhenius temperature dependence for the rates: ai,j =
Fi,j e

− Ei,j
RT , with

{
T : 
T

2 sin (ωt) + T0

}
.

Remarks:

It is worth mentioning that the Lyapunov function used
by Chaves (2005) and motivated by Sontag (2001) is related
to entropy considerations and very different from the exam-
ples encountered so far.

A non-compartmental multi-stable example

In the introduction, we referred to critical regime changes
and showed by a simple example that classical stability
analysis (for autonomous systems) cannot guarantee stabil-
ity with respect to time-dependent perturbations at all. If
such a result is required, one has to turn to non-autonomous
concepts such as ISS.

Since our examples only had one invariant set, the discus-
sion of regime changes could have used ISS only to exclude
the possibility of such critical transitions. In contrast to
classical stability, which provides a safeguard against per-
turbations of the state or (by bifurcation analysis) uncer-
tainty with respect to parameters, ISS also excludes regime
changes caused by a bounded external forcing.

We also mentioned that the ISS framework can be used to
study systems that are known to exhibit critical transitions
and pointed to the work of Chaves et al. (2008), where a
local version of ISS is developed and used.

We cited Angeli and Efimov (2015) for an even more
general application of ISS to multi-stable systems. It would
be nice to have a meaningful multi-stable ecological reser-
voir example for which we could prove ISS by a very
elegant argument, short enough for this paper. While this is
unfortunately not the case, we did find the following con-
ceptual example in Angeli and Efimov (2015), which may
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be very relevant from an ecological viewpoint. Consider the
one-dimensional system:

ẋ = −x5 + x3 + xu. (24)

The unperturbed system exhibits a set of three equilibria
S = {−1, 0, −1} of which {−1, 1} are asymptotically sta-
ble and 0 is unstable. The standard ISS framework that
we used so far can provide ISS for the (compact) inter-
val A = [−1, 1] by the Lyapunov function V = |x|2A.
Instead, Angeli and Efimov (2015) show a generalized
version of the AG property using the Lyapunov function
V (x) = (x − 1)2(x + 1)2 for the non-compact set S.
The three-element set S is much more interesting because
the three distinct equilibria can now be resolved. Further-
more, the numerical experiment (Fig. 4) suggests that the
inner equilibrium 0 which was repelling for small perturba-
tions becomes attractive when the size of the perturbation
increases.

This example could be prototypical for an ecosystem
that can switch into a high perturbation compensation mode
that is not visible as long as the perturbations are small.

Remark:
We do not explain this behavior, but only show that it is

possible for an ISS system. This is not only a different kind
of stability, but also a different kind of regime change not
predictable by classical stability analysis. It underlines that
non-autonomous systems have to be discussed differently.

Cascades of ISS systems

A feature of ISS systems very much valued in control the-
ory is the fact that cascades of ISS systems are themselves
ISS (Sontag 1989). If this kind of decomposition is possible,
proofs can be greatly simplified. For those compartmental
models where energy or matter flows only in one direction
between subsystems, this structure is implied automatically.

In such cases, it suffices to show ISS for the subsystems.
Examples could be the RothC model (Coleman and Jenk-
inson 1999) (which can also be proved to be ISS using its
linearity) and possible non-linear variants of it. Cascades are
represented by systems like the following:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ż1
...

żn

ẋ1
...

ẋm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1(z1 · · · zn, x1, · · · xm)
...

fn(z1 · · · zn, x1, · · · xm)

g1(x1 · · · xm, u1, · · · ul)
...

gm(x1 · · · xm, u1, · · · ul)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (25)

An interesting corollary (Chapter 4 Sontag (2008)) is that
the cascade of a GAS x system with an ISS z system is GAS.
This recommends ISS as a tool to prove GAS for composite
ecosystem models.

Conclusions and outlook

What ISS offers

We have seen that the ISS concept provides a notion of
stability applicable to the situation we naturally find our-
selves in when dealing with ecological dynamical systems:
driving variables that change with time and a very limited
hope to find the system in equilibrium. While the former
requirement can be met by the extensions of concepts like
stable fixed points or invariant sets to the realm of non-
autonomous systems, the latter ability to describe “stability”
for non-equilibrium situations sets it apart from the standard
concepts. It makes ISS a flexible enough stability concept to
describe the ability of the system to return to a normal mode
of operation, a property related to the ecological concept of
“resilience,” originally introduced as alternative to stability
(Holling 1973).

Fig. 4 Simulation results for Eq. 24, four different initial condi-
tions, and two different perturbations: u1(t) = 5 sin(15t) (left),
u2(t) = 35 sin(15t) (right). The bigger perturbation u2 “stabilizes”

the solution around the unstable fixed point at x = 0. The solutions
that were previously attracted to either −1 or 1 are now attracted
to 0
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From a conceptual viewpoint, ISS ensures that a system
recovers eventually. However, the speed of this recovery
will also frequently be interesting for the practical analy-
sis of an ecosystem. Although at a first glance ISS as an
asymptotic concept seems to ignore recovery speeds, this
interesting information is contained in the specific com-
parison functions β and γ necessary for the proof. These
functions also provide upper boundaries for possible states
of the system. These estimates can be sharpened by a careful
construction of minimal β and γ .

Relation to Sobolev spaces and stochastic approaches

The fact that the ISS definition does not put limits on how
fast the input changes connects it to two other approaches.
First, it is clear that there is room for other—in terms of
their requirements—weaker concepts that guarantee stabil-
ity only under more specific conditions about the smooth-
ness of the input. It is not difficult to imagine ecological
systems that can handle a certain speed of change, but break
if the changes occur too rapidly. The related concept of
DkISS, an extension with respect to Sobolev spaces, has
not been discussed here, but can be found, (e.g., in Sontag
2008, section 6) or Angeli et al. (2003).

Second, since ISS does not require that u is smooth, it can
incorporate signals such as Brownian motion. ISS estimates
still hold in the case where u represents an uncertainty. In
this respect, ISS provides deterministic limits of the results
of uncertain stochastic inputs.

In another respect, ISS can be extended to stochastic
differential equations (SDEs) in particular to the notion of
SISS (Liu et al. 2008) where it generalizes the concept of
a solution process bounded in probability in the same way
the analytic ISS generalizes GAS. Since the discussion of
SDEs and their relations to ISS is technically far beyond the
scope of this work, we point to Tsinias (1998) and Liu et al.
(2008) for an introduction and many further references.

ISS for compartmental systems

By supplying a counter example (16), we illustrated that ISS
is not an automatic result of natural properties of reservoir
systems like mass balance, but rather a quite distinguishing
feature of systems robustly stabilized by some additional
regulating process or principal. Proving ISS for a given arbi-
trary compartmental system turned out to be very difficult.
Our only successful applications to nontrivial examples are
either linear or based on zero deficiency. While the lin-
ear models could have been discussed completely without
ISS from an operator-centered perspective, ISS provides a
mapping of these results into the domain of state space
techniques dominating the analysis of non-linear systems.
We would not have been able to grasp the concept of “region

of stability” in any precise way even for linear systems
without ISS. We also showed that ISS cascades can be
built from ISS subsystems easily for unidirectional fluxes
between them. The chances to prove ISS also increase if
one chooses an appropriately (large) invariant set, including
cases in which ISS might be shown on a quotient space or
for a subset of the model equations.

Outlook

In the future, we would like to see ISS applied to modern
non-linear ecological models. However, even GAS can be
difficult to prove (or disprove) as the following tiny example
(

Ċ1

Ċ2

)
=

(
I + k2C2 − k1

C1
Km+C1

C2

−k2C2 + rk1
C1

Km+C1
C2

)
,

with constants I, k1, k2, KM > 0 and 0 < r < 1 shows
(Wang et al. 2013). It is not covered by any of the stability
criteria in Jacquez and Simon (1993) or Bastin (1999) for
compartmental systems.
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Appendix 1. Stability concepts

1.1 Stability notions for autonomous systems

In Eq. 2, there is no explicit time dependency, so we are in
the realm of classical autonomous dynamical systems. The
search for invariants naturally leads to the notion of invariant
sets (Definition 2). One can now look for minimal invari-
ant sets. This leads to the special case of an invariant set
with only one element, better known as a fixed point (FP)
and often used interchangeably with the terms equilibrium
or steady state

A = {
x̄p

}
with f(x̄p, p) = 0.

Examples of larger minimal invariant sets are limit cycles
(two-dimensional), limit tori (three-dimensional), or even
strange attractors.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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In the presence of invariant sets, we can ask if they are
stable with respect to perturbations 
x. Stability can be
defined precisely by the combination of Lyapunov stability
and attractiveness, which are usually stated for FPs, but here
immediately generalized to invariant sets.

Definition 13 (Local Lyapunov stability of an invariant set)
Consider system (2). Suppose A is an invariant set of the
system. Then A is said to be locally Lyapunov stable if

for all ε> 0 ∃δ : |x0|A< δ =⇒ |x(t)|A<ε, for all t > 0,

with the set distance defined as

|x|A = inf
y∈A

|x − y|.

Definition 14 (Asymptotic stability and basin of attraction)
Let A be a compact invariant set. If A is Lyapunov stable,
then the set

B =
{
x0 : lim

t→+∞ |x(t, x0)|A = 0

}

is called the basin of attraction.

If B = R
n, we call A globally attractive and the com-

bination of Lyapunov stability and global attractiveness,
global asymptotic stability (GAS). In Euclidean space, the
only minimal compact invariant sets (attractors) with GAS
are equilibria (Angeli 2004). Interestingly, the basin of
attraction of an invariant set is itself a (maximal) invariant
set.

We can formulate GAS also using comparison functions
which will prove useful later:

∃β ∈ KL : |x(t, x0)|A ≤ β(|x0|A, t), for all x0. (26)

The notion of global attractiveness is natural for some sys-
tems (for instance linear ODEs), but in general, a rather
strong requirement, in particular for multi-stable systems
(with more than one stable equilibrium). The only invari-
ant set with global asymptotic stability has to include those
equilibria and thus may become rather too large to answer
questions regarding the long-term behavior of the system in
sufficient detail. See Angeli and Efimov (2015) for recent
results allowing a more detailed analysis, which exceeds the
formal scope of this article.

With the definitions introduced so far, we are well
equipped to study invariant sets of Eq. 2 and their stabil-
ity for any fixed set of parameters p = (p1, p2, · · · , pn)

T .
We can also ask how existence and stability change with
respect to those parameters. For example, does the num-
ber of invariant sets change (bifurcations), do stable ones
become unstable or vice versa? How do the basins of
attraction change? See for instance Manzoni and Porporato
(2007) as a recent example addressing all those questions.

Now, let us consider the parameters to be functions of
time p1(t), p2(t), · · · , pn(t). This adds a whole new level
of complexity. While Eq. 2 is called dynamical with respect
to x, it is static with respect to p1, p2, · · · , pn. While faith-
fully representing the rate of change of x, it completely
misses the influence the rate of change of p1, p2, · · · , pn

might have. Therefore, answers to questions we asked so far
will only be useful if the quasi-static approximation

|ṗ| � |ẋ| (27)

is justified. Otherwise, they can be extremely misleading, as
example (3) in the introduction showed.

1.2 Generalizations to non-autonomous systems

Looking at Eq. 6, we can formulate two aspects of sta-
bility for time-varying systems. In this paragraph, we still
consider invariant sets maintained for all times (despite the
driving forces represented by the time-varying terms) so
that, although the system is driven, it is not driven away
from the fixed point or invariant set. In this scenario, one
possibility is to just include time in the above definitions.
Stability becomes dependent on the start time t0, since it
may vanish or appear at certain points in the history of the
system.

Definition 15 (Lyapunov stability and uniform Lyapunov
stability for non-autonomous systems) Consider a non-
autonomous non-linear dynamical system

ẋ = f(x, t), x(t0) = x0. (28)

Suppose f has an invariant set A, then this set is said to be
Lyapunov stable at time t0 if for all ε > 0 exists a δ such
that:

|�x(t0)|A<δ =⇒ |�x(t, �x0, t0)|A<ε, for all t >t0. (29)

A is called uniformly stable if δ is not a function of t0 so that
Eq. 29 holds for all t0.

A similar alteration of Eq. 26 leads to the notion of
uniform local attractiveness. The combination of uniform
Lyapunov stability and local uniform attractiveness leads to
the important notion of uniform asymptotic stability (UAS).
As before, there is a global version that admits a comparison
function formulation.

Definition 16 (Global uniform asymptotic stability
(GUAS)) Consider system (28). The invariant set A is uni-
formly globally asymptotically stable if for all trajectories
x(t, x0, t0) there exists a β ∈ KL such that

|x(t, x0, t0)|A ≤ β(|x0|A, t − t0), for all t0. (30)
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Appendix 2. Reservoir models

We treat here reservoir, pool, and compartmental systems as
synonymous and use relevant definitions from Jacquez and
Simon (1993) and references therein.

2.1 Properties and definition

Definition 17 (Compartmental system) Let Fi,j be the flux
from pool j to pool i, for all i, j �= i ∈ {1 . . . n}, Fi,0 =
Ii define the external influx to pool i and F0,i = Oi the
external outflux from pool i (Fig. 5).

If Fi,j (C, t) ≥ 0 for all i, j ∈ {0 . . . n} and
Cj = 0 =⇒ Fi,j (C, t) = 0, (31)

we call the ODE system

Ċi =
∑

j=0.i �=j

(−Fj,i(C, t) + Fi,j (C, t)) for all i (32)

compartmental.

Fig. 5 A compartmental model with three pools and all possible con-
nections between the pools and the environment. Note that the flux
between poolk and pooll is considered a property of the pipeline,
meaning the flux from poolk into the pipeline is the same as the flux out
of the pipeline into poolk . This ensures mass balance for all fluxes and
pools and also for the model as a whole, and makes this the prototype
or normal form of mass-balanced models with internal connections.
Every model that can be drawn in this form is mass balanced. Exam-
ples are not limited to networks of pipelines and reservoirs of fluids.
Instead of a fluid, the total amount of a chemical element in different
chemical substances (represented by the pools) can be described by it

Remarks:

1. The conditions guarantee mass balance, non-negative
fluxes, and ensure that there cannot be any flux out of an
empty pool. For non-negative initial values C0 ∈ R

+n
,

the pool contents stay non-negative for t ≥ t0.
2. This is the standard definition of a compartmental sys-

tem as in Jacquez and Simon (1993) and sufficient for
all the examples in this paper. However, it is easy to
imagine generalizations still treatable by the ISS frame-
work. The compartment contents C could for instance
depend on additional state variables: letY be a vector of
variables not describing contents of pools and consider
the following system.

Ċi =
∑

j=0.i �=j

(−Fj,i(C,Y, t) + Fi,j (C,Y, t)) for all i

Ẏ = G(C,Y, t)

This includes (by transformation) higher order ODEs
for Y as shown in Appendix 2.3, Eq. 47. Although the
present work is only concerned with ISS, and therefore
based on ODEs, it should be clear that even simple nat-
ural models of fluxes between reservoirs can be more
complex than a formulation as a system of differential
equations permits. Fluxes could for instance depend on
the history of the system. Pool contents do not have to
be continuous functions of time, let alone differentiable.
Concluding, Definition 17 is widely applicable but not
exhaustive.

3. Note that the form of Definition 17 does not have to
be explicitly used in a model to ensure mass balance,
but it must be possible to reformulate the model in this
way. For example, in the general soil model of Sierra
and Müller (2015), we can derive the fluxes through the
metaphorical pipelines from the formulation shown in
Appendix 2.2. Further examples fitting the robust mass
balance definition are those describing the cycling of a
chemical element, for instance carbon balance in plants
or ecosystems (see, e.g., Luo and Weng (2011), Sierra
and Müller (2015), Rasmussen et al. (2016)).

4. Property (31) in Definition 17 encourages to intro-
duce fi,j defined by Fi,j (C, t) = fi,j (C, t) Ci and
fi,i = −(f0,i + ∑

j �=i fj,i) and write (32) in matrix
form.

Ċ = f(C, t) C + I(t) (33)

A proof that Fi,j ∈ Ck =⇒ fj,i ∈ Ck−1 can be found
in Appendix 1 of Jacquez and Simon (1993). This leads
to the following definition.
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Definition 18 (Compartmental matrix) We call the matrix f
in Eq. 33 compartmental if:

fi,i ≤ 0 for all i, t ≥ 0, (34)
fi,j ≥ 0 for all i �= j, t ≥ 0, (35)

n∑
i=1

fi,j =
∑
i �=j

fi,j +fj,j =−f0,j ≤ 0 for all j, t ≥ 0. (36)

Property (36) implies that −fj,j ≥ ∑
i �=j fi,j , for allj

for every compartment system. If we also know that f is non-
singular, it follows (equation (9) Jacquez and Simon (1993))
that f is diagonally dominant, i.e.,

∃d1, . . . , dn > 0 such that − djfj,j >
∑
i �=j

difi,j , for allj.

If we know (e.g., by physical, chemical, or biological
arguments) that every compartment has an external outflow
that never vanishes, Eq. 36 becomes a strict inequality, and
the matrix f is strictly diagonally dominant. This is a very
useful special case which can be directly exploited to prove
ISS for linear time-varying systems. For the general SOM
decomposition model in Appendix 2.2, strict diagonal dom-
inance follows if N(C, t)R(C, t)i,i > 0, for all i, t ≥ 0,
which means that all pools respire at all times at least
slightly.

Definition 19 (Strictly diagonally dominant compartmental
matrix) We call a compartmental matrix f in Eq. 33 strictly
diagonally dominant if
n∑

j=1

fi,j =
∑
j �=j

fi,j +fi,i = −f0,i < 0, for all i, t ≥ 0 (37)

2.2 General SOM decomposition model

In Sierra and Müller (2015), we derived a formula general-
izing soil organic matter decomposition models (e.g., Henin
and Dupuis (1945), Andren and Kätterer (1997), Cole-
man and Jenkinson (1999), Parton et al. (1987), Fontaine
and Barot (2005), Schimel and Weintraub (2003), Sins-
abaugh and Follstad Shah (2012), Allison et al. (2010),
Zelenev et al. (2000), Wang et al. (2013), and Manzoni and
Porporato (2007)) using a system of the form

d

dt
C = I + TN C. (38)

In the derivation of Eq. 38, we did not refer to the pipeline
metaphor explicitly. Therefore, we now express the fluxes
Fj,i in terms of the matrices T andN, which shows that they
have the desired properties. We will proceed as follows:

1. We divide the total inputs to pool i between the exter-
nal Iext,i coming from outside the system boundaries
and internal input Iint,i coming from other pools within

the system. Similarly, we split the total output from this
pool between the output Oext,i directly leaving the sys-
tem (for instance by respiration) and Oint,i the output
of pool i to be distributed to other pools in the system.

dCi

dt
= Iext,i + Iint,i − Oint,i − Oext,i , for all i (39)

2. We express Iext,i , Iint,i , Oext,i , Oint,i by Fi,j and alter-
natively by the building blocks of N and T.

Iext,i = Fi,0,

Iint,i =
m∑

j=1,j �=i

Fi,j ,

Oext,i = F0,i ,

Oint,i =
m∑

j=1,j �=i

Fj,i

Substituting in Eq. 40 yields

dCi

dt
= Fi,0 +

m∑
j=1,j �=i

Fi,j −
m∑

j=1,j �=i

Fj,i − F0,i , for all i.

(40)

which is Eq. 32. We now show how the terms
Iext,i , Iint,i , Oext,i , Oint,i were constructed in Sierra and
Müller (2015):

Iint = DOint (41)

where the distribution matrix D has a zero diagonal and also
fulfills

∑
i Di,j = 1 expressing the fact that all internal

outputs from source pools are distributed among the sink
pools. Also note that inputs, and therefore the distribution
coefficients, are non-negative Di,j ≥ 0 for all i, j .

This expresses the fluxes between the pools in terms of
internal outputs. To describe the split of the total output into
internal and external, we defined for every pool the propor-
tion ri of output of pool i released from the system. This
permits fluxes out of the model as well as internal ones to
be expressed in terms of total fluxes out of the pool

F0,i = riOi,

Fj,i = Dj,i(1 − ri)Oi.

Writing this in diagonal matrix form, we have R = (Ri,i)

with 0 ≤ Ri,i = ri ≤ 1

Oext = RO, (42)

Oint = (1 − R)O. (43)

The internal outputs are expressed by means of the diagonal
matrix N, describing the per pool processing:

O = NC.
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Combining Eqs. 40, 41, 42, 43 and dropping the subscript
ext from external inputs yields

dC
dt

= I + DOint − Oint − Oext

= I + (D − 1)Oint − Oext

= I + (D − 1) (1 − R)O − RO

= I + ((D − 1) (1 − R) − R)O

= I + ((D − 1) (1 − R) − R)NC

= I + TNC. (44)

Here 1 is the identity matrix, and T contains −1 in the main
diagonal and transfer coefficients among pools in the off-
diagonal entries. A very useful characteristic of T is the
relationship of its columns to the release coefficients

rj = Rj,j = −
∑

i

Ti,j . (45)

So it is possible to reconstruct the matrix R from T and thus
also D, so that we can express the fluxes through all the
pipelines. We can connect this to Eq. 17 by choosing some
positive Cf and using coordinate transformations, we set
x(t) = C(t)−Cf , u(t) = I(t)−A(t)Cf , A(t) = T(t)N(t),
B(t) = 1.

2.3 Higher order systems encompassing reservoir
models

Take the extremely simplified model of an oscillation of
the complete material between two pools with constant total
mass.

ÿ = −y, (46)

Ċ1 = y,

Ċ2 = −y.

For sensible initial values (e.g., t0 = 0, y0(t0) = 0, ẏ(t0) =
1, C1(t0) = 0, C2(t0) ≥ ∫ πsin(τ) dτ

0 ), the solutions C1(t)

and C2(t) describe oscillating non-negative pool contents.
It is also possible to enforce the compartmental character of
the subsystem (C1, C2)

T by writing

ÿ = −y,

Ċ1 = F1,2 − F2,1,

Ċ2 = F2,1 − F1,2,

with

F1,2(C, y) =
⎧⎨
⎩

y if C2 > 0, y > 0,

0 otherwise,

F2,1(C, y) =
⎧⎨
⎩

y if C1 > 0, y > 0,

0 otherwise.

This example shows that even if an ODE system is not com-
partmental as a whole, it might well contain subsystems
that are. The ISS concept is not limited to compartmental
systems and could be applied here.

Appendix 3. Coordinate transformations

In the literature, ISS related definitions are often formu-
lated by means of comparison functions, which are centered
around an equilibrium value of zero. However, this is no
restriction of generality since the following transformation
is always possible.

3.1 General non-linear systems

Consider our general system:

Ċ = F(t,C, I(t)). (47)

Suppose (47) has a fixed point Cf . When we introduce a
new variable x = h(C) = C − Cf , we arrive at a system

ẋ = F̃(t, x, I(t)),

with F̃(t, x, I) = F(t, x+Cf , I(t)) and fixed point xf = 0.
Furthermore, consider a similar coordinate translation for
the input

I = I0(t) + u(t).

We write

ẋ = f(t, x, u(t)),

with f(t, x, u(t)) = F̃(t, x, u(t) + I0(t)) .
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