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1 Introduction

In supersymmetric field theory, the energy-momentum tensor belongs to a supermul-

tiplet, called the supercurrent [1]. In the case of superconformal theories, the supercur-

rent multiplet is irreducible. It contains the energy-momentum tensor Tmn, the spinor

Q-supersymmetry current Sm and the R-symmetry current jm, in conjunction with some

additional components that are required in order to have an equal number of bosonic and

fermionic components.1

1Those conserved currents, which correspond to the other continuous transformations in the supercon-

formal group, are constructed from the conformal supercurrent and conformal Killing supervector fields [2].
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For theories without superconformal symmetry, the supercurrent multiplet is reducible,

as a rule.2 The point is that the energy-momentum tensor is no longer traceless, and

its trace Tmm may belong to a smaller supermultiplet embedded in the non-conformal

supercurrent. This trace supermultiplet also contains the γ-trace of the Q-supersymmetry

current, γmSm, as well as the divergence of the R-symmetry current, ∂mjm, if the R-

symmetry current is not conserved.

An example worth recalling is the supercurrent multiplet [1] corresponding to N = 1

Poincaré supersymmetry in four dimensions (4D). The conformal supercurrent is described

by a real axial vector superfield, Jm = J̄m, constrained by

D̄α̇Jαα̇ = 0 . (1.1)

The non-conformal supercurrent proposed by Ferrara and Zumino [1] is

D̄α̇Jαα̇ = DαX , D̄α̇X = 0 . (1.2)

Here X is the trace supermultiplet.3

Unlike the conformal supercurrent, its non-conformal counterpart is not unique. The

reason for this is that there may exist several inequivalent trace supermultiplets supported

by different supersymmetric field theories [7]. For instance, another example of 4D N = 1

non-conformal supercurrents is [7–9]

D̄α̇Jαα̇ = χα , D̄β̇χα = 0 , Dαχα = D̄α̇χ̄
α̇ . (1.3)

Here the trace supermultiplet χα is a vector multiplet.

Similar to the energy-momentum tensor, which is the source of gravity, the supercur-

rent is the source of supergravity [10–12]. For a given Poincaré supergravity theory, there

often exist several off-shell formulations leading to the same dynamical system on shell.

However, different off-shell formulations for supergravity lead to different non-conformal

supercurrents. In the case of 4D N = 1 supergravity, for instance, the supercurrent mul-

tiplet (1.2) is associated with the old minimal formulation [13–15], while the conservation

equation (1.3) corresponds to the new minimal formulation [8].

The connection between the non-conformal supercurrents and different off-shell for-

mulations for supergravity becomes more apparent in the Weyl-invariant (or conformal)

approach to supergravity. Before discussing the supersymmetric case, it is instructive to

recall the Weyl-invariant formulation for gravity. Consider a system of matter fields ϕi

coupled to the gravitational field. In the approach of [16–18], the gravitational field is

described by the metric gmn and the conformal compensator φ, the latter being a nowhere

vanishing scalar field.4 The action must be invariant under general coordinate and Weyl

2There exist counter-examples in five and six dimenisons [3, 4].
3Since D2X − D̄2X̄ = −2i∂αα̇J

α̇α, the chiral scalar X in (1.2) is an example of the so-called three-form

multiplet [5] (see [6] for a review). For instance, in quantum supersymmetric Yang-Mills theories it holds

that 〈X〉 = κ tr(WαWα), where k is a real parameter, and Wα the chiral field strength of the Yang-Mills

supermultiplet.
4As in [16–18], our discussion here is restricted to the 4D case, but generalisation to higher dimensions

is obvious.
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transformations,

δgmn = ∇mλn +∇nλm − 2σgmn , δφ = λm∇mφ+ σφ , (1.4)

augmented by certain transformations of the matter fields. Consider the matter action

SM =

∫
d4x
√
−gL

(
ϕi; gmn, φ

)
. (1.5)

If the metric and the compensator acquire arbitrary infinitesimal displacements, gmn →
gmn + δgmn and φ→ φ+ δφ, the action varies as

δSM =

∫
d4x
√
−g

{
1

2
Tmnδgmn + Tδ lnφ

}
, (1.6)

where Tmn denotes the energy-momentum tensor of the system. If the matter fields are

chosen to obey their equations of motion, δSM/δϕ
i = 0, the conditions of invariance of SM

under the local transformations (1.4) are

∇nTmn = T∇m lnφ , (1.7a)

gmnT
mn = T . (1.7b)

The Weyl invariance may be used to impose a condition φ = const, in which case eq. (1.7a)

turns into

∇nTmn = 0 , (1.8)

which is the standard conservation equation.

In analogy with the Weyl-invariant formulation for gravity [16–18], Poincaré or anti-

de Sitter supergravity theories may be formulated as conformal supergravity coupled to

a compensating supermultiplet [19, 20]. Unlike gravity, however, supergravity generally

allows for several choices of conformal compensator that differ in their auxiliary fields.

It turns out that different conformal compensators lead to different off-shell supergravity

theories and, as a consequence, to different supercurrent multiplets. For instance, the

conservation equation (1.2) of the old minimal formulation of supergravity corresponds to

a compensating chiral scalar multiplet, while the conservation equation (1.3) of the new

minimal formulation of supergravity corresponds to a compensating tensor multiplet.

For 6D N = (1, 0) supersymmetry, the conformal supercurrent was described more

than thirty years ago [4]. However, to the best of our knowledge, no classification of

non-conformal supercurrents has been given. The only known non-conformal N = (1, 0)

supercurrent was proposed by Manvelyan and Rühl [21]. It proves to be a 6D analogue of

the 4D N = 2 non-conformal supercurrent introduced by Stelle [22]. The latter obeys the

conservation equation

D̄ijJ =
1

5
D̄klLklij , D̄ij := D̄i

α̇D̄
α̇j , (1.9)

where J = J̄ denotes the N = 2 supercurrent [23, 24]. The trace supermultiplet Lijkl =

L(ijkl) is real, Lijkl = Lijkl, and is subject to the analyticity constraints defining an O(4)

multiplet,

D(i
αLjklm) = D̄

(i
α̇L

jklm) = 0 . (1.10)
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It was shown in [25, 26] that the conservation equation (1.9) naturally occurs in theories

which couple to the ω-hypermultiplet compensator [27, 28] within the harmonic superspace

approach to 4D N = 2 supergravity (see [29] for a review).

The purpose of this paper is twofold: (i) to derive various consistent 6D non-conformal

supercurrents; and (ii) to lift them to an arbitrary curved conformal supergravity back-

ground with a conformal compensator. As a consequence, all non-conformal supercurrents

may be classified by the choice of compensating conformal supermultiplet.

This paper is organised as follows. In section 2 we present an infinite family of 6D N =

(1, 0) non-conformal supercurrents involving O(n) multipletsfor n > 1 and we illustrate a

couple of them by analysing the equations of motion for certain models.5 Section 3 is

devoted to the special case of using an N = (1, 0) tensor multiplet as a compensator. We

put forward a non-conformal supercurrent for the N = (2, 0) case in section 4. Finally, we

discuss our results in section 5.

We have included a number of technical appendices. Throughout this paper we will

make use of the superspace formulation of conformal supergravity known as 6D N = (1, 0)

conformal superspace [41]. Therefore, we provide the salient details of conformal superspace

in appendix A. Appendix B is devoted to the prepotential description of the O(2) (or

linear) multiplet. In appendix C, we summarise the description of the Yang-Mills multiplet

in conformal superspace. Finally, we give a superform description of the N = (2, 0) tensor

multiplet and its deformation in appendix D.

2 Non-conformal N = (1, 0) supercurrents

In 6D N = (1, 0) supergravity, the conformal supercurrent J is a primary superfield of

dimension +4,

DJ = 4J , Sαi J = 0 , (2.1)

which satisfies the conservation equation [41]

∇αijkJ = 0 , ∇αijk :=
1

3!
εαβγδ∇(i

β∇
j
γ∇

k)
δ . (2.2)

In the flat superspace limit, this equation reduces to the one originally given in [24].

In the presence of a conformal compensator the conservation equation (2.2) is de-

formed to

∇αijkJ = Aαijk , (2.3)

where Aαijk is a primary superfield of dimension 11
2 . Using the identity

∇(i
α∇βjkl) =

1

4
δβα∇(i

γ∇γjkl) , (2.4)

5The O(n) multiplets are well known in the literature on supersymmetric field theories with eight

supercharges in diverse dimensions. For 4D N = 2 Poincaré supersymmetry, general O(n) multiplets, with

n > 2, were introduced in [30–33]. The case n = 4 was first studied in [34]. The terminology “O(n)

multiplet” was coined in [35]. As 6D N = (1, 0) superconformal multiplets, their complete description was

given in [36] following the earlier approaches in four and five dimensions [37–40].
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it can be checked that Aαijk must satisfy the following integrability condition:

∇(i
αA

βjkl) =
1

4
δβα∇(i

γA
γjkl) . (2.5)

In order to guarantee the existence of a conserved supersymmetry current and energy-

momentum tensor, the integrability condition (2.5) has to be accompanied with some

additional requirements on the structure of Aαijk. To understand this in more detail,

it is worth analysing the deformed conservation equation (2.3) in Minkowski superspace

and uncover the corresponding component structure. In what follows, we will refer to the

superfield Aαijk as the trace superfield since in general it gives a trace contribution to the

energy-momentum tensor, while J only contains a symmetric traceless contribution.

2.1 Non-conformal supercurrents in Minkowski superspace

In this subsection we will make use of the spinor derivatives for 6D N = (1, 0)

Minkowski superspace, Di
α, which satisfy the anti-commutation relation

{Di
α, D

j
β} = −2iεij∂αβ (2.6)

and commute with partial vector derivatives, [∂a, D
i
α] = 0.

We now analyse the component structure of the superfields J and Aαijk subject to the

general constraints (2.3) and (2.5) in the flat-superspace case.6 Taking successive spinor

derivatives of the trace superfield Aαijk, one finds7

Di
αA

βjkl = δβαA
ijkl + εi(jAα

βkl) + δβαε
i(jAkl) , Aα

αij = 0 , (2.7a)

Dp
αA

ijkl = εp(iΛα
jkl) , (2.7b)

Dk
αA

ij =
i

2
∂αβA

βijk + εk(iΛj)α , (2.7c)

Dk
αAβ

γij = −δγαΛβ
ijk +

1

4
δγβΛα

ijk − 4

3
εk(iδγαΛ

j)
β +

1

3
εk(iδγβΛj)α + εk(iΛαβ

γj)

+2i∂αβA
γijk − i

2
δγβ∂αδA

δijk , Λαβ
βij = 0 , Λαβ

γij = Λ[αβ]
γij , (2.7d)

Dl
αΛβ

ijk = 2i∂αβA
ijkl + εl(iAαβjk) , Aαβij = A[αβ]

ij , (2.7e)

Di
αΛjβ = εijAαβ +

i

2
∂γαAβ

γij − i

6
∂γβAα

γij +
4i

3
∂αβA

ij , Aαβ = A[αβ] , (2.7f)

Di
αΛβγ

δj =
2

3
δδ[βAγ]α

ij + δδαAβγij + 4i∂α[βAγ]
δij +

2i

3
∂βγAα

δij

+
4i

9
δδ[β∂γ]ρAα

ρij − 4i

3
δδ[β∂|αρ|Aγ]

ρij

+
4i

9
δδ[β∂γ]αA

ij +
2i

3
δδα∂βγA

ij

+εijεαβγρSρδ +
4

3
εijδδ[βAγ]α + 2εijδδαAβγ , Sαβ = S(αβ) . (2.7g)

6In the anomaly-free case, Aαijk = 0, the component analysis was carried out in [4]. More recently, it

was generalised [21] to the case of a special trace supermultiplet Aαijk given by (2.11).
7The SU(2) indices on any field are always assumed to be symmetrized.
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Taking successive spinor covariant derivatives of the superfield J satisfying the equa-

tion (2.3), one finds the following relations

Di
αJ = Ψi

α , (2.8a)

Di
αΨj

β = Vαβ
ij + εijCαβ − iεij∂αβJ , Cαβ = C(αβ) , Vαβ

ij = V[αβ]
ij , (2.8b)

Di
αCβγ = Σi

(β,γ)α +
8i

5
∂α(βΨi

γ) , Σi
[α,γδ] = 0 , (2.8c)

Di
αVβγ

jk = εi(jΣk)
α ,βγ −

8i

5
εi(j∂α[βΨ

k)
γ] −

2i

5
εi(j∂βγΨk)

α − εαβγδAδijk , (2.8d)

Di
αΣj

β,γδ = εijTαβ,γδ +
4i

3
∂αβVγδ

ij − 4i

15
∂γδVαβ

ij − 4i

15
∂β[γVδ]α

ij − 4i

3
∂α[γVδ]β

ij

+2iεij∂α[γCδ]β −
2i

5
εij∂β[γCδ]α +

2i

5
εij∂γδCαβ

−εγδεαAβεij +
1

3
εγδεβAα

εij , Tα[β,γδ] = 0 , Tαβ,γδ = T[αβ],[γδ] , (2.8e)

Di
εTαβ,γδ =

2i

3
∂[α[γΣi

|ε|,δ]β] + 2i∂ε[αΣi
β],γδ + 2i∂ε[γΣi

δ],αβ

+
i

3
∂αβΣi

ε,γδ +
i

3
∂γδΣ

i
ε,αβ +

1

2
εαβρεΛγδ

ρi +
1

2
εγδρεΛαβ

ρi , (2.8f)

as well as the conditions

∂αβVαβ
ij = 4iAij , ∂αβΣi

γ ,αβ = 4iΛiγ , ∂αβTαβ,γδ = 4iAγδ . (2.9)

Note that the algebraic properties of the tensor Tαβ,γδ, which are given in eq. (2.8e), imply

the identity

Tαβ,γδ = Tγδ,αβ . (2.10)

As a result, if we convert each of the two pairs of spinor indices of Tαβ,γδ into vector ones by

the standard rule Vαβ = −Vβα → Va = 1
4(γ̃a)

αβVαβ , we end up with a second-rank tensor

Tab, which is symmetric and traceless, Tab = Tba and T aa = 0.

The equations (2.9) tell us that if Aαijk = 0 the component projections of Vαβ
ij , Σi

γ ,αβ

and Tαβ,γδ are proportional to the conserved SU(2) current, supersymmetry current and

energy-momentum tensor, respectively.8 If an arbitrary trace superfied Aαijk is switched

on, they are no longer conserved. It follows from (2.9) that in order to be able to specify a

conserved supersymmetry current it is necessary to require that Λi
α is a vector divergence,

Λiα = ∂bΣ̃i
α,b. It is now important to note that if Λi

α is a divergence then so is Aαβ , i.e.

a conserved supersymmetry current automatically implies a conserved energy-momentum

tensor. Similarly, a conserved SU(2) current implies both a conserved supercurrent and a

conserved energy-momentum tensor. One should, however, keep in mind that the conserved

supersymmetry current and energy-momentum tensor need no longer be γ-traceless and

traceless, respectively.

Let us see how this works for the non-conformal supercurrent involving an O(4) mul-

tiplet [21]. The trace superfield Aαijk is chosen to be proportional to

Aαijk = i∂αβDβlLijkl , (2.11)

8One can also verify that the supercurrent has 40 + 40 component degrees of freedom.
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where Lijkl = L(ijkl) satisfies the reality condition Lijkl = Lijkl and the defining constraint

for an O(4) multiplet

D(i
αLjklp) = 0 . (2.12)

It is simple to check that this superfield satisfies the integrability condition (2.5) in the flat

case. Furthermore, since the trace multiplet (2.11) is a divergence, its descendent Aij is a

divergence and a conserved SU(2) current can be introduced. As remarked above, it then

follows that a conserved Q-supersymmetry current and energy-momentum tensor exist as

well. These currents may be defined as follows:

jαβ
ij = Vαβ

ij +
3

4
DαkDβlLijkl , ∂αβjαβ

ij = 0 , (2.13a)

Sαβ,
i
γ = Σi

γ ,αβ +
1

2
DγjD[αkDβ]lLijkl , ∂αβSαβ,

i
γ = 0 , (2.13b)

Tαβ,γδ = Tαβ,γδ +
1

4
D[αiDβjDγkDδ]lLijkl , ∂αβTαβ,γδ = 0 . (2.13c)

Note that neither is the Q-supersymmetry current γ-traceless nor is the energy-momentum

tensor traceless [21].

Within the conformal approach, the form of the trace superfield Aα
ijk should depend

on conformal compensators. Therefore, a natural question one can ask is: what compen-

sator(s) should one associate with the construction (2.11)? Furthermore, how do we lift

the construction (2.11) to a primary superfield with the use of a compensator in conformal

supergravity? One can show that if we assume that the compensator is a tensor multiplet

and we try to lift the construction (2.11) to conformal superspace (see appendix A), it is

not possible to add compensator dependant terms such that the condition (2.5) is satisfied.

On the other hand, if the compensator was an O(2) (or linear) multiplet one would expect

a symmetric SU(2) tensor to appear in the construction (2.11), which is not the case.9 For

this reason, it is necessary to use a different scalar compensating superfield instead that

of the tensor multiplet. We will present the appropriate compensator and show how to

generalise the construction in [21] to supergravity in section 2.3.

It is elucidating to ask what can be learned by allowing the O(4) multiplet Lijkl to be

composite. For instance, suppose we have two O(2) multiplets described by the superfields

Gij = G(ij) and H ij = H(ij), which satisfy the differential constraints

D(i
αG

jk) = D(i
αH

jk) = 0 . (2.14)

We can then construct

Lijkl = G(ijHkl) . (2.15)

We will further assume Gij has a nowhere vanishing magnitude G 6= 0, which is defined by

G2 := 1
2G

ijGij . If we freeze G to a constant we find

0 = Di
αG

2 =
2

3
GijDk

αGjk =⇒ Di
αG

jk =
2

3
εi(jDαkG

j)k = 0 , (2.16)

9The SU(2) tensor corresponding to the superfield describing the O(2) multiplet can be set to a constant

using super-Weyl transformations.
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where we used GijGjk = δikG
2. Using (2.16), the superfield Aαijk can be seen to take

the form

Aαijk = iG(ijWαk) , (2.17)

where we have defined

Wαi :=
5

6
∂αβDβjH

ij . (2.18)

One can verify that Wαi satisfies the following differential constraints:

D(i
αWβj) =

1

4
δβαD

(i
γWγj) , (2.19a)

DαiWαi = 0 , (2.19b)

which correspond to those of a vector multiplet, see e.g. appendix C.

It is important to point out that the representation (2.17) actually implies the ex-

istence of a conserved supersymmetry current and energy-momentum tensor due to the

constraints (2.19a) and (2.19b), irrespective of the form (2.18). In other words, we only

need to require Wαi to be an off-shell vector multiplet for these currents to exist. In par-

ticular, the constraint (2.19a) implies the condition (2.5), while the constraint (2.19b) is

required to show10

Λiα =
1

8
DαjDβkA

βijk =
2

3
∂αβ

(
GijWβ

j

)
, (2.20)

which ensures the existence of a conserved supersymmetry current that is, however, no

longer γ-traceless, as well as a conserved energy-momentum tensor that is no longer trace-

less. These may be defined as

Sαβ,
i
γ := Σi

γ ,αβ −
4i

3
εαβγδG

ijWδ
j , ∂αβSαβ,

i
γ = 0 , (2.21a)

Tαβ,γδ := Tαβ,γδ +
i

6
εαβγδG

ijDεiWε
j , ∂αβTαβ,γδ = 0 . (2.21b)

The off-shell conditions (2.19a) and (2.19b) do not lead to an SU(2) current, since one finds

Aij =
i

8
Gk(iDj)

αWα
k . (2.22)

However, as GijAij = 0 we can instead introduce a conserved U(1) current jαβ defined by

jαβ = Vαβ
ijGij , ∂αβjαβ = 0 , (2.23)

where the U(1) subgroup is the stability group of Gij . Only when the equations of motion

require D
(i
αWαj) to be a vector divergence up to terms proportional to Gij can a conserved

SU(2) current be introduced.

We conclude this section by emphasising once more that eq. (2.17) leads to a non-

conformal supercurrent for any vector multiplet Wαi. The appearance of the constant

SU(2) tensor Gij is to be interpreted as a compensator that has been frozen. It is precisely

the form (2.17) that we will generalise to curved superspace in the next subsection and it

will be verified by further analysis and a worked example.

10Keep in mind that Gij is constant.
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2.2 The non-conformal supercurrent based on a compensating O(2) multiplet

Let us first describe how the conservation condition on the supercurrent originates from

superspace. We will consider a supergravity action with a compensating O(2) multiplet Gij .

The supergravity equations of motion in superspace can be easily obtained if one knows

the dependence of the supergravity action on the unconstrained superfield prepotential for

N = (1, 0) conformal supergravity. It is a real primary scalar H [4] of dimension −2 with

supergravity gauge transformation11

δH = ∇αijkΛαijk , Λαijk = Λα(ijk) . (2.24)

In general, the constrained superfields must also transform under such a gauge transfor-

mation since their constraints must be preserved under shifts in the supergravity prepo-

tential. This tells us that under the gauge transformation (2.24) the prepotential for the

O(2) multiplet ραi should transform. For a description of the O(2) multiplet in terms of

its prepotential in supergravity see appendix B.

If any additional matter fields other than the compensator are chosen to obey their

equations of motion, a general variation of the action with respect to the supergravity and

compensator prepotentials becomes

δS =

∫
d6|8z E

(
δH J + δρiαWα

i

)
. (2.25)

The prepotential ρiα is defined modulo gauge transformations

ρiα → ρ′iα = ρiα +∇iατ +∇βjταβij , τα
αij = 0 , τα

βij = τα
β(ij) , (2.26)

where τ and τα
βij are dimensionless primary superfields. In order for the action to be

invariant under these gauge transformations, the superfield Wα
i must obey the constraints

∇(i
αWβj) =

1

4
δβα∇(i

γWγj) , ∇αiWαi = 0 , (2.27)

which are characteristic of the field strength of a vector multiplet. Now we wish to spe-

cialise to the supergravity gauge transformations where δS = 0 but we need to know the

transformation of the prepotential ραi. Its transformation should involve the supergravity

gauge parameter Λαijk and covariant fields of the compensating O(2) multiplet since we

should obtain a covariant conservation equation.12 On dimensional grounds we must have13

δραi = iΛαijkG
jk . (2.28)

Requiring δS = 0 under the supergravity gauge transformations leads to the non-conformal

conservation equation

∇αijkJ = iG(ijWαk) , (2.29)

11The gauge transformation presented here is the unique extension of the linearised transformation in [4]

to curved superspace, assuming the gauge parameter Λαijk is primary.
12The transformation must also be linear in the fields of the O(2) multiplet since its prepotential descrip-

tion must remain unchanged. We will also verify this by an explicit example.
13We can always rescale Gij by fixing its relative normalisation to its prepotential.
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where the O(2) multiplet in conformal superspace is a primary superfield Gij = G(ij) of

dimension 4 satisfying the constraint

∇(i
αG

jk) = 0 . (2.30)

Therefore, the general form of the trace superfield Aαijk in the presence of a compensating

nowhere vanishing O(2) multiplet (with G := 1
2G

ijGij 6= 0) in supergravity is

Aαijk = iG(ijWαk) , (2.31)

where Wαi is the composite vector multiplet determined by the theory via (2.25).

It is interesting to note that if we weaken the constraint defining the O(2) multiplet

to a deformed O(2) multiplet [42, 43]

∇(i
αG

jk) = iεαβγδWβ(iWγjWδk) , (2.32)

the postulated trace superfield (2.31) still satisfies the consistency condition (2.5) but a

conserved supersymmetry current is no longer guaranteed.

2.2.1 An example: Abelian gauge theory coupled to an O(2) multiplet

We now provide an explicit example of a non-conformal supercurrent in curved super-

space. Consider an Abelian gauge theory coupled to a linear multiplet. The action for the

theory is built out of two supersymmetric invariants: (i) a higher-derivative Abelian vector

multiplet action; and (ii) a BF action giving rise to the coupling of the vector multiplet to

the linear (or O(2)) multiplet.

A supersymmetric F�F action was described in [44] in Minkowski superspace and in

conformal supergravity in [41]. It is straightforward to construct its supercurrent (up to

some normalisation). In the Abelian case, it is14

J =
3

8
XijXij +

i

2
Wαi∇αβW β

i +
1

4
Fα

βFβ
α , (2.33)

while the equation of motion for the vector multiplet is

Gij = 0 , Gij := �Xij − 2Yα
βijFβ

α +
5

2
Xα(i←→∇ αβW

βj) , (2.34)

where we have defined � := ∇a∇a and S
←→
∇ aU := S∇aU−(∇aS)U for arbitrary superfields

S and U . One can check that, upon using the equations of motion, the supercurrent is

conserved

∇αijkJ = iWα(iGjk) = 0 . (2.35)

The non-conformal conservation condition can be deduced if we consider the F�F
action coupled to a BF action, where B is the gauge four-form of a nowhere vanishing

O(2) multiplet. The BF action is just the action formula for the product of a vector and

an O(2) multiplet [45, 46],

SBF =

∫
d6|8z EWαiραi . (2.36)

14We refer the reader to appendix C for our notation and conventions regarding the vector multiplet.
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We take the O(2) multiplet as a conformal compensator. For the combined action incorpo-

rating the F�F action and the BF action, the equation of motion for the vector multiplet

becomes

Gij = λGij , (2.37)

where λ is some constant and Gij is the compensating O(2) multiplet with prepotential

ραi. It is straightforward to check that the non-conformal conservation equation (2.29)

holds due to the equation of motion,

∇αijkJ = iG(ijWαk) , Wαi = λWαi , (2.38)

which verifies the supercurrent conservation equation for a compensating O(2) multiplet.

In the above computation it is important to note that the supercurrent for the combined

action does not obtain a contribution from the BF action since it does not depend on the

supergravity prepotential as it admits a topological realisation.

Finally, it is worth mentioning that the equations of motion for this example lead to

a conserved SU(2) current. Indeed, using (2.37) and (2.34) we find, after reducing to flat

superspace,

Aij =
λ

2
Gk(iXj)

k =
1

2

(
�Xk(i

)
Xj)

k =
1

2
∂a
((

∂aX
k(i
)
Xj)

k

)
. (2.39)

The conserved SU(2) current is therefore

jαβ
ij = Vαβ

ij − i

2

(
∂αβX

k(i
)
Xj)

k , ∂αβjαβ
ij = 0 . (2.40)

2.3 The non-conformal supercurrent involving an O(4) multiplet

The trace multiplet based on the O(4) multiplet, eq. (2.11), must correspond to a con-

formal compensator described by a scalar superfield which cannot be the tensor multiplet

as mentioned previously. It turns out that the right compensating multiplet is built from

a primary dimension −4 scalar superfield T subject to the constraint15

∇k(α∇β)kT = 0 =⇒ ∇i(α∇
j
β)T = 0 . (2.41)

It corresponds to the O∗(4) multiplet described in [49] and the above constraint can be

solved in terms of an unconstrained prepotential Uijkl = U(ijkl) as16

T = ∇ijklUijkl , ∇ijkl :=
1

4!
εαβγδ∇(i

α∇
j
β∇

k
γ∇

l)
δ . (2.42)

Here Uijkl is primary and of dimension −6. One can check that Uijkl is defined up to the

gauge transformations

δUijkl = ∇mα ξαijklm , (2.43)

where ξαijklm = ξα(ijklm).

15Coupling this multiplet to conformal supergravity is equivalent to working in the SU(2) superspace

formulation of [36] and setting the torsion component Nαβ = 0.
16This was first worked out in Minkowski superspace in [4].
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We wish to work out the supercurrent conservation equation in the presence of the

compensating O∗(4) multiplet. Let us first consider the general variation of the action

with respect to the supergravity and matter prepotentials

δS =

∫
d6|8z E

(
δH J + δUijkl Lijkl

)
, (2.44)

where H is the superfield prepotential for conformal supergravity and Lijkl is some super-

field of dimension 8 required to be an O(4) multiplet as a result of the gauge transforma-

tion law (2.43). As in the previous subsection, in the variation (2.44) we have assumed

any additional matter fields satisfy their equations of motion. The conformal supergravity

prepotential transforms under the supergravity gauge transformations as eq. (2.24) and

δUijkl should be expressed in terms of three spinor derivatives hitting Λαijk on dimensional

grounds. In any case, this should lead to a trace superfield Aαijk linear in both the O∗(4)

multiplet T and the O(4) multiplet Lijkl.
We expect that Aαijk, reduces to the construction in [21] after fixing T to a constant

and reducing to flat superspace. Taking this into account and considering all possible terms

linear in T and Lijkl in conformal superspace, one can construct the most general ansatz

for the trace superfield. Then demanding the consistency condition (2.5) fixes it as

Aαijk = iT ∇αβ∇βlLijkl +
3

16
εαβγδ

(
∇(i
β T
)
∇γl∇δpLjk)lp +

15i

4

(
∇βlT

)
∇αβLijkl

+
3

4
εαβγδ

(
∇(i
γ∇δlT

)
∇βpLjk)lp +

5i

2

(
∇αβ∇βlT

)
Lijkl +

5

8
εαβγδ

(
∇(i
β∇γl∇δpT

)
Ljk)lp

−25Xα
l T Lijkl + 4iWαβ T ∇βlLijkl + 15iWαβ (∇βlT )Lijkl . (2.45)

One can check that this is also primary. If we gauge fix T = 1 and reduce to Minkowski

superspace, ∇A → (∂a, D
i
α) and Wαβ → 0, we obviously recover (2.11).

The existence of conserved SU(2) and supersymmetry currents is then guaranteed by

the results (2.13).

2.3.1 An example: the relaxed hypermultiplet

It is illustrative to provide an example of a non-conformal supercurrent in curved

superspace with T chosen as a compensating superfield.

In the case of 4D N = 2 Poincaré supersymmetry, the relaxed hypermultiplet [47] was

the first off-shell formulation without intrinsic central charge for the massless hypermulti-

plet. This formulation was generalised to 6D N = (1, 0) supersymmetry in [4]. In both

cases, the relaxed hypermultiplet was described only in Minkowski superspace. To the best

of our knowledge, its coupling to supergravity has never been constructed. Such a coupling

will be given below. In conformal supergravity one must introduce a compensating O∗(4)

multiplet as we will show.

To begin with, the relaxed hypermultiplet is described by the superfields Lij , Lijkl and

T̃ , subject to the following off-shell constraints

∇(i
αL

jk) = T ∇αlLijkl + 5(∇αlT )Lijkl , (2.46a)

∇(i
αL

jklp) = 0 , (2.46b)

∇j(α∇β)j T̃ = 0 . (2.46c)
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The independent off-shell component fields of the relaxed hypermultiplet can be extracted

from the above constraints.

The action for the relaxed hypermultiplet may be described in a covariant way using

the primary superform action [41, 48], which is built out of a primary superfield Aα
ijk.17

It satisfies the differential constraint

∇(i
(αAβ)

jkl) = 0 . (2.47)

One only needs to allow the superfield Aα
ijk, taking on the role of a Langrangian, to be

composed of the fields of the relaxed hypermultiplet and the compensating superfield T .

The two supersymmetry invariants making up the action for the relaxed hypermultiplet

are: (i) I1 described by

Aα
ijk = T∇αlHijkl + 5(∇αlT )Hijkl , (2.48)

where

Hijkl =
2

5
L(ijLkl) − 4

3
T Lp

(iLjkl)p − 15

7
T 2 Lmn(ijLkl)mn ; (2.49)

and (ii) I2 described by

Aα
ijk = T̃ ∇αlLijkl + 5

(
∇αlT̃

)
Lijkl . (2.50)

Their linear combination gives the relaxed hypermultiplet action.18

The superspace equations of motion for the relaxed hypermultiplet action are

T ∇αjLij + 3 (∇αjT )Lij = λ∇iα

(
T̃

T

)
, Lijkl = 0 , (2.51)

where λ is some non-zero constant related to the relative coefficients of the invariants. The

equations of motion (2.51) are constructed such that they are primary and that they reduce

to those given in Minkowski superspace in [47] when T is set to a constant. Note that,

up to a constant, the equations of motion completely determine T̃ in terms of other fields.

The supercurrent is

J = TLijLij , (2.52)

which is the unique primary scalar that is linear in T , quadratic in Lij and of dimension 4.

One may verify that the supercurrent conservation equation (2.3) recovers (2.45) with

a composite multiplet

Lijkl = −4

5
L(ijLkl) , (2.53)

which is an O(4) multiplet once one imposes the equations of motion for the relaxed

hypermultiplet. This provides an example verifying the supercurrent conservation equation

for a compensating O∗(4) multiplet.

17The superfield Aα
ijk should not be confused with Aαijk.

18Note that one could also choose T = G−1 since G−1 satisfies the appropriate differential constraint.
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2.4 Further generalisations

So far we have found two solutions for the trace superfield Aαijk which lead to a

conserved supercurrent and energy-momentum tensor, cf. subsections 2.2 and 2.3. One

involves an O(2) multiplet with a vector multiplet, while the other involves an O(4) mul-

tiplet with an O∗(4) multiplet. It turns out there is in an infinite family of solutions that

involve the product of an O(n) multiplet with an O∗(n) multiplet for n ≥ 2.19 The O∗(n)

multiplets were introduced in [49] as ‘dual’ to the O(n) multiplets in the sense that there

exists an action formula that schematically involves the product of the two. We will de-

scribe the defining constraints of these multiplets below and introduce the infinite family

of non-conformal supercurrents.

The O(n) multiplet for n ≥ 1 is given by a primary superfield Li1···in of dimension 2n

satisfying the differential constraint

∇(i1
α Li2···in+1) = 0 . (2.54)

They are off-shell for n ≥ 2.

The O∗(3) multiplet is described by a primary superfield Tα of dimension −3/2 with

the differential constraint

∇i(αTβ) = 0 , (2.55)

while the O∗(n) multiplet with n > 4 is described by a superfield Ti1···in−4 of dimension

4− 2n satisfying the constraint

∇jαTi1···in−5j
= 0 =⇒ ∇j(α∇β)jTi1···in−4 = 0 . (2.56)

The prepotential formulations for these multiplets appeared in [49].

One can build a primary superfield Aαijk satisfying (2.5) out of an O(3) multiplet and

an O∗(3) multiplet as follows

Aαijk = Tβ∇αβLijk −
3i

16
εαβγδ

(
∇(i
β Tγ

)
∇δlLjk)l −

i

4
εαβγδ

(
∇(i
β∇γlTδ

)
Ljk)l +

(
∇αβTβ

)
Lijk

+ 6WαβTβLijk . (2.57)

19The O∗(2) multiplet is defined to be a vector multiplet [49].
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One can do the same with an O(4 + p) and an O∗(4 + p) multiplet with p > 0 as follows

Aαijk =
p

2(p+ 4)
Ti1···ip−1

(i∇αlmnLjk)i1···ip−1lmn + iTi1···ip∇αβ∇βlLijkli1···ip

+
p+ 3

2(p+ 4)

(
∇(i
β Ti1···ip

)
∇αβlmLjk)lmi1···ip +

i(p+ 3)(p+ 5)

(p+ 1)(p+ 4)
∇βi1Ti2···ip+1∇αβLijki1···ip+1

+
p+ 3

4(p+ 1)
εαβγδ

(
∇(i
γ∇δi1Ti2···ip+1

)
∇βlLjk)li1···ip+1

+
(p+ 3)(p+ 5)

12(p+ 2)(p+ 1)
εαβγδ

(
∇(i
β∇γi1∇δi2Ti3···ip+2

)
Ljk)i1···ip+2

+
i(p+ 3)(p+ 5)

3(p+ 1)(p+ 2)

(
∇αβ∇βi1Ti2···ip+1

)
Lijki1···ip+1

−10(p+ 1)(p+ 5)

p+ 2
Xα
i1Ti2···ip+1Lijki1···ip+1 + 4iWαβTi1···ip∇βlLijkli1···ip

+
2i(p+ 3)(p+ 5)

(p+ 1)(p+ 2)
Wαβ(∇βi1Ti2···ip+1)Lijki1···ip+1 , (2.58)

where we have introduced the definition

∇αβij :=
1

2
εαβγδ∇(i

γ∇
j)
δ . (2.59)

One can check that when p = 0, the non-conformal supercurrent corresponding to (2.58)

agrees with (2.45). The above general form for the trace superfield corresponds to com-

pensating O∗(n) multiplets. However, for n ≥ 4 the general form also makes sense if one

takes the conformal compensator to be an O(n) multiplet. It can be checked that in either

case, after freezing the compensator to a constant and reducing to flat superspace, one

obtains a conserved SU(2) and, therefore, also a conserved supersymmetry current and

energy-momentum tensor. Higher-derivative actions for both cases were described in [49].

3 The supercurrent associated with the dilaton-Weyl multiplet

As mentioned earlier, the tensor multiplet may be used as a conformal compensator in

supergravity [46]. In conformal superspace, the tensor multiplet is described by a primary

superfield Φ of dimension 2 satisfying the following differential constraint

∇(i
α∇

j)
β Φ = 0 . (3.1)

However, the multiplet is on-shell in the flat case in the sense that the constraint (3.1)

implies �Φ ≡ ∂a∂aΦ = 0 and there is no description in terms of an unconstrained superfield

for such a multiplet. Despite this, it is still possible to work out a candidate for the trace

superfield Aαijk for a supergravity theory involving a compensating tensor multiplet.20 We

present this candidate below.

We first observe that we can construct an appropriate primary field Aαijk as follows

Aαijk =
i

3
Φ∇(i

βH
αβjk) + i

(
∇(i
βΦ
)
Hαβjk) , (3.2)

20The fact that it exists is related to the fact that there is an invariant which is essentially a product of

the tensor multiplet and a gauge three-form multiplet [41].
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where Hαβij = H[αβ](ij) is a primary superfield of dimension 3. Now we need to impose

additional constraints on Hαβij in order for the trace superfield Aαijk to both satisfy the

consistency condition (2.5) and imply the existence of a conserved supersymmetry current.

One can show that the consistency condition (2.5) is satisfied if we impose the constraint

∇(i
αHβγjk) = −2

3
δ[βα ∇

(i
δ H

γ]δjk) . (3.3)

One can check that eq. (3.3) is a primary constraint.

There exists another primary constraint that one can impose on Hαβij and it is

∇(i
α∇βkHαβj)k + 3i∇αβHαβij = 0 . (3.4)

The constraints (3.3) and (3.4) are exactly the primary constraints that ensure Hαβij

describes the lowest dimension component of a closed four-form [48].

One can check that in the flat case with the tensor multiplet set to unity, i.e. Φ = 1,

and using the constraint (3.4), the descendent Aij , defined by (2.7a), is

Aij =
3

16
DαkA

αijk =
1

4
∂αβHαβij . (3.5)

Since Aij is a divergence we have a conserved SU(2) current, together with a conserved

supersymmetry current and energy-momentum tensor according to the analysis of subsec-

tion 2.1. These are

jαβ
ij = Vαβ

ij − iHαβ
ij , ∂αβjαβ

ij = 0 , (3.6a)

Sαβ,
i
γ = Σi

γ ,αβ −
2i

3
DγjHαβ

ij , ∂αβSαβ,
i
γ = 0 , (3.6b)

Tαβ,γδ = Tαβ,γδ −
i

6
DαiDβjHγδ

ij − i

6
DγiDδjHαβ

ij , ∂αβTαβ,γδ = 0 . (3.6c)

One should note that the supersymmetry current is not gamma-traceless and neither is the

energy-momentum tensor traceless. To prove conservation of the energy-momentum tensor

one uses

∂αβDαiDβjHγδ
ij = ∂αβDγiDδjHαβ

ij , (3.7)

which follows from the differential constraints on Hαβ
ij , eqs. (3.3) and (3.4).

Remarkably, if we deform the constraint defining the tensor multiplet to

∇(i
α∇

j)
β Φ = iHαβ

ij , (3.8)

the postulated superfield (3.2) still satisfies the consistency condition (2.5) but a conserved

supersymmetry current is no longer guaranteed.

3.1 An example: non-abelian gauge theory involving a compensating tensor

multiplet

For an illustrative example of a non-conformal supercurrent in curved superspace, we

consider non-abelian gauge theory involving a compensating tensor multiplet. We refer the
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reader to appendix C for details on the description of the Yang-Mills multiplet in conformal

superspace. The action for the theory is composed of two parts: (i) a higher-derivative non-

abelian vector multiplet action; and (ii) the Yang-Mills action which involves the tensor

multiplet and contains the term σTr(fabfab) at the component level [46]. Here σ is the

component projection of Φ and fab is the field strength of the non-abelian gauge field.

The higher-derivative non-abelian vector multiplet action is the non-abelian exten-

sion of the supersymmetric F�F action mentioned in subsection 2.2. It was described in

Minkowski superspace in [44] and in conformal superspace in [41]. The supercurrent is

J =
3

8
Tr

(
XijXij +

4i

3
Wαi∇αβW

β
i +

2

3
Fα

βFβ
α

)
. (3.9)

It is the unique dimension four primary superfield quadratic in the fields of the vector

multiplet. The equation of motion for the vector multiplet is

Gij = 0 , (3.10)

where we have introduced the superfield

Gij := ∇a∇aX
ij − 2i[Wα(i,∇αβW

βj)]− 3

2
[Xk(i, Xj)

k]− 2Yα
βijFβ

α

+
5

2
Xα(i←→∇αβW

βj) , (3.11)

which is constructed to be primary of dimension 4 and to satisfy ∇(i
αGjk) = 0.21 It can be

checked that the supercurrent (3.9) is conserved,

∇αijkJ = iTr
(
Wα(iGjk)

)
= 0 , (3.12)

as a consequence of the equation of motion (3.10).

We can now check the non-conformal conservation condition if we consider the higher-

derivative non-abelian vector multiplet action coupled to the Yang-Mills action. The Yang-

Mills action was described in conformal superspace in [41] by making use of a closed six-form

with the lowest component given by the primary superfield

Aα
ijk = εαβγδV

β(iHγδjk) , Hαβij := iTr
(
Wα(iW βj)

)
, (3.13)

where V αi is the constrained prepotential for the tensor multiplet [36, 50], which satisfies22

∇(i
αV

βj) − 1

4
δβα∇(i

γ V
γj) = 0 , Φ = ∇αiV αi , KAΦ = 0 , DΦ = 2Φ . (3.14)

It should be noted that the primary superfield Hαβij satisfies the same differential con-

straints as Hαβij does.

21JN is grateful to Daniel Butter for checking this result using the computer algebra program Cadabra.
22Invariance under gauge transformations of the prepotential was shown in [41].
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For the combined action incorporating the higher-derivative non-abelian vector mul-

tiplet action and the Yang-Mills action, the equation of motion for the vector multiplet

becomes

Gij + λ
(

ΦXij + i
(
∇(i
αΦ
)
Wαj)

)
= 0 , (3.15)

where λ is a coupling constant. We also need to know the supercurrent J for the combined

theory. Interestingly, the supercurrent J does not obtain a contribution from the Yang-Mills

action. The point is that such a supercurrent would have to be linear in Φ and quadratic

in the fields of the vector multiplet and no such scalar superfield of dimension 4 exists.

Therefore, much like the BF invariant, the Yang-Mills action can have no dependence on

the supergravity prepotential H and one can use the supercurrent of the higher-derivative

Yang-Mills action for the combined system. Now using the supercurrent (3.9) and the

equation of motion we find

∇αijkJ =
i

3
Φ∇(i

βH
αβjk) + i

(
∇(i
βΦ
)
Hαβjk) , Hαβij = λHαβij , (3.16)

which verifies the non-conformal supercurrent equation in the presence of a compensating

tensor multiplet, cf. (3.2).

3.2 The dilaton-Weyl multiplet

We now discuss some subtleties about the non-conformal supercurrent just presented.

As we have seen in previous sections, the supercurrent may be understood in terms of the

variation of an action with respect to the conformal supergravity prepotential and possibly

the prepotential of some supermultiplet that is to take on the role as a compensator.

However, we obviously bump into a problem when we choose the compensator to be a

tensor multiplet which has no prepotential formulation.

The tensor multiplet is quite special because its defining constraint (3.1) allows one to

express the super-Weyl tensor in terms of the fields of the tensor multiplet,

Wabc = −1

4
Habc −

i

32
(γ̃abc)

γδ∇kγ∇δkΦ , (3.17)

where Habc is the three-form field strength of the tensor multiplet. One should keep in

mind that the combined system, tensor + Weyl-multiplet, is off-shell (with 40 + 40 degrees

of freedom) and upon replacing the covariant fields of the Weyl multiplet with those of the

tensor multiplet leads to what is known as the dilaton-Weyl or type II Weyl multiplet [46].

One expects that the dilaton-Weyl multiplet should possess a prepotential formulation,

albeit potentially taking a different form than that of the standard Weyl multiplet. We do

not derive the details of such a formulation here but we wish to emphasise some important

points below.

It is instructive to consider a superconformal action that may be described in standard

conformal supergravity without a tensor multiplet, which possesses the supercurrent J with

the usual conservation condition (2.2).23 We can always replace the fields of the standard

23An example is provided by the linear (or O(2)) multiplet action [45, 46] where the supercurrent is given

(up to normalisation) by J = G.
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Weyl multiplet in the action with those of the dilaton-Weyl multiplet, which involves the

tensor multiplet and thus gives a new action. However, this should only lead to a rewriting

of the conservation condition on the supercurrent:

∇αijkJ = ∇αijk
(

Φ
J

Φ

)
=

i

3
Φ∇(i

β H̃
αβjk) + i

(
∇(i
βΦ
)
H̃αβjk) = 0 , (3.18)

where

H̃αβ
ij = i∇(i

α∇
j)
β

(J
Φ

)
(3.19)

and H̃αβ
ij satisfies the differential constraints (3.3) and (3.4). We see that for every such

theory there always exists a superfield H̃αβij subject to the conservation condition (3.18).

The observation that the conservation of the supercurrent J can be rewritten in

terms of the superfield H̃αβij is important since the Yang-Mills action does not pos-

sess a supercurrent J as discussed earlier. One can instead understand the superfield

Hαβij = iTr(Wα(iW βj)) as the supercurrent in the dilaton-Weyl multiplet. This is con-

sistent with the fact that the action is linear in the tensor multiplet and built out of

covariant derivatives of Hαβij . Furthermore, the superfield Hαβij corresponding to the

Yang-Mills action satisfies the conservation condition (3.18) when the equation of motion

for the Yang-Mills multiplet is enforced.

For the reasons mentioned above, one should think of the superfield Jαβij satisfying the

constraints (3.3) and (3.4) (with Hαβij replaced with Jαβij) and the on-shell conservation

condition
i

3
Φ∇(i

β J
αβjk) + i

(
∇(i
βΦ
)
Jαβjk) = 0 (3.20)

as the supercurrent for a theory coupled to the dilaton-Weyl multiplet.

The dilaton-Weyl multiplet is expected to be described by an unconstrained prepoten-

tial hαβij such that its infinitesimal displacement generates the following variation of an

action

δS =

∫
d6|8z E δhαβij Jαβ

ij . (3.21)

The constraints (3.3) and (3.4) imposed on the supercurrent Jαβ
ij should be the conditions

of the invariance of the action S under certain gauge transformations of the gravitation

superfield hαβij . In fact these conditions follow from the gauge transformations

δhαβ
ij = ∇γkΛαβγijk + i∇(i

[α∇β]kΛ
j)k − 3∇αβΛij , (3.22)

where the gauge parameters are primary and satisfy the conditions

Λαβ
γijk = Λ[αβ]

γ(ijk) , Λαβ
βijk = 0 , Λij = Λ(ij) . (3.23)

The conservation condition (3.20) follows from the supergravity gauge transformations

δhαβ
ij = iΦ∇[αkΛβ]

ijk − 2i(∇[αkΦ)Λβ]
ijk , Λα

ijk = Λα
(ijk) . (3.24)

One can see that in the Minkowski superspace limit, the supercurrent Jαβij satisfies the

constraints

D(i
αJ

βγjk) = 0 , ∂αβJαβ
ij = 0 . (3.25)
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Corresponding to the supercurrent put forward in [4, 51]. One can also check that Jαβij

possesses 40 + 40 degrees of freedom.

Suppose a matter action S couples to a compensator, for instance the linear multiplet.

Then the conservation equation (3.20) gets deformed to take the form

i

3
Φ∇(i

β J
αβjk) + i

(
∇(i
βΦ
)
Jαβjk) = Aαijk . (3.26)

The consistency condition (2.5) follows from the above conservation condition keeping in

mind the constraints (3.3) and (3.4) imposed on Jαβij , as well as the constraint (3.1) on

Φ. Using the results of subsection 2.1, we find that in the Minkowski superspace limit

with Φ = 1

∂αβJαβ
ij = −4Aij , ∂αβΣ̂αβ,

k
γ = 4iΛkγ , ∂αβT̂αβ,γδ = 4iAγδ , (3.27)

where we have defined

Σ̂αβ,
i
γ := −2i

3
DγjJαβ

ij , T̂αβ,γδ := − i

6
DαiDβjJγδ

ij − i

6
DγiDδjJαβ

ij . (3.28)

This tells us that we still require Λk
γ and Aγδ to be divergences in order for a conserved

supersymmetry current and energy-momentum tensor to exist. However, now the super-

symmetry current contains a gamma-trace component and the energy-momentum tensor

contains a trace in addition to any contribution from the trace superfield Aαijk, which can

be chosen to be any of the trace superfields derived in section 2.

4 The N = (2, 0) non-conformal supercurrent

In this section, we discuss the N = (2, 0) superconformal current and put forward an

N = (2, 0) extension of the N = (1, 0) non-conformal supercurrent based on a compensat-

ing tensor multiplet.

We first review some basic notation and conventions in regards to N = (2, 0) super-

symmetry. A symplectic Majorana spinor Ψi, decomposed as in [41], has Weyl components

that satisfy the reality conditions

ψαi = ψαi , χαi = χiα , (4.1)

where i = 1, . . . , 4 are USp(4) indices corresponding to the R-symmetry group. The USp(4)

indices are raised and lowered as

Ψi = ΩijΨj , Ψi = ΩijΨ
j , ΩijΩ

jk = δki , (4.2)

where Ωij = Ω[ij] is a symplectic metric of USp(4).24 It satisfies

εijkl = 3Ωi[jΩkl] =⇒ Ωij = −1

2
εijklΩkl , (4.3a)

Ω[ijΦkl] =
1

2

(
Ω[ijΦk]l − Ωl[kΦij]

)
= 0 , (4.3b)

24N = (1, 0) is recovered by restricting i = 1, 2 and setting Ωij = εij .
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where Φij = Φ[ij] is an antisymmetric rank 2 isospinor such that ΦijΩij = 0. Note that

every antisymmetric rank 2 USp(4) tensor U ij admits the decomposition U ij = Φij +ΩijU .

Finally, the chiral N = (2, 0) supersymmetry algebra is

{Di
α, D

j
β} = −2iΩij∂αβ ≡ −2iΩij(γa)αβ∂a . (4.4)

The N = (2, 0) conformal supercurrent is described by the USp(4) tensor superfield

J ij,kl = J [ij],[kl] = Jkl,ij = −2Jk[i,j]l, which is completely traceless with respect to the

sympletic metric Ωij of USp(4), and satisfies the superspace conservation condition [4]

Dm
α J

ij,kl − Ωm[iΨj],kl
α − 1

4
ΩijΨm,kl

α − Ωm[kΨl],ij
α − 1

4
ΩklΨm,ij

α = 0 , (4.5)

where Ψi,jk
α = Ψ

i,[jk]
α is completely traceless, Ψi,jk

α Ωjk = Ψi,
α
jkΩij = 0. The condition (4.5)

is a constraint on the completely traceless part of Dm
α J

ij,kl and it fixes Ψi
α
,jk = 4

7DαlJ
li,jk.

We can now insert a superfield Amα
,ij ,kl in the conservation equation (4.5) as follows:25

Dm
α J

ij,kl − Ωm[iΨj],kl
α − 1

4
ΩijΨm,kl

α − Ωm[kΨl],ij
α − 1

4
ΩklΨm,ij

α = Amα
,ij ,kl , (4.6)

where we require the trace superfield to satisfy the symmetry properties

Amα
,ij ,kl = Amα

,[ij],[kl] = Amα
,kl,ij , Amα

,ij ,klΩij = Amα
,[ij ,kl] = A[m

α
,ij],kl = 0 , (4.7)

and the integrability condition26

Dm
α A

n
β
,ij ,kl +Dn

βA
m
α
,ij ,kl − (traces) = 0 , (4.8)

where (traces) represents all terms proportional to the metric Ωij consistent with the

symmetry properties of Amα
,ij ,kl.

We now put forward a candidate for the superfield Amα
,ij ,kl that is analogous to the

non-conformal supercurrent based on a compensating N = (1, 0) tensor multiplet. As a

compensator, we will choose an N = (2, 0) tensor multiplet HST83, which is described by

an antisymmetric and Ω-traceless superfield Φij ,

Φ(ij) = ΦijΩij = 0 , (4.9)

satisfying the following differential constraint

Di
αΦjk − Ωi[jλk]α −

1

4
Ωjkλiα = 0 . (4.10)

The constraint (4.10) eliminates the completely traceless part of Di
αΦjk and determines

λiα = 4
5DαjΦ

ji.

Inspired by the N = (1, 0) case, we write down the following candidate for the trace

superfield

Amα
,ij ,kl = ΦijHm,kl

α + ΦklHm,ij
α − (traces) , (4.11)

25This was also considered in [21] but with only a partial solution.
26This condition follows from requiring closure of supersymmetry on J ij,kl.
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where H i
α
,jk = H i

α
,[jk] is completely traceless and satisfies the constraint

Di
αH

j
β
,kl +Dj

βH
i
α
,kl − (traces) = 0 . (4.12)

The above constraint ensures that Amα
,ij ,kl satisfies its integrability condition (4.8). It is

important to mention that the superfield H i
α
,jk is still very long and should be constrained

to ensure the existence of a conserved supersymmetry current. In analogy with the N =

(1, 0) case, we can constrain H i
α
,jk to be the lowest component of a closed four-form. This

ensures that there exists an N = (1, 0) component field which is the lowest component of

a four-form in the N = (1, 0) case. The postulated trace superfield (4.11) is expected to

be the N = (2, 0) extension of the one in the N = (1, 0) case. The additional constraints

on H i
α
,jk and the closed superform are described in appendix D.

5 Discussion

In this paper, we have presented various non-conformal supercurrents by finding so-

lutions to the deformed conservation equation (2.3). Remarkably, we have managed to

uncover an infinite number of solutions that are based on O(n) multiplets. The n = 2 case

corresponds to choosing the well-known linear multiplet as a compensator. For n > 2 the

possible compensators have not been extensively considered in detail before. Nevertheless,

their usefulness was demonstrated in the description of the relaxed hypermultiplet given in

this paper and such compensators can be used in the description of higher derivative actions

(see the discussion section of [49]). In this light, it would be interesting if our results could

be used to derive the equations of motion for higher derivative actions. Furthermore, the

results in this paper should have analogues in lower dimensions and it would be interesting

to work out their details in future work.

We explored the curious case of using the tensor multiplet as a compensator in section 3.

Since coupling the Weyl multiplet to a tensor multiplet leads to a variant version of the

Weyl multiplet, called the dilaton-Weyl multiplet, the supercurrent for the combined system

needed to be modified. As an application of this supercurrent, we give the superspace

equations of motion for minimal Poincaré supergravity [52] below.

Minimal Poincaré supergravity is derived from the action for the linear (or O(2))

multiplet in conformal supergravity [46], which in superspace can be described by the full

superspace integral

SL :=

∫
d6x d8θ E ραiWαi . (5.1)

Here ραi is the prepotential for the linear multiplet and Wαi corresponds to an off-shell

vector multiplet built out of the fields of the linear multiplet as follows [53]

Wαi =
1

G
∇αβΥi

β +
4

G

(
WαβΥi

β + 10iXα
j G

ij
)
− 1

2G3
Gjk

(
∇αβGij

)
Υk
β

+
1

2G3
GijFαβΥβj +

i

16G5
ΥβjΥγkΥδlG

ijGkl , (5.2)
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where we have defined Υi
α := 2

3∇αjG
ij and Fαβ := i

4∇
k
[αΥβ]k. The equations of motion in

the standard Weyl multiplet read27

Wαi = 0 , J ∝ G = 0 . (5.3)

These equations of motion are obviously incompatible with the requirement that the linear

multiplet is a conformal compensator since G needs to be set to a non-vanishing con-

stant. To remedy this, we should instead replace the Weyl multiplet with the dilaton-Weyl

multiplet. Upon doing so, the equations of motion become

Wαi = 0 , Hαβ
ij ∝ ∇(i

α∇
j)
β

(G
Φ

)
= 0 , (5.4)

which are now consistent. The superspace equations of motion for gauged minimal super-

gravity [54] can be written down by considering a linear combination of the linear multiplet,

the BF and the Yang-Mills multiplet actions, and using the results in this paper. They are

Wαi = −2gWαi , (5.5a)

ΦXij + i
(
∇(i
αΦ
)
Wαj) = −g Gij , (5.5b)

1

4
εαβγδ∇(i

γ∇
j)
δ

(
G

Φ

)
= Wα(iW βj) , (5.5c)

where Wαi describes an abelian vector multiplet, and g is a coupling constant.

It is worth discussing the results in this paper in the context of Weyl anomalies. When

one lifts a classical conformal field theory to curved space the resulting theory remains

independent of any compensating scalar field. However, the conformal symmetry is anoma-

lous at the quantum level. In the Weyl invariant formulation for gravity, the presence of

conformal (or Weyl) anomalies is equivalent to the fact that the effective action acquires

dependence on some compensator. The situation with supersymmetric field theories is

analogous. Given a superconformal field theory, its action is independent of any compen-

sator. The presence of superconformal (or super-Weyl) anomalies is equivalent to the fact

that the effective action acquires dependence on a special compensator. In the case of 4D

N = 1 superconformal theories, it was argued in [9] that the chiral scalar compensator of

old minimal supergravity couples to the super-Weyl anomalies. The 4D N = 1 super-Weyl

anomalies were studied in [55, 56]. For 4D N = 2 superconformal theories, the super-Weyl

anomalies are associated with the vector multiplet compensator [57].

It is natural to ask if any of the non-conformal supercurrents correspond to those

associated with the super-Weyl anomalies in six dimensions. Here it is important to realise

that unlike in four dimensions, the super-Weyl anomalies in six dimensions should be

27The first equation can, in principle, be derived by varying the action with respect to ραi; this is tedious

because of the explicit ρ-dependence of Wαi. Alternatively, one can construct the most general primary

field with the same index structure and weight (3/2) as Wαi. The equation of motion for the supergravity

multiplet is, δS
δH
≡ J = 0. The supercurrent J is a covariant expression built from the linear multiplet.

Dimensional arguments fix it to be proportional to G.
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accompanied with Lorentz anomalies. However, each of the non-conformal supercurrents

in this paper describe a conserved energy-momentum tensor with no Lorentz anomaly. This

includes the non-conformal supercurrent corresponding to the conservation equation (1.9)

and given in [21].28 The absence of a Lorentz anomaly is evident from the fact that we

assumed the supergravity actions were invariant under supergravity gauge transformations.

Therefore, we need to change our set-up and this will be discussed elsewhere.
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A The geometry of N = (1, 0) conformal superspace in six dimensions

Here we collect the essential details of the superspace geometry of [41]. We refer the

reader to appendix A of [41] for our notation and conventions.

We begin with a curved six-dimensional N = (1, 0) superspace M6|8 parametrized by

local bosonic (xm) and fermionic coordinates (θi):

zM = (xm, θµi ) , (A.1)

where m = 0, 1, · · · , 5, µ = 1, · · · , 4 and i = 1, 2. The structure group is chosen to be the

full 6D N = (1, 0) superconformal group and the covariant derivatives are postulated to

have the form

∇A = EA −
1

2
ΩA

abMab − ΦA
klJkl −BAD− FABK

B . (A.2)

Here EA = EA
M∂M is the inverse vielbein, Mab are the Lorentz generators, J ij are gener-

ators of the SU(2) group, D is the dilatation generator and KA = (Ka, Sαi ) are the special

superconformal generators. We associate the Lorentz ΩA
ab, SU(2) ΦA

kl, dilatation BA and

special conformal FAB connections with their respective generators.

The Lorentz generators obey

[Mab,Mcd] = 2ηc[aMb]d − 2ηd[aMb]c , (A.3a)

[Mab,∇c] = 2ηc[a∇b] , (A.3b)

[Mα
β ,∇kγ ] = −δβγ∇kα +

1

4
δβα∇kγ . (A.3c)

28In this sense it is very much like its counterpart described by (1.9), which does not couple to the 4D

N = 2 super-Weyl anomalies [57].
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The SU(2) and dilatation generators obey

[J ij , Jkl] = εk(iJ j)l + εl(iJ j)k , [J ij ,∇kα] = εk(i∇j)α , (A.3d)

[D,∇a] = ∇a , [D,∇iα] =
1

2
∇iα . (A.3e)

The Lorentz and SU(2) generators act on the special conformal generators KA as

[Mab,Kc] = 2ηc[aKb] , [Mα
β , Sγk ] = δγαS

β
k −

1

4
δβαS

γ
k , (A.3f)

[J ij , Sγk ] = δ
(i
k S

γj) , (A.3g)

while the dilatation generator acts on KA as

[D,Ka] = −Ka , [D, Sαi ] = −1

2
Sαi . (A.3h)

Among themselves, the generators KA obey the algebra

{Sαi , S
β
j } = −2iεij(γ̃

c)αβKc . (A.3i)

Finally, the algebra of KA with ∇A is given by

[Ka,∇b] = 2ηabD + 2Mab , [Ka,∇iα] = −i(γa)αβS
βi , (A.3j)

[Sαi ,∇a] = −i(γ̃a)
αβ∇βi , {Sαi ,∇

j
β} = 2δαβ δ

j
iD− 4δjiMβ

α + 8δαβJi
j . (A.3k)

The covariant derivatives obey (anti-)commutation relations of the form

[∇A,∇B} = − TABC∇C −
1

2
R(M)AB

cdMcd −R(J)AB
klJkl

−R(D)ABD−R(S)AB
k
γS

γ
k −R(K)ABcK

c , (A.4)

where TAB
C is the torsion, and R(M)AB

cd, R(J)AB
kl, R(D)AB, R(S)AB

K
γ and R(K)ABc

are the curvatures corresponding to the Lorentz, SU(2), dilatation, S-supersymmetry and

special conformal boosts, respectively.

The full gauge group of conformal supergravity, G, is generated by covariant general

coordinate transformations, δcgct, associated with a parameter ξA and standard supercon-

formal transformations, δH, associated with a parameter Λa. The latter include the dilata-

tion, Lorentz, SU(2), and special conformal (bosonic and fermionic) transformations. The

covariant derivatives transform as

δG∇A = [K,∇A] , (A.5)

where K denotes the first-order differential operator

K = ξC∇C +
1

2
ΛabMab + ΛijJij + ΛD + ΛAK

A . (A.6)

Covariant (or tensor) superfields transform as

δGT = KT . (A.7)
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To describe conformal supergravity, the covariant derivative algebra (A.4) must be

constrained as [41]

{∇iα,∇
j
β} = −2iεij(γa)αβ∇a , (A.8a)[

∇a,∇iα
]

= (γa)αβ

(
W βγ∇iγ + 4iXi

δ
βγMγ

δ − i

2
XγiMγ

β − 5iXβ
j J

ij +
5i

4
XβiD

+
i

4
Yγ

βijSγj +
i

4
∇γδW δβSγi − 5i

16
Y Sβi

+
i

3

(
γbc
)
δ

γ

(
∇bXi

γ
δβ − 3

4
δβγ∇bXδi

)
Kc

)
, (A.8b)

where Wαβ is the super-Weyl tensor, which satisfies

Wαβ = W βα , SγkW
αβ = 0 , DWαβ = Wαβ , (A.9)

and the Bianchi identities

∇(i
α∇

j)
βW

γδ = −δ(γ[α∇
(i
β]∇

j)
ρ W

δ)ρ , (A.10a)

∇kα∇γkW βγ − 1

4
δβα∇kγ∇δkW γδ = 8i∇αγW γβ . (A.10b)

Here the descendents of Wαβ are defined as

Xk
γ
αβ := − i

4
∇kγWαβ − δ(αγ Xβ)k , Xαi := − i

10
∇iβWαβ , (A.11a)

Yα
βij := −5

2

(
∇(i
αX

βj) − 1

4
δβα∇(i

γX
γj)
)

= −5

2
∇(i
αX

βj) , (A.11b)

Y :=
1

4
∇kγX

γ
k , (A.11c)

Yαβ
γδ := ∇k(αXβ)k

γδ − 1

6
δ
(γ
β ∇

k
ρXαk

δ)ρ − 1

6
δ(γα ∇kρXβk

δ)ρ . (A.11d)

Note that Xk
γ
αβ is traceless, Yα

β ij is symmetric in its SU(2) indices and traceless in its

spinor indices, and Yαβ
γδ is separately symmetric in its upper and lower spinor indices and

traceless.

Upon taking a spinor covariant derivative of the descendent fields one finds

∇iαXβj = −2

5
Yα

βij − 2

5
εij∇αγW γβ − 1

2
εijδβαY , (A.12a)

∇iαX
j
β
γδ =

1

2
δ(γα Yβ

δ)ij − 1

10
δ
(γ
β Yα

δ)ij − 1

2
εijYαβ

γδ − 1

4
εij∇αβW γδ

+
3

20
εijδ

(γ
β ∇αρW

δ)ρ − 1

4
εijδ(γα ∇βρW δ)ρ , (A.12b)

∇iαY = −2i∇αβXβi , (A.12c)

∇kγYα βij =
2

3
εk(i
(
− 8i∇γδXj)

α
δβ − 4i∇αδXj)

γ
δβ + 3i∇γαXβj)

+3iδβγ∇αδXδj) − 3i

2
δβα∇γδXδj)

)
, (A.12d)

∇iεYαβγδ = −4i∇ε(αX l
β)
γδ +

4i

3
δ
(γ
(α∇β)ρX

l
ε
δ)ρ +

8i

3
δ
(γ
(α∇|ερ|X

l
β)
δ)ρ

+8iδ(γε ∇ρ(αX l
β)
δ)ρ . (A.12e)
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The descendant superfields transform under S-supersymmetry as follows:

Sαi X
j
β
γδ = −i δji δ

α
βW

γδ +
2i

5
δji δ

(γ
β W

δ)α, Sαi X
βj =

8i

5
δjiW

αβ , (A.13a)

SγkYα
βij = δ

(i
k

(
− 16Xj)

α
γβ + 2δβαX

γj) − 8δγαX
βj)
)
, (A.13b)

Sρj Yαβ
γδ = 24

(
δρ(αXβ)j

γδ − 1

3
δ
(γ
(αXβ)j

δ)ρ

)
, Sαi Y = −4Xα

i . (A.13c)

B The prepotential for the O(2) multiplet

The prepotential formulation for the O(2) multiplet was first given in Minkowski su-

perspace in [45] in terms of a spinor superfield ρiα. In this appendix we extend the con-

struction in [45] to supergravity by making use of projective superspace techniques. The

projective superspace approach is a method to construct general off-shell supersymmetric

theories with eight supercharges. Originally it was introduced in four and three dimen-

sions [33, 35, 58, 59] and then extended to five [60] and six [45, 61, 62] dimensions. The

projective-superspace approach to conformal supergravity was first developed in five di-

mensions [39, 63] and then extended to four [40, 64, 65] and six dimensions [36].

In the projective superspace setting, the supermanifold M6|8 is augmented with an

additional CP1 parametrized by an isotwistor coordinate vi ∈ C2 \ {0}. Matter fields are

constructed in terms of covariant projective multiplets Q(n)(z, v), which are holomorphic

in the isotwistor vi and of definite homogeneity, Q(n)(z, cv) = cnQ(n)(z, v), on an open

domain of C2 \ {0}. Such superfields are intrinsically defined on CP1.

It is useful to introduce an additional fixed isotwistor ui which obeys viui 6= 0. Given a

superfield T ii···in with symmetric SU(2) indices T ii···in = T (ii···in) (and suppressed Lorentz

indices) we define

T (m)(m−n) := vi1 · · · vim
uim+1

(v, u)
· · · uin

(v, u)
T i1···in , (v, u) := vkuk . (B.1)

We also introduce

∇(1)
α := vi∇iα , ∇(−1)

α =
ui

(v, u)
∇iα (B.2)

and the following derivative operations

∂(2) = (v, u)vi
∂

∂ui
, ∂(0) = vi

∂

∂vi
− ui

∂

∂ui
, ∂(−2) =

1

(v, u)
ui

∂

∂vi
. (B.3)

Fields and operators of definite homogeneity in vi can be interpreted as possessing definite

∂(0) charge. Note that one can express the SU(2) generator in terms of the above derivative

operators as follows

Jij = −vivj∂(−2) +
v(iuj)

(v, u)
∂(0) +

1

(v, u)2
uiuj∂

(2) . (B.4)

Let us now use the above isotwistor notation to write down a candidate for the prepo-

tential description of the O(2) multiplet, G(2) = vivjG
ij , which satisfies the constraint

∇(1)
α G(2) = 0 . (B.5)
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Considering the generalisation of the result in [45] to supergravity, one is led to the

following natural ansatz

G(2) = ∇(4)
(
∇α(−3)ρ(1)α + ai∇(−1)

α ∇αβρ(−1)β + bi∇(−1)
α

(
Wαβρ

(−1)
β

))
, (B.6)

where a and b are some coefficients to be determined and ρiα is the prepotential which

we assume to be primary and of dimension 1/2. Here we have introduced the covariant

differential operators

∇(4) :=
1

4!
εαβγδ∇(1)

α ∇
(1)
β ∇

(1)
γ ∇

(1)
δ , ∇α(3) :=

1

3!
εαβγδ∇(1)

α ∇
(1)
β ∇

(1)
γ . (B.7)

For consistency we require independence of the isotwister ui, which amounts to requiring

∂(2)G(2) = 0 . (B.8)

Using the property∇(1)
α ∇(4) = ∇(4)∇(1)

α = 0 and the above requirement fixes the coefficients

a and b as

G(2) = ∇(4)
(
∇α(−3)ρ(1)α − 2i∇(−1)

α ∇αβρ(−1)β − 8i∇(−1)
α

(
Wαβρ

(−1)
β

))
. (B.9)

The prepotential is defined up to some gauge freedom. Specifically, G(2) is unchanged

by the following shift in the prepotential

ρiα → ρ′iα = ρiα +∇iατ +∇βjταβij , τα
αij = 0 , τα

βij = τα
β(ij) , (B.10)

where τ and τα
βij are dimensionless primary superfields. It is rather simple to show that

the transformations associated with the scalar τ leave G(2) invariant since

{∇(1)
α ,∇α(−3)}τ = 2i∇(−1)

α ∇αβ∇(−1)
β τ + 8i∇(−1)

α

(
Wαβ∇(−)

β τ
)
. (B.11)

To show that G(2) is also invariant with respect to the transformations associated with

τα
βij one uses the identities

∇(4)∇(1)
α = 0 , (B.12a)

∇α(−3)∇(−1)
β = δαβ∇(−4) , (B.12b)

{∇(−1)
α ∇αβ ,∇(1)

γ }τβγ(−2) = −4∇(−1)
α

(
Wαβ∇(1)

γ τβ
γ(−2)

)
, (B.12c)

{∇α(−3),∇(1)
β }τα

β(1)(−1) = −2i∇(−1)
α ∇αβ∇(−1)

γ τβ
γ(1)(−1)

− 8i∇(−1)
α

(
Wαβ∇(−1)

γ τβ
γ(1)(−1)

)
. (B.12d)

We now have to check that G(2) is primary. To do so, we apply the following identities

[
Sα(−1),∇(4)

]
= −12∇α(3) +∇β(3)

(
2δαβD− 4Mβ

α − 4δαβ∂
(0)
)
, (B.13a)

{Sα(−1),∇β(−3)} = 4εαβγδ∇(−1)
γ ∇(−1)

δ ∂(−2) , (B.13b)

{Sα(−1),∇(−1)
γ ∇γβ} = −8∇αβ∂(−2) − 2iεαβγδ∇(−1)

γ ∇(−1)
δ (B.13c)
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to show

Sα(−1)G(2) = 0 . (B.14)

Furthermore, since G(2) is independent of the isotwistor ui we must have

Sαi G
jk = 0 , (B.15)

and thus Gij is primary.

Finally, since G(2) is independent of the isotwistor ui, Gij can be written without

isotwistors as follows

Gij =
1

2
∇(ijkl∇αklpρp)α −

6i

5
∇ijkl

(
∇αk∇αβρβl + 4∇αk

(
Wαβρβl

))
. (B.16)

C The Yang-Mills multiplet in conformal superspace

In this appendix, we give the results needed for the description of the Yang-Mills

multiplet in conformal superspace. It is based almost verbatim on appendix C of [41].

To describe a non-abelian vector multiplet, the covariant derivative ∇A is replaced

with a gauge covariant one,

∇A := ∇A − iVA . (C.1)

Here the gauge connection one-form VA takes its values in the Lie algebra of the (unitary)

Yang-Mills gauge group, GYM, with its (Hermitian) generators commuting with all the

generators of the superconformal algebra. The algebra of the gauge covariant derivatives is

[∇A,∇B} = −TABC∇C −
1

2
R(M)AB

cdMcd −R(J)AB
klJkl −R(D)ABD

−R(S)AB
γ
kS

k
γ −R(K)AB

cKc − iFAB , (C.2)

where the torsion and curvatures are those of conformal superspace and FAB is the gauge

covariant field strength two-form. It satisfies the Bianchi identity

∇[AFBC} + T[AB
DF|D|C} = 0 . (C.3)

The Yang-Mills gauge transformation acts on the gauge covariant derivatives ∇A and a

matter superfield U (transforming in some representation of the gauge group) as

∇A → eiτ∇Ae−iτ , U → U ′ = eiτU , τ † = τ , (C.4)

where the Hermitian gauge parameter τ(z) takes its values in the Lie algebra of GYM.

Some components of the superform field strength have to be constrained in order to

describe an irreducible multiplet. In conformal superspace, the components of the field

strength are constrained as

F iα
j
β = 0 , (C.5a)

Fa
j
β = (γa)αβW

βi , (C.5b)

Fab = − i

8
(γab)β

α∇k
αW

β
k , (C.5c)
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where Wαi is a conformal primary of dimension 3
2 , SγkW

αi = 0 and DWαi = 3
2W

αi. The

Bianchi identity (C.3) constrains Wαi to obey the differential constraints

∇k
γW

γ
k = 0 , ∇(i

αW
βj) =

1

4
δβα∇(i

γW
γj) . (C.6)

It is useful to introduce the following descendant superfield:

Xij :=
i

4
∇(i
γW

γj) . (C.7)

The superfield Wαi and Xij , together with

Fα
β = − i

4

(
∇k
αW

β
k −

1

4
δβα∇k

γW
γ
k

)
= − i

4
∇k
αW

β
k , (C.8)

satisfy the following identities:

∇i
αW

βj = −iδβαX
ij − 2iεijFα

β , (C.9a)

∇i
αFβ

γ = −∇αβW
γi − δγα∇βδW

δi +
1

2
δγβ∇αδW

δi , (C.9b)

∇i
αX

jk = 2εi(j∇αβW
βk) , (C.9c)

SγkFα
β = −4iδγαW

β
k + iδβαW

γ
k , SγkX

ij = −4iδ
(i
kW

γj)
. (C.9d)

D A superform description for the N = (2, 0) tensor multiplet and its

deformation

Here we give the superform description for the N = (2, 0) tensor multiplet and intro-

duce a closed four-form by deforming the constraints defining the tensor multiplet.29

The tensor multiplet can be described by a two-form gauge potential in superspace [67,

68]. The field strength three-form H3 = 1
3!dz

CdzBdzAHABC is given in terms of its two-

form gauge potential B2 = 1
2dzBdzABAB by

H3 = dB2 =⇒ HABC = 3D[ABBC} + 3T[AB
DB|D|C} , (D.1)

where the only non-vanishing component of the torsion is

T iα
j
β
a = 2iΩij(γa)αβ . (D.2)

The existence of the gauge potential requires that the Bianchi identity

dH3 = 0 =⇒ D[AHBCD} +
3

2
T[AB

EH|E|CD} = 0 (D.3)

be satisfied. To describe the tensor multiplet, one must impose the following constraints

on the lowest components of the superform field strength:

H i
α
j
β
k
γ = 0 , Ha

i
α
j
β = 2i(γa)αβΦij , Φ(ij) = ΦijΩij = 0 . (D.4a)

29The superform description of the N = (1, 0) tensor multiplet was given in [66].
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The Bianchi identities for H3 can then be solved giving the remaining components:

Hab
i
α = −1

4
(γab)α

βλiβ , (D.4b)

Habc =
1

8
(γ̃abc)

αβHαβ , H[αβ] = 0 , (D.4c)

where Φij is required to satisfy the differential constraint

Di
αΦjk − Ωi[jλk]α −

1

4
Ωjkλiα = 0 , (D.5)

and its corollaries

Di
αλ

j
β = 2iΩijHαβ + 4i∂αβΦij , (D.6a)

Di
αHβγ = ∂α(βλ

i
γ) , ∂αβλiβ = 0 . (D.6b)

The constraint (D.5) is the defining constraint for the N = (2, 0) tensor multiplet.

We now wish to describe a closed four-form H4 = 1
4!dz

DdzCdzBdzAHABCD, which

satisfies the closure condition

dH4 = 0 =⇒ D[AHBCDE} + 2T[AB
FH|F |CDE} = 0 . (D.7)

To do this we proceed by obstructing the constraint defining the tensor multiplet by a

closed 4-form H4 as30

dH3 = H4 =⇒ 4D[AHBCD} + 6T[AB
EH|E|CD} = HABCD (D.8)

such that the constraint on the tensor multiplet is deformed to

Di
αΦjk − Ωi[jλk]α −

1

4
Ωjkλiα = H i

α
,jk , (D.9)

where H i
α
,jk = H i

α
,[jk] is completely traceless and the four-form is constructed completely

in terms of H i
α
,jk. The first non-vanishing component of H4 is fixed by the condition (D.8)

and the constraint (D.9) to be

Ha
i
α
j
β
k
γ = −2i(γa)αβH

k
γ
,ij − 2i(γa)βγH

i
α
,jk − 2i(γa)γαH

j
β
,ki . (D.10)

The remaining components can be determined by finding the conditions that follow from

the constraint (D.9) and using eq. (D.8). The consistency conditions on H i
α
,jk that follow

from the constraint (D.9) will give the requirements for H4 to be closed.

By taking successive spinor derivatives of the superfield Φij one finds the following

results at dimension 4:

Di
αλ

j
β = Hαβ

ij + 2iΩijHαβ + 4i∂αβΦij , ΩijHαβ
ij = 0 , (D.11a)

Di
αH

j
β
,kl +Dj

βH
i
α
,kl = −Ωi[kHβα

|j|l] − Ωj[kHαβ
|i|l] − 1

4
ΩklHαβ

ij − 1

4
ΩklHβα

ji , (D.11b)

30A similar procedure of obstructing the closure condition of a p-superform to obtain a closed (p + 1)-

superform was used in [48] to construct a chain of closed N = (1, 0) superforms.
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while at dimension 9/2 one finds

Di
γHαβ = ∂γ(αλ

i
β) −

i

30
DγkH(αβ)

ik +
2i

15
D(αkH|γ|β)

ik , (D.12a)

15i∂[αβλ
i
γ] = DγkH[αβ]

ik − 4D[αkH|γ|β]
ik , (D.12b)

30i∂[αβλ
i
γ] = D[γkHα]β

ik − 3D[γkHα]β
ki , (D.12c)

0 = Di
αHβγ

jk + 4i∂βγH
i
α
,jk + Ωikξαβγ

j + Ωijεαβγδ ξ̃
δk +

(
α↔ β

)
. (D.12d)

Finally, at dimension 5 one finds

4∂[aHbcd] =
1

1920

(
γ̃[a
)γδ(

γ̃bcd]
)αβ

DγkDδlHαβ
kl − 1

480

(
γ̃[a
)γδ(

γ̃bcd]
)αβ

DγkDαlHδβ
kl .

(D.12e)

All constraints on H i
α
,jk are encoded in the closure of the four-form H4.

From the above results one can determine the components of the four-form:

Hab
i
α
j
β = −1

2
(γab)α

γHβγ
ji − 1

2
(γab)β

γHαγ
ij , (D.13a)

Habc
k
γ =

i

240
(γ̃abc)

αβ
(
DγjHαβ

kj − 4DαjHγβ
kj
)
, (D.13b)

Habcd =
1

1920
(γ̃[a)

γδ(γ̃bcd])
αβDγkDδlHαβ

kl − 1

480
(γ̃[a)

γδ(γ̃bcd])
αβDγkDαlHδβ

kl . (D.13c)

It is important to emphasise that all the differential constraints on Hαβ
ij can be projected

out of the closure condition (D.7). However, we do not give them explicitly here for

simplicity.
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[33] U. Lindström and M. Roček, New HyperKähler Metrics and New Supermultiplets, Commun.

Math. Phys. 115 (1988) 21 [INSPIRE].

[34] M.F. Sohnius, K.S. Stelle and P.C. West, Representations of extended supersymmetry, in

Superspace and Supergravity, S.W. Hawking and M. Roček eds., Cambridge University Press,
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