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Abstract In the Independent Set of Convex Polygons problem we are given a set of
weighted convex polygons in the plane and we want to compute a maximum weight
subset of non-overlapping polygons. This is a very natural and well-studied problem
with applications in many different areas. Unfortunately, there is a very large gap
between the known upper and lower bounds for this problem. The best polynomial
time algorithm we know has an approximation ratio of nε and the best known lower
bound shows only strong NP-hardness. In this paper we close this gap, assuming that
we are allowed to shrink the polygons a little bit, by a factor 1 − δ for an arbitrarily
small constant δ > 0, while the compared optimal solution cannot do this (resource
augmentation). In this setting, we improve the approximation ratio of nε to (1 + ε)

which matches the above lower bound that still holds if we can shrink the polygons.

Keywords Approximation algorithms · Independent Set · Geometric Intersection
Graphs · PTAS · Shrinking · Resource augmentation · Convex Polygons

1 Introduction

Maximum Weight Independent Set of Convex Polygons (MWISCP) is a natural but
algorithmically very challenging problem. We are given a set of convex polygons P
in the plane and our goal is to select a subset P ′ ⊆ P such that the polygons in P ′ are
pairwise non-overlapping. Each input polygon Pi ∈ P is described by its vertices and
additionally by a weightwi . The objective is to maximize the sum of the weights of the
selected polygons (note that the weight is independent of the shape of the polygon).
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Fig. 1 The black lines denote the boundaries of the input polygons P and P ′. The gray areas denote
their shrunk counterparts sr(P) and sr(P ′). The values width(P) and width(P ′) denote the widths of the
bounding boxes of P and P ′, respectively

The problem and its special cases arise in many settings such as map labeling [5,12,
23], cellular networks [11], unsplittable flow [6,8], chip manufacturing [18], or data
mining [16,20,21].

On the one hand, the best known polynomial time approximation algorithm has an
approximation ratio of nε [15]. On the other hand, the best complexity result shows
only strong NP-hardness [14,19] which leaves an enormous gap. Even more, there
is a QPTAS [3,17] which suggests that much better polynomial time approximation
results are possible.

When dealing with a very difficult problem it is useful to first study simplified
settings or relaxations of the original question in order to gain understanding. In this
paper, we consider a relaxation of MWISCP in which we are allowed to shrink the
input polygons slightlywhile the compared optimal solution cannot do this.We assume
that there is a small constant δ > 0 such that we can shrink each polygon by a factor
1 − δ and the new polygon lies in the center of the original one (see Fig. 1): when
we consider the rectangular bounding boxes of the original and the shrunk polygon
then the height and the width of the box of the shrunk polygon are by exactly a factor
1− δ smaller than the respective values of the box of the original polygon. The reader
may think of editing a polygon in a vector graphics program like Adobe InDesign
or Inkscape and shrinking it by dragging two opposite corners of its bounding box
slightly towards the center point. This yields the Maximum Weight Independent Set
of δ-Shrinkable Convex Polygons problem (δ-MWISCP).

We believe that allowing to shrink the input polygons does not change the nature of
the problem verymuch and, thus, insights for δ-MWISCP can be useful for the general
case as well. Also, inmany applications it is justified to shrink the input objects slightly
without losing much benefit, e.g., in map labelling.

1.1 Our Contribution

We present a polynomial time (1+ ε)-approximation algorithm for δ-MWISCP. This
generalizes a previous result for the special case of axis-parallel rectangles [1] to
the much larger class of arbitrary convex polygons. Thus, we show that if we are
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allowed to shrink the input polygons by a little bit then we can improve the best
known approximation ratio from nε to 1 + ε. This is the best possible approximation
ratio since δ-MWISCP isNP-hard, even for unit squares [1]. Note that ε and δ are two
independent parameters where δ controls only how much the polygons are allowed to
be shrunk and ε controls only the approximation ratio.

Core of our reasoning is that there exists a (1−ε)-approximative shrunk solution for
which there is a special cutting sequence. This sequence recursively cuts the input plane
into smaller and smaller pieces until each piece either coincides with a polygon from
the solution (i.e., the polygon is “cut out”) or it has empty intersectionwith all polygons
from this solution. Importantly, each piece arising in this sequence and each recursive
cut has only constant complexity, i.e., a constant number of vertices and edges. This
allows us to design a dynamic program that recursively guesses the above cut sequence
and then outputs the corresponding (1 − ε)-approximative shrunk solution.

A key difficulty when approximating independent set in the geometric setting is that
the input objects can have very different angles. Note that for Independent Set of (axis-
parallel) Rectangles there is a polynomial time O(log n/ log log n)-approximation
algorithm [10] but for straight line segments (with possibly very different angles) we
know only a nε-approximation [15]. Also in our argumentation we need to control
the angles of the polygons, or more precisely the angles of the polygon’s edges with
an underlying grid that guides the construction of our cutting sequence. We need that
these angles are bounded away from π/2. To achieve this we give our grid a random
rotation. We are not aware of any prior work in which a randomly rotated grid was
used and in our setting case it turns out to be exactly the right tool to address one of
our key difficulties.

1.2 Other Related Work

Many cases of geometric independent set have been studied, being distiguished
by the types of the objects arising. For axis-parallel squares of arbitrary sizes
there is a PTAS due to Erlebach et al. [13]. For axis-parallel rectangles, prior to
the mentioned O(log n/ log log n)-approximation algorithm [10], several O(log n)-
approximation algorithms were known [5,7,20,22]. In the unweighted case there is
even a O(log log n)-approximation by Chalermsook and Chuzhoy [9]. For curves
in the plane Fox and Pach give a nε-approximation, assuming that any two curves
intersect only O(1) times [15]. This improves and generalizes an earlier n1/2+o(1)-
approximation due to Agarwal and Mustafa for straight line segments [4].

Going beyond polynomial time results, for independent set of arbitrary polygons
there is a QPTAS [3,17], i.e., a (1 + ε)-approximation in time n(log n)Oε (1)

, building
on an earlier QPTAS for axis-parallel rectangles [2]. This implies that all the above
problems are not APX-hard, unless NP ⊆ DTIME(npoly(log n)).

2 Shrinking Model and Preliminaries

We assume that there is a value N ∈ N such that each of the n given input polygons
Pi ∈ P is specified by vertices vi,1, vi,2, . . . ∈ {0, . . . , N }2 and a weight wi ∈ N.
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Note that for arbitrary rational input data we can always translate and scale the input
polygons such that all of their vertices have non-negative integral coordinates. For any
set of polygons P ′ ⊆ P we define w(P ′) := ∑

Pi∈P ′ wi . For each polygon P ∈ P
we define its midpoint mid(P) to be the centroid of its (rectangular) bounding box,
see Fig. 1. For any two points p, p′ we define by �(p, p′) the line segment connecting
p and p′ and we define dist(p, p′) := ∥

∥�(p, p′)
∥
∥
2. In our shrinking model for each

polygon Pi ∈ P we define a new polygon sr(Pi ) defined by vertices v′
i,1, v

′
i,2, . . .

such that v′
i,k ∈ �(vi,k,mid(P)) for each k and such that dist(mid(P), v′

i,k) = (1 −
δ) dist(mid(P), vi,k). Observe that if P is convex then sr(P) ⊆ P and also sr(P) is
convex.

In δ-MWISCP our task is to compute a set of polygons P ′ ⊆ P such that for
any two polygons P, P ′ ∈ P ′ we have that sr(P) ∩ sr(P ′) = ∅. We compare the
value of our (almost feasible) solution to the value of an optimal feasible solution
OPT(P) ⊆ P which can not shrink the polygons, i.e., OPT(P) is a subset of P
of maximum total weight w(OPT(P)) with the property that P ∩ P ′ = ∅ for any
two polygons P, P ′ ∈ OPT(P). Thus, an α-approximation algorithm for δ-MWISCP
computes a solution P ′ ⊆ P such that w(P ′) ≥ α−1 · w(OPT(P)).

Note that for a non-convex polygon P we cannot guarantee that sr(P) ⊆ P . Thus,
for arbitrary polygons we no longer obtain a relaxation to the original problem. In
particular, the optimal solution for the shrunkpolygonsmight beworse than the optimal
solution for the original polygons. Therefore, in this paper we allow only convex
polygons.

For technical reasons we assume w.l.o.g. that the width of the bounding box of each
input polygon is larger than its height. This can be ensured by stretching the input plane
horizontally. Note that also in our shrinking model this yields an equivalent instance
and that this increases each coordinate by at most a factor of O(N ).

3 Preprocessing and Shrinking

In this section we describe preprocessing steps in which we remove some of the input
polygons and shrink the remaining ones. While doing this, we lose at most a factor
1+ ε in our approximation ratio. Also, we ensure that the shrunk polygons are “well-
behaved” so that our main algorithm (described in the next section) has an easier task.
First, we ensure that each polygon has only few, i.e., constantly many vertices and
edges.

Lemma 1 There exists a constant K = Oδ(1) such that by shrinking each polygon
by a factor 1 − δ we can assume that it has at most K vertices.

Proof Let P ∈ P and assume w.l.o.g. that mid(P) is the origin, see Fig. 2. For each
of the four quadrants, we shrink the intersection of P with the quadrant separately.
Consider P ∩ [0,∞) × [0,∞). Let p0 be the point on the boundary of P ∩ [0,∞) ×
[0,∞)withmaximum y-coordinate.We assumew.l.o.g. that p0 = (0, 1). Similary, let
p′
0 be the point on the boundary of P ∩ [0,∞)×[0,∞) with maximum x-coordinate

and we assume w.l.o.g. that p′
0 = (1, 0). We define a set of Oδ(1) points p1, p2, . . .

on the boundary of P in [0,∞)×[0,∞), see Fig. 2 for a sketch. For each k ∈ N such
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Fig. 2 Left shrinking the polygons so that they have only K = Oδ(1) vertices each. The thick lines show
the boundary of P , the gray polygon is the smaller polygon P ′ with only K vertices. Right the placement
of the points p, p′, p̄, p̃, p̃′ in the proof of Lemma 1. The thick line shows the boundary of P .

that (1 − δ)k ≥ (1 − δ) · 1
2 we define the horizontal line Lk := R × {(1 − δ)k}. Note

that there are Oδ(1) such lines. For each such line Lk we define the point pk to be the
point on the boundary of P in [0,∞) × [0,∞) that intersects Lk .

Similarly, we define a set of Oδ(1) points p′
1, p

′
2, . . . on the boundary of P in

[0,∞) × [0,∞). Let xmax denote the maximum x-coordinate of a point p0, p1, . . . .
Note that by convexity of P we have that xmax ≥ 1/2. For each k ∈ N such that
(1− δ)k ≥ xmax we define a vertical line L ′

k := {(1− δ)k} ×R and for each such line
L ′
k we define the point p′

k to be the point on the boundary of P in [0,∞) × [0,∞)

that intersects L ′
k . This way, we define a collection of points p0, p

′
0, p1, p

′
1, . . . . Note

that by construction their clock-wise order is p0, p1, . . . , p f , p′
f ′ , p′

f ′−1, . . . , p
′
0 for

two integers f, f ′. Doing this construction for each of the four quadrants, we define
a new polygon P ′ as the convex hull of all these Oδ(1) points.

We claim that sr(P) ⊆ P ′ ⊆ P . It is clear that P ′ ⊆ P . We prove now that
sr(P) ⊆ P ′. It suffices to show that for any two consecutive vertices p, p′ of P ′
inside one quadrant we have that �(p, p′) ⊆ P\sr(P). Consider two such vertices
p = (px , py) and p′ = (p′

x , p
′
y) of P

′ in P ′ ∩ [0,∞) × [0,∞) and assume w.l.o.g.
that they are in clock-wise order. Note that by constructionwe have that p′

y ≥ (1−δ)py
or px ≥ (1 − δ)p′

x . Assume w.l.o.g. that p′
y ≥ (1 − δ)py .

In order to show that �(p, p′) ⊆ P\sr(P) it suffices to show that �(p, p′)∩sr(P) =
∅ since p, p′ ∈ P and P is convex. Let p̄ ∈ �(p, p′) be a point. Let R be the ray that
starts in mid(P) and goes through p̄ = ( p̄x , p̄y). Let p̃ = ( p̃x , p̃y) be the (unique)
point on the boundary of P that lies on R. Similarly, let p̃′ = ( p̃′

x , p̃′
y) be the (unique)

point on the boundary of sr(P) that lies on R. It suffices to show that p̄y ≥ p̃′
y . We

have that py ≥ p̃y ≥ p̄y ≥ p′
y ≥ (1 − δ)py . Also, it holds that p̃′

y = (1 − δ) p̃y .
Therefore we have that p̄y ≥ (1 − δ) p̃y = p̃′

y . 	


We group the polygons by their diameters. For each polygon P denote by diam(P)

its diameter. We do our grouping to achieve two goals: we want that within each group
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the diameters of the polygons differ by at most a factor Oδ,ε(1) and between two
groups the diameters differ by at least a factor 1

K 2δ
.

Lemma 2 By losing a factor of 1 + ε in the value of the optimal solution, we can
assume that there is a partition of the polygons P into Oδ,ε(log N ) groups Pi and
values μ′

i , μi ∈ N for each group Pi such that

– μ′
i ≤ diam(P) < μi for each P ∈ Pi and

– δε2/K 2 · μ′
i = μi+1 and μi/μ

′
i = (1/(δK 2))1/ε for each i .

Proof We first group the polygons in P into groups P̄1, . . . , P̄m for m = O(log N )

based on their diameters, where for each j ∈ {1, . . . ,m} we have that

P̄ j =
{

Pi : diam(Pi ) ∈
[(

K 2

δε2

)
j−1,

(
K 2

δε2

) j
)}

.

Then, we group every 1/ε consecutive groups P̄ j together to obtain supergroups.
We define supergroups with respect to different values of “shifts” as follows. For
each shift s ∈ {0, . . . , 1/ε − 1} and for each i ≥ 1 we define the supergroup Ts,i :=
⋃s+i/ε−1

j=s+(i−1)/ε+1 P̄ j .Notice that for eachfixed s, ifwe took the unionof the supergroups

Ts,i , we would get Ts = ⋃
i Ts,i = ⋃

j : j �=s (mod 1/ε) P̄ j .

We claim that
∑1/ε

s=1 OPT(Ts) ≥ (1−ε)OPT/ε. LetP∗ be an optimal solution. We

argue that
∑1/ε

s=1 w(Ts ∩ P∗) ≥ (1 − ε)w(P∗)/ε. Notice that each polygon Pi ∈ P∗
appears in (1/ε) − 1 terms on the left-hand-side. More precisely, only if Pi ∈ P j

where j = s (mod 1/ε) the contribution from polygon Pi does not appear. It follows
that

∑1/ε
s=1 OPT(Ts) ≥ (1−ε)OPT/ε. Thus, there must be a shift s ∈ {0, . . . , 1/ε−1}

such that w(Ts ∩ P∗) ≥ (1 − ε)w(P∗). For each supergroup Ts,i this yields values
μ′
i , μi such that μ′

i ≤ diam(P) < μi for each P ∈ Ts,i and additionally for each
i we have that δε2/K 2 · μ′

i = μi+1 and μi/μ
′
i = (1/(δK 2))1/ε . Finally, we define

Pi := Ts,i for each i . 	


3.1 Hierarchical Grids

Wedefine a family of hierarchical vertical gridsG0,G1, . . . ,Gm withm = O(log N ).
For each i ∈ {0, . . . ,m} we define Gi := {{x} × R|∃k ∈ N s.t. x = k · gi } with
gi := δε

4K 2 ·μ′
i . Observe that the grids are hierarchical, i.e., each grid line of Gi is also

grid line of Gi ′ for each i ′ > i . We give these grids a random rotation. We rotate all of
them by the same angle α. This angle α is drawn uniformly at random from the range
[π/4, π/2]. Let � be a line of the grids. We are interested in the angle between � and
the edges of the polygons. We say that � and a line segment �′ have a good angle if
the angle between � and the line containing �′ have an angle of at least ε/K 2 and at
most π

2 − ε/K 2, otherwise we say that they have a bad angle.

Lemma 3 Let P ∈ P . With probability at least 1−O(ε) all line segments connecting
two vertices of P and all line segments connecting mid(P) with a vertex of P have a
good angle with all grid lines.
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Proof The polygon P has at most K vertices. Thus, there are at most K (K − 1)/2
line segments connecting two of its vertices. Also, there are at most K line segments
connecting mid(P) with a vertex of P . This gives O(K 2) segments in total. The
probability that one of these segments has a bad angle with � is at most O(ε/K 2). By
the union bound, with probability at least 1 − O(ε) each such segment has a good
angle with �. 	


We delete all polygons P that have two vertices v, v′ such that �(v, v′) or
�(v,mid(P)) has a bad angle with the grid lines. Next, we give the grids a random
shift upwards without changing their angles. Let � denote an arbitrary vertical line.
We observe that � intersects all lines in G0. Denote by L the distance of any two
consecutive points on � which intersect a point of G0. We draw a value L ′ ∈ [0, L)

uniformly at random and shift all grid lines up by L ′ units. For simplicity, denote by
G0,G1, . . . ,Gm the grid lines after this shift.

Lemma 4 Every P ∈ Pi+1 intersects a grid line of Gi with probability at most 2ε.

Proof Since P ∈ Pi+1 we have that diam(P) ≤ μi+1. The spacing between two grid
lines ofGi is gi = δε

2K 2 ·μ′
i andμ′

i = μi+1 · K 2

δε2
. Thus, diam(P) ≤ μ′

i ·δε2/K 2 = 2ε ·gi
which implies that P intersects a grid line of Gi with probability at most 2ε. 	


For each i ∈ N we delete all polygons P ∈ Pi+1 that intersect a grid line of Gi .
Due to Lemma 4 this costs at most a factor of 1− 2ε in the objective. Since the grids
are hierarchical, if a polygon P ∈ Pi+1 does not intersect a grid line of Gi then it does
not intersect a grid line of Gi ′ for any i ′ ≥ i .

3.2 Shrinking

Next, we want to shrink the polygons. Intuitively, for each polygon P ∈ Pi let v↑(P)

and v↓(P) denote the top-most and bottom-most vertices “relative to the grid lines”.
Formally, we define v↑(P) and v↓(P) to be the two vertices of P for which there
exists a line � parallel to the rotated grid lines that intersects v↑(P) (intersects v↓(P))
and no point in the interior of P , see Fig. 3.

We shrink P to a polygon P ′ such that v↑(P ′) and v↓(P ′) lie on grid lines of Gi .
The next lemma shows that this is indeed possible. Heart of this reasoning is that there
are at least 1/δ grid lines of Gi between v↑(P) and v↓(P). We do this operation with
all input polygons.

Lemma 5 Let P ∈ Pi . In polynomial time we can compute a polygon P ′ with at most
K + 2 edges such that sr(P) ⊆ P ′ ⊆ P and v↑(P ′) and v↓(P ′) lie on grid lines of
Gi . Furthermore, all edges of P ′ crossing a grid line of Gi in a non-zero angle have
a good angle with this grid line. Furthermore, diam(P ′) ≤ diam(P).

Proof For ease of notation, we define a distance measure given by the grid lines. For
any two points p, p′ we define the quantity distgrid(p, p′) as the distance between
the two lines �1, �2 that are parallel to the grid lines and that go through p and p′,
respectively, see Fig. 3.
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Fig. 3 Shrinking the polygon so that the points v↑(P), v↓(P) lie on grid lines (proof of Lemma 5). The
bold lines denote the boundary of the polygon P . The light gray areas denote the regions S(�T , �′

T ) and
S(�B , �′

B ). The dark gray area show the new polygon P ′. The bold dashed lines are the lines of Gi

Let �mid denote a line parallel to the grid lines that goes through mid(P). Recall
that we assumed that the width of each bounding box is larger than its height. Due
to our range for the angles of the grid, �mid intersects the top and bottom edge of
the bounding box of P but not its left or right edge. Consider a vertex vL of P
that lies on the left edge of the bounding box of P . We know that �(mid(P), vL)

has a good angle with the grid. Also, dist(mid(P), vL) ≥ 1
4diam(P). Therefore,

distgrid(mid(P), vL) ≥ ε
4K 2 diam(P) ≥ ε

K 2 · 1
4μ

′
i . The line �mid splits the plane into

two sides. Assume w.l.o.g. that v↑(P) lies on the same side as vL . This implies that
also distgrid(mid(P), v↑(P)) ≥ ε

K 2 · 1
4μ

′
i .

Similarly, consider a vertex vR of P that lies on the right edge of the bounding box
of P . We have that v↓(P) lies on the same side of �mid as vR . Also, we can show like
above that distgrid(mid(P), v↓(P)) ≥ ε

K 2 · 1
4μ

′
i .

Now let �T be the top-most line of Gi that intersects P . Let �′
T be the next higher

grid line of Gi above �T and let S(�T , �′
T ) denote the stripe enclosed by them. We

remove all points in P∩S(�T , �′
T ) from P . We do the same operation with the bottom-

most line �B of Gi intersecting P . Denote by P ′ the resulting polygon. Since there
are 1/δ grid lines of Gi crossing �(mid(P), v↑(P)) and �(mid(P), v↓(P)) we have
that sr(P) ⊆ P ′. The other claimed properties of P ′ follow by construction. 	


3.3 Horizontal Grids

From now on we do not shrink the polygons any further. Let us assume w.l.o.g. that
the grid lines G0,G1, . . . ,Gm are exactly vertical and that there is an integer N ′ such
that the input polygons are contained in the area [0, N ′] × [0, N ′] for some integer
N ′ = O(N ). We add a hierarchy of horizontal grids Ḡ0, Ḡ1, . . . , Ḡm to the vertical
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grids G0,G1, . . . ,Gm . For each i ∈ {0, . . . ,m} we define Ḡi := {R × {y}|∃k ∈
N s.t. y = k · gi } with (as defined before) gi = δε

2K 2 · μ′
i . Thus, for each i the grid Ḡi

has exactly the same spacing as Gi . We give the horizontal grids Ḡi a random shift up.
Formally, we draw a value L ′ ∈ [0, g0) uniformly at random and shift each grid line
Ḡi up by L ′ units. Then, for each i ∈ {0, . . . ,m} we delete all remaining polygons
from ∪ j>i+1P i that intersect a grid line in Ḡi . The following lemma can be proven
similarly as Lemma 4. Like in that lemma, the key argument is that for each P ∈ P i+1
it holds that diam(P) ≤ 2ε · gi and observe here that due to the shrinking procedure
the diameter of each polygon did not increase (see the last property of Lemma 5).

Lemma 6 Each P ∈ P i+1 intersects a grid line of Ḡi with probability at most 2ε.

Denote by P ′ the resulting set of shrunk polygons. For each integer i we define P ′
i to

be the sets of polygons we obtain when shrinking each polygon in Pi . Note that we
lost only a factor of (1 + O(ε)) in our approximation ratio (see Lemmas 2, 4 and 6).

4 Dynamic Program

Our algorithm is a geometric divide-and-conquer algorithm similar to the algorithm
used in [1,3]. It recursively divides the area containing the input polygons into smaller
and smaller pieces. When it makes a recursive call for a piece A ⊆ [0, N ′]2 then
it computes a (near-optimal) solution to the subproblem given by all input polygons
that are contained in A. To do this, it tries all possibilities to partition A into at most
k = Oδ,ε(1) subpieces such that the boundary of each of them consists of at most k line
segments out of a suitable set L defined below. Then, it makes a recursive call on each
of these subpieces and obtains a (near-optimal) solution for each of those. By putting
them together, it obtains a candidate solution for the original piece A. Additionally, it
checks what profit it can obtain by selecting only one polygon that is contained in A.
Eventually, it returns the best solution out of all candidate solutions stemming from
all partitions of A and all single polygons contained in A. We will show that if the
parameter k is sufficiently large then our algorithm will output a set that is at least as
profitable as the optimal solution for P ′.

We embed the whole procedure into a dynamic program (DP). Let k = Oδ,ε(1) be
a parameter to be defined later. Our DP table has one cell for each (not necessarily
convex) area A ⊆ [0, N ′]2 whose boundary consists of at most k line segments such
that

– each line segment is a subset of an edge of a polygon in P ′ or a subset of a grid
line in G := ∪m

i=0Gi ∪ Ḡi and
– the endpoint of each line segment is

– the vertex of a polygon in P ′, or
– the intersection of an edge of a polygon in P ′ with a grid line in G, or
– the intersection of two grid lines in G.

We call such an area A a piece.Denote byL the set of all line segments that arise on
the boundaries of the pieces defined above, see Fig. 4 for an example. Denote by GEO-
DP this dynamic program. As the following lemma shows, it has pseudo-polynomial
running time. We will explain later how to improve this to polynomial time.
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Fig. 4 An instance of δ-MWISCP. The black circles denote all possible endpoints of the lines inL: vertices
of the polygons, intersections of polygon edges with grid lines, and intersection of two grid lines. Each line
in L is a subset of an input polygon or a subset of a grid line. Hence, each line in L is contained in one of
the bold lines in the Figure

Lemma 7 The number of DP-cells is bounded by (n + N )Oδ,ε (k). If k = Oε,δ(1) then
the overall running time of GEO-DP is also bounded by (n + N )Oδ,ε (1).

Proof First, we upper bound the total number of possible endpoints of line segments
in L. Each polygon in P ′ has at most K + 2 vertices and edges. The total number of
grid lines is bounded by Oδ,ε(N ). Thus, the total number of endpoints of line segments
inL is bounded by Oδ,ε(n ·K ·N +N 2) and therefore |L| ≤ Oδ,ε(n2 ·K 2 ·N 2 +N 4).
Hence, the number of DP-cells is at most (n · K · N )Oδ,ε (k) = (n + N )Oδ,ε (k) since
K = Oδ(1). When we compute an entry of a DP-cell for a piece A we need to
enumerate all partitions of A into at most k smaller pieces. This can be done in time
(n + N )Oδ,ε (k2) which is bounded by (n + N )Oδ,ε (1) if k = Oε,δ(1). 	


There is a piece containing all input polygons. Thus, the subproblem corresponding
to this piece is identical to the problemwewant to solve. Our final output is the solution
computed for this piece. We want to show that its solution is at least as profitable as
the optimal solution for P ′. In order to show this we assume w.l.o.g. that the input to
GEO-DP consists only of this optimal solution for P ′. We denote it P ′′. We define
P ′′
i := P ′

i ∩ P ′′ for each i .
In the remainder of this section, we prove that GEO-DP computes a solution whose

profit is at least w(P ′′) ≥ (1 − O(ε)) · OPT(P). To this end, we describe a recursive
sequence of cuts that subdivides the input area [0, N ′] × [0, N ′] into smaller and
smaller pieces such that (i) for each arising piece there is a DP-cell, (ii) no polygon
in P ′′ is intersected by any of these cuts, and (iii) each of the pieces obtained at the
end has non-empty intersection with at most one polygon from P ′′. In Sect. 4.1 we
formalize such a sequence and prove that if it exists then GEO-DP computes a solution
of weight at least w(P ′′). In Sect. 4.2 we prove that it indeed exists for a suitable
choice of k = Oδ,ε(1). Finally, in Sect. 4.3 we explain how this yields our main
algorithm.
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4.1 Cutting Sequence

We describe a sequence of cuts that recursively subdivides the whole area [0, N ′] ×
[0, N ′] and “cuts out” all polygons in P ′′. It ensures that for each piece arising in the
sequence there exists a DP-cell according to the above definition and that each cut for
such a piece partitions it into at most k smaller pieces.

Formally, we describe this sequence of cuts by a tree T where each node v is
associated with a piece Av in the plane. We say that a tree T is a (k,P ′′)-region
decomposition if the following holds:

– For each node v in T and each polygon P ∈ P ′′ we have that if P does not coincide
with Av , i.e., P �= Av , then either P is contained in Av or P is disjoint from Av .

– For tree nodes u and v such that v is a parent of u we have Au ⊆ Av . Each node
v ∈ T has at most k′ ≤ k children u1, . . . , uk′ in T and

⋃k′
i=1 Aui = Av .

– For each leaf node v of T the piece Av contains at most one polygon in P ′′ and it
has empty intersection with all other polygons in P ′′.

– For each node v in T the area Av is connected and its boundary can be described
by at most k line segments from L.

Note that a similar type of decomposition was also used in [1].

Lemma 8 If there exists a (k,P ′′)-region decomposition then GEO-DP outputs a
solution of weight at least w(P ′′) when it is parametrized by k.

Proof We assume that for the set of (pairwise non-overlapping) polygons P ′′ there
exists a (k,P ′′)-region decomposition. Let T be the tree that represents the region
decomposition for P ′′. We now prove the following statement by induction on the
structure of T from its leaves to the root:

Consider a node u ∈ T . When GEO-DP processes the instance given by the
polygons P ′ that are contained in Au it outputs a set of polygons P ′′

u whose weight
w(P ′′

u ) is at least the total weight of the polygons in P ′′ that are contained in Pu .
In particular, for the root node r with Ar = [0, N ′]×[0, N ′] this implies that GEO-

DP computes a set of polygons P ′′
r with weight w(P ′′

r ) = w(P ′′) as desired. The base
case is obvious: for each leaf node v its piece Av coincides with a polygon Pi ∈ P ′′
and thus Pi is contained in Av . Hence, GEO-DP returns a solution whose weight
is at least w(Pi ). For the inductive step consider a node v for which the induction
hypothesis holds for all children of v. Let P ′′

v denote all polygons from P ′′ that are
contained in Pv . Denote the children of v by v1, . . . , vk′ for some k′ ≤ k. We have
that Av = ⋃k′

j=1 Av j and that the pieces Av1 , . . . , Avk′ are pairwise disjoint. For
each j ∈ {1, . . . , k′} let P ′′

v j
denote the polygons from P ′′ that are contained in Av j .

The sets P ′′
v j

form a partition since each polygon in P ′′
v is contained in some piece

Av j . In particular, this implies that w(P ′′
v ) = ∑k′

j=1 w(P ′′
v j

). Moreover, GEO-DP
considers the cut which partitions Av into Av1 , . . . , Avk′ and returns, by the induction
hypothesis, a solution P̄v consisting of one solution P̄v j for each piece Av j such that

w(P̄v) = ∑k′
j=1 w(P̄v j ) ≥ ∑k′

j=1 w(P ′′
v j

) = w(P ′′
v ). This completes the proof. 	


The proof of Lemma 8 is identical to the proof of a similar lemma in [1].
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4.2 Existence of Region Decomposition

In this section we prove that a (k,P ′′)-region decomposition always exists. Formally,
we prove the following lemma.

Lemma 9 There exists a universal constant k = Oδ,ε(1) such that a (k,P ′′)-region
decomposition exists.

To construct the (k,P ′′)-region decomposition we need to construct its tree T and
a piece Av for each vertex v of T . For the root node vr we define its region Avr to
be the cell of an artificial grid G−1 ∪ Ḡ−1 that has exactly one cell that contains
[0, N ′] × [0, N ′]. Inductively, we describe the procedure to construct T . Assume that
we are given a leaf v ∈ T whose piece Av is described as follows: there is a cell C of
the grid Gi−1 ∪ Ḡi−1 for some i ∈ N0 and up to two polygons P1, P2 ∈ ∪i−1

j=0P ′′
j such

that each of them intersects both the left and the right grid line of C . Also, we assume
that Av does not intersect any polygon in ∪i−1

j=0P ′′
j . We denote these conditions as the

invariant. Observe that vr fulfills it. If Av contains at most one polygon from P ′′ and
has non-empty intersection with all other polygons in P ′′ then we do not do anything
further with v. Otherwise, we describe how to divide Av step by step into smaller
and smaller pieces, until each arising piece Av′ satisfies the invariant for some cell
C ′ of Gi ∪ Ḡi and up to two polygons P ′

1, P
′
2. To describe this partitioning of Av we

create a subtree rooted at v, i.e., for each vertex v′ of the subtree there is a region Av′
which corresponds to one piece of this partitioning. Observe that Av is the connected
component ofC\{P1, P2} that is adjacent to P1 and P2. Note that there is a DP-cell for
Av . Assume w.l.o.g. that P1 crosses the left and right grid lines of C below P2. One
or both polygons P1 and P2 might be undefined and in this case the bottom and/or top
boundaries of C take the role of P1 and/or P2.

We define a cut through Av , see Fig. 5 for a sketch. Let �1 be a grid line of Gi such
that �1 intersects the interior of Av . Let p be the bottom-most point of �1 ∩ Av . Note
that at this point �1 intersects the boundary of P1. Our cut starts in p and moves up
along �1. If we do not hit any polygon of P ′′ contained in Av on the way up then we
are done with our cut. Otherwise, suppose that we hit an edge e of a polygon P . Let
p′ denote the point on e that is hit by �1. Due to Lemma 3 we know that e has a good
angle with �1. Also, P ∈ P ′′

i since otherwise it would have been deleted before as it
intersects a grid line of Gi . Our cut moves along e in the direction that goes up. We
continue along the boundary of P in the same direction until we arrive at the leftmost
or rightmost point of P . Let p′′ denote this point. Due to our shrinking, p′′ lies on a
grid line �′ of Gi . Since all edges of P have a good angle with the grid, we can prove
the following lemma.

Lemma 10 When moving from p′ to p′′ along the edge of P, we move up by at least
sin(ε2/K ) · gi = �δ,ε(1) · gi .

Proof Since all edges of P have a good angle with the grid lines, this angle is at least
ε2/K . Therefore, when we move from p′ to p′′ we move up by at least dist(p′, p′′) ·
sin(ε2/K ) ≥ sin(ε2/K ) · gi units. 	
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Fig. 5 Left the first cut Q that separates the piece Av (given by the area in the cell C between the polygons
P1 and P2) into two smaller pieces. The point p is defined as the bottom-most point of �1 ∩ Av and �1
intersects the boundary of P1 on p. Right a piece (consisting of A1 ∪ P ∪ A2) for which there is no grid
line that intersects P1 on the boundary of the piece (first case in the proof of Lemma 11)

Note that the contructed path from p via p′ to p′′ consists of atmost K+1 ≤ Oδ,ε(1)
line segments.We continue iteratively where now p′′ takes the role of p. We stop when
we hit the upper boundary of Av (defined by P2 or the top boundary of C). Denote
by Q the constructed path. The height of C is bounded by gi−1 = Oδ,ε(gi ). In every
iteration we move up by at least �δ,ε(1) · gi units. Thus, there are at most Oδ,ε(1)
iterations and Q can be described with Oδ,ε(1) · (K + 1) line segments. Observe that
we cut only along edges of polygons and along grid lines of Gi . Thus, we did not
intersect any polygon from P ′′.

Our path Q splits Av into two smaller pieces. Each of the two sides of Av\Q defines
a piece and for each of them we append a child node ui to v such that Aui equals this
piece. Importantly, each such piece is described by only C, P1, P2 and Q and thus its
boundary has only Oδ,ε(1) line segments. We continue with each newly created piece
Aui . Assume that there is a grid line �2 of Gi such that �2 intersects the boundary of
P1 at a point p̄ that lies on the boundary of Aui . Then p̄ takes the role of p above and
we find a path Q′ that split Aui into two pieces. We append these pieces in T as child
nodes of ui . Each such piece is then described by C, P1, P2, Q and Q′ and thus its
boundary has at most Oδ,ε(1) edges.

Consider a child node ū j of ui . Similarly as before, assume that there is a grid line
�3 of Gi such that �3 intersects the boundary of P1 at a point that lies on the boundary
of Aū j . We compute a path Q′′ though Aū j as above. Each connected component
of Aū j \Q′′ can be described by C, P1, P2 and at most two of the paths Q, Q′, Q′′.
Similarly, when we continue further like above in the recursion each resulting piece
can be described by C, P1, P2 and two paths Q1, Q2 through Av where each of the
latter can be described by only Oδ,ε(1) line segments.

We can apply the above reasoning as long as there is a grid line �k of Gi such that
the boundary of P1 intersects �k at a point that lies on the boundary of the considered
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piece. Suppose now that this is not possible, i.e, we have a piece Aṽ ⊆ Av such
that at the boundary of Aṽ there is no grid line of Gi that intersects P1. As the next
lemma shows, this piece can then be partitioned into two smaller pieces A1, A2 and
one polygon P ′

1, see Fig. 5.

Lemma 11 Assume that in the above construction we obtain a piece Aṽ such that
on the boundary of Aṽ there is no point where a grid line of Gi intersects P1. Then
either Aṽ is contained in a grid column of Gi or Aṽ can be partitioned into two pieces
A1, A2 and one polygon P ′

1 such that

– the boundary of A1 consists of two paths Q(1)
1 , Q(2)

1 with at most Oδ,ε(1) edges
each that both connect P1 and P ′

1, and

– the boundary of A2 consists of two paths Q(1)
2 , Q(2)

2 with at most Oδ,ε(1) edges
each that both connect P ′

1 and P2.

Proof Assume that Aṽ is not contained in a grid column of Gi (otherwise there is
nothing to show). By construction Aṽ is described by two paths Q1, Q2 that both
connect P1 and P2. There is no point on the boundary of Aṽ in which a grid line of
Gi intersects P1. Thus, for the points p1 and p2 on which the paths Q1 and Q2 start,
there must be two consecutive grid lines �(1), �(2) of Gi such that �(1) intersects P1 on
p1 and �(2) intersects P1 on p2, see Fig. 5. Assume that �(1) is on the left of �(2). Since
Aṽ is not contained in a grid column of Gi one of the paths Q1, Q2 is not completely
vertical. Assume that both paths are not completely vertical (the other case can be
proven with similar arguments). Let p′

1, p
′
2 be the points on which Q1 and Q2 deviate

from being only vertical. Assume w.l.o.g. that the y-coordinate of p′
1 is not larger than

the y-coordinate of p′
2.

Assume that on p′
1 the path Q1 turns left. Then on p′

1 the path Q1 hits a polygon
P ∈ P ′′

i . Thus, the boundary of P must intersect �(2) at a point p. Then the y-coordinate
of this point p must be lower than the y-coordinate of p′

2 (since Q1 goes monotonely
upwards). Then we set P ′

1 := P and A1 consists of the quadrilateral described by

p1, p′
1, p, p2, and A2 = Aṽ\{A1, P}. The paths Q(1)

1 , Q(2)
1 , Q(1)

2 , Q(2)
2 consist of the

parts of Q1 and Q2 surrounding A1 and A2, respectively.
Assume now that on p′

1 the path Q1 turns right after hitting a polygon P . Then
Q1 must cross �(2) at a point p′. If the y-coordinate of p′ is smaller than the y-
coordinate of p′

2 then we define P ′
1 := P and we define the pieces A1, A2 and the

paths Q(1)
1 , Q(2)

1 , Q(1)
2 , Q(2)

2 similarly as in the previous case. Finally, suppose that
the y-coordinate of p′ is not smaller than the y-coodinate of p′

2. Then on p′
2 the path

Q2 hits a polygon P ′ and it must turn right (since otherwise P ∩ P ′ �= ∅). Then the
polygon P ′ must cross �(1) underneath p′

1 and we define P ′
1 := P ′ and the pieces

A1, A2 and the paths Q(1)
1 , Q(2)

1 , Q(1)
2 , Q(2)

2 accordingly. 	

When we continue, for the piece A1 the polygon P ′

1 takes the role of P2, and
for the piece A2 the polygon P ′

1 takes the role of P1. We continue until all pieces
corresponding to leaves are contained in a column of Gi . Let Av′ be such a piece. Av′
might not yet fulfill the invariant since it might still span many grid cells of Gi ∪ Ḡi .
We know that each polygon P ∈ P ′′

i intersects at least two grid columns of Gi . Thus,
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there can be no polygon P ∈ P ′′
i with P ⊆ Av′ . Thus, the boundary of Av′ consists

of two grid columns and (parts of) the boundary edges of at most two polygons of
∪i

j=0P ′′
j , defining the upper and lower boundary of Av′ .

As long as Av′ is not contained in a grid cell of Gi ∪ Ḡi there must be a grid row r
of Ḡi such that r has non-empty intersection with the interior of Av′ . Note that r does
not intersect any of the remaining polygons in ∪ j≥i+1P ′′

j since we have removed such
polygons before already. We split Av′ along r into two pieces Av′′, Av′′′ and add the
corresponding vertices v′′ and v′′′ to T as children of v′. We continue this process until
each piece is contained in a grid cell of Gi . Thus, each of our resulting pieces fulfill
the invariant and we can repeat the procedure above. We apply the above procedure
to each leaf node of T until for each leaf node v it holds that the piece Av contains at
most one polygon in P ′′ and it has empty intersection with all other polygons in P ′′.
This completes the proof of Lemma 9.

4.3 Main Algorithm

With the above preparation we are ready to describe our main algorithm.

Theorem 1 For any constants ε, δ > 0 there is a polynomial time (1 + ε)-
approximation algorithm for the maximum independent set of δ-shrinkable convex
polygons problem.

Proof We parametrize GEO-DP by the constant k = Oδ,ε(1) due to Lemma 9. Then
together with Lemma 8 this implies that GEO-DP outputs a solution of weight at least
w(P ′′). Due to our reasoning in Sect. 3 we have that w(P ′′) ≥ (1− O(ε)) ·OPT(P),
see Lemmas 2, 4 and 6.

It remains to address the fact that in the above form our algorithm has a running
time that might be exponential in the input size (since N might be exponential). We
argue similarly as in [1]. First observe that there are only O(log N ) recursion levels,
which is polynomial in the length of the input encoding. In each level of the grids, it
suffices to introduce only grid cells C for which there exists a polygon P ∈ P ′ with
P ⊆ C . There can be only n such grid cells for each grid Gi ∪ Ḡi and thus in total
there are only O(n · log N ) such cells. Hence, the total number of needed grid lines is
also bounded by O(n · log N ).

The preprocessing steps due to Lemmas 1, 2, and 5 can be implemented in time
(n log N )O(1), using that each polygon has at most n vertices and the largest arising
number in the input is N . Within the same time bound we can construct the grids
Gi , Ḡi . Each cell in the DP-table can be decribed by k = Oδ,ε(1) line segments
connecting twopointswhere each of them is a vertex of a polygon inP ′, the intersection
of an edge of a polygon inP ′, or the intersection of two grid lines. For these points there
are nK + (n log N )O(1) possibilities. Hence, there are at most (Kn + n log N )Oδ,ε (1)

DP cells in total. To compute the solution for a DP-cell we try all possibilities to split
its corresponding piece into at most k = Oδ,ε(1) smaller pieces. Therefore, we obtain
an overall running time of (n + log N )Oδ,ε (1). 	
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