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Abstract
Humans	are	changing	the	biosphere	by	exerting	pressure	on	 land	via	different	 land	
uses	 with	 variable	 intensities.	 Quantifying	 the	 relative	 importance	 of	 the	 land-	use	
composition	and	intensity	for	communities	may	provide	valuable	insights	for	under-
standing	community	dynamics	in	human-	dominated	landscapes.	Here,	we	evaluate	the	
relative	importance	of	the	land-	use	composition	versus	land-	use	intensity	on	the	bird	
community	structure	in	the	highly	human-	dominated	region	surrounding	Paris,	France.	
The	land-	use	composition	was	calculated	from	a	land	cover	map,	whereas	the	land-	use	
intensity	 (reverse	 intensity)	was	 represented	by	 the	primary	productivity	 remaining	
after	human	appropriation	 (NPPremaining),	which	was	estimated	using	remote	sensing	
imagery.	We	 used	 variance	 partitioning	 to	 evaluate	 the	 relative	 importance	 of	 the	
land-	use	composition	versus	intensity	for	explaining	bird	community	species	richness,	
total	 abundance,	 trophic	 levels,	 and	 habitat	 specialization	 in	 urban,	 farmland,	 and	
woodland	habitats.	The	land-	use	composition	and	intensity	affected	specialization	and	
richness	more	 than	 trophic	 levels	 and	 abundance.	 The	 importance	 of	 the	 land-	use	
intensity	was	slightly	higher	than	that	of	the	composition	for	richness,	specialization,	
and	trophic	levels	in	farmland	and	urban	areas,	while	the	land-	use	composition	was	a	
stronger	predictor	of	abundance.	The	 intensity	contributed	more	to	the	community	
indices	in	anthropogenic	habitats	(farmland	and	urban	areas)	than	to	those	in	wood-
lands.	Richness,	trophic	levels,	and	specialization	in	woodlands	tended	to	increase	with	
the	NPPremaining	value.	The	heterogeneity	of	land	uses	and	intensity	levels	in	the	land-
scape	consistently	promoted	species	richness	but	reduced	habitat	specialization	and	
trophic	 levels.	 This	 study	 demonstrates	 the	 complementarity	 of	NPPremaining	 to	 the	
land-	use	composition	for	understanding	community	structure	in	anthropogenic	land-
scapes.	 Our	 results	 show,	 for	 the	 first	 time,	 that	 the	 productivity	 remaining	 after	
human	appropriation	is	a	determinant	driver	of	animal	community	patterns,	independ-
ent	of	the	type	of	land	use.
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1  | INTRODUCTION

Within	 the	 context	 of	 the	 current	 biodiversity	 crisis	 (Ceballos	 et	al.,	
2015),	it	is	of	vital	importance	to	understand	and	monitor	the	impact	
of	human	pressures	on	ecosystems.	At	least	two	main	spatial	dimen-
sions	of	human	pressures	can	be	identified	as	follows:	land-	use	types,	
such	as	farming	or	urbanization	(Sala,	2000),	and	the	land-	use	inten-
sity,	such	as	agricultural	 intensification	and	urban	density	 (Erb	et	al.,	
2013).

Land	use	refers	to	the	human	use	of	 lands,	such	as	for	cropping	
or	pastures,	and	is	linked	to	practices	such	as	tillage	and	fertilization.	
The	initiation	of	more-	intensive	uses	of	land	(such	as	agriculture	and	
urbanization)	is	usually	linked	to	changes	in	land	cover	(such	as	defor-
estation),	which	is	defined	as	the	physical	coverage	of	the	land,	for	ex-
ample,	by	grass	and	built-	up	areas.	Through	changes	in	land	cover,	land	
use	has	large	consequences	in	terms	of	habitat	transitions	habitat	loss	
and	habitat	quality	(Newbold	et	al.,	2015).	Common	data	products	for	
the	land	state	(such	as	CORINE	Land	Cover	for	Europe	or	USGS	data	
for	 the	United	States)	usually	mix	 information	on	 land	use	and	 land	
cover.	Land	uses	and	land	covers	are	widely	employed	proxies	for	the	
mapping	and	quantification	of	species	habitats	and	the	identification	
of	 human	 pressures	 on	 biodiversity	 (Hudson	 et	al.,	 2014).	 For	 com-
mon	birds	in	France,	the	literature	usually	recognizes	three	widespread	
habitat	types	based	on	land	use:	farmland,	forest,	and	urban	habitats	
(Julliard,	Clavel,	Devictor,	Jiguet,	&	Couvet,	2006).	Hereafter,	we	refer	
to	land	use	to	describe	these	combinations	of	land	use	and	land	cover.

Human	Appropriation	of	Net	Primary	Productivity	(HANPP;	Haberl	
et	al.,	2007)	has	been	proposed	as	a	measure	of	land-	use	intensity	(Erb	
et	al.,	2013).	Changes	 in	 land	cover	 induced	by	 land	use	can	reduce	
or	 increase	actual	Net	Primary	Productivity	 (i.e.,	NPP	of	 the	current	
vegetation,	NPPactual)	compared	with	the	NPP	of	a	pristine	ecosystem	
(potential	vegetation	productivity,	NPPpotential).	Moreover,	a	substan-
tial	fraction	of	NPPactual	is	directly	removed	through	the	appropriation	
of	 agricultural	 and	 forestry	 productivity.	 This	 portion	 is	 referred	 to	
as	harvested	NPP	(NPPharvested).	Thus,	only	a	fraction	of	NPPactual re-
mains	available	for	ecosystem	processes,	referred	to	as	remaining	NPP	
(NPPremaining).	We	note	that	in	some	particular	cases,	highly	managed	
areas	produce	as	much	or	more	than	unmanaged	areas,	especially	in	
open	vegetation	ecosystems,	for	example,	irrigated	and	mowed	grass-
land	or	golf	courses	(Falk,	1980;	Wu	&	Bauer,	2012),	but	the	biomass	
produced	 in	 these	 areas	 is	 usually	 exported	 and,	 hence,	 no	 longer	
available	in	the	ecosystem.	NPPremaining	is	the	opposite	of	HANPP	(they	
sum	to	NPPpotential).	Consequently,	in	regions	where	natural	variation	
in	NPPpotential	is	low	and	the	main	source	of	variation	in	the	available	
productivity	is	human	activity,	NPPremaining	can	be	employed	as	a	direct	
measure	of	 the	 intensity	of	 human	activities	 (Figure	1).	While	 some	

might	argue	that	a	proper	measure	of	 intensity	should	be	expressed	
as	a	percentage,	and	not	as	a	raw	productivity	value,	we	used	the	raw	
value	 because	 (1)	 it	 allowed	 us	 to	 derive	 predictions	 based	 on	 the	
large	 corpus	of	 literature	on	 species–energy	or	 species-	productivity	
relationships;	and	(2)	in	our	particular	case,	measures	of	potential	NPP	
expressed	either	as	 raw	values	or	as	a	percentage	of	potential	NPP	
were	highly	correlated	(r = .99).

In	 this	manuscript,	 intensity	 and	NPPremaining	 are	 synonyms.	We	
alternate	 between	 the	 terms	 “intensity”	 (with	 the	 advantage	 of	 its	
simplicity)	 and	 “NPPremaining”	 when	 describing	 ecological	 processes	
that	involve	productivity.	Global	HANPP	ranges	from	20%	to	40%	of	
NPPpotential	 (Haberl	et	al.,	2007),	and	 its	value	has	doubled	over	 the	
past	 century	 (Krausmann	 et	al.,	 2013).	Despite	 early	 concerns	 that	
this	 decrease	 in	 available	 energy	 for	 biodiversity	 might	 negatively	
impact	biodiversity	 (Wright,	1990),	 little	 is	 known	about	 the	actual	
effects	of	NPPremaining	on	the	structure	of	ecosystems	(Haberl	et	al.,	
2004,	2005).

K E Y W O R D S

agriculture,	community	structure	and	functioning,	heterogeneity,	human	appropriation	of	net	
primary	productivity,	human	impact,	land	cover,	management,	practices,	species-area	
relationship,	species–energy	relationship

F IGURE  1 Representation	of	different	NPP	measures	and	how	
they	relate	to	each	other	(after	Haberl	et	al.,	2007).	NPPpotential: 
potential	NPP,	the	estimated	NPP	without	any	human	activity	
derived	from	pedo-	climatic	conditions;	NPPactual:	actual	NPP,	the	
NPP	produced	annually	by	the	system;	NPPremaining:	NPP	remaining	
after	human	appropriation,	the	portion	of	NPP	in	the	ecosystem	
after	human	land	cover	changes	and	harvesting;	HANPP:	Human	
Appropriation	of	the	NPP,	which	is	divided	in	two	parts:	NPPharvested 
is	the	NPP	harvested	through	regular	human	activities	via	land	use,	
and	ΔNPPLC	represents	changes	in	NPP	due	to	changes	in	land	
cover	induced	by	human	activities	(such	as	transitions	from	forest	
to	farmland	or	urban	areas).	Here,	we	focus	on	the	impacts	of	
NPPremaining	and	HANPP	on	bird	communities.	Because	NPPpotential	is	
highly	homogeneous	in	the	study	region,	and	NPPremaining	and	HANPP	
are	highly	negatively	correlated	and	represent	two	faces	of	the	same	
coin
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1.1 | Influence of productivity on community indices

The	use	of	NPPremaining	as	a	proxy	for	the	intensity	of	human	pressure	
primarily	 relies	 on	 the	 species–energy	 relationship	 (Wright,	 1983).	
Productivity	and	species	richness	are	positively	correlated,	and	this	re-
lationship	holds	true	for	many	taxa	and	spatial	scales	(Cusens,	Wright,	
McBride,	&	Gillman,	2012).	Several	mechanisms	(the	More	Individuals,	
More	specialization,	and	More	Trophic	Levels	hypotheses)	have	been	
proposed	to	explain	this	relationship	(Evans,	Warren,	&	Gaston,	2005;	
Srivastava	&	 Lawton,	 1998),	 all	 of	which	 imply	 underlying	 links	 be-
tween	NPPremaining	and	other	community	indices,	such	as	total	abun-
dance,	the	length	of	the	trophic	chain	and	specialization.

The More Individuals	hypothesis	states	that	a	positive	species–energy	
relationship	is	driven	by	an	increase	in	species	abundance,	where	the	un-
derlying	assumption	is	that	a	more	productive	area	can	provide	resources	
to	support	more	individuals,	leading	to	an	increase	in	species	richness.	
An	increase	in	abundance	with	NPP	is	commonly	observed,	though	the	
causal	link	with	species	richness	has	received	only	mixed	support	(Currie	
et	al.,	2004;	Dobson,	Sorte,	Manne,	&	Hawkins,	2015;	Evans,	James,	&	
Gaston,	2006;	Evans,	Newson,	Storch,	Greenwood,	&	Gaston,	2008).

The More Specialization	hypothesis	states	 that	higher	energy	 lev-
els	may	promote	niche-	breadth	specialists,	where	the	higher	resource	
partitioning	allows	coexistence	of	more	species,	leading	to	increased	
richness.	The	increased	availability	of	resources	and	conditions	linked	
to	high-	productivity	 systems	 is	 expected	 to	maintain	viable	 popula-
tions	of	specialists	(Abrams,	1995;	Mason,	Irz,	Lanoiselée,	Mouillot,	&	
Argillier,	2008).

The More Trophic Levels	hypothesis	links	increasing	richness	to	an	
increase	 in	 the	 length	of	 the	 food	chain:	higher	 resource	availability	
allows	additive	 trophic	 levels,	which	 reduces	 the	 size	of	prey	popu-
lations,	 favoring	 resource	partitioning,	and	allowing	more	species	 to	
coexist	(Abrams,	1995;	Srivastava	&	Lawton,	1998).

1.2 | Land use impacts on community indices

Most	of	 the	 land	use	 impacts	on	community	 indices	 are	a	 result	of	
trade-	offs	occurring	between	 intrahabitat	changes	 (i.e.,	modification	
of	 the	 area	 of	 a	 given	 habitat)	 and	 interhabitat	 changes	 (i.e.,	modi-
fications	of	 landscape	heterogeneity;	Allouche,	Kalyuzhny,	Moreno-	
Rueda,	Pizarro,	&	Kadmon,	2012).

Within	a	habitat	 type,	 the	habitat	 area	 is	 expected	be	positively	
related	to	richness	and	abundance	through	the	species-	area	relation-
ship	(Preston,	1962).	The	underlying	mechanisms	proposed	to	explain	
the	species-	area	relationship	are	similar	 to	those	explaining	the	spe-
cies–energy	relationship,	simply	because	the	habitat	area	is	a	proxy	of	
available	resources	(Wright,	1983).	Regarding	productivity,	large	areas	
of	 habitat	 have	 been	 shown	 to	 favor	 specialist	 species	 (Matthews,	
Cottee-	Jones,	 &	 Whittaker,	 2014).	 The	 habitat	 area	 has	 also	 been	
shown	to	have	a	positive	effect	on	the	abundance	of	species	at	the	end	
of	 the	 trophic	 chain	 (Davies,	Margules,	&	Lawrence,	2000).	Because	
higher-	level	consumers	have	greater	energetic	needs,	they	also	exhibit	
a	smaller	population	size,	increasing	their	risk	of	extirpation	as	the	hab-
itat	area	decreases	(Holt,	Lawton,	Polis,	&	Martinez,	1999).

Mechanisms	differ	at	the	landscape	scale	when	considering	changes	
in	the	area	of	several	habitats	simultaneously,	where	species	richness	
is	often	positively	correlated	with	the	heterogeneity	of	 land	uses	and	
habitats	 (Martins,	 Proença,	&	Pereira,	 2014;	 Stein,	Gerstner,	&	Kreft,	
2014).	Land-	use	heterogeneity	enables	species	with	different	ecological	
requirements	to	colonize	and	coexist	in	a	landscape	(Bennett,	Radford,	
&	Haslem,	2006).	However,	because	heterogeneity	is	often	negatively	
correlated	with	an	increasing	area	of	dominant	land	uses	in	a	landscape,	
the	corollary	of	this	statement	is	that	richness	usually	decreases	as	the	
proportion	 the	 dominant	 land	 uses	 increases	 (Allouche	 et	al.,	 2012).	
This	increase	in	richness	with	moderate	heterogeneity	results	from	an	
increase	of	habitat	generalist	species,	which	are	favored	by	heteroge-
neous	landscapes	(Mimet,	Houet,	Julliard,	&	Simon,	2013),	and	a	smaller	
decrease	in	specialists	related	to	habitat	loss	(Allouche	et	al.,	2012).

1.3 | Objectives of the study

Only	two	studies	have	explored	the	species–energy	relationship	ac-
counting	for	human	impacts	due	to	harvesting	and	land	cover	changes	
(i.e.,	NPPremaining;	Haberl	 et	al.,	2005;	Mouchet	et	al.,	2015).	Neither	
of	 these	 studies	explored	 the	 response	of	other	 community	 indices	
that	are	theoretically	linked	to	richness.	These	studies	did	not	account	
for	 the	various	 land-	use	types	 in	the	 landscape	 (Haberl	et	al.,	2005)	
or	were	performed	at	a	coarse	scale	and	resolution	 (Mouchet	et	al.,	
2015).	 As	 a	 consequence,	 the	 relative	 importance	 of	 the	 land-	use	
composition	(type)	versus	NPPremaining	in	explaining	community	struc-
ture	remains	largely	unknown.

Here,	we	aim	to	(1)	disentangle	the	relative	influence	of	the	land-	
use	 composition	 (type)	 and	 intensity	 (i.e.,	NPPremaining)	 on	 bird	 com-
munity	 structure;	 and	 (2)	 test	 the	 existence	 of	 the	 species–energy	
relationship	 in	 human-	dominated	 landscapes,	 accounting	 for	 con-
founding	factors	of	the	land-	use	composition.

We	conducted	our	 study	 in	 the	 region	of	Paris	 in	France,	using	
Landsat	remote-	sensing	and	bird	data	from	the	French	Breeding	Bird	
Survey.	This	highly	human-	dominated	region	is	modified	by	both	in-
tensive	agriculture	and	urbanization	(Mimet	et	al.,	2013)	and	exhib-
its	little	natural	variation	in	potential	vegetation	productivity	(Haberl	
et	al.,	2007).	The	potential	NPP,	as	computed	using	 the	Lund-	Jena-	
Potsdam	 Dynamic	 Global	 Vegetation	 Model	 (Sitch	 et	al.,	 2003)	 by	
Haberl	et	al.	(2007),	ranges	between	641	and	663	gC	year−1	m−2	(me
an	±	SD	=	654	±	5	gC	year−1	m−2).	Therefore,	our	results	can	be	inter-
preted	as	indicating	the	impacts	of	the	available	productivity	or	the	in-
tensity	of	human	productivity	appropriation	on	species	communities.

Because	 the	 effect	 of	 productivity	 on	 species	 richness	 is	 known	
to	be	habitat	dependent	(Verschuyl,	Hansen,	McWethy,	Sallabanks,	&	
Hutto,	2008),	we	address	these	questions	in	local	communities	belong-
ing	to	three	different	habitat	types	that	differ	in	productivity	(woodland,	
farmland,	and	urban	habitats).	We	tested	the	following	predictions:

1.3.1 | Predictions for NPPremaining (intensity)

We	expect	richness	to	increase	with	NPPremaining.	Based	on	the	three	
previously	noted	hypotheses	regarding	the	underlying	mechanisms	of	
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the	 species–energy	 relationship,	we	expect	 abundance,	 trophic	 lev-
els,	 and	 habitat	 specialization	 to	 increase	with	NPPremaining	 in	 every	
habitat.	We	expect	 the	slope	 to	be	steeper	 in	highly	anthropogenic	
habitats	(farmland	and	urban	habitats,	in	which	NPPremaining	is	low	and	
may	be	limiting)	than	in	habitats	with	relatively	low	anthropogenicity	
(woodlands).	We	also	expect	heterogeneity	of	NPPremaining	to	increase	
species	richness	and	reduce	habitat	specialization.

1.3.2 | Predictions for the land- use composition

Because	of	the	trade-	off	between	the	amount	of	habitat	and	hetero-
geneity	at	the	landscape	scale,	we	expect	land-	use	heterogeneity,	and	
not	 the	 amount	of	 habitat,	 to	 increase	 richness.	We	expect	 habitat	
specialization	 to	 decrease	with	 land-	use	 heterogeneity.	 Because	 of	
the	mechanisms	underlying	the	species-	area	relationship,	we	expect	
trophic	levels	and	habitat	specialization	in	a	given	habitat	to	increase	
with	the	amount	of	that	habitat	in	the	landscape.

2  | MATERIALS AND METHODS

2.1 | Types of human pressures: land- use variables

The	 studied	 area	 was	 the	 Ile-	de-	France	 region,	 which	 covers	
12,011	km2	 and	 includes	 Paris.	 This	 region	 is	 the	 most	 populated	
region	 in	France,	with	almost	12	million	people,	at	a	density	of	996	
inhabitants	 per	 km2	 in	 2013.	 It	 is	 also	 one	 of	 the	main	 agricultural	
regions	 and	 presents	 highly	 productive	 areas	 (45%	of	 the	 region	 is	
farmland).	Still,	23%	of	the	region	is	covered	by	forest.	The	Institute	of	
Urban	Planning	and	Development	in	the	Paris	Region	(IAU)	provided	
the	land-	use	database	for	2003,	with	a	resolution	of	25	m.	The	infor-
mation	provided	by	the	land-	use	database	was	simplified	by	grouping	
its	83	land-	use	classes	into	five	land-	use	classes,	as	follows:

1. Farmland	 areas:	 areas	 devoted	 to	 agricultural	 activities:	 farming	
or,	 very	 rarely,	 pasture.

2. Urban	areas	and	traffic	and	train	infrastructure:	built	areas,	urban	
parks,	and	gardens,	building	grounds	(e.g.,	swimming	pools),	roads,	
railroads,	and	parking.

3. Woodlands:	natural	woodlands,	 forests	and	poplar	groves,	 forest	
clearings.

4. Water	and	wetlands:	rivers,	other	bodies	of	water	and	wetlands.
5. Other/Open	areas:	nonagricultural	grasslands,	quarries.

2.2 | Human pressure intensity: NPP remaining after 
appropriation

NPPremaining	is	calculated	as	the	amount	of	NPP	remaining	in	a	given	
locality	after	human	needs	have	been	fulfilled;	thus,	 it	 is	a	combina-
tion	of	 the	 appropriation	 and	productivity	 changes	due	 to	 land	use	
(Haberl	et	al.,	2007).	NPPremaining	is	the	difference	between	the	actual	
NPP	 (NPPactual,	 i.e.,	 actual	 NPP	measured	 in	 the	 prevailing	 vegeta-
tion),	 and	 the	NPP	 that	 is	 harvested	 or	 destroyed	 in	woodlands	 or	

farmlands	(NPPharvested;	Figure	1).	To	achieve	a	fine	spatial	resolution	
(30	m	pixels),	we	chose	 to	calculate	NPPremaining	on	a	 slightly	differ-
ent	basis	from	that	employed	by	Haberl	et	al.	(2007).	Instead	of	infer-
ring	the	NPPactual	value	from	yield	measurements,	we	calculated	the	
NPPremaining	values	using	satellite	imagery	and	inferred	the	NPPharvested 
values	 from	harvest	 factors	 found	 in	 the	 literature.	A	major	 advan-
tage	 is	the	possibility	of	calculating	NPPremaining	for	highly	urbanized	
pixels,	which	otherwise	would	have	been	considered	nonproductive	
(Figure	1).

2.2.1 | Actual NPP: NPPactual

NPPactual	 is	 the	 NPP	 produced	 by	 the	 ecosystem	 and	 is	 estimated	
using	remote	sensing	data.	NPPactual	incorporates	changes	in	produc-
tivity	 induced	 by	 human	 activity,	 particularly	 urbanization	 and	 agri-
culture.	NPPactual	was	assessed	for	the	year	2003	using	monthly	NPP	
values.	 These	monthly	 values	were	 calculated	 over	 the	 entire	 Paris	
region	in	30	×	30	m	pixels	using	the	CASA-	NASA	(Carnegie-	Stanford-	
NASA)	 approach	 for	 estimating	 aboveground	NPP,	 as	 employed	 by	
(Potter,	Gross,	Genovese,	&	Smith,	2007).	The	basis	of	this	approach	
is	the	use	of	a	single	satellite	image	at	the	approximate	peak	of	pho-
tosynthesis	and	the	use	of	other	time	variants	to	assess	monthly	NPP,	
as	expressed	in	Equation	1:	

where	 EVI	 is	 the	 Enhanced	 Vegetation	 Index.	 EVI	 was	 determined	
using	a	Landsat	7	image	from	May	29,	2003	and	calculated	according	
to	Equation	2:	

where ρNIR,	ρRED,	and	ρBLUE	represent	the	surface	reflectance	ac-
quired	in	the	near-	infrared,	red,	and	blue	regions,	respectively.

The	Sr	term	in	Equation	1	denotes	the	land	surface	radiation	bal-
ance	(in	W/m2)	as	calculated	by	Ryu,	Kang,	Moon,	and	Kim	(2008).	
This	radiation	balance	was	calculated	using	moderate-	resolution	im-
aging	spectroradiometer	(MODIS)	products,	and	the	values	needed	
to	 calculate	 Sr	were	 derived	 from	monthly	MODIS	 products.	 The	
MOD08	 product	 (Atmosphere)	 was	 employed	 to	 derive	 the	 opti-
cal	density,	ozone	 levels,	water	 levels,	and	atmospheric	dew	point	
for	 each	month;	MOD43	 (Albedo	 product)	was	 used	 to	 calculate	
monthly	values	of	the	surface	albedo;	and	MOD11	(emissivity	and	
temperature)	was	employed	to	derive	monthly	 land	emissivity	and	
surface	temperature.

The	T	 term	 in	 Equation	1	 is	 a	 temperature	 stress	 scalar	 calcu-
lated	 as	 the	 departure	 of	 the	mean	 temperature	 from	 an	 optimal	
temperature	 for	vegetation	growth.	This	optimal	 temperature	was	
uniformly	set	at	22°C.	The	water	stress	scalar	 (W)	was	considered	
the	water	deficit	 for	 the	growth	of	vegetation	and	was	 calculated	
the	difference	between	water	needs	 (potential	evapotranspiration,	
PET)	 and	 available	 water	 (actual	 evapotranspiration,	 AET).	 Both	
evapotranspiration	 terms	were	 calculated	 using	 the	 Thornthwaite	
simple	bucket	water	balance	model	(Thornthwaite,	1948).	The	T	and	

(1)NPP = 0.39 × EVI × Sr × T × W,

(2)EVI = 2.5 ×

(

ρNIR − ρRED

ρNIR + 6 × ρRED − 7.5 × ρBLUE + 1

)

,
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W	 terms	were	calculated	using	gridded,	monthly	climatic	variables	
that	are	freely	available	 from	the	European	Climate	Assessment	&	
Dataset	project	(ECA,	2013).

A	part	of	NPP	is	transmitted	to	the	ecosystem	during	plant	growth	
(via	weeds	and	herbivory)	before	the	harvest	and	remains	available	in	
the	system.	To	account	for	this	portion	of	NPP,	we	applied	a	loss	factor	
obtained	by	Haberl	et	al.	 (2007)	 for	Western	Europe.	This	corrected	
measure	of	NPP	was	defined	as	NPPactual.

2.2.2 | NPP remaining after appropriation: 
NPPremaining

NPPremaining	is	the	productivity	remaining	after	appropriation.	To	cal-
culate	NPPremaining	for	the	study	area,	we	first	evaluated	the	land	use	
in	each	pixel.	For	farmland	areas	(croplands,	orchards,	and	permanent	
pastures),	we	evaluated	NPPactual,	the	proportion	of	NPPactual	that	was	
cropped,	the	exported	residues	and	the	residues	left	on	the	ground.	
NPPremaining	was,	therefore,	the	sum	of	the	NPP	losses	and	remaining	
crop	residues.	The	NPPactual	components	of	farmlands	were	calculated	
using	three	harvest	factors	(for	croplands,	pastures,	and	orchards)	and	
recovery	 rates	 for	Western	Europe	obtained	 from	 the	 literature	 by	
Haberl	et	al.	 (2007).	Harvest	 factors	determine	 the	mass	of	vegeta-
tion	 residues	 that	 remain	 in	 place	 after	 harvest	 and	mainly	 depend	
on	 the	 degree	 of	 mechanization.	 Agricultural	 activity	 in	 the	 Ile-	de-	
France	 region	 is	 highly	 homogeneous,	 being	 strongly	 dominated	by	
large	farms	applying	intensive	conventional	practices	 in	cereal	fields	
(http://agreste.agriculture.gouv.fr).	 The	 homogeneity	 of	 the	 agricul-
tural	practices	in	the	studied	region	justifies	the	use	of	a	unique	har-
vest	factor	across	sites.	However,	as	we	employed	a	single	date	for	
NPPremaining	estimation,	we	could	not	blindly	apply	a	harvest	factor	for	
forests.	Forests	are	harvested	at	long	intervals,	ranging	from	decades	
to	 centuries.	Applying	 the	 same	harvest	 factor	 over	 every	 forested	
area	would	have	strongly	over-		or	under-	estimated	the	actual	harvest	
depending	on	recent	local	actions.

Thus,	even	though	we	employed	harvest	factors	defined	at	a	con-
tinental	 scale,	 which	 might	 appear	 somewhat	 coarse,	 and	 used	 no	
harvest	factor	for	forests,	we	are	confident	that	our	computation	of	
NPPremaining	still	represents	a	valid	measure	of	the	land-	use	intensity.	
Indeed,	measuring	NPPactual	using	remote	sensing	partly	integrates	the	
management	measures	applied	on	 the	ground:	 if	one	considers	 that	
management	 changes	 productivity,	 it	will	 be	 reflected	 in	 photosyn-
thetic	activity	and,	thus,	in	satellite	imagery,	even	when	only	a	single	
image	is	used.

2.3 | Description of bird communities

2.3.1 | Bird survey data

Common	bird	species	are	considered	good	indicators	of	disturbance	
and	community	alterations,	particularly	 if	 intermediate-	to-	high	com-
monness	 and	 guild	 representation	 are	 considered	 (Koch,	 Drever,	 &	
Martin,	2011).	The	bird	data	were	derived	from	the	French	Breeding	
Bird	Survey,	which	is	based	on	a	standardized	monitoring	methodol-
ogy	 (Jiguet,	Devictor,	 Julliard,	&	Couvet,	2012).	Censuses	of	breed-
ing	birds	were	performed	each	 spring	 at	 randomly	 selected	 sites	 in	
continental	 France	 (Figure	2a)	 by	 skilled	 observers.	 A	 total	 of	 520	
count	points	distributed	among	58	survey	squares	of	2	×	2	km	were	
surveyed	at	 least	 twice	between	2001	and	2009.	The	points	within	
each	square	were	evenly	distributed	and	were	located	at	least	300	m	
apart.	At	each	point,	every	individual	that	was	observed	or	heard	dur-
ing	 a	 period	 of	 exactly	 5	min	 was	 recorded.	 Each	 count	 point	 was	
monitored	twice	in	the	spring	(before	and	after	8	May)	to	record	both	
early	and	 late	breeders,	with	an	 interval	of	4–6	weeks	between	the	
two	surveys,	and	the	maximum	value	from	these	two	monitoring	was	
retained.	The	local	habitat	at	each	point	was	defined	as	the	land	use	
covering	more	than	50%	of	a	100	m	radius	around	the	point	(Mimet	
et	al.,	2013).	Thus,	each	point	was	classified	as	belonging	to	one	of	the	
farmland,	woodland,	or	urban	habitats.	In	the	final	dataset,	135	points	

F IGURE  2 NPPremaining	(NPP	remaining	after	human	appropriation)	(a)	in	the	Paris	region	of	France.	The	black	dots	represent	the	breeding	
bird	survey	plots	used	in	our	analysis.	(b)	Kernel	density	estimation	of	NPPremaining	across	the	entire	region	and	for	each	land	use

http://agreste.agriculture.gouv.fr
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were	classified	as	urban,	143	as	farmland,	and	132	as	woodland,	lead-
ing	to	a	final	dataset	of	410	points.

2.3.2 | Community indices

The	following	four	community	indices	were	selected	to	derive	a	syn-
thetic	and	informative	description	of	the	community	structure	at	the	
count-	point	level:	(1)	species	richness;	(2)	total	abundance,	calculated	
as	 the	sum	of	all	observed	 individuals	 independent	of	species	 iden-
tity;	 (3)	 the	Community	Trophic	 Index	 (CTI),	a	measure	of	 the	aver-
age	 trophic	 level	 of	 a	 local	 bird	 community	 (Mouysset,	 Doyen,	 &	
Jiguet,	2012)	weighted	by	species	abundance;	and	(4)	the	Community	
Specialization	Index	(CSI),	a	measure	of	the	specialization	level	of	the	
community	(Julliard	et	al.,	2006).

To	 calculate	 the	 CTI,	 we	 estimated	 the	 proportion	 of	 plant,	 in-
vertebrate,	and	vertebrate	items	in	the	diet	of	each	bird	species.	The	
species	trophic	index	was	defined	as	the	exponential	of	the	weighted	
mean	of	these	values	using	weights	of	1,	2,	and	3	for	plant,	 inverte-
brate,	 and	vertebrate	 items,	 respectively.	As	 a	 result,	 an	 increase	 in	
the	CTI	tends	to	indicate	an	increase	in	the	abundance	of	high	trophic	
levels.	The	trophic	index	was	calculated	using	diet	data	extracted	for	
each	species	from	the	Birds	of	the	Western	Palearctic	Interactive	da-
tabase	(BWPi,	2006).

The	 CSI	 is	 the	 averaged	 value	 of	 the	 Species	 Specialization	
Index	(SSI)	for	all	species	found	in	a	community	(Julliard	et	al.,	2006)	
weighted	by	abundances.	The	SSI	is	based	on	the	number	of	habitats	
in	which	a	species	has	been	observed;	for	this	purpose,	data	from	the	
French	Breeding	Bird	Survey	for	the	French	Atlantic	biogeographic	re-
gion,	where	our	study	area	is	located,	were	used	in	this	case.	According	
to	 the	definition	of	 the	European	Bird	 Indicator	 adapted	 for	 France	
(http://vigienature.mnhn.fr/page/le-suivi-temporel-des-oiseaux-com-
muns-stoc),	when	considering	three	main	habitats	(woodland,	urban,	
and	farmland),	a	species	is	defined	as	a	specialist	of	one	habitat	when	
it	 is	 twice	 as	 abundant	 in	 that	 habitat	 as	 in	 the	 two	other	habitats,	
whereas	a	species	is	defined	as	a	generalist	when	it	is	roughly	equally	
distributed	in	the	three	habitats.

We	calculated	a	global	CSI,	by	integrating	all	species	in	the	commu-
nity,	as	well	as	a	habitat	CSI,	by	integrating	only	the	generalist	species,	
and	the	specialists	of	the	focal	habitats	(i.e.,	excluding	the	specialists	
for	the	other	habitats).	Thus,	we	calculated	three	habitat-	specific	CSIs	
for	the	communities	observed	in	the	urban,	woodland,	and	farmland	
areas.	These	habitat-	specific	CSIs	provide	information	for	the	portion	
of	the	community	that	is	strongly	linked	to	the	target	habitat,	whereas	
the	global	CSI	provides	composition	information	for	habitat	specialists	
throughout	the	entire	community	and	is	related	to	the	importance	of	
the	other	land	uses	in	explaining	community	patterns.

2.3.3 | Land- use composition and intensity

The	 land-	use	 composition	 and	 intensity	 variables	were	 assessed	 in	
circles	with	a	500	m	radius	around	each	count	point.	This	scale	has	
been	found	to	be	suitable	for	multispecies	studies	of	bird-	landscape	
relationships	 among	 woodland	 species	 (Caprio,	 Ellena,	 &	 Rolando,	

2008)	and	farmland	species	(Smith,	Fahrig,	&	Francis,	2011).	The	land-	
use	 intensity	 and	 the	 heterogeneity	 of	 the	 land-	use	 intensity	were	
measured	as	the	average	and	standard	deviation	of	the	NPPremaining,	
respectively,	 in	 each	 landscape	 defined	 by	 the	 500	m	 radius	 circle.	
The	land-	use	composition	was	described	by	the	proportions	of	farm-
land,	 woodland,	 and	 urban	 areas.	 Land-	use	 heterogeneity	 was	 de-
scribed	by	 the	 total	number	of	different	 land	uses.	The	 richness	of	
land	uses	was	employed	as	a	heterogeneity	 index	because	 it	 is	 less	
inherently	 linked	 to	 land-	use	 proportions	 than	 a	 community	 index	
based	on	these	proportions	(such	as	the	Shannon	index),	although	the	
richness	 and	 Shannon	 indices	were	 highly	 correlated	 (Pearson	 cor-
relation	of	.69).	Furthermore,	our	hypotheses	regarding	the	underly-
ing	heterogeneity	suggested	that	high	land	use	richness	increases	the	
attractiveness	 of	 the	 landscape	 for	 generalist	 species,	whereas	 the	
habitat	 area	 promotes	 specialist	 species.	Diversity	measures	 assign	
a	 higher	 importance	 to	 the	 land-	use	 area	 than	 the	 number	 of	 land	
uses;	 therefore,	 these	measures	 are	not	 appropriate	 for	 addressing	
our	hypothesis.

2.4 | Statistical analyses

To	disentangle	the	effect	of	the	land-	use	composition	and	intensity	on	
bird	communities,	we	employed	two	different	analyses	based	on	the	
same	model	(Equation	3):	(1)	We	estimated	the	sign	and	amplitude	of	
the	effect	of	each	individual	variable	on	our	community	indices;	and	
(2)	we	 estimated	 the	 relative	 contributions	 of	 each	 of	 the	 land-	use	
composition	and	 intensity	variables,	which	allowed	us	 to	determine	
which	 variable	 type—composition	 or	 intensity—best	 explained	 the	
variability	of	biodiversity.

As	mentioned	earlier	 in	 this	study,	a	portion	of	NPPremaining	con-
cerns	productivity	linked	to	the	type	of	land	cover,	driven	by	land	use	
(ΔNPPLC,	Figure	1).	This	same	part	of	productivity	is	contained	within	
the	type	of	land	use	(shared	information),	for	example,	reflecting	the	
productivity	loss	linked	to	a	forest	turned	into	a	pasture.	To	correctly	
disentangle	the	contributions	of	the	land-	use	composition	(type)	and	
of	 the	 intensity	 (NPPremaining),	we	had	 to	 ensure	 that	 this	 shared	 in-
formation	was	only	attributed	to	NPPremaining	and	was	removed	from	
the	 land-	use	 composition.	 Leaving	 this	 information	 in	 the	 composi-
tion	variables	 indeed	means	 leaving	a	 land-	use	 intensity	component	
in	those	variables,	whereas	our	goal	was	to	disentangle	composition	
from	intensity.

We,	therefore,	devised	a	residual	regression	model	(Equation	3)	in	
which	the	composition	variables	were	replaced	by	the	residuals	of	re-
gressions	of	NPPremaining	on	land-	use	proportion	variables	(Equations	4	
and	5).	This	series	of	models	is	referred	to	as	the	residual	composition	
models.	

(3)

Y∼Res(PC1) + Res(PC2) + LU div

+meanNPPremaining + SDNPPremaining + sunset

+ Julian_date + (1|site_id) + (1|habitat),

(4)PC1∼meanNPPremaining,

(5)PC2∼meanNPPremaining,

http://vigienature.mnhn.fr/page/le-suivi-temporel-des-oiseaux-communs-stoc
http://vigienature.mnhn.fr/page/le-suivi-temporel-des-oiseaux-communs-stoc
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where Y	 represents	 a	 community	 index	 (i.e.,	 species	 richness,	 total	
abundance,	 CTI,	 and	CSI).	All	 of	 the	 dependent	 variables	were	 log-	
transformed	 prior	 the	 analyses	 to	 ensure	 a	 normal	 distribution	 of	
the	variables.	The	right-	hand	side	of	the	model	comprises	several	el-
ements,	 detailed	below.	Res(PC1)	 and	Res(PC2)	 are	 the	 residuals	of	
PC1	and	PC2	extracted	from	Equations	4	and	5	(Linear	Model).	PC1	
and	PC2	are	the	coordinates	of	a	Principal	Component	Analysis	(PCA)	
carried	out	on	the	landscape	composition	data	(percentage	of	urban,	
farmland,	and	woodland	area	in	the	500	m	radius).	As	the	sum	of	the	
composition	data	amount	to	100%	for	each	site,	including	these	data	
in	 a	model	might	 induce	multicollinearity.	Using	 coordinates	 from	 a	
PCA	 ensured	 that	 these	 two	 variables	were	 uncorrelated.	 The	 first	
two	 axes	 of	 the	 PCA	 explained	 52.8%	 and	 47%	 of	 the	 variability,	
respectively.	PC1	 represented	an	axis	of	 increasing	urban	areas	and	
decreasing	woodland	and	farmland	areas.	PC2	represented	an	axis	of	
increasing	farmland	areas	and	decreasing	woodland	areas.

LU	div	represents	the	richness	of	land	use	in	the	500	m	radius	and	
is	computed	as	the	number	of	different	land	uses.	Mean	NPPremaining 
and	SD	NPPremaining	represent	metrics	of	the	land-	use	intensity	and	are,	
respectively,	the	average	and	standard	deviation	of	NPPremaining	in	the	
500	m	radius.	We	standardized	the	independent	variables	to	make	the	
coefficients	comparable.	Given	that	our	sampling	design	consisted	of	
repeated	measures	 in	time,	we	added	the	sampling	point	 identity	as	
a	random	effect,	to	avoid	any	pseudo-	replication	issues.	Because	the	
temporal	trends	are	not	a	measure	of	interest	in	our	case,	we	did	not	
add	the	sampling	years	as	a	cross-	classified	random	effect.	To	account	
for	 detectability	 issues,	we	 added	 the	Julian	day	 and	 the	 time	 after	
sunset	to	the	model	as	fixed	variables	as	well	as	the	local	habitat	as	a	
random	variable	(see	Appendix	1	for	the	justification	of	these	variables	
to	correct	for	detectability).

The	model	 (Equation	3)	was	 run	as	a	Linear	Mixed-	Effect	Model	
(LMER,	lme4	package,	Bates	et	al.,	2015).

(1)	To	measure	the	sign	and	amplitude	of	the	effect	of	each	com-
position	and	intensity	variable,	we	used	a	model-	averaging	procedure	
(delta-	AIC	<	4;	 MuMIn	 package;	 Barton,	 2013;	 See	 Appendix	2	 for	
details	 on	 the	 procedure).	 (2)	 To	 measure	 the	 contribution	 of	 each	
composition	and	intensity	variable,	we	applied	a	hierarchical	variance	
partitioning	procedure	to	the	full	model	described	in	Equation	3	(hier.
part	 package;	Walsh	 &	Mac	 Nally,	 2013).	 The	 hierarchical	 variance	
partitioning	procedure	basically	determines	the	independent	contribu-
tions	of	variables	to	explain	the	variability	of	the	dependent	variable,	
once	accounting	for	detectability	in	our	case.	We	employed	the	mar-
ginal	R2	defined	for	mixed	linear	models	by	Nakagawa	and	Schielzeth	
(2013),	as	the	marginal	R2	is	defined	by	these	authors	as	the	variance	
explained	only	by	the	fixed	part	of	the	model.

We	ran	all	of	the	above	analyses	on	four	datasets:	 (1)	the	entire	
dataset	and	subsets	for	the	(2)	urban,	(3)	farmland,	and	(4)	woodland	
habitats	(hereafter,	All-	habitats,	Urban,	Farmland,	and	Woodland	mod-
els).	Each	point	was	assigned	to	a	dataset	depending	on	its	local	habi-
tat	(i.e.,	the	habitat	covering	more	than	50%	of	its	area	within	a	100	m	
radius).	The	random	effect	on	the	 local	habitat	was	removed	for	the	
last	three	models.	We	used	the	global	CSI	for	the	All-	habitats	dataset	
and	the	Urban,	Farmland,	and	Woodland	CSIs	for	the	corresponding	

datasets.	Significant	spatial	autocorrelations	were	not	observed	in	the	
residuals	 of	 the	models;	 therefore,	we	did	not	 explicitly	 correct	 our	
models	for	spatial	autocorrelations.

Collinearity	was	evaluated	in	all	of	the	models	using	the	Variance	
Inflation	 Factor	 (VIF).	 The	 VIF	 was	 under	 10	 for	 all	 subset	 models	
(Dormann	et	al.,	2013).

To	control	for	the	importance	of	the	shared	information	between	
NPPremaining	and	the	land-	use	composition,	we	also	ran	all	analyses	
using	two	slightly	different	model	expressions,	in	which	the	compo-
sition	variables	included	the	part	of	intensity	related	to	the	land-	use	
composition	(modifications	of	Equation	3).	First,	in	a	“classic”	series	
of	models,	we	employed	the	initial	composition	variables	(PC1	and	
PC2)	 instead	of	 their	 residuals.	 In	 this	series	of	models,	 the	 inten-
sity	 linked	to	the	 land	cover	 is	shared	by	the	models	between	the	
two	types	of	variables.	Second,	in	a	“Residual	NPPremaining”	series	of	
models,	we	used	the	residual	of	the	NPPremaining	regressed	with	PC1	
and	PC2	(mean	NPPremaining	~	PC1	+	PC2),	instead	of	the	NPPremaining 
value.	This	series	of	models	provides	information	about	the	impor-
tance	of	the	portion	of	intensity	independent	from	the	composition	
in	land	uses.

3  | RESULTS

The	 distribution	 of	 the	 NPPremaining	 values	 (expressed	 as	 a	 den-
sity	 function,	 Figure	2b)	 varied	 substantially	 among	 the	 land	
uses.	 The	 woodland	 presented	 a	 high	 density,	 of	 approximately	
600	gC	m−2	year−1,	 whereas	 farmland	 presented	 a	 density	 of	
100	gC	m−2	year−1,	 and	 urban	 areas	 presented	 a	 density	 of	
200	gC	m−2	year−1.

The	 explanatory	 power	 of	 the	 models	 of	 the	 “Residual	 com-
position”,	 “Classic,”	 and	 “Residuals	 NPPremaining”	 series	 was	 similar	
(Figure	3	 and	 Appendices	3	 and	 4).	 Logically,	 intensity	 variables	
were	 more	 important	 in	 explaining	 the	 community	 indices	 in	 the	
“Residual	composition”	series,	 followed	by	the	“Classic”	series	and	
the	“Residual	NPPremaining”	series.	As	explained	in	the	methods,	we	
focus	on	 the	 results	 of	 the	 “Residual	 composition”	 series	 of	mod-
els	 hereafter.	 The	 results	 of	 the	 two	 other	 series	 are	 available	 in	
Appendices	3	and	4.

The	models	generally	presented	a	higher	explanatory	power	for	
habitat	 specialization	 (pseudo	 R2	 from	 0.22	 to	 0.49)	 and	 species	
richness	 (pseudo	R2	 from	0.03	 to	0.35)	 than	 for	 the	 trophic	 index	
(pseudo	R2	from	0.05	to	0.19)	and	total	abundance	(pseudo	R2	from	
0.03	to	0.21;	Figure	3).	The	trends	were	generally	consistent	among	
the	 habitats,	 and	 the	 differences	 between	 habitats	 usually	 con-
sisted	of	strong	variations	in	the	values	of	the	coefficients	(Table	1;	
Figure	3).

3.1 | Relative importance of 
composition and intensity

The	 importance	of	 the	composition	and	 intensity	variables	was	usu-
ally	 comparable.	 The	 clearest	 patterns	were	 a	 lower	 contribution	 of	
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intensity	variables	(1)	for	abundance	(and	all	habitats)	than	for	the	other	
community	indices;	and	(2)	for	woodland	habitats	(and	all	indices)	than	
for	the	other	habitats	(Figure	3).	In	the	other	cases,	intensity	variables	
were	usually	slightly	more	important	than	composition	variables.

3.2 | Individual effects of composition and 
intensity variables

The	majority	of	the	observed	patterns	were	close	to	the	predictions,	
although	some	responses	were	unexpected	(Table	1,	Appendices	5,	6,	
7,	and	8).

Predictions	 on	 NPPremaining:	 We	 expected	 richness,	 abundance,	
trophic	 levels,	 and	 specialization	 to	 increase	 with	 NPPremaining.	 We	
expected	 these	 responses	 to	be	 stronger	 in	 anthropogenic	habitats.	
We	 also	 expected	 heterogeneity	 of	 NPPremaining	 to	 increase	 species	
richness	 and	 reduce	 habitat	 specialization.	 A	 positive	 relationship	

between	richness	and	NPPremaining	was	 indeed	observed,	but	only	 in	
the	All-	habitats	and	Urban	models	(Figure	4).	A	similar	response	was	
observed	for	the	trophic	level	in	the	All-	habitats	and	Farmland	models.	
Contrary	to	expectations,	we	detected	a	negative	response	of	abun-
dance	to	NPPremaining	in	the	All-	habitats	model.	Habitat	specialization	
increased	with	NPPremaining	in	the	Woodland	model	but	unexpectedly	
decreased	 in	 the	All-	habitats	and	Urban	models.	Richness	 increased	
with	NPPremaining	heterogeneity	in	the	All-	habitats	and	Farmland	mod-
els,	and	specialization	decreased	with	NPPremaining	heterogeneity	in	all	
of	the	habitats	except	for	woodlands.

Predictions	 for	 the	 land-	use	 composition:	We	 expected	 trophic	
levels	and	habitat	specialization	to	increase	with	the	amount	of	habitat	
in	the	landscape	and	land-	use	heterogeneity	to	reduce	specialization,	
but	 increase	 richness	 and	 abundance.	We	observed	 that	 specializa-
tion	 and	 trophic	 levels	 increased	with	 the	 amount	 of	 habitat	 in	 the	
landscape	in	farmlands	and	woodlands,	but	not	in	urban	habitats.	We	

F IGURE  3 Results	of	the	hierarchical	variance	partitioning	analyses	from	the	“Residual	composition”	series	of	models.	The	bars	show	the	
contribution	of	each	composition	and	intensity	variable	(Mean	NPPremaining:	average	value	of	NPPremaining;	SD	NPPremaining:	Standard	deviation	of	
NPPremaining;	Res(PC1)	and	Res(PC2):	residuals	of	the	linear	model	PC1/PC2~Mean	NPPremaining,	with	PC1/PC2	being	the	first	two	axes	of	a	
PCA	carried	out	on	land	cover	composition	data;	Number	LC:	land	cover	diversity	to	the	four	indices	of	community	structure	(Total	abundance,	
Species	richness,	Community	Specialization	Index,	Community	Trophic	Index),	for	the	All-	habitats	model	and	the	three	habitat-	specific	models	
(red	shades	for	the	intensity-	related	variables	and	green	shades	for	the	composition	variables).	The	values	are	expressed	as	the	percentage	of	the	
explained	variance,	computed	as	a	coefficient	of	determination:	R2	as	defined	by	Nakagawa	and	Schielzeth	(2013).	The	value	of	R2	for	the	full	
model	is	provided	above	each	bar
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observed	an	 increase	 in	 richness	with	 land-	use	heterogeneity	 for	all	
of	the	habitats	except	for	woodlands.	An	increase	in	abundance	with	
heterogeneity	was	only	detected	in	farmlands.	As	expected,	land-	use	
heterogeneity	strongly	and	systematically	reduced	habitat	specializa-
tion	(Appendices	7	and	8).

4  | DISCUSSION

Quantifying	the	response	of	biodiversity	to	land	use	and	intensity	in	
the	context	of	the	current	biodiversity	crisis	 is	of	paramount	impor-
tance	(Newbold	et	al.,	2015).	To	our	knowledge,	our	study	is	the	first	
to	(1)	quantify	the	relative	contributions	of	the	land-	use	composition	
and	intensity	to	biological	community	patterns	at	the	landscape	scale	
using	 NPPremaining	 and	 (2)	 show	 that	 the	 species–energy	 relation-
ship	also	applies	to	the	species–diversity	relationship	with	NPP	after	
human	appropriation	(NPPremaining),	while	accounting	for	confounding	
land	use	factors.	Previous	studies	exploring	the	relative	importance	of	
the	land-	use	composition	and	intensity	either	have	not	accounted	for	

the	human	impact	on	the	availability	of	productivity	(Duro	et	al.,	2014;	
Hurlbert	&	Jetz,	2010)	or	have	only	accounted	for	a	reduced	set	of	
land-	use	variables	(Haberl	et	al.,	2005).

Employing	a	productivity	measure	that	does	not	account	for	the	pro-
portion	of	productivity	removed	from	the	system	by	human	uses	may	
introduce	some	confusion	into	the	interpretation	of	the	results.	Indeed,	
these	variables	provide	 information	about	 the	productivity	generated	
by	the	ecosystem	(NPPactual)	but	do	not	provide	information	about	the	
available	productivity	of	the	ecosystem,	which	is	assumed	to	drive	com-
munity	structure	(Haberl	et	al.,	2007).	Therefore,	NPPremaining	should	be	
understood	 and	employed	 as	 an	 indicator	of	 the	 reverse	 intensity	of	
human	pressures	on	the	ecosystem,	and	NPP	should	be	used	as	an	in-
dicator	of	the	ability	of	a	system	to	produce	biomass	(Erb	et	al.,	2013).

4.1 | Relative importance of the composition and 
intensity of human pressures

In	our	study,	 land-	use	composition	and	 intensity	variables	primar-
ily	affected	specialization	and	richness,	with	a	more	limited	impact	

F IGURE  4 Variations	in	the	four	community	indices	(Abundance,	Richness,	Trophic	level	(CTI)	and	habitat	specialization	[CSI])	with	
NPPremaining	across	all	habitat	types	and	for	each	type	(Farmland,	Urban,	and	Woodland)	separately.	The	dots	represent	the	points,	and	the	lines	
represent	the	relationships	obtained	by	the	models.	The	error	on	either	side	of	the	lines	corresponds	to	the	standard	error
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on	 trophic	 levels	 and	abundance.	The	 importance	of	 the	 land-	use	
intensity	was	slightly	dominant	compared	with	the	composition	for	
richness,	 specialization,	 and	 trophic	 levels	 in	 farmland	 and	 urban	
areas,	while	 the	 land-	use	composition	was	a	 stronger	predictor	 in	
woodlands	 and	 for	 abundance	 in	 general.	 Our	 findings	 regarding	
the	 importance	of	NPPremaining	for	richness	underpin	the	results	of	
previous	 studies	 that	have	only	accounted	 for	 land-	use	heteroge-
neity	 and	 not	 land-	use	 proportions	 (Haberl	 et	al.,	 2005;	 Hurlbert	
&	 Jetz,	 2010)	 or	 have	 only	 focused	 on	 agricultural	 areas	 using	 a	
measure	of	productivity	not	accounting	for	harvesting	(Duro	et	al.,	
2014).	These	three	studies	 identified	a	better	predictive	power	of	
productivity	 compared	 with	 land	 use,	 contrary	 to	 the	 findings	 of	
Coops,	Wulder,	 and	 Iwanicka	 (2009),	 who	 studied	 the	 respective	
contributions	 of	 productivity	 (without	 accounting	 for	 harvesting	
and	using	fPAR-	derived	variables)	and	land	use	(detailed	variables).	
Our	 results	 highlight	 the	 importance	 of	 accounting	 for	 the	 land-	
use	 composition	while	 estimating	 the	 importance	 of	 productivity.	
The	 proportion	 of	 land	 use,	 which	 can	 be	 employed	 as	 a	 proxy	
of	 the	habitat,	but	also	of	 land-	use	 type	and	 the	spatial	extent	of	
human	 pressure,	 captures	many	 different	 processes	 linked	 to	 the	
treatments	 (disturbance	regimes)	applied	to	the	 land,	such	as	 land	
management	practices	and	human	visits	and	activities.	This	strong	
synthetic	characteristic	of	the	land-	use	composition	can	explain	its	
importance	for	ecological	processes.

NPPremaining	 provides	 insights	 into	 the	 intensity	 of	 productivity	
appropriation	that	is	not	captured	by	land-	use	variables	and	appears	
to	have	a	significant	 impact	on	bird	communities.	The	 independent	
importance	of	the	land-	use	composition	and	intensity	for	bird	com-
munities	 has	 been	 previously	 observed	 in	 particular	 habitats,	 such	
as	 farmlands,	 for	 both	 specialization	 and	 trophic	 levels	 (Jeliazkov	
et	al.,	2016),	or	woodlands,	for	specialization	(Drapeau	et	al.,	2000).	
Our	study	generalizes	these	findings	to	three	different	habitats	plus	
the	 landscape	scale	 (the	All-	habitats	model)	and	to	four	community	
indices.

4.1.1 | Importance of NPPremaining (intensity)

To	our	knowledge,	only	a	few	studies	have	investigated	the	link	be-
tween	 NPPremaining	 and	 species	 richness	 (Haberl	 et	al.,	 2004,	 2005;	
Mouchet	et	al.,	2015).	Consistent	with	Haberl	et	al.	(2004,	2005),	we	
found	a	positive	relationship	between	the	remaining	productivity	and	
species	richness	 in	our	All-	habitats	model,	which	suggest	 that	natu-
ral	and	anthropogenic	gradients	of	productivity	tend	to	have	similar	
effects	 on	 species	 richness.	 This	 result	means	 that	 richness	 usually	
increases	among	farmlands,	urban	areas,	and	woodlands	following	the	
amount	of	NPPremaining	under	these	land	uses.

However,	 among	 the	 individual	 habitat	models,	 our	 results	 sup-
ported	 this	 relationship	 only	 in	 urban	 habitats.	 The	 variation	 of	
NPPremaining	was	large	within	the	three	habitat	types	(Figure	2),	and	our	
results	for	farmlands	and	woodlands,	therefore,	cannot	be	explained	by	
a	smaller	gradient	of	NPPremaining	in	farmlands	and	woodlands	than	in	
urban	areas.	The	species	richness	in	farmlands	appeared	to	be	depen-
dent	on	the	land-	use	composition,	tending	to	be	more	closely	linked	to	

the	area	of	farmland	and	land-	use	heterogeneity	than	to	the	remain-
ing	productivity	itself.	This	result	shows	that	the	nature	of	the	heavy	
human	 pressures	 linked	 to	 the	 farming	 land	 use	 (recurrent,	 strong,	
and	diversified	disturbances)	acts	as	a	stronger	driver	of	species	rich-
ness	than	the	available	resources	in	farmland	communities.	Moreover,	
farmland	 specialists	 are	adapted	 to	 low-	resource	environments,	 and	
we	showed	that	they	are	not	favored	by	increased	NPPremaining.	Thus,	
it	 is	 the	 heterogeneity	 of	 NPPremaining	 and	 of	 other	 habitats	 in	 the	
landscape	that	appears	to	increase	the	richness	observed	in	farmland	
habitats	(Filippi-	Codaccioni,	Devictor,	Bas,	&	Julliard,	2010;	Jeliazkov	
et	al.,	2016).	Species	richness	in	woodlands	was	not	linked	to	any	com-
position	 or	 intensity	variable.	 Further	 research	would	 be	 needed	 to	
understand	this	result.

Our	results	also	provide	the	first	evidence	that	the	remaining	pro-
ductivity	 is	primarily	 linked	 to	 community	 specialization	 and	much	
less	 to	 abundance,	 providing	 no	 support	 for	 the	 more	 individuals	
hypothesis	in	this	context	(Wright,	1983).	We	expected	that	more-	
specialized	communities	would	be	found	in	low-	intensity	areas	with	
high	remaining	productivity	because	of	fewer	anthropogenic	distur-
bances	and/or	more	available	 resources	 (Abrams,	1995;	Srivastava	
&	Lawton,	1998).	This	relationship	was	only	observed	in	woodlands,	
which	 represented	 the	 most	 natural	 habitat	 type	 included	 in	 this	
study.	On	the	contrary,	specialization	in	the	Urban	and	All-	habitats	
models	 decreased	with	 the	 remaining	 productivity.	 The	 results	 of	
the	All-	habitats	model	can	be	explained	by	the	higher	specialization	
level	of	farmland-	specialist	species	than	that	of	woodland-	specialist	
species,	which	 increases	specialization	 in	 low-	productivity	areas	of	
the	study	region.	The	negative	relationship	observed	for	urban	com-
munities	may	be	explained	by	the	nature	of	the	urban	habitat.	Urban	
specialists	are	species	that	have	to	tolerate	and	are	adapted	to	low	
available	 primary	productivity	 in	 environments	 that	 are	 highly	 dis-
turbed	by	diverse	human	activities.	In	such	disturbed	environments,	
the	increase	in	available	productivity	is	likely	to	benefit	to	generalist	
species,	whose	arrival	would	mathematically	decreases	the	special-
ization	of	the	community.

We	did	find	support	for	the	hypothesis	that	areas	with	high	remain-
ing	 productivity	 promote	 a	 high	 trophic	 level	 (Srivastava	&	 Lawton,	
1998).	The	effects	of	NPPremaining	on	trophic	level	were	observed	in	all	
of	the	habitats	except	for	woodlands.

As	expected	for	the	four	community	indices,	the	importance	of	the	
remaining	productivity	differed	among	habitat	types	and	was	greater	
in	 highly	 anthropogenic	 habitats	 (Hurlbert,	 2004).	 Our	 results	 indi-
cated	that	the	fastest	increases	in	the	various	community	indices	with	
productivity	occurred	in	the	less-	productive	habitats	(urban	and	farm-
land	areas),	suggesting	an	increased	importance	of	the	available	pro-
ductivity	when	resources	are	scarce.	It	could	also	indicate	a	response	
to	stronger	gradients	in	vegetation	complexity	and	biotic	resource	di-
versity	in	farmland	and	urban	areas	than	those	in	woodlands.	This	re-
sult	is	consistent	with	previous	macroecological	findings	showing	that	
the	dependence	of	birds	(Hawkins,	Field,	&	Cornell,	2003)	on	the	avail-
able	productivity	increases	at	a	global	scale	at	higher	latitudes,	which	
are	 associated	with	 lower	 levels	 of	 productivity	 (Phillips,	Hansen,	&	
Flather,	2008).
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4.1.2 | Remarks on the importance of the 
heterogeneity of composition, land use, and 
NPPremaining

Our	predictions	regarding	the	responses	of	the	community	indices	to	
the	land-	use	composition	were	generally	validated	by	our	results,	con-
firming	the	importance	of	the	area	of	habitat	on	the	trophic	levels	and	
specialization	of	communities,	 independent	of	NPPremaining	 (Allouche	
et	al.,	2012;	Jeliazkov	et	al.,	2016).

Both	 types	 of	 heterogeneity	 were	 important	 predictors	 of	 the	
community	 indices.	 These	 results	 emphasize	 the	 importance	 of	 the	
heterogeneity	 of	 the	 land-	use	 composition	 and	 intensity	 to	 the	 un-
derstanding	of	 community	 responses	 to	human	pressures	 (Bohning-	
Gaese,	 1997;	 Hurlbert,	 2004);	 however,	 they	 also	 highlight	 the	
importance	of	homogeneity	of	both	the	composition	and	intensity	in	
promoting	the	habitat	specialization	of	communities.

5  | CONCLUDING REMARKS

We	showed	for	the	first	time	that	the	remaining	productivity	available	
to	animals	in	human-	dominated	ecosystems	is	an	important	driver	of	
animal	 community	 patterns.	 Richness	 and	 habitat	 specialization	 ap-
peared	to	be	especially	sensitive	to	the	spatial	variations	of	produc-
tivity.	Land-	use	composition	variables	(proportion	and	heterogeneity)	
were	also	important	predictors	of	the	community	structure,	thus	dem-
onstrating	 the	 importance	 of	 land-	use	 types	 in	 synthesizing	 human	
pressures	and	habitat	types.

Land-	use	 intensity	 is	expected	to	 increase	 in	 the	 future	to	meet	
global	 food	 demands	 and	may	 become	 the	main	 driver	 of	 land	 use	
(Tilman,	Balzer,	Hill,	&	Befort,	2011);	therefore,	accounting	for	its	im-
pact	on	biodiversity	is	of	primary	importance.	NPPremaining	appears	to	
be	a	valuable	 indicator	of	the	intensity	of	human	pressures,	comple-
mentary	to	the	land-	use	composition,	providing	important	insights	for	
all	habitats	types.	Because	this	indicator	directly	refers	to	the	produc-
tivity	 available	 for	 ecosystem	 functioning,	 it	 provides	more	valuable	
information	than	NPPactual,	which	is	the	metric	that	is	usually	used	in	
studies	 of	 animal	 community	 patterns	 in	 anthropogenic	 landscapes.	
However,	 land-	use	 intensity	 is	not	unidimensional	 (Erb	et	al.,	 2013),	
and	 NPPremaining	 may	 not	 capture	 all	 intensity	 dimensions	 (such	 as	
the	use	of	pesticides	or	the	effect	of	tillage).	Further	work	is	needed	
to	evaluate	the	power	of	NPPremaining	as	a	synthetic	indicator	for	the	
multidimensional	 aspects	 of	 intensity	 in	 relation	 to	 community	 pat-
terns,	which	should	also	account	for	the	annual	temporal	variation	of	
NPPremaining	and	explore	its	links	with	temporal	changes	in	community	
structure.
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APPENDIX 1

Monitoring	surveys	are	sensitive	to	detectability	issues,	due	to	difference	in	the	detection	probability	across	habitats	or	throughout	the	year	or	a	
day.	While	there	are	several	methods	that	allow	correction	of	these	variations	in	detectability	over	a	large	scale—for	instance,	to	estimate	popula-
tion	sizes—there	are	no	methods	allowing	such	correction	 if	 the	desirable	quantity	 is	a	measure	of	abundance	at	 the	count	point	scale	 (Bas,	
Devictor,	Moussus,	&	Jiguet,	2008),	which	is	our	measure	of	interest	here.	To	correct	for	detectability,	one	might	add	covariates	to	the	model,	
where	the	main	drawback	would	be	that	a	covariate	should	not	be	correlated	with	the	ecological	processes	under	scrutiny	(Bas	et	al.,	2008).	We,	
therefore,	added	two	fixed	effect	covariates	to	the	model:	the	Julian	day	and	the	time	after	sunset,	both	of	which	can	influence	the	probability	of	
an	individual	being	detected,	while	not	influencing	its	actual	presence.	We	also	added	the	local	habitat	as	a	random	effect	because	the	structure	
of	the	local	habitat	can	influence	the	detection	probability.	Here,	we	argue	that	adding	the	local	habitat	as	a	random	effect	allows	us	to	integrate	
the	variability	in	the	estimation	of	abundance	due	to	habitat	structure	without	influencing	the	outcome	of	our	analyses	because	the	local	habitat	
is	measured	at	a	smaller	scale	than	the	process	of	interest	(100	vs.	500	m).

APPENDIX 2

The	model-	averaging	 procedure	 consisted	 of	 (1)	 running	 every	 possible	model—i.e.,	 every	model	 nested	within	 the	model	 described	 in	
Equation	3;	(2)	selecting	the	best	models	based	on	the	Akaike	Information	Criterion	(AIC),	keeping	a	delta-	AIC	<	4	for	all	of	the	models;	and	
(3)	 finally	 computing	 the	weighted	 average	of	 each	 coefficient,	 using	 the	AIC	weight	 to	weight	 the	 average.	We	performed	 the	model-	
averaging	procedure	with	the	MuMIn	package	(Barton,	2013).
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APPENDIX 3

Results	of	analyses	while	running	models	built	on	the	initial	composition	variables	(PC1	and	PC2)	instead	of	their	residuals	(“Classic”	series	of	
models):
(a)	Results of hierarchical variance partitioning analyses
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APPENDIX 4

Results	of	analyses	while	running	models	built	on	the	residuals	of	NPPremaining	regressed	on	the	composition	variables	PC1	and	PC2	(“Residual	
NPPremaining”	series	of	models):

(a) Results of the hierarchical variance partitioning analyses
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APPENDIX 5

Plot	 of	 the	 variations	 in	 the	 community	 indices	with	Res(PC1)	 for	 the	 four	models	 (All-	habitats,	 Farmland,	Urban,	 and	Woodland)	 from	 the	
“Residual	composition”	set	of	models.	The	dots	represent	the	points,	and	the	lines	represent	the	relationships	obtained	with	the	models.	The	error	
on	either	side	of	the	lines	corresponds	to	the	standard	error.
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APPENDIX 6

Plot	 of	 the	 variations	 in	 the	 community	 indices	with	Res(PC2)	 for	 the	 four	models	 (All-	habitats,	 Farmland,	Urban,	 and	Woodland)	 from	 the	
“Residual	composition”	set	of	models.	The	dots	represent	the	points,	and	the	lines	represent	the	relationships	obtained	with	the	models.	The	error	
on	either	side	of	the	lines	corresponds	to	the	standard	error.
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APPENDIX 7

Plot	of	the	variations	of	the	community	indices	with	the	number	of	land	uses	for	the	four	models	(All-	habitats,	Farmland,	Urban,	and	Woodland)	
from	the	“Residual	composition”	set	of	models.	The	dots	represent	the	points,	and	the	lines	represent	the	relationships	obtained	with	the	models.	
The	error	on	either	side	of	the	lines	corresponds	to	the	standard	error.
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APPENDIX 8

Plot	of	the	variations	of	the	community	indices	with	the	standard	deviation	of	NPPremaining	for	the	four	models	(All-	habitats,	Farmland,	Urban,	and	
Woodland)	from	the	“Residual	composition”	set	of	models.	The	dots	represent	the	points,	and	the	lines	represent	the	relationships	obtained	with	
the	models.	The	error	on	either	side	of	the	lines	corresponds	to	the	standard	error.


