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Abstract: The paper presents a control algorithm that steers a system to an extremum point
of a time-varying function. The proposed extremum seeking law depends on values of the cost
function only and can be implemented without knowing analytical expression of this function. By
extending the Lie brackets approximation method, we prove the local and semi-global practical
uniform asymptotic stability for time-varying extremum seeking problems. For this purpose, we
consider an auxiliary non-autonomous system of differential equations and propose asymptotic
stability conditions for a family of invariant sets. The obtained control algorithm ensures the
motion of a system in a neighborhood of the curve where the cost function takes its minimal
values. The dependence of the radius of this neighborhood on the bounds of the derivative of a
time-varying function is shown.
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1. INTRODUCTION

This paper is devoted to the development of extremum
seeking control algorithms, i.e. algorithms that steer a
system to the point of minimum (or maximum) of a
function whose values can be measured but the analyti-
cal expression is partially or completely unknown. Unlike
many other publications in this area (see, e.g., Tan et al.
(2010)), we consider the problem of extremum seeking
with a time-varying cost. Namely, let us consider mappings
J :Rn×Rm→R, γ:R+→Rm, x∗:Rm→Rn, and assume that
the values of the cost function J(x, γ(t)) may be measured
for each x=(x1, . . ., xn)

T∈Rn and t∈R+=[0,+∞). We as-
sume that the function x∗(γ(t)) gives a unique (possibly
time-varying) point of minimum of J at time t:

J(x∗(γ(t)), γ(t)) = J∗(γ(t)) < J(x, γ(t)),

for each x �= x∗(γ(t)) and each t ∈ R+.

The purpose is to construct a control system whose tra-
jectories x(t) tend asymptotically to an arbitrary small
neighborhood of x∗(γ(t)), assuming that only the values
of the cost function J(x(t), γ(t)) are available for control
design. We will propose a solution to this problem in
Section 3 by exploiting the concept of practical asymptotic
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stability of a family of sets. Such study is motivated by
many practical problems, e.g. when a vehicle should follow
a moving target measuring the distance to the target only.
The problem of time-varying extremum seeking is studied
in several papers, however, the most of them consider
particular classes of cost functions or use more complicated
techniques such as gradient estimation. In particular, a
number of papers (e.g., Yu and Özgüner (2005); Scheinker
and Krstić (2012); Mandi and Mǐsković (2015); Vweza
et al. (2015)) is devoted to applications of extremum seek-
ing techniques for tracking a curve with known magnitude
and variation bounds, i.e. the cost function is assumed
to be the distance between the state of a system and
a target. In the paper Zhu et al. (2013), a cooperative
control strategy for a multi-agent system was proposed for
seeking a signal source moving with constant velocity. A
cost function defined as the sum of a quadratic function
and a certain time-varying term was considered in Hua
et al. (2013). A gradient-based control algorithm solving
the optimization problem for cost functions with unknown
time-varying parameters was constructed in DeHaan and
Guay (2005); Moshksar et al. (2015). The extremum-
seeking problem for a more general class of time-varying
cost functions was studied in Sahneh et al. (2012) under
several assumptions. In particular, it is assumed that a
time-varying point of extremum has bounded time deriva-
tives up to the third order. The control algorithm proposed
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and Krstić (2012); Mandi and Mǐsković (2015); Vweza
et al. (2015)) is devoted to applications of extremum seek-
ing techniques for tracking a curve with known magnitude
and variation bounds, i.e. the cost function is assumed
to be the distance between the state of a system and
a target. In the paper Zhu et al. (2013), a cooperative
control strategy for a multi-agent system was proposed for
seeking a signal source moving with constant velocity. A
cost function defined as the sum of a quadratic function
and a certain time-varying term was considered in Hua
et al. (2013). A gradient-based control algorithm solving
the optimization problem for cost functions with unknown
time-varying parameters was constructed in DeHaan and
Guay (2005); Moshksar et al. (2015). The extremum-
seeking problem for a more general class of time-varying
cost functions was studied in Sahneh et al. (2012) under
several assumptions. In particular, it is assumed that a
time-varying point of extremum has bounded time deriva-
tives up to the third order. The control algorithm proposed

Proceedings of the 20th World Congress
The International Federation of Automatic Control
Toulouse, France, July 9-14, 2017

Copyright © 2017 IFAC 5702

Extremum Seeking for Time-Varying
Functions using Lie Bracket

Approximations �

Victoria Grushkovskaya ∗,∗∗∗∗ Hans-Bernd Dürr ∗∗
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system to the point of minimum (or maximum) of a
function whose values can be measured but the analyti-
cal expression is partially or completely unknown. Unlike
many other publications in this area (see, e.g., Tan et al.
(2010)), we consider the problem of extremum seeking
with a time-varying cost. Namely, let us consider mappings
J :Rn×Rm→R, γ:R+→Rm, x∗:Rm→Rn, and assume that
the values of the cost function J(x, γ(t)) may be measured
for each x=(x1, . . ., xn)

T∈Rn and t∈R+=[0,+∞). We as-
sume that the function x∗(γ(t)) gives a unique (possibly
time-varying) point of minimum of J at time t:

J(x∗(γ(t)), γ(t)) = J∗(γ(t)) < J(x, γ(t)),

for each x �= x∗(γ(t)) and each t ∈ R+.

The purpose is to construct a control system whose tra-
jectories x(t) tend asymptotically to an arbitrary small
neighborhood of x∗(γ(t)), assuming that only the values
of the cost function J(x(t), γ(t)) are available for control
design. We will propose a solution to this problem in
Section 3 by exploiting the concept of practical asymptotic
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stability of a family of sets. Such study is motivated by
many practical problems, e.g. when a vehicle should follow
a moving target measuring the distance to the target only.
The problem of time-varying extremum seeking is studied
in several papers, however, the most of them consider
particular classes of cost functions or use more complicated
techniques such as gradient estimation. In particular, a
number of papers (e.g., Yu and Özgüner (2005); Scheinker
and Krstić (2012); Mandi and Mǐsković (2015); Vweza
et al. (2015)) is devoted to applications of extremum seek-
ing techniques for tracking a curve with known magnitude
and variation bounds, i.e. the cost function is assumed
to be the distance between the state of a system and
a target. In the paper Zhu et al. (2013), a cooperative
control strategy for a multi-agent system was proposed for
seeking a signal source moving with constant velocity. A
cost function defined as the sum of a quadratic function
and a certain time-varying term was considered in Hua
et al. (2013). A gradient-based control algorithm solving
the optimization problem for cost functions with unknown
time-varying parameters was constructed in DeHaan and
Guay (2005); Moshksar et al. (2015). The extremum-
seeking problem for a more general class of time-varying
cost functions was studied in Sahneh et al. (2012) under
several assumptions. In particular, it is assumed that a
time-varying point of extremum has bounded time deriva-
tives up to the third order. The control algorithm proposed
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in Sahneh et al. (2012) exploits a delay-based strategy for
the gradient estimation and a gradient-search method. A
similar approach was applied in Ye and Hu (2013) for time-
varying extremum seeking with constrained inputs.
In this paper, we consider the time-varying cost function
of general form. An idea of our construction relies on
the method of a Lie bracket approximation for extremum
seeking systems proposed in Dürr et al. (2013). By using
a class of highly oscillating inputs, we approximate the
trajectories of an extremum seeking system by the tra-
jectories of the non-autonomous system representing the
gradient flow of the cost function. Asymptotic stability
conditions of a neighborhood of the curve x∗(γ(t)) are
obtained by exploiting methods for studying systems with
constantly acting perturbations. Thus, the main contri-
bution of this paper is twofold. First, we present an ex-
tremum seeking solution for a broad class of time-varying
functions. Second, we provide a rigorous analysis of an
auxiliary non-autonomous system and obtain novel local
and global asymptotic stability conditions for a family of
sets representing the level sets of a time-varying Lyapunov
function. Although we consider a special class of systems,
the proposed approach can also be applied for deriving
asymptotic stability conditions for families of invariant sets
for general non-autonomous systems.
The rest of the paper is organized as follows. Section 2
contains some auxiliary results and definitions. In subsec-
tion 3.1, we propose asymptotic stability conditions for
the system representing the gradient flow of the function
J(x, γ(t)), and also obtain several corollaries applicable
for particular classes of J(x, γ(t)). The extremum tracking
control strategy is proposed in subsection 3.2. The results
obtained are illustrated with several examples in Section 4.
The appendices contain technical details for the proofs.

2. PRELIMINARIES

This section presents some definitions and statements
which will be used throughout the paper.
Consider the control-affine system

ẋ = f0(t, x) +

l∑
j=1

fj(t, x)
√
ωuj(t, ωt), (1)

where x∈Rn, uj :R+×R+→R, x(t0)=x0∈Rn, ω>0, and the
so-called Lie bracket system for (1):

˙̄x=f0(t, x̄)+
1

T

∑
i<j

[fi, fj ](t, x̄)

T∫

0

θ∫

0

uj(t,θ)ui(t,τ)dτdθ, (2)

where T>0, [fi, fj ](t, x̄)=
∂fj(t,x̄)

∂x fi(t, x̄)−∂fi(t,x̄)
∂x fj(t, x̄).

Assume that the solutions of (1), (2) are defined for all
t≥0. Let Lt ⊂ Rn, t ∈ R+, be a one-parameter family of
non-empty sets. For a δ > 0, we denote the δ-neighborhood
of the set Lt at time t as Bδ(Lt)=

⋃
y∈Lt

{x∈Rn :

‖x−y‖<δ} and its closure by B̄δ(Lt).

Definition 1. A family of sets Lt is said to be locally
practically uniformly asymptotically stable for (1) if
– it is practically uniformly stable, i.e. for each ε>0 there
are δ>0 and ω0>0 such that, for all t0∈R+ and ω>ω0, if
x0∈Bδ(Lt0) then the corresponding solution of (1) satisfies
x(t)∈Bε(Lt) for all t ≥ t0;

– δ̂-practically uniformly attractive with some δ̂>0, i.e. for

each ε>0 there are t1∈[0,∞) and ω0>0 such that, for all
t0∈R+ and ω>ω0, if x

0∈Bδ̂(Lt0) then the corresponding
solution of (1) satisfies x(t)∈Bε(Lt) for all t≥t0+t1;
– the solutions of system (1) are practically uniformly
bounded, i.e. for each δ>0 there are ε>0 and ω0>0
such that, for all t0∈R+ and ω>ω0, if x0∈Bδ(Lt0) then
x(t)∈Bε(Lt) for all t ≥ t0.

If the attractivity property holds for every δ̂>0, then
the family of sets Lt is called semi-globally practically
uniformly asymptotically stable for (1). For systems inde-
pendent of ω we omit the terms practically and semi.
Note that the concept of practical stability of an equi-
librium was studied by LaSalle and Lefschetz (1961) for
systems without parameters and successfully applied for
parametrized systems in extremum seeking problem with
time-invariant costs (see, e.g., Dürr et al. (2013) and refer-
ences therein). Definition 1 extends the notion of stability
of a family of invariant sets (cf. Langa et al. (2002)) for
the case of practical stability.

Definition 2. The family of sets Lt is called to be uni-
formly positively invariant for system (1) if, for all t0∈R+,
the following property holds: if x0∈Lt0(γ) then the corre-
sponding solution of (1) satisfies x(t) ∈ Lt(γ) for all t≥t0.

Definition 3. A function w∈C(R+; Ew), Ew⊆R+, belongs
to the class K if it is strictly increasing and w(0)=0. If, in
addition, w is unbounded then it belongs to the class K∞.

Remark 1. Note that if w ∈ C(R+; Ew) is of the class
K and surjective, then there exists the unique inverse
function w−1(x) ∈ K : Ew → R+.
Assume that the vector fields of system (1) and control
functions ui(t, ωt) satisfy the following assumptions:
A1 fi ∈ C2(R× Rn;Rn), i = 0, 1, . . ., l.

A2 The functions ‖fi(t, x)‖,‖∂fi(t,x)
∂t ‖,‖∂fi(t,x)

∂x ‖,‖∂2fj(t,x)
∂t∂x ‖,∥∥∥∂[fj ,fk](t,x)

∂t

∥∥∥,
∥∥∥∂[fj ,fk](t,x)

∂x

∥∥∥ are bounded on each compact

set x∈X⊂Rn, uniformly in t≥0, for i=0, l, j=1, l, k=j, l.
A3 The functions ui ∈ L∞(R+ ×R+;R) are bounded and
Lipschitz with respect to the first argument.
A4 The functions ui(t, ·) are T -periodic with T > 0, and∫ T

0
ui(t, τ)dτ = 0 for all t ∈ R+, i = 1, . . ., l.

Theorem 1. (Dürr et al. (2013)). Let A1–A4 be satisfied,
and let I⊆Rn be the set of initial conditions such that
system (2) has unique, uniformly bounded solutions. Then,
for every bounded set I1⊆I, for every ξ>0, t1>0, there
exists an ω0>0 such that, for all ω>ω0, t0∈R+, and
x0=x(t0)∈I1, there exist unique solutions x and x̄ of
systems (1) and (2), respectively, through x(t0)=x̄(t0)=x0

which satisfy ‖x(t)− x̄(t)‖ < ξ for t ∈ [t0, t0 + t1].

3. MAIN RESULTS

The following result states the practical asymptotic stabil-
ity of the family of sets Lt for system (2).

Theorem 2. Let A1–A4 be satisfied. Suppose that a family
of sets Lt is locally (globally) uniformly asymptotically
stable for (2), and there exists a compact set S⊂Rn such
that Lt⊆S for all t ∈ R+. Then Lt is locally (semi-globally)
practically uniformly asymptotically stable for (1).

The proof of this theorem is given in Appendix A. Further,
we apply Theorem 2 for seeking an extremum point of a
time-varying cost function. Consider the system
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ẋ = u, (3)

where x∈Rn is the state vector, u∈Rn is the control,
x(t0)=x0∈Rn, t0∈R+. It was shown in Dürr et al. (2013)
that the controls

us = c1,sJ(x, γ(t))
√
ωs cos(ωst) + c2,s

√
ωs sin(ωst) (4)

ensure the practical uniform asymptotic stability of the
point x∗ for constant γ, provided that ωs = ksω, ω > 0,
ks1 �= ks2 for all s1 �= s2, ks ∈ Q++, c1,s, c2,s > 0, s = 1, n,
where Q++ denotes the set of positive rational numbers. In
this section, we will prove the practical uniform asymptotic
stability of the family of sets

Lλ,t = {x ∈ Rn : J(x, γ(t))− J∗(γ(t)) ≤ λ}, t ∈ R+, (5)

with a time-varying function γ(t) and some λ > 0 which
can be chosen arbitrary small under a suitable choice of
the control parameters. First, we will propose asymptotic
stability conditions for a system representing the gradient
flow of the function J . Then we will show that, under
certain assumptions, the trajectories of system (3) with
controls (4) approximate the gradient flow dynamics, and
prove the practical uniform asymptotic stability.

3.1 Stability of the gradient flow

We start with the consideration of a system representing
the gradient flow of J :

ẋs = −cs
∂J(x, γ(t))

∂xs
, s = 1, n, (6)

where cs are some positive constants. In this section, we
will propose several results concerning stability properties
of system (6) under the assumption that ‖γ̇(t)‖ is bounded.
In Theorem 3, we will prove local asymptotic stability
conditions for an arbitrary small neighborhood of the curve
where the function J takes its minimal values, provided
that cs in (6) are large enough. Global asymptotic stability
conditions are given in Theorem 4.
Let us mention that there are several approaches for es-
tablishing stability properties of non-autonomous systems.
In particular, system (6) under a suitable change of vari-
ables can be considered as a special case of systems with
constantly acting perturbations which were studied, e.g.,
in Malkin (1952); Khalil (1996); Savchenko and Ignatyev
(1989). It was proved that the existence of a Lyapunov
function with certain properties for a “non-perturbed” sys-
tem ensures the stability under constantly acting pertur-
bations. Furthermore, stability of the curve x∗(γ(t)) holds
if (6) has a manifold of exponentially stable constant equi-
libria (see Kelemen (1986); Lawrence and Rugh (1990);
Khalil (1996)). The asymptotic stability property was
proved for the case of vanishing inputs, i.e. for ‖γ̇(t)‖ → 0.
In this paper, we exploit some methods used in the above-
mentioned studies for obtaining asymptotic stability con-
ditions for system (6). Note that, in contrast to the above-
mention papers, we do not assume that the velocity of
γ(t) tends to zero, and prove the asymptotic stability of
the family of sets (5).

Theorem 3. Given functions J ∈ C2(Rn × Rm;R), γ ∈
C1(R+;Rm), and a closed bounded domain Γ⊂Rm, let
there exist a function x∗∈C1(Γ;Rn), a constant ∆ > 0,
and functions w11, w12, w2 ∈ K : [0,∆] → R+ such that
the following conditions are satisfied:
C1.1 the curve γ(t)∈Γ for all t≥0, and max

t∈R+
‖γ̇(t)‖≤ν with

some ν≥0;
C1.2 for all x ∈ B∆(x

∗(g)), g ∈ Γ,

w11(‖x− x∗(g)‖) ≤ J(x− x∗(g), g) ≤ w12(‖x− x∗(g)‖),∥∥∥∥
∂J(x− x∗(g), g)

∂x

∥∥∥∥
2

≥ w2(‖x− x∗(g)‖),

C1.3 there are L,H>0, M≥0 such that
∥∥∥∂V (x,g)

∂x

∥∥∥≤L,∥∥∥V (x,g)
∂g

∥∥∥≤M ,
∥∥∥∂2V (x,g)

∂x2

∥∥∥≤H, for all x∈B∆(x
∗(g)) and for

all g∈Γ, where V (x, g)=J(x+x∗(g))−J∗(g).
Then, for every λ ∈ (0, w11(∆)), there exists a c > 0 such
that the family of sets Lλ,t (5) is locally uniformly asymp-
totically stable for system (6) with min{c1, . . . , cn} > c.

The proof of this theorem is given in Appendix B.
For fixed values of parameters cs in system (6), the above
result can be formulated in the following way.

Corollary 1. Let the conditions of Theorem 3 be satisfied,
and suppose that there exists a λ ∈ (0, w11(∆)) such that
w2

(
w−1

12 (λ)
)
> νM

min{c1,...,cn} . Then the family of sets Lλ,t

is locally uniformly asymptotically stable for system (6).

Requiring additional properties for the cost function, it is
possible to establish global asymptotic stability conditions.

Theorem 4. Given functions J ∈ C2(Rn×Rm;R), γ ∈
C1(R+;Rm), and a closed bounded domain Γ⊂Rm, let
there exist a function x∗ ∈ C1(Γ;Rn) such that the fol-
lowing conditions hold:
C2.1 the curve γ(t)∈Γ for all t≥0, and max

t∈R+
‖γ̇(t)‖≤ν with

some ν≥0;
C2.2 there exist µ1>0, µ2∈[0,∞), p∈[0, 1), and func-
tions w11, w12∈K∞:R+→R+ such that, for all x∈Rn,
g∈Γ, w11(‖x−x∗(g)‖)≤J(x−x∗, g)≤w12(‖x−x∗(g)‖), and

1

µ
1/p
2

∥∥∥∂V (x,g)
∂g

∥∥∥
1/p

≤V (x, g)≤ 1
µ1

∥∥∥∂V (x,g)
∂x

∥∥∥
2

,

where V (x, g)=J(x+x∗(g))−J∗(g).

C2.3 for every compact X⊂Rn, the functions
∥∥∥∂V (x,g)

∂x

∥∥∥,∥∥∥∂2V (x,g)
∂x2

∥∥∥ are bounded for all x∈X ⊂ Rn, g∈Γ.

Then the family of sets Lλ,t with λ=
(

νµ2

µ1 min{c1,...,cn}

) 1
(1−p)

is globally uniformly asymptotically stable for system (6).

The proof is given in Appendix C.

3.2 Stability of the extremum seeking system

Let x∗(γ(t)) be a time-varying extremum point of the
function J(x, γ(t)). By introducing the variables x̃ = x −
x∗(γ(t)) in equations (3) with controls (4), we obtain the
following system:

˙̃xs = c1,sJ(x̃+x∗(γ(t)), γ(t))
√
ωs cos(ωst)

+ c2,s
√
ωs sin(ωst)− ẋ∗

s(γ(t)).
(7)

It is easy to see that system (7) is of the type (1) with
f0(t, x̃) = −ẋ∗

s(γ(t)),

fj(t, x̃) =

{
c1,jk

−1/2
j J(x̃+ x∗(γ(t))ej , for j = 1, n,

c2,jk
−1/2
j ej−n, for j = n+ 1, l,

where l=2n, and em∈Rn denotes the standard unit vector
with non-zero m-th component; uj(t, ωt)= cos

(
ωtk−1

j

)
for
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ẋ = u, (3)

where x∈Rn is the state vector, u∈Rn is the control,
x(t0)=x0∈Rn, t0∈R+. It was shown in Dürr et al. (2013)
that the controls

us = c1,sJ(x, γ(t))
√
ωs cos(ωst) + c2,s

√
ωs sin(ωst) (4)

ensure the practical uniform asymptotic stability of the
point x∗ for constant γ, provided that ωs = ksω, ω > 0,
ks1 �= ks2 for all s1 �= s2, ks ∈ Q++, c1,s, c2,s > 0, s = 1, n,
where Q++ denotes the set of positive rational numbers. In
this section, we will prove the practical uniform asymptotic
stability of the family of sets

Lλ,t = {x ∈ Rn : J(x, γ(t))− J∗(γ(t)) ≤ λ}, t ∈ R+, (5)

with a time-varying function γ(t) and some λ > 0 which
can be chosen arbitrary small under a suitable choice of
the control parameters. First, we will propose asymptotic
stability conditions for a system representing the gradient
flow of the function J . Then we will show that, under
certain assumptions, the trajectories of system (3) with
controls (4) approximate the gradient flow dynamics, and
prove the practical uniform asymptotic stability.

3.1 Stability of the gradient flow

We start with the consideration of a system representing
the gradient flow of J :

ẋs = −cs
∂J(x, γ(t))

∂xs
, s = 1, n, (6)

where cs are some positive constants. In this section, we
will propose several results concerning stability properties
of system (6) under the assumption that ‖γ̇(t)‖ is bounded.
In Theorem 3, we will prove local asymptotic stability
conditions for an arbitrary small neighborhood of the curve
where the function J takes its minimal values, provided
that cs in (6) are large enough. Global asymptotic stability
conditions are given in Theorem 4.
Let us mention that there are several approaches for es-
tablishing stability properties of non-autonomous systems.
In particular, system (6) under a suitable change of vari-
ables can be considered as a special case of systems with
constantly acting perturbations which were studied, e.g.,
in Malkin (1952); Khalil (1996); Savchenko and Ignatyev
(1989). It was proved that the existence of a Lyapunov
function with certain properties for a “non-perturbed” sys-
tem ensures the stability under constantly acting pertur-
bations. Furthermore, stability of the curve x∗(γ(t)) holds
if (6) has a manifold of exponentially stable constant equi-
libria (see Kelemen (1986); Lawrence and Rugh (1990);
Khalil (1996)). The asymptotic stability property was
proved for the case of vanishing inputs, i.e. for ‖γ̇(t)‖ → 0.
In this paper, we exploit some methods used in the above-
mentioned studies for obtaining asymptotic stability con-
ditions for system (6). Note that, in contrast to the above-
mention papers, we do not assume that the velocity of
γ(t) tends to zero, and prove the asymptotic stability of
the family of sets (5).

Theorem 3. Given functions J ∈ C2(Rn × Rm;R), γ ∈
C1(R+;Rm), and a closed bounded domain Γ⊂Rm, let
there exist a function x∗∈C1(Γ;Rn), a constant ∆ > 0,
and functions w11, w12, w2 ∈ K : [0,∆] → R+ such that
the following conditions are satisfied:
C1.1 the curve γ(t)∈Γ for all t≥0, and max

t∈R+
‖γ̇(t)‖≤ν with

some ν≥0;
C1.2 for all x ∈ B∆(x

∗(g)), g ∈ Γ,

w11(‖x− x∗(g)‖) ≤ J(x− x∗(g), g) ≤ w12(‖x− x∗(g)‖),∥∥∥∥
∂J(x− x∗(g), g)

∂x

∥∥∥∥
2

≥ w2(‖x− x∗(g)‖),

C1.3 there are L,H>0, M≥0 such that
∥∥∥∂V (x,g)

∂x
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∥∥∥≤M ,
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∂x2

∥∥∥≤H, for all x∈B∆(x
∗(g)) and for

all g∈Γ, where V (x, g)=J(x+x∗(g))−J∗(g).
Then, for every λ ∈ (0, w11(∆)), there exists a c > 0 such
that the family of sets Lλ,t (5) is locally uniformly asymp-
totically stable for system (6) with min{c1, . . . , cn} > c.

The proof of this theorem is given in Appendix B.
For fixed values of parameters cs in system (6), the above
result can be formulated in the following way.

Corollary 1. Let the conditions of Theorem 3 be satisfied,
and suppose that there exists a λ ∈ (0, w11(∆)) such that
w2

(
w−1

12 (λ)
)
> νM

min{c1,...,cn} . Then the family of sets Lλ,t

is locally uniformly asymptotically stable for system (6).

Requiring additional properties for the cost function, it is
possible to establish global asymptotic stability conditions.

Theorem 4. Given functions J ∈ C2(Rn×Rm;R), γ ∈
C1(R+;Rm), and a closed bounded domain Γ⊂Rm, let
there exist a function x∗ ∈ C1(Γ;Rn) such that the fol-
lowing conditions hold:
C2.1 the curve γ(t)∈Γ for all t≥0, and max

t∈R+
‖γ̇(t)‖≤ν with

some ν≥0;
C2.2 there exist µ1>0, µ2∈[0,∞), p∈[0, 1), and func-
tions w11, w12∈K∞:R+→R+ such that, for all x∈Rn,
g∈Γ, w11(‖x−x∗(g)‖)≤J(x−x∗, g)≤w12(‖x−x∗(g)‖), and

1

µ
1/p
2

∥∥∥∂V (x,g)
∂g

∥∥∥
1/p

≤V (x, g)≤ 1
µ1

∥∥∥∂V (x,g)
∂x

∥∥∥
2

,

where V (x, g)=J(x+x∗(g))−J∗(g).

C2.3 for every compact X⊂Rn, the functions
∥∥∥∂V (x,g)

∂x

∥∥∥,∥∥∥∂2V (x,g)
∂x2

∥∥∥ are bounded for all x∈X ⊂ Rn, g∈Γ.

Then the family of sets Lλ,t with λ=
(

νµ2

µ1 min{c1,...,cn}

) 1
(1−p)

is globally uniformly asymptotically stable for system (6).

The proof is given in Appendix C.

3.2 Stability of the extremum seeking system

Let x∗(γ(t)) be a time-varying extremum point of the
function J(x, γ(t)). By introducing the variables x̃ = x −
x∗(γ(t)) in equations (3) with controls (4), we obtain the
following system:

˙̃xs = c1,sJ(x̃+x∗(γ(t)), γ(t))
√
ωs cos(ωst)

+ c2,s
√
ωs sin(ωst)− ẋ∗

s(γ(t)).
(7)

It is easy to see that system (7) is of the type (1) with
f0(t, x̃) = −ẋ∗

s(γ(t)),

fj(t, x̃) =

{
c1,jk

−1/2
j J(x̃+ x∗(γ(t))ej , for j = 1, n,

c2,jk
−1/2
j ej−n, for j = n+ 1, l,

where l=2n, and em∈Rn denotes the standard unit vector
with non-zero m-th component; uj(t, ωt)= cos

(
ωtk−1

j

)
for
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j=1, n, and uj(t, ωt)= sin
(
ωtk−1

j

)
for j=n+1, l.

To satisfy A1–A4, we need the following requirement:

B1 the functions J(x̃+x∗(γ(t)), γ(t)),
∥∥∥∂J(x̃+x∗(γ(t)),γ(t))

∂x̃

∥∥∥,∥∥∥∂2J(x̃+x∗(γ(t)),γ(t))
∂x̃2

∥∥∥,
∥∥∥∂2J(x̃+x∗(γ(t)),γ(t))

∂x̃∂t

∥∥∥, ‖ẋ∗(γ(t))‖,
‖ẍ∗(γ(t))‖ are bounded on each compact set x∈X⊂Rn,
uniformly in t≥0.
Then observe that the Lie bracket system (2) for (7)
coincides with (B.2) in variables x̄ with cs=

1
2c1,sc2,s,

s=1, n. Besides, if there exists a function w∈K such
that J(x̃+x∗(g))−J∗(g)≥w(‖x̃‖) then, for any λ∈Ew,
L̃λ,t⊆B̄w−1(λ)(0). Thus, Theorems 3,4 together with The-
orem 2 imply practical uniform asymptotic stability (local

or semi-global, respectively) of the family of sets L̃λ,t for
system (7) and, consequently, of the family of sets Lλ,t for
system (3) with controls (4). This result can be formulated
as follows.

Theorem 5. Given J ∈ C2(Rn×Rm;R), γ ∈ C3(R+;Rm),
and a closed bounded domain Γ⊂Rm, let there exist a
function x∗∈C3(Γ;Rn) such that B1, C1.1–C1.3 hold.
Then, for every λ ∈ (0, w11(∆)), there exist cs such that
the family of sets Lλ,t is locally practically uniformly
asymptotically stable for system (3) with controls (4).

Theorem 6. Given J ∈ C2(Rn×Rm;R), γ ∈ C3(R+;Rm),
and a closed bounded domain Γ⊂Rm, let there exist a
function x∗∈C3(Γ;Rn) such that B1, C2.1–C2.3 hold.
Then the family of sets Lλ,t is semi-globally practically
asymptotically stable for system (3) with controls (4),
where λ is given by Theorem 4.

Remark 2. The conditions of the above theorems can be
relaxed for certain classes of costs functions, in particular,
for functions of the form

J(x− ϕ(t), t) =
n∑

s=1

γs(t)Js(xs − ϕs(t)),

under the assumption that J satisfy B1, C1.1-C1.3 (or
C2.1-C2.3) for all x̃ ∈ Rn, t ≥ 0. In this case, ϕs(t)
are allowed to be unbounded: indeed, in the variables
x̃s=xs−ϕs(t), the function J(x̃, t) has the unique constant
extremum point, and system (7) does not depend on ϕ̇i(t).
Besides, the corresponding Lie bracket system has the form

˙̄xs = −csγs(t)
∂Js(x̄s)

∂x̄s
− ϕ̇s(t), s = 1, n.

Using the Lyapunov function V (x̄)=
∑n

s=1(Js(x̄s)−J∗
s )

and taking into account the boundedness of γs(t), we
may obtain asymptotic stability conditions for a time-

invariant compact set L̃λ={x̄∈Rn : V (x̄)≤λ} with some
λ>0. Applying Theorem 2 and returning to the x variable,
we achieve the practical asymptotic stability of a neigh-
borhood of the curve x∗+ϕ(t) for an extremum seeking
system.

Remark 3. As it is common in the extremum seeking
literature (see, e.g, Dürr et al. (2013); Grushkovskaya and
Ebenbauer (2016)), we may introduce a washout filter
G(s) = s/(s+ h), h > 0, in order to improve the behavior
of an extremum seeking system.

4. EXAMPLES

In this section, we consider illustrative examples with
time-varying cost functions which do not satisfy the as-

sumptions made in the publications mentioned in the in-
troduction, and apply our results to a consensus problem.
Example A. The time-varying extremum point of the func-
tion J(x, γ(t)) = (x − ln(1 + t2))4 is not exponentially
stable for system (6).That is why the asymptotic stability
results from Kelemen (1986); Lawrence and Rugh (1990)
are not applicable. Note also that the papers mentioned
in Section 3.1 require the boundedness of γ(t) for all
t ∈ R+. In this example, γ(t) = ln(1 + t2) is unbounded;
however, our asymptotic stability results are applicable,
as it is mentioned in the Remark 2. Fig. 1 illustrates the
behavior of the trajectories of the corresponding extremum
system (3) with c1,1=5, c2,1=1, h=1, ω=50, x(0)=0.5.

Fig. 1. Trajectory of system (3)-(4) for Example A.

Example B. Consider J2(x, γ(t))=x2
1+(2+ sin(0.01t2))x2

+e
− 2

1+0.01t2
x1−x2 . It does not satisfy assumptions of

the papers mentioned in the introduction. In particu-
lar, J2(x, γ(t)) is not the distance function; besides, the
third derivative of the extremum point is unbounded,
while the paper Sahneh et al. (2012) requires bounded-
ness of the first three derivatives of x∗(t). Fig. 2 shows
the corresponding time-plots for solutions of (3) with
c1,i=2, c2,i=1, h=1, ω1=100, ω2=50, x(0)=(−0.5, 0.5).
Example C: Consensus problem. In this example, we show
that the proposed control algorithm can be also applied
for solving the consensus problem for multi-agent systems.
Consider a system consisting of 3 two-dimensional single
integrators (3). Assume that the velocities of agents A and
B can be controlled, while agent C moves with an unknown
velocity v(t)=v21(t)+v22(t)∈[0, ν], ν ∈ [0,∞):

ẋA
i = u1,i, ẋ

B
i = u2,i, ẋ

C
i = vi(t), i = 1, 2. (8)

Moreover, assume that agent A can measure the squared
distance to agent C, and agent B – to agent A. Let us
introduce the cost functions J1(x

A, xC) = ‖xA − xC‖2,

Fig. 2. Trajectories of system (3)-(4) for Example B.
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Fig. 3. Trajectories of the agents for Example C.

J2(x
A, xB)=‖xA−xB‖2, and the controls of type (4). For

the corresponding Lie bracket system, consider the Lya-
punov function V (x̄A, x̄B , x̄C)=J1(x̄

A, x̄C)+J2(x̄
A, x̄B).

Its time-derivative along the trajectories of (8) can

be estimated as V̇≤−µV+νV 1/2, where µ depends on
the coefficients of (4). Similarly to the proof of Theo-
rem 4, we conclude that the family of sets Lλ,t={‖xA −
xB‖2+‖xA−xC‖2≤λ} with λ=νµ−2 is semi-globally prac-
tically asymptotically stable for system (8). For the
simulation (see Fig. 3), we use v1(t)=0.15t+sin(0.5t),
v2(t)=− sin(0.5t), ω1=100, ω2=150, ω2=120, ω4=180,
c1,i=2, c2,i=0.5, i=1, 4.

5. CONCLUSIONS

In this paper, we have studied the extremum seeking prob-
lem for a class of time-varying cost functions J(x(t), γ(t)).
The proposed control depends only on the values of the
cost function, so that it can be used in situations when
the analytical expressions of the functions J and γ are un-
known, and gradient-based algorithms are not applicable.
We have extended the Lie bracket approximations method
and have shown that it can be applied to a family of one-
parameter sets. It has been proved that, under certain
assumptions, the asymptotic stability of a family of sets
Lt for the gradient system implies practical asymptotic
stability of Lt for the extremum seeking system. More-
over, we have shown that the trajectories of the system
converge to a neighborhood of x∗(γ(t)) and estimated
the radius of such a neighborhood. Note that x∗(γ(t))
is not a solution of a system representing the gradient
flow, in general, however, it is the equilibrium for each
fixed value of γ. Let us emphasize that, to the best of
our knowledge, most of the existing results on stability of
such non-autonomous systems either give conditions for
the stability (but not the asymptotic stability), or require
that lim

t→∞
‖γ̇(t)‖ → 0 for the local attractivity property.

In contrast to these approaches, we introduce constructive
local and global asymptotic stability conditions for families
of invariant sets given by the level sets of a Lyapunov
function under the assumption that ‖γ̇(t)‖ is bounded,
but not necessary tends to zero. Although these results
are proved for gradient systems, they can also be extended
for obtaining asymptotic stability conditions for families of
invariant sets of general non-autonomous systems.
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is not a solution of a system representing the gradient
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‖γ̇(t)‖ → 0 for the local attractivity property.
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of invariant sets given by the level sets of a Lyapunov
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Appendix A. PROOF OF THEOREM 2

The proof is similar to the proof of (Dürr et al., 2013,
Theorem 2), (Grushkovskaya and Ebenbauer, 2016, Theo-
rem 7). Due to the lack of space, we present here the proof
of semi-global practical uniform asymptotic stability only.
Practical uniform stability
Let us show that the family of sets Lt is practically
uniformly stable for system (1). For an arbitrary ε > 0,
let c1 ∈ (0, ε). From the assumptions of the theorem,
the family of sets Lt is uniformly stable for system (2).
It means that there exists a δ > 0 such that, for all
t0 ∈ R+, if x̄0 ∈ Bδ(Lt0) then x̄(t) ∈ Bc1(Lt), t ∈ [t0,∞).
Besides, from the global uniform attractiveness, for every
c2 ∈ (0, δ), there exists tf > 0 such that, for all t0 ∈ R+:

x̄0 ∈ Bδ(Lt0) ⇒ x̄(t) ∈ Bc2(Lt), t ∈ [t0 + tf ,∞). (A.1)

Let ξ = min{ε− c1, δ− c2}, and I1 = Bδ(S) ⊇ Bδ(Lt0) for
all t0 ∈ R+. Since S is compact and the family of sets Lt

is globally uniformly asymptotically stable, the solutions
of system (2) with initial conditions from I1 are uniformly
bounded, so we may apply Theorem 1 which yields the
existence of such an ω0 that, for all ω > ω0 and all
x0 ∈ Bδ(Lt0), ‖x(t)− x̄(t)‖ < ξ, t ∈ [t0, t0 + tf ]. Then, for
each t ∈ [t0, t0+ tf ], for all ω > ω0, x

0 ∈ Bδ(Lt0) ⇒ x(t) ∈
Bε(Lt), t ∈ [t0, t0 + tf ] and, moreover, estimate (A.1)
implies that x(t0 + tf ) ∈ Bδ(Lt0+tf ). Therefore, repeating
the above procedure with the other solution of (2) through
x̄(t0 + tf ) with the same choice of parameters, we obtain
the stability property: for all t0 ∈ R+, for all ω > ω0,

x0 ∈ Bδ(Lt0) ⇒ x(t) ∈ Bε(Lt), t ∈ [t0,∞).

Practical uniform boundedness
Similarly, we prove the practical uniform boundedness of
the solutions of system (1). Let δ>0 and c1∈(0, δ). From
the global uniform asymptotic stability of the family of
sets Lt for (2), there exist c2>0, tf>0 such that, for all
t0∈R+:

x̄0 ∈ Bδ(Lt0) ⇒ x̄(t) ∈ Bc2(Lt), t ∈ [t0,∞),

and x̄(t) ∈ Bc1(Lt), t ∈ [t0 + tf ,∞)

Put ε>c2, ξ=min{δ−c1, ε−c2}, I1=Bδ(S). From Theo-
rem 1, there exists an ω0>0 such that, for all ω>ω0,
x0∈Bδ(Lt0), we have ‖x(t)−x̄(t)‖<ξ, t∈[t0, t0+tf ]. Thus,
if x0∈Bδ(Lt0) then x(t)∈Bε(Lt), t∈[t0, tf ], and x(t0+tf ) ∈
Bδ(Lt0+tf ). Repeating the same procedure for the other
solution of (2) through x̄(t0+tf ), we obtain the required
property.
Practical uniform attractivity
Let δ, ε > 0. Since Lt is practically uniformly stable, there
exist c1 > 0, ω0,1 > 0, such that, for all t0 ∈ R+, ω > ω0,1,

x0 ∈ Bc1(Lt0) ⇒ x(t) ∈ Bε(Lt), t ∈ [t0,∞). (A.2)

Let ε1∈(0, c1). Due to the uniform attractiveness of Lt for
system (2), there exists a tf > 0 such that, for all t0 ∈ R+:

x̄0 ∈ Bδ(Lt0) ⇒ x̄(t) ∈ Bε1(Lt), t ∈ [t0 + tf ,∞). (A.3)

Besides, the uniform boundedness yields the existence
of an A>0 such that, for every t0∈R+, if x̄0∈Bδ(Lt0)

then x̄(t)∈BA(Lt) for all t∈[t0,∞). Again, applying Theo-
rem 1 with I1=Bδ(S), ξ=c1−ε1, we conclude that there
is an ω0,2>0 such that for all ω>ω0,2, x0∈Bδ(Lt0),
we have ‖x(t)−x̄(t)‖<ξ, t∈[t0, t0+tf ]. Taking into ac-
count (A.3) we conclude that, for all t0∈R+, ω>ω0,2,
if x0∈Bδ(Lt0) then x(t0+tf )∈Bc1(Lt0+tf ). Combining the
last estimate with (A.2) and choosing ω0=max{ω0,1, ω0,2},
we complete the proof of the practical uniform attractivity:
for all t0∈R+, ω>ω0, if x

0∈Bδ(Lt0) then x(t)∈Bε(Lt), for
all t ∈ [t0 + tf ,∞).

Appendix B. PROOF OF THEOREM 3

Preliminary constructions
Condition C1.2 implies that, for each g∈Γ, x∗(g) is the

unique solution of the equations ∂J(x,g)
∂xs

=0, s=1, n, con-
tinuously depending on g. With the new variables

x̃s = xs − x∗
s(γ(t)), s = 1, n, (B.1)

system (6) can be represented in the following form:

˙̃xs = −cs
∂J(x̃+ x∗(γ(t)), γ(t))

∂x̃s
− ẋ∗

s, s = 1, n, (B.2)

where ẋ∗
s =

∑m
j=1

∂x∗
s(γ(t))
∂γj

γ̇j(t).

The equation ∂J(x̃+x∗(γ(t)),γ(t))
∂x̃ =0 has the unique solution

x̃∗=0 for all t∈R+, which is, in general, not the solution
of (B.2). For the further study, we will use the argumenta-
tion similar to the proof of the stability under constantly
acting perturbations in Malkin (1952).
Consider the function

V (x̃, γ(t)) = J(x̃+ x∗(γ(t)), γ(t))− J∗(γ(t)), (B.3)

which is positive definite and strictly radially increasing
because of properties of J and J∗. Moreover, for each
constant value of γ(t) = g ∈ Γ, the time-derivative V

′

of the function (B.3) along the trajectories of system

˙̃xs = −∂J(x̃+ x∗(g), g)

∂x̃

is negative-definite since V
′
= −

∑n
j=1

(
∂J(x̃+x∗(g),g)

∂x̃s

)2

.

From C1.2, V (x̃, γ(t)) ≥ w11(‖x̃‖) for all t ∈ R+, and

V
′ ≤ −w2(‖x̃‖) for all t ∈ R+. Note that due to the

properties of the functions V , w11, w12, Ew11
⊆ EV ⊆ Ew12

.
For ∆ defined from the conditions of the theorem, and an
arbitrary positive λ ∈ (0, w11(∆)), consider

L̃λ,t = {x̃ ∈ Rn : V (x̃, γ(t)) ≤ λ},
and its boundary ∂L̃λ,t={x̃∈Rn : V (x̃, γ(t))=λ}. Defining

the positive constants ρ1=w−1
12 (λ), ρ2=w−1

11 (λ)<∆, we get

ρ1 ≤ ‖x̃‖ ≤ ρ2 for all x̃ ∈ ∂L̃λ,t.

Let α1 = inf‖x̃‖∈[ρ1,ρ2] w2(‖x̃‖) = w2(ρ1). Since w2 ∈ K is
positive definite and ρ1 > 0, we have α1 > 0. Thus,

V
′
≤ −cα1 for all x̃ ∈ ∂L̃λ,t, t ∈ R+,

where c = min{c1, . . . , cn}. Furthermore, the time deriva-
tive of the function (B.3) along the trajectories of sys-
tem (B.2) can be estimated in the following way:

V̇ =

n∑
s=1

∂J

∂x̃s

(
˙̃xs + ẋ∗

s

)
+

∂J

∂γ
γ̇ − ∂J∗

∂γ
γ̇

= V
′
+

∂(J − J∗)

∂γ
γ̇

≤ −cα1 + νM for all x̃ ∈ ∂L̃λ,t, t ∈ R+,

(B.4)
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where M is defined from C1.3. Taking c > c(1) = Mνα−1,
we deduce from (B.4) that

V̇ ≤ −c(1)α1 + νM < 0 for all x̃ ∈ ∂L̃λ,t, t ∈ R+. (B.5)

The next step is to prove local uniform asymptotic stability

of the family of sets L̃λ,t for system (B.2) with such

parameters that min{c1, . . . , cn} > c(1). Let t0 ∈ R+ be an
arbitrary fixed number, and denote x̃0 = x0 + x∗(γ(t0)).
Invariance
Let us prove by contradiction the invariance of the fam-

ily of sets L̃λ,t for system (B.2). For x̃0 such that
V (x̃0, γ(t0))≤λ, suppose that there exists a t1 such that

x̃(t1) is not in the set L̃λ,t1 , i.e. V (x̃(t1), γ(t1))>λ. By the
continuity of V , there exist τ1∈[t0, t1), τ2∈(τ1, t1] such that
V (x̃(τ1), γ(τ1))=λ, and V (x̃(t), γ(t))>λ for all t∈(τ1, τ2],
which implies V̇ ≥ 0 for all x̃ ∈ ∂Lλ,τ . Comparing this
inequality with (B.5), we get the contradiction.
Uniform stability
For an arbitrary ε > 0, let ε∗∈

(
0,min

{
ε, 2α̂

H ,
})

, and

δ∈
(
0,min

{
ε∗, 1

L

(
ε∗α̂− 1

2ε
∗2H

)
,

∆− w−1
11 (λ),

1
L (w11(∆)− λ)

})
,

where α̂=w2(w
−1
12 (λ)), and the constants L,H are given by

C1.3. Consider the solution of (B.2) with the initial con-

dition x̃0∈Bδ(L̃λ,t0), and define λ̂=sup
x̃∈B̄δ(L̃λ,t0

)
V (x̃, t0).

The case λ̂∈(0, λ] has been considered in the previous step.

Assume now that λ̂∈(λ,∞). To estimate the value of λ̂,

consider ξ1∈B̄δ(L̃λ,t0) such that V (ξ1, t0)=λ̂, and ξ2 such
that V (ξ2, t0)=λ. From the mean value theorem,

V (ξ1, t0)− V (ξ2, t0) =
∂V

∂x̃
(ξ2 + θ(ξ1 − ξ2))(ξ1 − ξ2)

with some θ ∈ (0, 1). Note that ‖ξ2+ θ(ξ1− ξ2)‖ ≤ ‖ξ2‖+
‖ξ1 − ξ2‖ ≤ w−1

11 (λ) + δ < ∆, therefore, λ̂ − λ < Lδ. Due

to the choice of δ, w−1
11 (λ̂) ≤ ∆, and

λ̂ < λ+ ε∗α̂− 1
2ε

∗2H. (B.6)

Observe that, for each l∈[λ, λ̂], ‖x̃‖≥w−1
12 (l)≥ρ1, for all

x̃∈∂L̃l,t, t∈R+, and ρ̂2=w−1
11 (λ̂)≤∆. Therefore, we can

conclude that w2(‖x̃‖)≥α1, for all x̃∈L̃λ̂
λ,t, t∈R+, where

L̃λ̂
λ,t={x̃∈Rn:V (x̃, γ(t))∈[λ, λ̂]}, and inequality (B.5) holds

for all x̃∈L̃λ̂
λ,t, t∈R+. Arguing similarly to the prove of the

invariance, we receive: if x̃0∈Bδ(L̃λ,t0), then x̃(t)∈L̃λ̂,t, for

all t≥t0, and ‖x̃(t)‖≤w−1
11 (λ̂), for all x̃∈L̃λ̂,t, t≥t0.

The next step is to prove that x̃(t) ∈ Bε(L̃λ,t) for all t ≥ t0.
Fix an arbitrary tf ∈ (t0,∞). One can see that it is enough

to show that for all x̃∈∂L̃λ̂,tf
there exists x̃1∈∂L̃λ,tf such

that ‖x̃−x̃1‖<ε. For x̃f such that V (x̃f , tf )=λ̂, let

x̃1 = x̃f − ε∗
∇V (x̃f , tf )

‖∇V (x̃f , tf )‖
,

where ∇V (x̃f , tf ) denotes the gradient vector of the func-
tion V (x̃, tf ) calculated at xf . Obviously, ‖x̃1−x̃f‖<ε. Let
us show that V (x̃1, tf )≤λ. By using the Taylor formula
with the Lagrange form of the reminder, we receive

V (x̃1, tf ) = V (x̃f , tf ) +
∂V

∂x̃
(x̃f )(x̃1 − x̃f ) +R(x̃1, x̃f )

= λ̂− ε∗‖∇V (x̃f , tf )‖+R(x̃1, x̃f ),

where R(x̃1, x̃f )= 1
2

∑n
i,j=1

∂2V
∂x̃i∂x̃j

(x̃f )(x̃1
i−x̃f

i )(x̃
1
j−x̃f

j ).

Note that a similar technique based on the second-order
expansion of a Lyapunov function was used, e.g., in Zuyev
(2016); Zuyev et al. (2016). From the conditions of the
theorem and from estimate (B.6),

V (x̃1, tf ) ≤ λ̂− ε∗α̂+ 1
2ε

∗2H < λ,

that proves the stability property.
Uniform attraction
Let δ be defined as in the previous step, and x̃0∈Bδ(Lλ,t0).
Then there is a µ > 0 such that

V̇ ≤ −µ2 < 0 for x̃ ∈ L̃λ1

λ,t, t ≥ t0, (B.7)

where L̃λ1

λ,t={x̃∈Rn : V (x̃, γ(t))∈[λ, λ1]}, and λ1=V (x0, t0).

Assume that x̃(t)∈L̃λ1

λ,t for all t≥t0. Then, from (B.7):

V (x̃(t), γ(t)) ≡ V (x̃0, γ(t0)) +

∫ t

t0

dV (x̃(s), γ(s))

ds
ds

≤ V (x̃0, γ(t0))− µ2
2(t− t0).

It is easy to see that the left-hand side of the above
inequality is positive for all t ≥ t0 while its right-
hand side becomes negative for t large enough, so we
get a contradiction. Therefore, there exists a t1>t0 such

that x̃(t1)∈Lλ,t1 . Since V̇
∣∣∣
x̃∈∂Lλ,t

<0, we conclude that

x̃(t)∈Lλ,t for all t∈[t1,∞). Taking into account (B.1), we
obtain the statement of the theorem.

Appendix C. PROOF OF THEOREM 4

From the conditions C2.1 and C2.2, the time-derivative of
function (B.3) along the trajectories of system (B.2) can

be estimated as V̇≤−cµ1V+νµ2V
p for all t∈R+, where

c = min{c1, . . . , cn}. Thus, V̇ < 0 for all x̃, t such that
V (x̃, t) > λ. Arguing similarly to the proof of Theorem 3
and taking into account condition C2.3, we conclude that

the family of sets L̃λ,t is uniformly stable for system (6).
Furthermore, the solution of the corresponding comparison
equation V̇ = −cµ1V + νµ2V

p with V (t0) = V 0 =
J(x0, γ(t0))− J∗(γ(t0)) is the function

V̂ (t) =
(
λ1−p

(
1− e−κ(t−t0)

)
+ V 1−p

0 e−κ(t−t0)
)1/(1−p)

,

with κ=cµ1(1−p), so it can be shown that the family of

sets L̃λ,t is invariant. Furthermore, C2.3 yields that for all
t0∈R+, the solutions of (B.2) are uniformly bounded:

‖x̃(t)‖ ≤ w−1(V̂ ) ≤ w−1
(
λ1−p + V 1−p

0

)
, t ≥ t0. (C.1)

Putting for every ε>0 and for t0∈R+ such that V 0 =
V (x̃(t0), t0) > λ,

t1 ≥ 1

κ
ln

(
w12(‖x0‖)1−p − λ1−p

(λ+ ε)1−p − λ1−p

)
,

we conclude that the corresponding solution x(t) ∈ L̃λ+ε,t

for all t ∈ [t0 + t1,∞), so the solutions of system (B.2)
with arbitrary initial conditions reach an arbitrary small

neighborhood of the the family of sets L̃λ,t in a finite time.
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