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1. INTRODUCTION

The motion planning problem in the presence of obstacles
is of high practical and theoretical importance. From the
practical point of view, there are many examples where it is
necessary to navigate a robot avoiding collisions with static
objects, e.g., car parking and various manipulating tasks
with state constraints. From the theoretical viewpoint,
the development of controllers ensuring the collision-free
motion for general classes of systems remains a challenging
issue in spite of numerous publications in this area. Let us
briefly overview some approaches for solving this problem.
One of the basic ideas is to exploit special functions
whose gradient flows produce trajectories converging to
the destination point and remaining in the free space (i.e.
the domain that remains after removing all the obstacles
from the configuration space). In particular, Koditschek
and Rimon (1990) introduced a class of potential func-
tions called navigation functions, and proposed an explicit
formula for their construction. The use of such functions
for the collision-free motion of a point-mass robot was
shown by Rimon and Koditschek (1992). An extension of
these results for the case of an arbitrary convex target
function was proposed by Paternain et al. (2016). In Tan-
ner et al. (2001, 2003), navigation functions were used for
constructing discontinuous controls that ensure collision-
free paths for a unicycle and mobile manipulator systems.
The concept of dipolar inverse Lyapunov functions was
introduced to improve the convergence property. Thus,
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the method of navigation functions was extended by Loizu
et al. (2004) for the control of a multi-agent system with
unicycle dynamics, and then modified with dipolar func-
tions by Dimarogonas et al. (2006) Another method based
on the concept of artificial potential fields is originated
from the work by Khatib (1986). Its main idea is to use
a combination of attractive and repulsive potential fields.
Such concept has been exploited in a number of further
studies. In particular, by using Lyapunov’s direct method,
control schemes for the obstacle avoidance problem have
been developed by Vanualailai et al. (2008) for car-like and
manipulator systems, see also Sharma et al. (2012). The
potential field method for the case of moving obstacles and
target has been proposed by Ge and Cui (2002).
There are many other publications dealing with the obsta-
cle avoidance problem for nonholonomic systems, however,
the most of them is devoted to particular cases, and a few
works deals with more general classes of systems. In par-
ticular, a path-iteration algorithm for the motion planning
with obstacles avoidance has been proposed by Popa and
Wen (1996) with the use of so-called penalty functions
for systems that can be converted to a chained form. The
main result in that area has been proved for an N -trailer
system. The stabilization problem for nonholonomic sys-
tems in the presence of obstacles is considered in the paper
by Lizarralde and Wen (1996). The method proposed in
that paper allows to reduce the stabilization problem to
finding the root by an iterative approach, however, no
explicit formulas for control functions have been given in
the cited publication.
The present paper is devoted to the construction of a
general control algorithms generating a collision-free path
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for driftless nonlinear systems whose vector fields together
with the first-order Lie brackets satisfy the controllabil-
ity rank condition. We prove the local solvability of this
problem in the class of trigonometrical control functions
and propose explicit formulas for their coefficients. The
novel contribution of this paper relies on the control design
scheme based on navigation functions for general step-2
bracket generating systems. Up to our knowledge, this
problem has not been treated with such generality for
underactuated dynamical systems. Besides, it should be
mentioned that the main result of this paper is applicable
for an arbitrary navigation function, so that rather general
shapes of the obstacles are possible within our approach.

The remaining part of this paper is organized as follows.
In Section II, we formulate the obstacle avoidance problem
and recall some facts concerning the navigation functions
approach and the Volterra series. The main result of this
paper is stated in Section III. As an example, we consider
a unicycle system in Section IV.

2. PROBLEM STATEMENT AND SOME
PRELIMINARIES

Consider a control system

ẋ =

m∑
i=1

uifi(x), x ∈ D ⊂ Rn, u ∈ Rm, (1)

where x = (x1, ..., xn)
T is the state and u = (u1, ..., um)T

is the control, m < n, fi ∈ C2(D). We assume that the

closed domainD is represented asD = W\
⋃N

j=1 Oj , where
W ⊂ Rn is a closed bounded domain, and Oj ⊂ W are

open domains, j = 1, N . We will refer to W, D, and Oj as
the workspace, free space, and obstacles, respectively. The
free space D is assumed to be valid, i.e. Oi ⊂ intW, Oi ∩
Oj = ∅ if �= j, for all i, j = 1, N , where intW is the

interior of W and Oi is the closure of Oi.
We consider the following obstacle avoidance problem:
given an initial point x0 ∈ intD and a destination point
x∗ ∈ intD, the goal is to construct an admissible control
such that the corresponding solution of system (1) with the
initial data x(0) = x0 satisfies the following conditions:

x(t) ∈ intD for all t ≥ 0, x(t) → x∗ as t → +∞.

We will solve this problem for the class of 2-step bracket
generating systems by constructing a time-varying feed-
back law u = h(t, x) and defining the solutions of sys-
tem (1) in the sense of sampling. The precise formulation
of this result will be given in the next section.

2.1 Navigation functions

As it has been mentioned in the introduction, there are
several classes of potential function that can be used for
generating collision-free paths. In this work we refer to the
navigation functions introduced in the work by Koditschek
and Rimon (1990). Such functions are bounded, approach
their maximum value on the boundary of the free space,
and vanish at the destination point only.

Definition 1. (Koditschek and Rimon (1990)). Let the free
space D ⊂ Rn be a compact connected analytic manifold
with boundary. A map φ : D → [0, 1] is a navigation
function in D, if it is:

• analytic on D;
• polar on D, i.e. it has a unique minimum x∗ which
belongs to the interior of the free space D;

• Morse on D, i.e. all the critical points on D are non-
degenerate;

• admissible on D, i.e. all boundary components have
the same maximal height, namely ∂D = φ−1(1).

Let us recall the construction of a navigation function for
the case of “a spherical world”.

Lemma 1. (Koditschek and Rimon (1990)). Assume that
the workspace W and the obstacles Oj are spheres:

W = {x ∈ Rn : ‖x‖2 ≤ r20},
Oj = {x ∈ Rn : ‖x− xj

o‖2 < r2j}, j = 1, N,

where r0, rj > 0 are the radii of the corresponding spheres,
and xj

o ∈ Rn is the center of the j-th obstacle. Assume,
moreover, that the free space D is valid, i.e.

‖xj
o‖+ rj < r0, ‖xj

o − xl
o‖ > rj + rl, j �= l, j, l = 1, N.

Then there exists a ν ∈ N such that, for every λ ≥ ν and
any destination point x∗ in the interior of D, the function

φ(x) =
‖x− x∗‖2(

‖x− x∗‖2λ +
N∏
j=0

βj(x)

)1/λ
(2)

is a navigation function on D. Here β0(x) = r20 − ‖x‖2,
βj(x) = ‖x − xo‖2 − r2j for j = 1, N , and ‖ · ‖ stands for
the Euclidean norm on Rn.

If φ(x) is a navigation function in D with the destination
point x∗ ∈ intD, then a collision-free path from any initial
point x0 ∈ intD to x∗ can be generated by using the
solution x(t) of the following Cauchy problem

ẋ(t) = −∇φ(x(t)), 0 ≤ t < t∗ ≤ +∞, x(0) = x0, (3)

where ∇φ(x) is the gradient of φ(x). It is clear that the
above function x(t) is not a solution of system (1) in
general, as the control system (1) is underactuated (m <
n). However, the curve γ = {x(t) : 0 ≤ t < t∗} can be
approximated by admissible trajectories of (1) with high-
frequency high-amplitude open-loop controls (see, e.g., Liu
(1997); Jean (2014); Gauthier et al. (2010)).

We will use another approach, based on a sampling strat-
egy, to produce a family of time-varying feedback controls
with bounded frequencies (and small amplitudes near the
destination point x∗). Our control design scheme exploits
the Volterra series expansion of solutions of system (1)
and extends the approach of Zuyev (2016); Zuyev et al.
(2016) for a class of navigation functions. Note that these
publications address the exponential stabilization problem
by using quadratic forms (and perturbations of quadratic
forms) as a Lyapunov function, so that the convergence
proof, described there, is not applicable for the case of
navigation functions.

2.2 The Volterra series

Any solution x(t) of system (1) with the initial data x(0) =
x0 and controls ui = ui(t), ui ∈ C[0, τ ], can be represented
by means of the Volterra type series (cf. Nijmeijer and
van der Schaft (1990); Zuyev (2016)):
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motion for general classes of systems remains a challenging
issue in spite of numerous publications in this area. Let us
briefly overview some approaches for solving this problem.
One of the basic ideas is to exploit special functions
whose gradient flows produce trajectories converging to
the destination point and remaining in the free space (i.e.
the domain that remains after removing all the obstacles
from the configuration space). In particular, Koditschek
and Rimon (1990) introduced a class of potential func-
tions called navigation functions, and proposed an explicit
formula for their construction. The use of such functions
for the collision-free motion of a point-mass robot was
shown by Rimon and Koditschek (1992). An extension of
these results for the case of an arbitrary convex target
function was proposed by Paternain et al. (2016). In Tan-
ner et al. (2001, 2003), navigation functions were used for
constructing discontinuous controls that ensure collision-
free paths for a unicycle and mobile manipulator systems.
The concept of dipolar inverse Lyapunov functions was
introduced to improve the convergence property. Thus,
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the method of navigation functions was extended by Loizu
et al. (2004) for the control of a multi-agent system with
unicycle dynamics, and then modified with dipolar func-
tions by Dimarogonas et al. (2006) Another method based
on the concept of artificial potential fields is originated
from the work by Khatib (1986). Its main idea is to use
a combination of attractive and repulsive potential fields.
Such concept has been exploited in a number of further
studies. In particular, by using Lyapunov’s direct method,
control schemes for the obstacle avoidance problem have
been developed by Vanualailai et al. (2008) for car-like and
manipulator systems, see also Sharma et al. (2012). The
potential field method for the case of moving obstacles and
target has been proposed by Ge and Cui (2002).
There are many other publications dealing with the obsta-
cle avoidance problem for nonholonomic systems, however,
the most of them is devoted to particular cases, and a few
works deals with more general classes of systems. In par-
ticular, a path-iteration algorithm for the motion planning
with obstacles avoidance has been proposed by Popa and
Wen (1996) with the use of so-called penalty functions
for systems that can be converted to a chained form. The
main result in that area has been proved for an N -trailer
system. The stabilization problem for nonholonomic sys-
tems in the presence of obstacles is considered in the paper
by Lizarralde and Wen (1996). The method proposed in
that paper allows to reduce the stabilization problem to
finding the root by an iterative approach, however, no
explicit formulas for control functions have been given in
the cited publication.
The present paper is devoted to the construction of a
general control algorithms generating a collision-free path
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for driftless nonlinear systems whose vector fields together
with the first-order Lie brackets satisfy the controllabil-
ity rank condition. We prove the local solvability of this
problem in the class of trigonometrical control functions
and propose explicit formulas for their coefficients. The
novel contribution of this paper relies on the control design
scheme based on navigation functions for general step-2
bracket generating systems. Up to our knowledge, this
problem has not been treated with such generality for
underactuated dynamical systems. Besides, it should be
mentioned that the main result of this paper is applicable
for an arbitrary navigation function, so that rather general
shapes of the obstacles are possible within our approach.

The remaining part of this paper is organized as follows.
In Section II, we formulate the obstacle avoidance problem
and recall some facts concerning the navigation functions
approach and the Volterra series. The main result of this
paper is stated in Section III. As an example, we consider
a unicycle system in Section IV.

2. PROBLEM STATEMENT AND SOME
PRELIMINARIES

Consider a control system

ẋ =

m∑
i=1

uifi(x), x ∈ D ⊂ Rn, u ∈ Rm, (1)

where x = (x1, ..., xn)
T is the state and u = (u1, ..., um)T

is the control, m < n, fi ∈ C2(D). We assume that the

closed domainD is represented asD = W\
⋃N

j=1 Oj , where
W ⊂ Rn is a closed bounded domain, and Oj ⊂ W are

open domains, j = 1, N . We will refer to W, D, and Oj as
the workspace, free space, and obstacles, respectively. The
free space D is assumed to be valid, i.e. Oi ⊂ intW, Oi ∩
Oj = ∅ if �= j, for all i, j = 1, N , where intW is the

interior of W and Oi is the closure of Oi.
We consider the following obstacle avoidance problem:
given an initial point x0 ∈ intD and a destination point
x∗ ∈ intD, the goal is to construct an admissible control
such that the corresponding solution of system (1) with the
initial data x(0) = x0 satisfies the following conditions:

x(t) ∈ intD for all t ≥ 0, x(t) → x∗ as t → +∞.

We will solve this problem for the class of 2-step bracket
generating systems by constructing a time-varying feed-
back law u = h(t, x) and defining the solutions of sys-
tem (1) in the sense of sampling. The precise formulation
of this result will be given in the next section.

2.1 Navigation functions

As it has been mentioned in the introduction, there are
several classes of potential function that can be used for
generating collision-free paths. In this work we refer to the
navigation functions introduced in the work by Koditschek
and Rimon (1990). Such functions are bounded, approach
their maximum value on the boundary of the free space,
and vanish at the destination point only.

Definition 1. (Koditschek and Rimon (1990)). Let the free
space D ⊂ Rn be a compact connected analytic manifold
with boundary. A map φ : D → [0, 1] is a navigation
function in D, if it is:

• analytic on D;
• polar on D, i.e. it has a unique minimum x∗ which
belongs to the interior of the free space D;

• Morse on D, i.e. all the critical points on D are non-
degenerate;

• admissible on D, i.e. all boundary components have
the same maximal height, namely ∂D = φ−1(1).

Let us recall the construction of a navigation function for
the case of “a spherical world”.

Lemma 1. (Koditschek and Rimon (1990)). Assume that
the workspace W and the obstacles Oj are spheres:

W = {x ∈ Rn : ‖x‖2 ≤ r20},
Oj = {x ∈ Rn : ‖x− xj

o‖2 < r2j}, j = 1, N,

where r0, rj > 0 are the radii of the corresponding spheres,
and xj

o ∈ Rn is the center of the j-th obstacle. Assume,
moreover, that the free space D is valid, i.e.

‖xj
o‖+ rj < r0, ‖xj

o − xl
o‖ > rj + rl, j �= l, j, l = 1, N.

Then there exists a ν ∈ N such that, for every λ ≥ ν and
any destination point x∗ in the interior of D, the function

φ(x) =
‖x− x∗‖2(

‖x− x∗‖2λ +
N∏
j=0

βj(x)

)1/λ
(2)

is a navigation function on D. Here β0(x) = r20 − ‖x‖2,
βj(x) = ‖x − xo‖2 − r2j for j = 1, N , and ‖ · ‖ stands for
the Euclidean norm on Rn.

If φ(x) is a navigation function in D with the destination
point x∗ ∈ intD, then a collision-free path from any initial
point x0 ∈ intD to x∗ can be generated by using the
solution x(t) of the following Cauchy problem

ẋ(t) = −∇φ(x(t)), 0 ≤ t < t∗ ≤ +∞, x(0) = x0, (3)

where ∇φ(x) is the gradient of φ(x). It is clear that the
above function x(t) is not a solution of system (1) in
general, as the control system (1) is underactuated (m <
n). However, the curve γ = {x(t) : 0 ≤ t < t∗} can be
approximated by admissible trajectories of (1) with high-
frequency high-amplitude open-loop controls (see, e.g., Liu
(1997); Jean (2014); Gauthier et al. (2010)).

We will use another approach, based on a sampling strat-
egy, to produce a family of time-varying feedback controls
with bounded frequencies (and small amplitudes near the
destination point x∗). Our control design scheme exploits
the Volterra series expansion of solutions of system (1)
and extends the approach of Zuyev (2016); Zuyev et al.
(2016) for a class of navigation functions. Note that these
publications address the exponential stabilization problem
by using quadratic forms (and perturbations of quadratic
forms) as a Lyapunov function, so that the convergence
proof, described there, is not applicable for the case of
navigation functions.

2.2 The Volterra series

Any solution x(t) of system (1) with the initial data x(0) =
x0 and controls ui = ui(t), ui ∈ C[0, τ ], can be represented
by means of the Volterra type series (cf. Nijmeijer and
van der Schaft (1990); Zuyev (2016)):
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x(t) = x0+

m∑
i=1

fi(x
0)

∫ t

0

ui(s)ds

+
1

2

∑
i<j

[fi, fj ](x
0)

∫ t

0

∫ v

0

{uj(v)ui(s)− ui(v)uj(s)} ds dv

+
1

2

m∑
i,j=1

∂fj(x
0)

∂x
fi(x

0)

∫ t

0

ui(s)ds

∫ t

0

uj(s)ds+rt(x
0),

(4)

t ≤ τ , where [fj , fl](x) = ∂fl(x)
∂x fj(x) − ∂fj(x)

∂x fl(x) is the

Lie bracket, and
∂fj(x

0)
∂x is the Jacobian matrix evaluated

at x = x0. In order to estimate the remainder rt(x
0) of

the Volterra expansion (4) and to prove the main result,
we need two auxiliary lemmas from Zuyev (2016).

Lemma 2. Let D̃ ⊂ Rn be a convex domain, and let
x(t) ∈ D̃, 0 ≤ t ≤ τ , be a solution of (1) corresponding to

the initial value x(0) = x0 ∈ D̃ and control u ∈ C[0, τ ]. If
the vector fields f1(x), f2(x), ..., fm(x) satisfy assumptions∥∥∥∥

∂fi(x)

∂x

∥∥∥∥ ≤ L,

∥∥∥∥
∂2fij(x)

∂x2

∥∥∥∥ ≤ H, i = 1,m, j = 1, n, (5)

in D̃ with some constants H, L > 0, then the remainder
rτ (x

0) of the Volterra expansion (4) satisfies the estimate

‖rτ (x0)‖ ≤ M

L

{
eLUτ − 1

2

(
(LUτ + 1)2 + 1

)}

+
HM2

√
n

4L3

{(
eLUτ − 2

)2
+ 2LUτ − 1

}

=
M(L2 +HM

√
n)

6
U3τ3 +O(U4τ4).

(6)

Here M = max
1≤i≤m

‖fi(x0)‖, U = max
0≤t≤τ

∑m
i=1 |ui(t)|.

Lemma 3. Let x(t) ∈ D̃ ⊂ Rn, 0 ≤ t ≤ τ , be a solution of
system (1) with a control u ∈ C[0, τ ], and let

‖fi(x′)−fi(x
′′)‖ ≤ L‖x′−x′′‖, ∀x′, x′′ ∈ D̃, i = 1, ...,m.

Then

‖x(t)− x(0)‖ ≤ M

L
(eLUt − 1), t ∈ [0, τ ], (7)

where M = max
1≤i≤m

‖fi(x(0))‖, U = max
0≤t≤τ

∑m
i=1 |ui(t)|.

3. MAIN RESULT

Assume that the control system (1) is step-2 bracket
generating, i.e. the vector fields f1(x), f2(x), ..., fm(x)
together with a fixed set of their first order Lie brackets
satisfy the Hörmander condition:

span {fi(x), [fj , fl](x) : i = 1,m, (j, l) ∈ S} = Rn, (8)

for each x ∈ D, where S ⊆ {1, 2, ...,m}2. Without loss of
generality, we assume that each pair of indices (j, l) ∈ S is
ordered with j < l.
For a given ε > 0, we denote by πε the partition of
R+ = [0,+∞) into intervals

Ij = [tj , tj+1), tj = εj, j = 0, 1, 2, . . . .

We will define solutions of system (1) corresponding to
a time-varying feedback law in the sense of sampling as
follows (cf. Zuyev (2016)).

Definition 2. Assume given a time-varying feedback law
u=h(t, x), h : R+×D→Rm, x0∈D, and ε>0. A πε-solution

of system (1) corresponding to x0 and h(t, x) is an abso-
lutely continuous function x(t) ∈ D, defined for 0 ≤ t <
t∗ ≤ +∞, which satisfies the initial condition x(0) = x0

and the following differential equations

ẋ(t) = f(x(t), h(t, x(tj))), tj ≤ t < min{tj+1, t
∗},

for each j ∈ N ∪ {0} such that tj < t∗.

The above definition extends the notion of “π-trajectories”,
introduced by Clarke et al. (1997), for the case of time-
varying feedback laws.
For solving the obstacle avoidance problem for system (1),
we will use a time-varying feedback control of the form

uε(t, x) =a(x) +
∑

(i,l)∈S

ail(x)
{
cos

(
2πkil(x)

ε
t

)
ei

+ sin

(
2πkil(x)

ε
t

)
el

} (9)

on each interval Ij of length ε, where ei denotes the i-th
unit vector in Rm, and the functions

a(x) =
(
a1(x), ..., am(x), ail(x)(i,l)∈S

)T ∈ Rn,

K(x) =
(
kil(x)(i,l)∈S

)T ∈ (Z \ {0})n−m
are defined below.

Our main idea is to choose the feedback control (9) in order
to approximate the direction of −∇φ(x) by trajectories
of system (1), where φ(x) is a navigation function. For
this purpose, we fix x ∈ D and ε > 0, and consider the
following system of second order algebraic equations:

m∑
i=1

aifi(x) +
ε

4π

∑
(i,j)∈S

a2ij
kij

[fi, fj ](x)

+
ε

2

m∑
i,j=1

aiaj
∂fj(x)

∂x
fi(x) +

ε

2π

∑
i<j


aj

∑
(q,i)∈S

aqi
kqi

−ai
∑

(q,j)∈S

aqj
kqj


 [fi, fj ](x) = −∇φ(x),

(10)

with respect to the variables ai, aql, i ∈ {1, 2, ...,m},
(q, l) ∈ S, assuming that the numbers kql ∈ Z \ {0} are
chosen without resonances, i.e.

|kql| �= |kjr| if S 
 (q, l) �= (j, r) ∈ S. (11)

For x ∈ R, X ⊂ Rn, and Y ⊂ Rn, we define the distances

ρ(x, Y ) = inf
y∈Y

‖x− y‖, ρ(X,Y ) = inf
x∈X,y∈Y

‖x− y‖.

An ε-neighborhood of a set X ⊂ Rn is denoted by Bε(X).
We use the notation Lc = {x ∈ D : φ(x) ≤ c} for the level
set of a function φ : D → R, and

‖a(x)‖1 =

m∑
j=1

|aj(x)|+
√
2

∑
(i,l)∈S

|ail(x)|

denotes the modified 1-norm of a vector a(x) ∈ Rn. Our
main result is as follows.

Theorem 1. Let a function φ ∈ C2(D), x0 ∈ intD, ε0 =
ρ
(
Lφ(x0), ∂D

)
> 0, ε1 ∈ (0, ε0), and let∥∥∥∥

∂2φ(x)

∂x2

∥∥∥∥ ≤ µ, ∀x ∈ Bε1

(
Lφ(x0)

)
⊂ D.

Assume that, for some ε>0, the system of algebraic equa-
tions (10) has a solution a=a(x) for each x∈D0=Lφ(x0)

Proceedings of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

10965

with K=K(x) such that the non-resonance assump-
tion (11) holds, and

‖a(x)‖1 ≤ 1

Lε
log

(
1 +

Lε1
M

)
, (12)

‖a(x)‖31
{
(1 + εµ)‖∇φ(x)‖+ µC

2
‖a‖31ε3

}

≤ 1

ε2C

(
1− εµ

2

)
‖∇φ(x)‖2, ∀x ∈ D0,

(13)

where C>M(L2+HM
√
n)/6, M = supi=1,m, x∈D ‖fi(x)‖,

L = sup
i=1,m, x∈D

∥∥∥∂fi(x)
∂x

∥∥∥, H= sup
i=1,m, j=1,n, x∈D

∥∥∥∂2fij(x)
∂x2

∥∥∥.
Then the πε-solution of system (1) with the control (9) and
the initial data x(0) = x0 is well-defined on t ∈ [0,+∞)
and has the following properties:

x(t) ∈ intD, ∀t ≥ 0, (14)

x(t) → Z0 = {x ∈ D0 : ∇φ(x) = 0} as t → +∞. (15)

Proof. For a given point x0∈intD, positive numbers
ε0=ρ

(
Lφ(x0), ∂D

)
>0, ε1∈(0, ε0), ε>0, and the functions

a(x), K(x) satisfying the system of algebraic equa-
tions (10) and assumption (11) for all x∈D0=Lφ(x0), we
introduce the map F : ξ ∈ D0 �→ F (ξ) = x(ε; ξ, uε

ξ),

where x(t; ξ, uε
ξ), t∈[0, ε], is the solution of (1) with the

initial condition x|t=0=ξ and control uε
ξ(t)=uε(t, ξ) of the

form (9) with the coefficients a(ξ) and integer parameters
K(ξ). Lemma 3 implies that x(t; ξ, uε

ξ) is well-defined on

t ∈ [0, ε] provided that condition (12) holds. We assume

F (ξ) = ξ if ∇φ(ξ) = 0, (16)

as a(ξ) = 0 satisfies system (10) with ∇φ(ξ) = 0, and
x(t; ξ, uε

ξ) ≡ ξ in this case.

By exploiting the Volterra expansion (4) and computing
the integrals under assumption (11), we conclude that

F (ξ) = ξ +∆x, ∆x = −ε∇φ(ξ) + rε, (17)

where rε = rε(ξ) is the remainder of the Volterra expan-
sion (4). By applying Taylor’s formula with the Lagrange
form of the remainder to φ(ξ +∆x), we get:

φ(F (ξ))=φ(ξ)− ∂φ

∂x

∣∣∣∣
ξ

(ε∇φ(ξ)−rε)+
1

2

〈
∂2φ

∂x2

∣∣∣∣
θ

∆x,∆x

〉

≤φ(ξ)−ε
(
1−µε

2

)
‖∇φ(ξ)‖2+(1+µε)‖∇φ(ξ)‖ · ‖rε‖

+
µ

2
‖rε‖2, ‖θ − ξ‖ ≤ ‖∆x‖. (18)

The above inequality implies that

φ(F (ξ)) < φ(ξ) (19)

provided that{
(1 + µε)‖∇φ(ξ)‖+ µ

2
‖rε‖

}
‖rε‖

< ε
(
1− µε

2

)
‖∇φ(ξ)‖2, ∇φ(ξ) �= 0.

(20)

We estimate the remainder rε by Lemma 2 with the
use of condition (13) to show that (20) holds under our
assumptions if ∇φ(ξ) �= 0. Conditions (16) and (19) imply

φ(F (ξ)) ≤ φ(ξ) for all ξ ∈ D0. (21)

Therefore, F (ξ) ∈ D0 because of the construction of D0.
It means that

xj = F (xj−1), F : D0 → D0, j = 1, 2, ... , (22)

is a discrete-time dynamical system. It is easy to see that
xj = x(jε), j = 0, 1, 2, ..., where x(t) is the πε-solution

of system (1) with the initial data x(0) = x0 and the
control uε(t, x) given by formula (9). As it has been already
mentioned, the restriction of x(t) on each Ij = [εj, ε(j+1))
is well-defined, and x(t) ∈ intD for all t ≥ 0 because of
Lemma 3 and condition (12) (see Fig. 1).
It remains to prove assertion (15). The invariance principle
(cf. (LaSalle, 2012, Proposition 2.6, p. 9), (Sundarapan-
dian, 2003, Corollary 1)) together with conditions (16)
and (21) implies that

x(jε) → Z1 as j → +∞, (23)

where Z1 is the largest invariant subset of Z0 = {x ∈
D0 : ∇φ(x) = 0} for the dynamical system (22) (D0 is
compact under our assumptions). Condition (13) shows
that a(x) → 0 as ∇φ(x) → 0, therefore, the continuity
of ∇φ(x) and property (23) yields a(xj) → 0 as j → ∞.
Then we conclude that

lim
j→+∞

(
sup

s∈[0,ε]

‖x(jε+ s)− xj‖

)
= 0.

Therefore, property (23) also implies that x(t)→Z1 as
t→+∞, which completes the proof.

Thus, Theorem 1 states that the control functions (9) with
coefficients satisfying the algebraic equations (10), where
φ(x) is a given potential function, steer system (1) to the
set where the gradient of φ(x) vanishes. In order to apply
Theorem 1, we have to choose an ε > 0 and solve the
system of n quadratic equations (10) with respect to the
components of a(x) ∈ Rn for some integer parameters
K(x) depending on x ∈ D0. A local solvability results
for this algebraic system is presented below.

Lemma 4. Assume that the vector fields f1(x), f2(x), ...,
fm(x) satisfy the rank condition (8) in D, and let φ ∈
C2(D). Then, for any small enough ε > 0, there exists a
∆ > 0 such that the system of algebraic equations (10)
has a solution a = a(x) ∈ Rn for each

x ∈ D̂ = B∆({x ∈ D : ∇φ(x) = 0}) ∩D

with some K = K(x) ∈ (Z \ {0})n−m
such that condi-

tion (11) holds. This solution satisfies the estimate

‖a(x)‖1 = O

(
max

{
‖∇φ(x)‖,

√
‖∇φ(x)‖

ε

})
, x ∈ D̂.

The idea of the proof, based on the topological degree the-
ory, is similar to Theorem 3.2 in Zuyev and Grushkovskaya
(2017). We omit the proof of Lemma 4 due to lack of place.

Fig. 1. πε-solution of system (1) with x0 ∈ D0.
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Lε
log

(
1 +

Lε1
M

)
, (12)
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(1 + εµ)‖∇φ(x)‖+ µC

2
‖a‖31ε3

}

≤ 1

ε2C

(
1− εµ

2

)
‖∇φ(x)‖2, ∀x ∈ D0,

(13)

where C>M(L2+HM
√
n)/6, M = supi=1,m, x∈D ‖fi(x)‖,

L = sup
i=1,m, x∈D

∥∥∥∂fi(x)
∂x
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∥∥∥∂2fij(x)
∂x2

∥∥∥.
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Therefore, property (23) also implies that x(t)→Z1 as
t→+∞, which completes the proof.

Thus, Theorem 1 states that the control functions (9) with
coefficients satisfying the algebraic equations (10), where
φ(x) is a given potential function, steer system (1) to the
set where the gradient of φ(x) vanishes. In order to apply
Theorem 1, we have to choose an ε > 0 and solve the
system of n quadratic equations (10) with respect to the
components of a(x) ∈ Rn for some integer parameters
K(x) depending on x ∈ D0. A local solvability results
for this algebraic system is presented below.

Lemma 4. Assume that the vector fields f1(x), f2(x), ...,
fm(x) satisfy the rank condition (8) in D, and let φ ∈
C2(D). Then, for any small enough ε > 0, there exists a
∆ > 0 such that the system of algebraic equations (10)
has a solution a = a(x) ∈ Rn for each
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with some K = K(x) ∈ (Z \ {0})n−m
such that condi-
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})
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(2017). We omit the proof of Lemma 4 due to lack of place.

Fig. 1. πε-solution of system (1) with x0 ∈ D0.

Proceedings of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

10966



10480	 Alexander Zuyev  et al. / IFAC PapersOnLine 50-1 (2017) 10476–10481

4. EXAMPLE: A UNICYCLE

In this section, we apply controls of the form (9) to solve
the obstacle avoidance problem for a unicycle example.
The equations of motion are as follows:

ẋ1 = u1 cosx3, ẋ2 = u1 sinx3,

ẋ3 = u2,
(24)

where (x1, x2)
T ∈ R2 are the coordinates of the contact

point of the unicycle, x3 is the angle between the wheel
and the x1 axis, u1 and u2 control the forward and the
angular velocity, respectively. We identify the angles x′

3
and x′′

3 if x′
3 ≡ x′′

3(mod 2π), so the configuration space for
system (24) is X = R2×S1. Let the workspace be defined
as

W = {(x1, x2, x3)
T ∈ X : β0(x1, x2) ≥ 0},

where β0(x) = R2 − x2
1 − x2

2. We formulate the following
goal: to reach a point x∗ ∈ intW avoiding N obstacles
Oi = {x ∈ X : βi(x1, x2) < 0} (x∗ /∈ Oi),

βi(x) = (x1 − xi
o,1)

2 + (x2 − xi
o,2)

2 − r2i , i = 1, N.

For this purpose, we use the construction of a navigation

function φ : D → [0, 1], D = W \
⋃N

i=1 Oi from Lemma 1:

φ(x) =
‖x− x∗‖2

(
‖x− x∗‖2λ +

N∏
i=0

βi(x)

)1/λ
, λ ∈ N, λ > 1.

Control system (24) satisfies the Hörmander condition of
the type (8) with S = {(1, 2)}:

span{f1(x), f2(x), [f1, f2](x)} = R3 for all x ∈ X,

where f1(x) = (cosx3, sinx3, 0)
T , f2(x) = (0, 0, 1)T .

Following the control design methodology, described in the
previous section, we define the control functions as

Fig. 2. Trajectory of system (24) with controls (25) in the
presence of three obstacles.

uε
1(t, x) = a1(x) + a12(x) cos

(
2πk(x)tε−1

)
,

uε
2(t, x) = a2(x) + a12(x) sin

(
2πk(x)tε−1

)
,

(25)

where k ∈ Z \ {0}, a1, a2, and a12 are defined from the
algebraic equations (10):

a1(x) = −1

ε

(
∂φ

∂x1
cosx3 +

∂φ

∂x2
sinx3

)
, a2(x) = −1

ε

∂φ

∂x3
,

a12(x) =

{
a1(x)±

√
a1(x) + 2πk(x)A(x), A(x) �= 0,

0, A(x) = 0,

k(x) =

{
signA(x), A(x) �= 0,

1, A(x) = 0,

A(x) = a1(x)a2(x) +
2

ε

( ∂φ

∂x2
cosx3 −

∂φ

∂x1
sinx3

)
.

It can be shown that the conditions of Theorem 1 are
satisfied; thus, controls (25) solve the obstacle avoidance
problem for system (24) with any x∗ ∈ intD, provided
that ε > 0 is small enough.
We illustrate the proposed control design scheme by nu-
merical simulations. Let us consider two cases. In the
first case, Fig. 2 shows the trajectory of system (24) with
the initial condition x0=(0,−3, π/2)T and the destination
point x∗=(0, 2.5, 0)T . The parameters of functions βi are:

x1
o,1 = 2, x1

o,2 = 1, r1 = 1, x2
o,1 = 0, x2

o,2 = −1, r2 = 1,

x3
o,1 = −1.5, x3

o,2 = 2, r3 = 0.75, R = 3.5.

The arrows at x0 and x∗ illustrate the behavior of x3.
In the second case (see Fig. 3), we choose x0=(1.5,−1, 0)T ,
x∗ = (−3, 0, π)T , and

x1
o,1=2, x1

o,2=1, r1=1, x2
o,1=0, x2

o,2=−2, r2=1,

x3
o,1=−1.5, x3

o,2=2, r3=0.75, x4
o,1=2, x4

o,2=−2, r4=0.5,

x5
o,1=−1.5, x5

o,2=0, r5=0.5, R=3.5.

For both cases, ε = 0.01 and λ = 3.

Fig. 3. Trajectory of system (24) with controls (25) in the
presence of five obstacles.
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5. CONCLUSIONS

In this paper, we have considered the motion planning
problem in the presence of static obstacles. In contrast to
known publications in this area, we developed a feedback
control algorithm ensuring a collision-free motion for a
general class of nonholonomic systems satisfying the con-
trollability rank condition with the first-order Lie brackets.
The main contribution of this paper is an explicit control
design scheme and the proof of the local solvability of
the problem under consideration. The proposed control
strategy not only allows to steer the system from an
initial to a destination point avoiding the obstacles, but
also stabilizes the system in a neighborhood of the final
point. This result is obtained by expanding solutions of
the system into the Volterra series and approximating the
gradient flow corresponding to a navigation function by
trajectories of the original underactuated system. One of
the key features of our approach is the reduction of the
control problem under consideration to solving the system
of second-order algebraic equations (10) with the absence
of high-order terms, that leads to an attractive control
design scheme. The procedure of omitting the high-order
terms is possible because of subtle estimates of the remain-
der rε in formula (4) and Lemma 2. In order to simplify
the presentation, this paper uses a spherical workspace
and spherical obstacles. However, other types of obstacles
can also be considered (for example, the construction of
navigation functions for “star worlds” is shown by Rimon
and Koditschek (1991), and “trees and forests of stars”
by Rimon and Koditschek (1992)). Moreover, the approach
proposed is universal in the sense that, although the main
result of the paper is formulated in terms of navigation
functions, it can also be extended for other classes of
potential functions generating collision-free paths, e.g. ar-
tificial potential fields proposed by Khatib (1986).
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