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tain the quantum effective action for the Yang-Mills field coupled to massless matter, and

the self-interacting massless scalar field. Our action reduces to the nonlocal action obtained

using the Barvinsky-Vilkovisky covariant perturbation theory in the regime R2 ≪ ∇2R for
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covariant perturbation theory to all orders in curvatures. In particular, it is applicable also

in the opposite regime R2 ≫ ∇2R, which is often of interest in cosmology.
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1 Introduction

Virtual massless particles in quantum loops lead to nonlocal effects. The quantum dynam-

ics of such massless particles coupled to a slowly evolving metric is summarized by the

one-particle-irreducible (1PI) quantum effective action for the background fields obtained

by integrating out the quantum loops. Unlike the Wilsonian effective action, the 1PI ef-

fective action necessarily contains nonlocal terms which are not derivatively suppressed.

These nonlocal terms can have interesting consequences, for example, for primordial mag-

netogenesis in cosmology or for computing finite N corrections in AdS/CFT holography.

The computation of the nonlocal quantum effective action is in principle a well-posed

problem in perturbation theory. One can regularize the path integral covariantly using

dimensional regularization or short proper-time regularization and evaluate the effective

action using the background field method. However, explicit evaluation of the path integral

is forbiddingly difficult. For instance, to obtain the one-loop effective action it is necessary

to compute the heat kernel of a Laplace-like operator in an arbitrary background, which

amounts to solving the Schrödinger problem for an arbitrary potential. For short proper

time, the heat kernel can be computed using the Schwinger-DeWitt expansion [1, 2] which

is analogous to the high temperature expansion. This is adequate for renormalizing the

local ultraviolet divergences and to obtain the Wilsonian effective action if the proper

time is short compared to the typical radius of curvature or the Compton wavelength

of the particle being integrated out. However, the nonlocal 1PI effective action receives

contributions from the entire range of the proper time integral and the Schwinger-DeWitt

expansion is in general not adequate.
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To obtain the full nonlocal effective action, one could use the covariant nonlocal ex-

pansion of the heat kernel developed by Barvinsky, Vilkovisky, and collaborators [3, 4].

The effective action in this expansion has been worked out to third order in curvatures in

a series of important papers [5–8] and illuminates a number of subtle issues, for example,

concerning anomalies and the Riegert action [9–13]. However, for a general metric the

explicit expressions are rather complicated already at the third order. Furthermore, the

Barvinsky-Vilkovisky (BV) expansion requires R2 ≪ ∇2R, where R denotes a generalized

curvature including both a typical geometric curvature R as well as a typical gauge field

strength F . One is often interested though in the regime of slowly varying curvatures,

R2 ≫ ∇2R, for example during slow-roll inflation. This is beyond the validity of the

BV regime.

The aim of the present work is to find practical methods to go beyond these limitations

but only for a restricted class of metrics that are Weyl-flat. In this case, one can exploit

the symmetries of the problem. The only dynamical mode of the background metric is

the Weyl factor which is a single function. For simplicity we further restrict ourselves to

classically Weyl invariant actions, since these allow for a very straightforward computation

of the Weyl anomaly. The latter is the Weyl variation of the action which can be viewed

as a first order scalar functional equation for the action that can be easily integrated. The

initial value of the action functional can often be determined by the flat space results. In

this manner, the entire effective action including its anomalous dependence on the Weyl

factor can be determined efficiently.

The main advantage of our approach is that one can extract the essential physics

with relative ease. Weyl anomalous dimensions of local operators (or equivalently the beta

functions) can be computed reliably using local computations such as the Schwinger-DeWitt

expansion. The resulting actions are necessarily nonlocal much like the Wess-Zumino action

for chiral anomalies.1 Even though we relax the restriction R2 ≪ ∇2R, we still need to

assume F 2 ≪ ∇2F for a typical field strength F . In summary, the Barvinsky-Vilkovisky

regime requires rapidly varying curvature as well as rapidly varying field-strength whereas

our regime requires only rapidly varying field-strength. Our method essentially re-sums the

BV expansion to all orders in geometric curvatures albeit for a restricted class of Weyl-flat

metrics as we discuss in section 3.5.

These nonlocal actions for Weyl-flat metrics can have a number of interesting applica-

tions. In AdS/CFT correspondence, Weyl-flat metrics are relevant for the bulk description

of renormalization group flows in the boundary CFT. Loop effects of massless supergravity

fields are important, for example, in the computation of finite N effects in the bulk such as

the finite charge corrections to the Bekenstein-Hawking entropy of black holes [14–17]. In

cosmology, the Robertson-Walker metric for an isotropic and homogeneous universe with

flat spatial section is Weyl flat. During many epochs in the early universe, various parti-

cles can be massless or nearly massless compared to the Hubble scale. Quantum loops of

these particles can lead to an anomalous dependence on the Weyl factor which can have

1The chiral anomaly itself can be deduced from local Schwinger-DeWitt expansion. The nonlocal Wess-

Zumino action is then obtained by the Wess-Zumino construction which essentially integrates the local

anomaly equation. Our method extends this procedure to situations with nontrivial beta functions.
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interesting consequences. For example, in massless electrodynamics it can contribute to

the generation of primordial magnetic fields [18–23] where one is precisely in the regime of

rapidly varying field strengths but slowly varying curvatures. This approach can also be

useful for exploring the stability of de Sitter spacetime, and the cosmological evolution of

the Weyl factor and other physical parameters in quasi de Sitter spacetimes in four dimen-

sions similar to the two-dimensional models analyzed in [24–26]. Possible implications of

nonlocal actions have been explored, for example, in [27–34].

Our method naturally lends itself to a re-summation of leading large logarithms us-

ing a ‘local renormalization group improvement’ as we discuss in section 3.3. These are

anomalous logarithms of the scale factor of the metric, log a(x), where gµν = a2(x) ηµν .
2

In cosmology, one is dealing with extremely long times and distances spanning several log-

arithmic scales. The scale factor of the universe underwent at least 60 and possibly more

e-foldings. Thus, large logarithms could render perturbation theory invalid. Framing the

method of Weyl anomaly integration within the formalism of the local RG is thus useful

to extend the effective action beyond the perturbative limit of small logarithms, by re-

summing the higher-loop powers of log a(x). These logarithmic quantum corrections add

up to something appreciable and have a potential for interesting applications if they can

be properly re-summed.

The paper is organized as follows. In section 2, we describe how the Weyl anomaly

can be used to determine the quantum effective action with the help of an ‘integration

lemma’ and the Schwinger-DeWitt expansion of the heat kernel. In section 3 we apply this

method to compute the effective action for the Yang-Mills field coupled to massless matter

and for a self-interacting massless scalar field. In section 3.5, we discuss the relation of our

results to the nonlocal covariant perturbation theory developed by Barvinsky-Vilkovisky

and similar results obtained by Donoghue and El-Menoufi [35, 36] using Feynman diagrams

in the weak field limit.

2 Effective actions from Weyl anomalies

In this section we describe the general method for computing the quantum effective action

at the one-loop order for essentially all the standard model fields in Weyl-flat spacetimes

by integrating the Weyl anomaly. To simplify the discussion, we ignore Yukawa couplings

and work in the conformal massless limit so that all couplings are dimensionless. Classical

Weyl invariance is not fundamentally necessary to integrate the Weyl anomaly in order to

compute the effective action. However, it does simplify the computation of the anomaly.

Dimensionful couplings and non-conformal scalars can be incorporated with some modifi-

cations [37]. We first review elements of the background field method and gauge fixing to

2This re-summation of large logarithms should not be confused with the re-summation of the BV ex-

pansion mentioned two paragraphs above. The latter is an effective re-summation of the BV expansion to

all orders in the geometric curvatures in the case of Weyl-flat backgrounds, thus reproducing the one-loop

effective action that we obtain from Weyl anomaly integration. The one we mention here is a further

re-summation of higher-loop powers of the conformal factor Ω(x) = log a(x) or ‘leading large logarithms’

in the usual sense of the RG.

– 3 –



J
H
E
P
0
6
(
2
0
1
8
)
0
5
5

set up our conventions. We then discuss the anomalies in terms of the Schwinger-DeWitt

expansion and a lemma to obtain the effective action by integrating the anomaly.

2.1 Classical actions and the background field method

Consider the classical action for a conformally coupled real scalar field ϕ with quartic

self-interaction:

I0[g, ϕ] = −
∫

d4x
√

|g|
[

1

2
|∇ϕ|2 + 1

12
Rϕ2 +

λ0

4!
ϕ4

]

, (2.1)

where λ0 is the bare coupling and R the Ricci scalar for the metric g. This can also be

viewed as the bare action in the ultraviolet if we regard the fields as bare fields. Even though

we are interested in the Lorentzian action, for subsequent computations it is convenient to

use the Wick-rotated action on the Euclidean section:

S0[g, ϕ] =

∫

d4x
√

|g|
[

1

2
|∇ϕ|2 + 1

12
Rϕ2 +

λ0

4!
ϕ4

]

. (2.2)

We denote the Lorentzian action by I and the Euclidean action by S. Wick rotation of

Lorentzian time t to Euclidean time tE can be thought of as a coordinate change t = −itE
in the complexified spacetime. Tensors transform as tensors under this coordinate change

and in particular the Lagrangian transforms as a scalar. The path integral is defined with

weight eiI0 in Lorentzian spacetime but with e−S0 in Euclidean space. Using the fact

that the volume element
√

|g| equals √−g on Lorentzian section but
√
g on the Euclidean

section, the two actions are simply related by I[g, ϕ] → −S[g, ϕ] as above.
In the background field method [38], one splits the quantum field as ϕ̂ = ϕ + Q, a

sum of a background field ϕ and the quantum fluctuations Q around this background. The

quantum effective action S[ϕ] for the background field ϕ is then given by the path integral

exp (−S[g, ϕ]) :=
∫

DQ exp (−S0[g,Q+ ϕ]− J [ϕ]Q) , (2.3)

where the external current

J [ϕ](x) =
δS[ϕ]
δϕ(x)

=
δS0[ϕ]

δϕ(x)
+ . . . (2.4)

is a function of the background field adjusted so that the tadpoles vanish order by order in

perturbation theory. We use short-proper time cutoff as a manifestly covariant regulator

in the heat kernel method as described below. In renormalized perturbation theory, the

UV divergences are renormalized with appropriately chosen counter-terms and all physical

quantities are expressed in terms of the renormalized coupling λ defined at a mass scale

M . At one-loop order, the path integral can be approximated by the Gaussian functional

integral

e−S1[g,ϕ] = e−S0[g,ϕ]

∫

DQe−
1

2
〈Q|Oϕ|Q〉 , (2.5)

where Oϕ is the quadratic fluctuation operator in the background:

Oϕ = −∇2 +
λϕ2

2
+

1

6
R (2.6)
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with

∇2 =
1

√

|g|
∂µ

(

√

|g| gµν∂ν
)

. (2.7)

The Gaussian integral can be evaluated in terms of the determinant of Oϕ,

S1 = S0 +
1

2
log det (Oϕ) = S0 +

1

2
Tr log (Oϕ) . (2.8)

We use the convention
∫

d4x
√

|g| |x〉〈x| = 1 ; Tr(O) =

∫

d4x
√

|g| 〈x| trO |x〉 . (2.9)

We next consider gauge theory, concretely an SU(N) Yang-Mills field coupled to a

massless complex scalar and a massless Dirac fermion transforming in the fundamental

representation. The classical Lorentzian action is

I0[g,A] = −
∫

d4x
√

|g|
[

1

4 e20
F a
µνF

aµν + |DΦ|2 + 1

6
R |Φ|2 + i Ψ̄ Γα eµαDµΨ

]

, (2.10)

where e20 is the bare gauge coupling and a is the adjoint index (a = 1, 2, . . . , N2 − 1). The

covariant derivative is now defined including both the spin and the gauge connection:

Dµ := ∂µ +
1

2
wαβ
µ Jαβ +Aa

µ Ta , (α, β = 0, . . . , 3) , (2.11)

where {Jαβ} are the Lorentz representation matrices and {Ta} are the anti-Hermitian

SU(N) representation matrices normalized so that trF (TaTb) = −1
2δab in the fundamental

representation F . The quantum field Âµ is a sum of a background Aµ and a quantum

fluctuation aµ, Âµ = Aµ + aµ. To choose the background gauge, the gauge transformation

of the quantum gauge field

δǫÂµ := D̂µǫ = ∂µǫ+ [Âµ, ǫ] (2.12)

can be split as

δǫAµ = ∂µǫ+ [Aµ, ǫ] := Dµǫ , δǫaµ = [aµ, ǫ] . (2.13)

It is convenient to choose the background gauge Dµa
µ = 0 so that the effective action for

the background field is manifestly gauge invariant. We set the background fields for Φ and

Ψ to zero. Following the standard Fadeev-Popov procedure we add the gauge fixing term

and ghost Euclidean actions which at one-loop are of the form

Sgf =
1

2 e20 ξ

∫

d4x
√

|g| |Dµ a
µ|2 , Sgh = −

∫

d4x
√

|g| c̄ D2c (2.14)

where the covariant derivatives contain only the background connection. We henceforth

use the ’t Hooft-Feynman gauge ξ = 1.

The one-loop quantum effective action is then given by

S1 = S0 +Tr log (OΦ)−
1

2
Tr log (Oψ) +

1

2
Tr log (OA)− Tr log (Oc) . (2.15)

– 5 –
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The operators involved are typically of the second-order Laplace-type

Of = −gµν DµDν 1+E , (2.16)

where Dµ is the covariant derivative defined above which depends on the representation of

the field, 1 is the identity in the representation space of the field, and E is the ‘endomor-

phism matrix’ that depends on the background fields.

The regularized functional trace for various operators Of can be expressed in terms of

the diagonal elements of the corresponding heat kernels Kf (s) := e−sOf by the standard

expression:

Tr log (Of ) = −
∞
∫

ǫ

ds

s
TrKf (s) = −

∞
∫

ǫ

ds

s

∫

d4x
√

|g|〈x|trKf (s)|x〉

= −
∞
∫

ǫ

ds

s

∫

d4x
√

|g| trKf (x, x; s) . (2.17)

Here ‘Tr’ is a total trace including the spacetime ‘index’ x as in (2.9) as well as the matrix

indices of the Lorentz and SU(N) representations, whereas ‘tr’ is a trace over only the

matrix indices.3 The short proper time cut-off ǫ has mass dimension −2 and hence we can

write ǫ = M−2
0 and regard M0 as the UV mass cutoff.

In general, it is not possible to evaluate Kf (x, x; s) explicitly for all values of the proper

time. However, exploiting Weyl anomalies and the symmetries of Weyl-flat backgrounds,

it is possible to compute S avoiding the proper time integral altogether, as we discuss in

the next two sections.

2.2 Weyl anomaly and the local renormalization group

Since regularization with a short proper time cutoff ǫ is manifestly covariant, we do not

expect any anomalies in the diffeomorphism invariance. On the other hand, the cutoff scale

M0 introduces a mass scale and there is a potential for Weyl anomalies.

The local Weyl transformation of the spacetime metric gµν is defined by

gµν → e2ξ(x)gµν , gµν → e−2ξ(x)gµν , (2.18)

or infinitesimally,

gµν(x) → gµν(x)− 2 ξ(x) gµν(x) . (2.19)

All other fields we denote collectively as {χf} which transform with Weyl weights {∆f}

χf (x) → e−∆f ξ(x)χf (x) . (2.20)

In particular, in four dimensions, a conformally coupled scalar field has Weyl weight 1, a

fermion field has weight 3/2, a gauge field has weight 0 so that the kinetic terms are scale

3See for example [39, 40] for notational conventions.

– 6 –



J
H
E
P
0
6
(
2
0
1
8
)
0
5
5

invariant. The local Weyl group G is an infinite dimensional abelian group with generators

{Jx} acting on the space of fields:4

Jx := −2 gµν(x)
δ

δgµν(x)
−∆f χf (x)

δ

δχf (x)
. (2.21)

Treating the coordinate x of the local scaling parameter ξ(x) as a continuous index, we

can write an element of this group as

e ξ·J (2.22)

with the ‘summation’ convention

ξ · J :=
∑

x

ξxJx :=

∫

d4x ξ(x)Jx . (2.23)

A Weyl-flat metric can be written as

gµν = e2Ωηµν = eΩ·J(η) (2.24)

and is on the Weyl-orbit of the flat Minkowski metric ηµν .

Weyl invariance of the classical action implies that

Jx (S0[g, χf ]) = 0 . (2.25)

The cutoff ǫ required for defining the quantum path integral breaks Weyl invariance. Con-

sequently the 1PI quantum effective action S for the background fields is no longer Weyl

invariant. The quantum violation of classical Weyl invariance can be expressed as an

anomaly equation:

Jx (S[g, χf ]) :=

(

−2 gµν
δ

δgµν(x)
−∆f χf

δ

δχf (x)

)

(S[g, χf ]) = −A(x)
√

|g| , (2.26)

where A(x) is the Weyl anomaly scalar.5 Since the violation of the Weyl symmetry is a

result of the short-distance regulator, one expects on general grounds that the anomaly A
must be local even though the 1PI action is generically nonlocal. In particular, it must

admit a local expansion in terms of the background fields. The locality of the anomaly is

4Dimensionful couplings could be treated as additional ‘spurion’ scalar fields with Weyl dimensions

equal to their classical mass dimensions so that the classical action is rendered Weyl invariant. This more

general situation will be discussed in [37]. In this case, the background fields {χf} will include also the

spurion fields.
5In conformal field theory, Weyl anomaly is usually understood to mean only the ‘conformal anomaly’,

which arises from the Weyl non-invariance of the measure. This anomaly, which we denote by C(x), appears

at the conformal fixed point of the theory, when all beta functions vanish, and consists of purely gravitational

terms. Hence it only shows up when the theory is coupled to a curved metric. Besides the conformal

anomalies, a second type of ‘beta-function anomalies’ B(x) arise when interactions are present. Interactions

perturb the theory away from the fixed point, and nontrivial beta functions generate a renormalization group

flow. In this case, the Weyl anomaly includes the beta function anomalies in addition to the conformal

anomaly: A(x) = B(x) + C(x). Therefore, as opposed to the conformal anomaly, beta function anomalies

do show up in flat spacetime. This distinction should not be confused with the Type-A and Type-B

classification of anomalies [41].
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of crucial importance. At one-loop, one can prove it explicitly and obtain a formula for

the anomaly in terms of the local Schwinger-DeWitt expansion.

We illustrate the general argument for the conformally coupled scalar field ϕ. The

infinitesimal Weyl variation of the quadratic action for the quantum fluctuation vanishes:

δξ〈Q|Oϕ|Q〉 = δξ

∫

d4x
√

|g|Q(x)OϕQ(x) = 0 . (2.27)

Using the Weyl transformations of Q and the background metric gµν we conclude that

δξOϕ = −2 δξ(x)Oϕ (2.28)

up to boundary terms. The quadratic fluctuation operator Oϕ is thus covariant under Weyl

transformations with weight 2. It then follows that

δξS1[g, ϕ] = −1

2

∞
∫

ǫ

ds

s
Tr δe−sOϕ =

1

2

∞
∫

ǫ

ds Tr (δOϕ)e
−sOϕ (2.29)

= −
∞
∫

ǫ

ds

∫

d4x
√

|g| δξ(x) 〈x| trOϕ e−sOϕ |x〉 (2.30)

=

∞
∫

ǫ

ds

∫

d4x
√

|g| δξ(x) d

ds
〈x| tr e−sOϕ |x〉 . (2.31)

Performing the s integral we obtain6

δS1[g, ϕ]

δξ(x)
= Jx (S1[g, ϕ]) = −〈x| tr e−ǫOϕ |x〉

√

|g| = −trKϕ(x, x; ǫ)
√

|g| . (2.32)

A similar reasoning can be used for fermions since the Dirac action is Weyl invariant in all

dimensions. For gauge fields, there is an additional subtlety because the gauge fixed action

and the ghost action are not separately Weyl invariant. However, one obtains an analogous

expression for the combined system of gauge and ghost fields [42]. Both for fermions and

the gauge-ghosts system, the quadratic operators have Weyl weight two. The action of the

Weyl generator on the field space is thus given by

Jx (S1[g, χf ]) := −A(x)
√

|g| = −2
∑

f

nf trKf (x, x; ǫ)
√

|g| (2.33)

where nf is the coefficient of Tr log(Of ) in (2.15) consistent with our convention in (2.17).

Thus, nΦ = 1, nΨ = −1
2 , nc = −1, nA = nϕ = 1

2 .

Equation (2.33) shows the anomaly is determined entirely by the short proper time

behavior of the heat kernel. Since the proper time cutoff ǫ effectively provides a covari-

ant short-distance cutoff in spacetime, the resulting anomaly A(x) is local as promised.

Therefore, it must admit an expansion in terms of local fields Vi(x): for the beta function

anomaly,

B(x) =
∑

i

βiVi(x) ; (2.34)

6If the operator Oϕ has no zero modes there is no contribution from the upper limit of the integral.
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the C(x) anomaly is purely gravitational and has a similar expansion in terms of the local

functionals of the metric such as the Euler density [43–45].

The Weyl anomaly equation is closely related to the local renormalization group [46–48]

and the coefficients βi can be simply related to the usual beta functions. We illustrate this

connection for Yang-Mills theory. The Weyl variation of the action with respect to the

Weyl factor Ω of the metric (2.24) is given by (2.55) at one loop:

Jx(S1[g,A]) =
δS1[g,A]

δΩ(x)
= −B(x)

√

|g| = b

4
F 2(x)

√

|g| , (2.35)

where b is given by (2.56) and we have ignored the purely gravitational C(x) anomaly.

To relate it to the local renormalization group, we note that a Weyl scaling of the metric

increases length scales or decreases mass scales. Hence we can regard M(x) := MeΩ(x) to

be the position-dependent local renormalization scale7 M(x). Therefore,

M(x)
δ

δM(x)
=

δ

δΩ(x)
. (2.36)

If the scale M(x) is position dependent, then it is natural to regard all renormalized

couplings to be also position-dependent expectation values of nondynamical ‘spurion’ fields.

For example, regarding, 1/e2 = λe(x) as position dependent, and using (2.36) and (2.35)

we conclude that
[

M(x)
δ

δM(x)
+ βe

δ

δλe(x)

]

S1 = 0 , (2.37)

with

βe := M
dλe

dM
= M

de−2

dM
= −b . (2.38)

For constant M(x), functional derivatives are replaced by ordinary derivatives and one re-

covers the usual position-independent ‘global’ homogeneous renormalization group equation.

More generally, the local renormalization group equation is best thought of as a Weyl

anomaly equation (2.26) with a local expansion for the anomaly A.

2.3 Integration of the Weyl anomaly

Our goal is to deduce the nonlocal quantum effective action S[g, χf ] by integrating the

local Weyl anomaly. Towards this end, we consider the following trivial identity8

e ξ·J = 1+

∫ 1

0
dt e t ξ·J ξ · J . (2.39)

We wish to compute S[g, χf ] for (g, χf ) on the Weyl-orbit of (ḡ, χ̄f ) with Weyl factor Ω(x):

(g, χf ) = eΩ·J(ḡ, χ̄f ) . (2.40)

7This is true as long as one is dealing with ‘primary’ fields such as gµν or Fµν which transform covariantly

under Weyl transformation. In general, ‘secondary’ fields such as Rµν or ∇µϕ are also relevant, which con-

tain derivatives of the primary fields. In this case, the Weyl transformations contain terms with derivatives

of the Weyl factor Ω and the equality (2.36) holds only up to these derivatives [37, 46, 47, 49–52].
8We thank Adam Schwimmer for this formulation.
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Using the identity above we obtain

S[g, χf ] ≡ eΩ·J (S[ḡ, χ̄f ]) =

(

1+

∫ 1

0
dt etΩ·J Ω · J

)

(S[ḡ, χ̄f ]) (2.41)

= S[ḡ, χ̄f ] +

∫ 1

0
dt etΩ·J Ω · J (S[ḡ, χ̄f ]) (2.42)

= S[ḡ, χ̄f ]−
∫ 1

0
dt etΩ·J

(
∫

d4xΩ(x)
√

|ḡ| A[ḡ, χ̄f ](x)

)

(2.43)

where we have used (2.26) in the last line. Using (2.40) we then conclude9

S[g, χf ] = S[ḡ, χ̄f ] + SA[ḡ,Ω, χ̄f ] , (2.44)

where

SA[ḡ,Ω, χ̄f ] := −
∫ 1

0
dt

∫

d4x
√

|ḡ e2 tΩ(x)| Ω(x) A[ḡ e2 tΩ, χ̄f e
−∆f tΩ](x) (2.45)

is the contribution to the action from the anomaly. Lorentzian continuation of (2.44) gives

a similar equation

I[g, χf ] = I[ḡ, χ̄f ] + IA[ḡ,Ω, χ̄f ] (2.46)

but with IA given by

IA[ḡ,Ω, χ̄f ] :=

∫ 1

0
dt

∫

d4x
√

|ḡ e2 tΩ(x)| Ω(x) A[ḡ e2 tΩ, χ̄f e
−∆f tΩ](x) (2.47)

because the anomaly scalar does not change sign under Wick rotation.

Equation (2.44) is a simple identity that follows essentially from the group structure

of Weyl transformations. It is thus applicable to any order in perturbation theory if we

can compute the Weyl anomaly to that order. To compute the effective action to the one-

loop order, one can use the expression (2.45) with the Weyl anomaly given in terms of the

heat kernel as in (2.33). Since the short-time expansion of the heat kernel is determined

by the local Schwinger-DeWitt expansion, we see that (2.44) enables us to determine the

entire quantum effective action for Weyl-flat background metrics knowing only the local

expansion.

Note that the left hand side of (2.46) depends only on the physical metric whereas the

right hand side a priori depends on the fiducial metric ḡ and Ω separately. It must therefore

be true that the action on the right hand side exhibits ‘fiducial Weyl gauge invariance’

ḡ → e2ζ(x)ḡ , Ω → Ω− ζ(x) , (2.48)

under which the fiducial metric ḡ transforms but the physical metric g is invariant. This

gauge invariance reflects the fact that splitting g into ḡ and Ω is ambiguous, and all splits

related by a fiducial gauge transformation are physically equivalent. The fiducial gauge

invariance of the right hand side of (2.46) is necessary to show that it depends only on the

physical metric. As we explain in section 3.5, it is often far from obvious how the answer

obtained using our method can be expressed covariantly entirely in terms of the physical

metric. However, the procedure guarantees that this must be the case.

9The argument g of the action S[g, χf ] functional here refers to the covariant tensor gµν and not gµν .
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2.4 Schwinger-DeWitt expansion of the heat kernel

The trace of the heat kernel admits a short proper time expansion as

TrKf (ǫ) =

∫

M

ddx
√

|g| trKf (x, x; ǫ) =

∫

M

ddx
√

|g| 1

(4πǫ)d/2

∞
∑

n=0

an(x) ǫ
n . (2.49)

The an(x) are the Gilkey-Seeley-HaMiDeW [53–62] coefficients10 which are local scalar

functions of the background fields. A general expression in any spacetime dimension is

known explicitly for the first few of them in terms of E and geometric invariants.

Because the first d/2−1 terms have negative powers of ǫ, the above short time expansion

is divergent. The divergences can be renormalized by appropriate local counterterms;

the remaining finite piece is given by ad/2(x) which thus determines the Weyl anomaly

through (2.33).

The relevant an(x) coefficients up to spacetime dimension d = 4 are given by [40]

a0 = tr1 (2.50)

a1 = tr

(

1

6
R 1−E

)

(2.51)

a2 = tr

(

1

2
E2 − 1

6
∇2E− 1

6
RE+

1

12
Ωµν Ω

µν

+
1

180

(

6∇2R+
5

2
R2 − 1

2
E4 +

3

2
W 2

)

1

)

, (2.52)

where tr1 traces all indices, ∇µ := ∂µ + ωµ is the covariant derivative involving only the

spin connection, and Ωµν = [Dµ, Dν ] is the field strength of the full connection. E4 is the

Euler density in four dimensions and W 2 is the square of the Weyl tensor Wµνρ
σ defined by

E4 = RµνρσR
µνρσ − 4RµνR

µν +R2 (2.53)

W 2 = RµνρσR
µνρσ − 2RµνR

µν +
1

3
R2 . (2.54)

In four dimensions, the anomaly A = B + C is determined by a2(x). In table 1 we list

the anomalies for the operators appearing in the Yang-Mills and conformally-coupled scalar

actions. We have dropped the terms proportional to ∇2R and ∇2ϕ2. Such operators follow

from the Weyl variation of local terms in the action, namely R2 and Rϕ2, hence are not

genuine anomalies [65, 66]. The vector potential operator OA corresponds to the Feynman

gauge ξ = 1 and F 2 := F a
µν F

aµν . Note that the a2(x) coefficients for the ghost and vector

operators individually contain a term proportional to R2. This is related to the the fact

that the operators are not individually Weyl covariant. However, taken together, the R2

terms cancel from the anomaly as expected from the Wess-Zumino consistency condition.

Putting these results together, the Weyl anomaly equation for Yang-Mills is

Jx(S1[g,A]) =
δS1[g,A]

δΩ
=

(

b

4
F 2(x)− C(x)

)

√

|g| , (2.55)

10After Hadamard, Minakshisundaram, and DeWitt [63, 64].
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Field O 16π2B 16π2C

Φ −D2 + 1
6 R − 1

12 F
2 N

180

(

−E4 + 3W 2
)

c, c̄ −D2 N
6 F 2 N2−1

180

(

−5R2 + E4 − 3W 2
)

Aµ −D2 gµν +Rµν − 2Fµν 5N
3 F 2 N2−1

180

(

5R2 − 32E4 + 21W 2
)

Ψ −D2 + 1
4 R− 1

2FµνΓ
µΓν −1

3 F
2 N

180

(

−11
2 E4 + 9W 2

)

ϕ −∇2 + 1
6 R+ 1

2λϕ
2 1

8λ
2ϕ4 1

180

(

−E4 + 3W 2
)

Table 1. Weyl anomalies in d = 4. The contributions from the complex scalars Φ and fermions Ψ

to the B anomaly are different for the abelian and non-abelian cases. In the table we have indicated

the non-abelian ones relevant for Yang-Mills. For quantum electrodynamics, the contributions are

multiplied by a factor of two due to the choice of normalization of the non-abelian gauge group

generators.

with

b =
1

48π2
(NS + 4NF − 22N) (2.56)

for an SU(N) theory with NS scalars and NF fermions in the fundamental. In quantum

electrodynamics integrating out NF fermions and NS scalars, one would get a similar

result with

b =
1

24π2
(NS + 4NF ) . (2.57)

For the real scalar field ϕ with quartic self-interaction, we similarly obtain

Jx(S1[g, ϕ]) =
δS1[g, ϕ]

δΩ
=

(

−b λ

4!
ϕ4(x)− C(x)

)

√

|g| (2.58)

with the beta function coefficient given by

b =
3λ

16π2
. (2.59)

3 Nonlocal effective actions

In this section we derive the one-loop quantum effective actions from the anomalies follow-

ing the discussion in the previous section. We drop the subscript ‘1’ used earlier to indicate

the one-loop results. As a simple illustration, we first derive the two dimensional Polyakov

action from the C(x) anomaly. In four dimensions, we ignore the C(x) anomaly and focus

only on the B(x) anomaly to derive the effective action for the background fields Ω, A, ϕ.
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3.1 The Polyakov action in two dimensions

The trace anomaly (2.26) for a massless free scalar in two dimensions is given by

A(x) = trKϕ(x, x, ǫ) . (3.1)

The finite contribution to the trace in two dimensions is given by the coefficient a1(x):

A(x) =
1

4π
a1(x) =

1

4π
tr

(

1

6
R 1

)

=
1

24π
R . (3.2)

In this case B = 0 and the anomaly is purely gravitational. Using (2.44) and the Weyl

transformation for the Ricci scalar

R = e−2Ω(R̄− 2∇̄2Ω) for g = e2Ωḡ , (3.3)

the effective action is given by I[g] = I[ḡ] + IC [ḡ,Ω] with

IC [ḡ,Ω] =
1

∫

0

dt

∫

d2x
√

|ḡ e2 tΩ(x)|Ω(x)A[ḡ e2 tΩ(x)]

=
1

24π

1
∫

0

dt

∫

d2x
√

|ḡ| e2 tΩ(x)Ω(x) e−2 tΩ(x)
(

R̄− 2 t ∇̄2Ω(x)
)

=
1

24π

∫

d2x
√

|ḡ|
(

(∇̄Ω)2 + R̄Ω(x)
)

, (3.4)

which is the Liouville action with the correct normalization. For ḡµν = δµν , one can

solve (3.3) for Ω in terms of g using the fact that R̄ = 0, and obtain the Polyakov action

I[g] = − 1

96π

∫

d2x
√

|g|R 1

∇2
R . (3.5)

Since in two dimensions every metric is Weyl flat, these results are valid for a general

metric.

Under a fiducial Weyl transformation (2.48), the Liouville action is not invariant but

transforms as

IC [ḡ,Ω] → IC [ḡ,Ω]−
1

24π

∫

d2x
√

|ḡ|
(

(∇̄ζ)2 + R̄ ζ
)

. (3.6)

However, the I[ḡ] also transforms as

I[ḡ] = − 1

96π

∫

d2x
√

|ḡ| R̄ 1

∇̄2
R̄ → I[ḡ] + 1

24π

∫

d2x
√

|ḡ|
(

(∇̄ζ)2 + R̄ ζ
)

(3.7)

ensuring the fiducial Weyl invariance of I[ḡ] + IC [ḡ,Ω].
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3.2 Quantum effective action for Yang-Mills theory

Applying (2.47) to the B anomaly of the Yang-Mills theory (2.55) in a Weyl-flat space-

time gives

IB[η,Ω, A] = − b

4

∫

d4x ηρα ησβ F a
ρσ(x) Ω(x)F

a
αβ(x) . (3.8)

The flat space action can be easily determined from standard computations and is given by

I[η,A] = − 1

4 e2(M)

∫

d4x d4y ηραησβ F a
ρσ(x) 〈x|

[

1− b

2
e2(M) log

(−∂2

M2

)]

|y〉F a
αβ(y)

(3.9)

where −∂2 is the flat-space d’Alembertian. The kets |x〉 here are normalized as in (2.9)

but now with the flat metric η. The logarithm of an operator is defined by the spectral

representation

log

( O
M2

)

=

∫ ∞

0
dµ2

(

1

M2 + µ2
− 1

O + µ2

)

. (3.10)

For the flat space d’Alembertian the logarithm can also be defined by a Fourier transform:

〈x| log
(−∂2

M2

)

|y〉 =
∫

d4p

(2π)4
e−ip·(x−y) log

(

p2

M2

)

. (3.11)

Putting the two things together in (2.46) we conclude

I[g,A]= − 1

4e2(M)

∫

d4x ηραησβ F a
ρσ(x)

[

1− b

2
e2(M) log

(−∂2

M2

)

+ b e2(M) Ω(x)

]

F a
αβ(x)

(3.12)

where the logarithmic operator is to be understood as a bilocal expression integrated over

y as in (3.9). There is a gravitational piece coming from the C anomaly which we do not

discuss.

Note that the action (3.8) arising from the anomaly follows from the local Schwinger-

DeWitt expansion and does not require any weak-field approximation. Thus, the main

limitation in computing (3.12) comes from the evaluation of the flat space action (3.9).

In (3.9) we have used the weak gauge field approximation F 4 ≪ ∇4F 2 as one normally

does in flat space quantum field theory. It may be possible to compute the flat space action

in other regimes, for example, in the regime of constant field strength. This can extend

the range of validity of our results.

It is instructive to deduce this result using dimensional regularization. Again, the

classical action (or the bare action in the UV) is given by

I0[g,A] = − 1

4e20

∫

d4x
√

|g| gραgσβ F a
ρσ F

a
αβ . (3.13)

The classical energy momentum tensor

T cl
µν =

1

e20

(

F a
µσF

a σ
ν − 1

4
gµνF

2

)

(3.14)

is traceless. At the quantum level, the nonzero beta function implies a quantum violation

of Weyl invariance. For a manifestly gauge-invariant computation of this Weyl anomaly

– 14 –



J
H
E
P
0
6
(
2
0
1
8
)
0
5
5

we use dimensional regularization. In 4 − ε dimensions, the bare coupling e0 is related to

the coupling e renormalized at scale M by

1

e20
= M−ε

(

1

e2
− b

ε

)

, M
de−2

dM
= −b . (3.15)

There is the usual pole coming from loop integrations of quantum fluctuations around a

background field. For a Weyl-flat metric, the dimensionally regularized background field

action depends only on the background gauge field and the Weyl factor Ω:

Iε[Ω, A] = −1

4

∫

d4−εx
√

|η| ηραησβ e−εΩM−ε

(

1

e2
− b

ε

)

F a
ρσ F

a
αβ . (3.16)

This implies that the Weyl variation of the renormalized effective action for the background

field is no longer zero and is given by

δI[η,Ω, A] = − b

4

∫

d4x
√

|η|F 2 δΩ , (3.17)

consistent with the results obtained using the proper time regularization.

3.3 Quantum effective action for a self-interacting scalar field

For a conformally coupled scalar field ϕ, one can similarly determine the one-loop effective

action I[g, ϕ]. Integrating the B anomaly of (2.58) gives

IB[η,Ω, ϕ̄] =
b λ

4!

∫

d4x ϕ̄4(x) Ω(x) , (3.18)

with b given by (2.59) and λ being the renormalized quartic coupling defined at the scale

M . The flat space action obtained from standard computations gives

I[η, ϕ̄] = −
∫

d4x

[

1

2
|∂ϕ̄|2 + λ

4!
ϕ̄2(x)

(

1 +
b

2
log

(−∂2

M2

))

ϕ̄2(x)

]

. (3.19)

Using (2.46), the full effective action is given by

I[g, ϕ] = −
∫

d4x

[

1

2
|∂ϕ̄|2 + λ

4!
ϕ̄2(x)

(

1 +
b

2
log

(−∂2

M2

)

− bΩ(x)

)

ϕ̄2(x)

]

. (3.20)

As in the case of the Yang-Mills action, the part of the action (3.18) arising from

the anomaly does not require any weak-field approximation and is exact. The flat space

action (3.19) is valid only assuming rapidly varying field. It could be evaluated though in

other regimes of interest using techniques such as the large proper time expansion developed

in [67, 68] or the Coleman-Weinberg method. However, note that when the field ϕ is in

the Coleman-Weinberg regime, the field ϕ̄ may not be unless the scale factor is also slowly

varying.

We see that the net effect of the Weyl anomaly in the combined action is to change the

renormalization scale to an effective local renormalization scale M(x) := MeΩ(x) consistent

with (2.36). One can explain the answer intuitively if the scale factor is varying slowly
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compared to the typical scale of field variations (for example in a particle physics experiment

in an expanding universe). In this case, one can use local momentum expansion to write

−∂2 = k2. In local experiments (3.20) can be interpreted as a flat space action with

momentum-squared k2 but with a position dependent cutoff M(x). One can equivalently

interpret k2/M2(x) as p2(x)/M2 in terms of physical momentum-squared p2 = e−2Ω(x)k2

with a fixed RG scale M . This suggests that we can use the local renormalization group

to define a position-dependent ‘running’ coupling

λ(p2(x)) =
λ

1− b
2 log

(

p2(x)
M2

) (3.21)

= λ

[

1 +
b

2
log

(

p2(x)

M2

)

+
b2

4
log2

(

p2(x)

M2

)

+ . . .

]

. (3.22)

Equation (3.21) re-sums the leading logarithms to all orders as with the usual flat spacetime

renormalization group but now locally. The effective coupling decreases as the universe

expands because the beta function is positive.

The resulting RG-improved action satisfies the local renormalization group equation in

much the same way the RG-improved action in flat space satisfies the usual renormalization

group equation. Consequently, the RG-improved answer becomes better and better at late

times even though naive perturbation theory would break down, thus extending the range

of applicability of the perturbative computations.

In more general situations with a rapidly varying scale factor, one cannot use the mo-

mentum basis as above but equation (3.20) is still valid. One might be tempted to interpret

the full answer in terms of the logarithm of the covariant d’Alembertian in curved space-

time, log
(

−∇2/M2
)

. However, the full covariantization is rather nontrivial and requires

many more nonlocal covariant terms which combine into a Weyl-invariant piece [8, 36]. We

discuss this in detail in section 3.5.

3.4 Equations of motion

If we are interested in the equations of motion of the fields in a fixed background metric,

then the metric does not need to be varied and can be assumed to be Weyl flat. The

equations of motion for the background Yang-Mills field follow straightforwardly from the

action I[g,A] (3.12) and are given by

δI[η,A]
δAµ

+
δIB[η,Ω, A]

δAµ
= 0 . (3.23)

The first term gives the logarithmic modifications to the flat space equations of motion

arising from integrating out massless charged particles. The second term gives rise to the

anomalous coupling to the conformal factor of the metric which breaks the Weyl invariance.

Similar considerations extend to the equations of motion for the Weyl-transformed scalar ϕ̄.

These actions are thus adequate for studying the equations of motion for the fluctu-

ations of the gauge field or a scalar field in an arbitrary Robertson-Walker background

including the full anomalous dependence on the Weyl factor. This is the situation one

encounters, for example, in studying the primordial perturbations of a scalar or of the

electromagnetic field in a slowly rolling inflationary background.
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3.5 Barvinsky-Vilkovisky expansion and conformal decomposition

In the weak curvature limit, we can compare our results with the covariant curvature

expansion developed by Barvinsky, Vilkovisky, and collaborators [3–8]. It provides a useful

check on our results obtained using a rather different method which does not rely on the

weak curvature approximation.

The main idea behind the Barvinsky-Vilkovisky (BV) expansion is to decompose the

metric as gµν = ηµν+hµν and treat the fluctuations hµν as perturbations. The heat equation

satisfied by the kernel K(s) can be solved perturbatively around flat space using the analog

of the Dirac interaction picture in quantum mechanics. The perturbative answers are then

‘covariantized’ up to a given order to express them in terms of covariant derivatives and

polynomials of generalized curvature tensors schematically denoted as R, which includes

both terms like Rµν as well as Fµν . This expansion is valid for small generalized curvatures

but for the entire range of the proper time s. The effective action can thus be obtained

by evaluating the integral (2.17). The final answer can be expressed in terms of non-local

‘form factors’ and schematically takes the form

S = S0+S loc
1 +

∫

ddx
√

|g|
5

∑

i=1

fi(−∇2
2)R1R2+

29
∑

i=1

Fi(−∇2
1,−∇2

2,−∇2
3)R1R2R3(i)+O(R4) .

(3.24)

The notation is a shorthand for terms containing all possible combinations of curvatures

such as RfRR(−∇2)R and F2(−∇2
1,−∇2

2,−∇2
3)F

µ
1 νF

ν
2 σR

σ
3 µ, for example. The form fac-

tors f and F as functions of the covariant Laplacian are generically non-local operators,

and are to be understood as properly convoluted with the functions they act upon [4].

A similar result has been obtained for massless quantum electrodynamics by a somewhat

different method by Donoghue and El-Menoufi [35, 36] by evaluating the one-loop Feyn-

man diagrams for small metric fluctuations around flat space and then covariantizing the

answers.

An important advantage of this expansion is that it gives all nonlocal terms in the

action directly to a given order in perturbation theory. The price to pay though is that

these expressions are necessarily perturbative, valid only in the regime of R2 ≪ ∇2R.

Note that there are two perturbative expansions at work. The loop expansion parameter

is e2 or λ, while the BV expansion involves a further approximation which treats the field

perturbations, such as hµν , Aµ or V ′′ as small. This weak field approximation implies that

terms of the form ∂2h∂2h are to be regarded as much smaller than terms of the form ∂4h

even though both have the same number of derivatives. Upon covariantization, it implies

that the BV expansion is valid if R2 ≪ ∇2R. By contrast, the local Schwinger-DeWitt

expansion is valid for short proper time ǫR ≪ 1 or equivalently for the entire weak gravity

regime R ≪ M2
0 without any further restrictions on curvatures.

To compare (3.24) with our results, it is necessary to go to third order in the BV

expansion. Explicit expressions to this order have been worked out in [6] but they are

rather complicated going over several pages. It is not immediately obvious how these

expressions could reduce to the simple expressions that we obtained earlier. However,

one can use the fact that the Weyl variation of the BV effective action must correctly
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reproduce the local Weyl anomaly. This observation suggests a ‘conformal decomposition’

of the action in terms of a Weyl-invariant piece and a Weyl-variant piece [7, 8, 36, 69].

This conformal decomposition is what is most easily compared with our results.

To illustrate the idea, consider the BV effective action for quantum electrodynamics

obtained by integrating out massless charged fields in the presence a background gauge

field A. To third order in curvatures it is given by [36]:

I[g,A] = −1

4

∫

d4x
√

|g|
{

1

e2
FµνF

µν − b

2

[

Fµν log

(−∇2

M2

)

Fµν +
1

3
F 2 1

∇2
R +

+4Rµν 1

∇2

(

log

(−∇2

M2

)(

F a
µσF

a σ
ν − 1

4
gµνF

2

)

− Fµσ log

(−∇2

M2

)

F σ
ν +

+
1

4
gµνF

αβ log

(−∇2

M2

)

Fαβ

)

− 1

3
RFµν 1

∇2
Fµν +Wα

βµνF
β

α

1

∇2
Fµν

]

+

+ 4 b̃ FµνF β
α

1

∇2
Wα

βµν

}

+O(R4) (3.25)

where the logarithm of the covariant d’Alembertian log(−∇2/M2) is defined as in (3.10) and

b =
1

24π2
(NS + 4NF ) , b̃ =

1

96π2
(−NS + 2NF ) . (3.26)

Note that b is the usual beta function coefficient (2.57) in flat space but b̃ is relevant only

in curved backgrounds. We have ignored the purely gravitational terms coming from the

C anomaly that are independent of the background gauge field.

It turns out that except for the second term in the square bracket, all other terms

in (3.25) are actually Weyl invariant [8, 36]. This ‘conformal decomposition’ then implies

that the only Weyl-variant term that could contribute to the B anomaly is precisely this

second term:

ĨB[g,A] = − b

4

∫

d4x
√

|g| Fµν

(

−1

6

1

∇2
R

)

Fµν . (3.27)

Since all other terms taken together are Weyl invariant, for a Weyl-flat metric they must

reduce to the one-loop effective action on flat space (3.9):

I[η,A] = −1

4

∫

d4x Fµν

[

1

e2(M)
− b

2
log

(−∂2

M2

)]

Fµν . (3.28)

Hence for a Weyl-flat metric the action (3.25) simplifies dramatically to

I[g,A] = I[η,A] + ĨB[η,Ω, A] . (3.29)

We would like to compare this result with the one obtained by integrating the anomaly:

I[g,A] = I[η,A] + IB[η,Ω, A] , with IB[η,Ω, A] = − b

4

∫

d4x ηµρ ηνσ Fµν Ω(x)Fρσ .

(3.30)

To this end, we note that the Weyl factor Ω[g](x) can be expressed as a nonlocal

covariant functional of the metric [9, 70, 71] given by

Ω[g](x) =
1

4

∫

d4y
√

|g|G4(x, y)F4[g](y) , (3.31)
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where

F4[g] := E4[g]−
2

3
∇2R[g] =

(

RµνρσR
µνρσ − 4RµνR

µν +R2 − 2

3
∇2R

)

[g] , (3.32)

and the Green function G4(x, y) defined by

∆x
4 [g]G4(x, y) = δ(4)(x, y) :=

δ(4)(x− y)
√

|g|
(3.33)

is the inverse of the Weyl-covariant quartic differential operator

∆4[g] =
(

∇2
)2

+ 2Rµν∇µ∇ν +
1

3
(∇νR)∇ν −

2

3
R∇2 . (3.34)

The expression (3.31) follows from the fact that for metrics related by a Weyl rescaling

gµν = e2Ω(x) ηµν , the corresponding F4 scalars are related by

F4[g] = e−4Ω (F4[η] + 4∆4[η] Ω) , (3.35)

and the operators ∆4 by

∆4[g] = e−4Ω∆4[η] . (3.36)

Since the Minkowski reference metric satisfies F4[η] = 0 the expression (3.31) follows from

inverting (3.35). This expression is manifestly covariant but nonlocal, consistent with the

fact that the anomalous Ω dependence represents genuine long-distance quantum effects

that cannot be removed by counter-terms that are local functionals of the metric.

When R2 ≪ ∇2R one can expand the expression for Ω (3.31) in curvatures to obtain

Ω[g](x) = −1

6

1

∇2
R+O(R2) (3.37)

which when substituted in (3.30) reproduces the anomaly action obtained in the BV

regime (3.27).

To recover the full expression for Ω in the Barvinsky-Vilkovisky formalism one must in-

vert the operator ∆4 perturbatively, which involves higher and higher orders in curvatures.

As a result, the expression (3.31) for Ω will similarly involve terms to arbitrary order in the

curvature expansion. This implies that to recover the exact and simple expression (3.12)

obtained by integrating the Weyl anomaly it would be necessary to re-sum the covariant

perturbation theory (3.25) to all orders in curvatures R for the class of Weyl-flat metrics.

Since IB already contains F 2, the next correction is of order F 2R2 ∼ R4 in the generalized

curvature expansion. In other words,

IB[η,Ω, A] = ĨB[η,Ω, A] +O(R4) . (3.38)

Already at order R4, the expression in the BV expansion becomes unmanageable. It is

remarkable that the simple expression (2.46) re-sums this expansion to all orders albeit for

a restricted class of Weyl-flat metrics.

Thus, explicit ‘covariantization’ of our answer obtained by integrating the anomaly can

lead to rather complicated expressions even though the exact answer (3.30) is strikingly

– 19 –
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simple. As noted earlier, our procedure guarantees that the full answer depends only the

physical metric g even though a priori the right hand side appears to depend on ηµν and

Ω separately.

Note that our action is valid on a special submanifold of Weyl-flat metrics in the field

space of metrics. There is no way to work back from our action (3.30) valid for Weyl-flat

metrics to obtain the full action (3.25) valid for a general metric. Information from the

anomaly is not sufficient for this purpose, unlike in two dimensions for the Polyakov action.

Finally, by imposing different gauges one gets different nonlocal covariant expressions

for Ω(x).11 The curvature expansion of these different expressions is not expected to be

the same. This would hence require, for each gauge, a different identification of the Weyl-

invariant terms and the Weyl-anomalous ones in the curvature expansion. This is consistent

with the fact that there are different conformal decompositions of the covariant effective

action [8]. However, for any Weyl-flat metric the Weyl invariant terms must reduce to the

flat space action, and the compact expression for the anomalous effective action is exact

and unique in terms of Ω(x) and η.
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