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A B S T R A C T

Alzheimer's disease (AD) is the most common dementia with dramatic consequences. The research in structural
and functional neuroimaging showed altered brain connectivity in AD. In this study, we investigated the whole-
brain resting state functional connectivity (FC) of the subjects with preclinical Alzheimer's disease (PAD), mild
cognitive impairment due to AD (MCI) and mild dementia due to Alzheimer's disease (AD), the impact of APOE4
carriership, as well as in relation to variations in core AD CSF biomarkers. The synchronization in the whole-
brain was monotonously decreasing during the course of the disease progression. Furthermore, in AD patients we
found widespread significant decreases in functional connectivity (FC) strengths particularly in the brain regions
with high global connectivity. We employed a whole-brain computational modeling approach to study the
mechanisms underlying these alterations. To characterize the causal interactions between brain regions, we
estimated the effective connectivity (EC) in the model. We found that the significant EC differences in AD were
primarily located in left temporal lobe. Then, we systematically manipulated the underlying dynamics of the
model to investigate simulated changes in FC based on the healthy control subjects. Furthermore, we found
distinct patterns involving CSF biomarkers of amyloid-beta (Aβ1−42) total tau (t-tau) and phosphorylated tau
(p-tau). CSF Aβ1−42 was associated to the contrast between healthy control subjects and clinical groups.
Nevertheless, tau CSF biomarkers were associated to the variability in whole-brain synchronization and sensory
integration regions. These associations were robust across clinical groups, unlike the associations that were
found for CSF Aβ1−42. APOE4 carriership showed no significant correlations with the connectivity measures.

1. Introduction

Alzheimer's disease (AD), being the most prevalent dementia, be-
came a major concern in developed countries as a consequence of in-
creasing life expectancy (Blennow et al., 2006; Plassman et al., 2007).
During the past two decades advancements in genetics, neurobiology
and neuroimaging techniques allowed researchers to study the me-
chanisms behind the underlying causes of AD. In particular, resting
state functional Magnetic Resonance Imaging (rs-fMRI) became a
widely used tool to study the alterations in brain activity of AD patients

as well as many other clinical conditions (Greicius, 2008). Furthermore,
cerebrospinal fluid (CSF) biomarkers have been shown to serve as a
proxy to monitor in vivo the neuropathological hallmarks of AD,
namely amyloid-β and tau tangles (José Luis Molinuevo et al., 2014).

Various rs-fMRI studies showed altered functional connectivity in
AD (Brier et al., 2014; Dennis and Thompson, 2014; Filippi and Agosta,
2011). The studies that used seed-based approach showed widespread
decreases in hippocampal (Allen et al., 2007; W. Li et al., 2012; Wang
et al., 2006) and posterior cingulate functional connectivity (Bai et al.,
2011; Zhang et al., 2009) in AD. In addition, some of these studies
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reported increased FC between prefrontal cortex and hippocampus
(Wang et al., 2006), and between prefrontal cortex and posterior cin-
gulate (Bai et al., 2011; Zhang et al., 2009) in AD. The increased con-
nectivity in prefrontal cortex was interpreted as a compensation me-
chanism during the initial stages of the disease (Dickerson et al., 2004;
Filippi and Agosta, 2011; Sanz-Arigita et al., 2010). The studies based
on independent component analysis (ICA) showed decreased activation
of default mode network (DMN) (Agosta et al., 2012; Koch et al., 2010;
Qi et al., 2010; Sorg et al., 2007) and increased activation of fronto-
parietal network (FPN) (Agosta et al., 2012). Various other studies
found impaired deactivation of DMN during task in AD and dementia
(Celone et al., 2006; Greicius et al., 2004; Lustig et al., 2003; Petrella
et al., 2007; Rombouts et al., 2009, 2005).

Another powerful approach to study AD comprised the relationship
between CSF biomarkers and the progression of AD. For example,
amyloid-β plaques are known to accumulate decades before the onset of
the first disease symptoms in individuals with prolonged phase of
“preclinical AD” (Price and Morris, 1999). The analysis of CSF Aβ1−42
concentrations has been shown to closely correlate with cerebral pa-
thology. Furthermore, to identify the functional manifestations of CSF
biomarkers, rs-fMRI has been proposed as a promising approach
(Barkhof et al., 2014). Several studies showed an overlap between the
spatial pattern of the DMN and that of Aβ1–42 accumulation that
happens in this preclinical phase of AD (Buckner et al., 2008; Hedden
et al., 2009). Furthermore, DMN connectivity was decreased in cogni-
tively normal individuals with augmented cerebral amyloid load
(Sheline, Raichle, et al., 2010b; Hedden et al., 2009; Oh et al., 2011). In
addition to Aβ1−42, altered functional connectivity in the DMN have
also been associated to abnormal levels of phosphorylated Tau181 (p-
tau) in CSF (Wang et al., 2013) as well as the ratio Aβ1–42/p-tau and
the AD CSF Index (Jose Luis Molinuevo et al., 2013), both of which
constitute well-established markers of disease progression (X. Li et al.,
2013). Reduced DMN functional connectivity has also been reported in
amyloid-free carriers of at least one copy of the APOE4 allele, which is
the strongest genetic risk factor for AD (Sheline, Morris, et al., 2010a).
These findings suggested that differences in functional connectivity
might even precede amyloid deposition (Sheline and Raichle, 2013).

Despite robust findings addressing altered DMN connectivity in AD,
the mechanisms behind this alteration are not clear. Furthermore,
dysfunction of DMN is the most common finding in many other mental
disorders (Broyd et al., 2009). Therefore, it is crucial to understand the
relationship between structure, function and CSF biomarkers in AD
(Ramirez et al., 2014; Filippi and Agosta, 2011).

In this study, we investigated the rs-FC alterations in preclinical
Alzheimer's disease (PAD), mild cognitive impairment due to AD (MCI)
and mild dementia due to Alzheimer's disease (AD). First, we studied
the whole-brain connectivity in each group based on the fluctuations in
global synchronization level between all brain regions. Then, to un-
derstand the role of distinct brain regions, we characterized the rs-FC of
each region to the rest of the brain by adapting a previously employed
technique to parcellated data (Cole et al., 2010). Moreover, we pro-
posed whole-brain computational model to provide mechanistic un-
derstanding of the connectivity alterations in each group. We per-
formed two experiments using the model: First, to understand the role
of long-range interactions between regions on the rs-FC alterations in
clinical groups, we estimated the effective connectivity in the model.
Effective connectivity (EC) refers to the optimal connection strengths
between the regions in the model that generate the observed FCs.
Second, to test whether a global shift in the optimal dynamics explains
the rs-FC alterations, we investigated the predicted changes in rs-FC by
manipulating the model parameters in healthy control subjects (Fig. 1).
Furthermore, we studied the association between core AD CSF bio-
markers and described connectivity measures.

2. Materials and methods

2.1. Subjects

A total of 109 participants (58 HC, 12 PAD, 23 MCI and 16 AD) were
recruited at the Alzheimer's disease and other cognitive disorders unit,
from the Hospital Clinic of Barcelona. All subjects underwent clinical
and neuropsychological assessment, MRI scanning and were submitted
to a lumbar puncture to quantify the content of Aβ1–42, p-tau and t-tau
in CSF. CSF biomarker quantitation was done at the local laboratory by
means of ELISA (Enzyme-Linked ImmunoSorbent Assay kits,
Innogenetics, Ghent, Belgium). An interdisciplinary clinical committee
formed by two neurologists and one neuropsychologist established the
diagnoses. HC and PAD presented no evidence of cognitive impairment
on any of the administered neuropsychological tests, but PAD presented
an abnormal level of CSF Aβ1–42 (below 500 pg/ml). MCI and AD
presented signs of dementia. MCI patients had an objective memory
deficit, defined as an abnormal score on the total recall measure of the
Free and Cued Selective Reminding Test (FCRST) (over 1.5 × standard
deviation), impairment on one or more of the other cognitive tests or
preserved activities of daily living, as measured by the Functional
Activities Questionnaire (FAQ score < 6). The NINCDS-ADRDA cri-
teria were applied for probable AD diagnosis (Jack et al., 2011), taking
into account clinical information and objective measures derived from
the FAQ and neuropsychological results. AD patients were all in the
mild stages of the disease (Global Deterioration Scale = 4). Diagnostic
classification was made independent of CSF results. The local ethics
committee approved the study and all participants gave written in-
formed consent to participate in the study. Genomic DNA was extracted
from peripheral blood of probands using the QIAamp DNA blood
minikit (Qiagen AG, Basel, Switzerland). Apolipoprotein E genotyping
was performed by polymerase chain reaction amplification and HhaI
restriction enzyme digestion. Average demographic characteristics of
the four diagnostic groups are shown in Table 1.

2.2. Image acquisition and preprocessing

Subjects were examined on a 3 T MRI scanner (Magnetom Trio Tim,
Siemens, Erlangen, Germany) at the image core facilities of IDIBAPS
(Barcelona, Spain). MRI session included a high-resolution three-di-
mensional structural T1-weighted image (sagittal MPRAGE;
TR = 2300 ms, TE = 2.98 ms; matrix size = 256 × 256 × 240; iso-
metric voxel 1 × 1 × 1 mm3), a 10 min resting state fMRI (rs-fMRI;
300 volumes, TR = 2000 ms, TE = 16 ms, 128 × 128 × 40 matrix,
voxel size = 1.72 × 1.72 × 3 mm3) and two sets of diffusion weighted
images (DWI; 30 no-collinear directions with a b value of 1000 s/mm2

and one volume with a b value of 0; TR = 7700 ms, TE = 89 ms; ma-
trix size = 122 × 122 × 60; voxel size 2.05 × 2.05 × 2 mm3).

The pre-processing pipeline of rs-fMRI consisted in the slice-timing
correction, the realignment and re-slice, smoothing with a Gaussian
kernel (FWHM= 5 mm), second order de-trending and regressing out
Volterra expanded parameters of movement (24 parameters), mean
white matter (WM) signal, mean CSF signal and nulling regressors for
bad volumes (Lemieux et al., 2007). Global signal regression (GSR) was
not performed, because the known issues about GSR (Murphy et al.,
2009) have a prominent impact on the analysis of whole-brain con-
nectivity (Yang et al., 2014). Movement and other nuisance regressions
were performed to alleviate the global artifacts. The quality criteria to
consider a volume wrong and to override it by a nulling regressor, was
that its correlation coefficient (cc) with the mean image of its series
were beyond three standard deviations (cc < 0.991) from the mean cc
of all the images from all subjects to their corresponding mean image
(mean cc = 0.995). No subjects presented> 15% of bad volumes,
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being the average percentage of bad volumes of 1.6% and the standard
deviation of 3.7%. To obtain the time series of each region from the
Anatomical Automatic Labeling (AAL) atlas (Tzourio-Mazoyer et al.,
2002), AAL atlas was adapted to every subject native space by co-re-
gistering it to the T1 structural image by mean of Advanced Normal-
ization Tools (ANTs; UPENN, UVA and UIowa, USA; http://stnava.
github.io/ANTs/). We kept the data in native space, because bringing
the data to standard space slightly alters the data by interpolations.
Moreover, we did not perform a voxel-wise analysis, which would re-
quire spatially normalized images. AAL maps in native space were re-
sliced to fMRI resolution using nearest neighbor interpolation and

masked with the gray mater (GM) mask. GM mask was constructed for
every subject from the tissue probability maps resulted from segmen-
tation of T1 images. The mask was formed by those voxels whose
probability of belonging to GM was bigger than the probability of be-
longing to any other tissue. GM masks were dilated one voxel to include
edges and to fill noise-related small gaps and, finally, resliced to fMRI
resolution. Time series were obtained by averaging the fMRI signal in
the each area of the GM-masked AAL atlas in native space (Tzourio-
Mazoyer et al., 2002). The software used for the whole fMRI pre-pro-
cessing, apart from the above mentioned ANTs, was a homemade
MATLAB (Mathworks, Sherborn, MA, USA) scripts mostly formed by
functions from SPM package (Wellcome Trust Center for Neuroimaging;
UCL, UK; http://www.fil.ion.ucl.ac.uk/spm/).

DWI were first corrected for eddy current distortions using FMRIB
Software Library (FSL) package (Jenkinson et al., 2012). Data was de-
noised using the overcomplete local principal component analysis
(PCA) method described in (Manjón et al., 2013). Similarly, T1-
weighted images were denoised using a non-local mean filter (Coupe
et al., 2008) and then corrected for the usual acquisition bias with the
N4 method from ANTs package (Tustison et al., 2010). Anatomical
images were then segmented with VBM8 toolbox (Ashburner and
Friston, 2000) to create GM, WM and CSF probabilistic maps. Bias-
corrected T1 images were then co-registered to the non-gradient dif-
fusion image and to the MNI template using ANT's (Avants et al., 2011).
Brain regions from AAL template (Tzourio-Mazoyer et al., 2002) were
then resampled to the diffusion space of each subject. Finally, FSL's
Bedpostx and Probtrackx tractography was performed between AAL
regions using default parameters. Cerebellum was not considered re-
sulting in a 90 × 90 structural connectivity matrix.

Fig. 1. Overview of the model. Top panel illustrates the optimization of the effective connectivity (EC). Middle panel illustrates Hopf normal model. Bottom panel illustrates the effect of
local bifurcation parameter (a) and the overview of the computational experiment.

Table 1
Demographics.

HC PAD MCI AD

Age 60.72 (6.99) 69.00
(7.62)

69.73 (7.77) 65.00 (9.98)

Sex 37 (M), 20
(F)

9 (M), 3 (F) 14 (M), 9 (F) 9 (M), 7 (F)

APOE careers 0.15 0.42 0.52 0.50
CSF Biomarker Index 0.44 (0.26) 1.09 (0.55) 1.50 (0.42) 1.52 (0.43)
FR 27.23 (6.92) 21.25

(6.59)
8.95 (7.14) 6.23 (4.04)

TR 43.14 (4.44) 38.42
(7.06)

21.77
(12.95)

18.69
(12.48)

FDR 10.43 (2.34) 8.58 (3.18) 2.55 (3.20) 2.00 (2.52)
TDR 14.84 (1.26) 13.33

(2.46)
6.32 (5.25) 5.69 (4.87)

Key: AD, Alzheimer's Disease; HC, healthy controls; PAD, preclinical Alzheimer's disease;
MCI, mild cognitive impairment; APOE, apolipoprotein E allele; CSF, cerebrospinal fluid;
FR, free recall; TR, total recall; FDR, free differed recall; TDR, total differed recall.
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2.3. Whole-brain connectivity measures

We quantified the measure of whole-brain connectivity based on
level of synchronization in the BOLD time series of each group. Hilbert
transform converts the narrowband signal as a(t) = A(t)cos(φ(t)),
where A(t) is the instantaneous amplitude (or envelope), and A(t), and
φ(t) is the instantaneous phase. The first and last 20 s (10 TR) of the
transformed BOLD signal was then removed. The global coherence and
metastability of the time-series were computed based on the Kuramoto
Order Parameter (KOP) (Kuramoto, 1986; Shanahan, 2010; Cabral
et al., 2012; Hellyer et al., 2014): = ∑ =

K t iφ t( ) exp( ( ))N j
N

j
1

1 , where N is
the number of ROIs and φ(t) is the instantaneous phase of each region
estimated using Hilbert Transform. The temporal average of Kuramoto
Order Parameter defined as the coherence (mean synchronization),
whereas the standard deviation of Kuramoto Order Parameter defined
as the metastability (i.e. the variation in synchronization over time).

Since all the analyses relies on the choice of narrowband, to test the
robustness of the proposed measures across frequency bands, we esti-
mated the group differences in coherence and metastability in 7 nar-
rowbands with 0.03 Hz bandwidth and frequency onsets varying be-
tween 0.01 Hz and 0.07 Hz (one-way ANOVA). We found significant
group differences for both measures in frequency bands between onsets
of 0.03 and 0.07 (i.e. 0.03–0.07 Hz to 0.07–0.1 Hz). The differences
were significant except 0.01–0.04 Hz narrowband (Supplementary
Fig. 1). Due to high computational demand of the modeling framework,
for the rest of the analyses we focused on 0.06–0.09 Hz narrowband in
which the group differences were high for both coherence and me-
tastability. Furthermore, the 0.06 Hz frequency onset is also consistent
with a previous study that showed the highest discriminative power for
classification of MCI and AD was achieved between 0.054 and 0.068 Hz
range (Wee et al., 2012). An alternative approach to define the nar-
rowband would be to choose 0.04–0.07 Hz range, in which the BOLD
signal is relatively less affected by known artifacts (Glerean et al.,
2012). We repeated the group comparison and CSF biomarker corre-
lation analyses based on whole-brain and FC (Supplementary Fig. 2–3).
Most of the results remained unchanged when 0.04–0.07 Hz narrow-
band was used with some exceptions: group differences in coherence
was insignificant after regressing out age, group differences in FC be-
tween AD-HC were more symmetric across hemispheres (Supplemen-
tary Fig. 2), and CSF biomarker correlations were absent in right pre-
frontal cortex (Supplementary Fig. 3).

The FC was computed as the Pearson's correlation between the time-
series of different brain regions. Then, as a measure of regional con-
nectivity, we used functional connectivity (FC) strength, which was
calculated as the sum of FCs of each region to the rest of the regions.
Previously global brain connectivity (GBC) was proposed to measure
the regional variations in FC (Cole et al., 2010). Here, we preferred the
term FC strength, used in graph theory, to emphasize that the measure
was based on parcellated data.

2.4. Computational model

We modeled the whole-brain rs-fMRI BOLD signals using 78 nodes,
excluding subcortical regions. The role of subcortical regions in whole-
brain computational models is not well studied and subcortical regions
are often excluded in these studies. The list of the regions and ab-
breviations were provided in Supplementary Table 1. Each node was
coupled with each other via effective connectivity (EC) matrix. We
described the local dynamics of each individual node using normal form
of a supercritical Hopf bifurcation. The advantage of this model is that
it allows transitions between asynchronous noise activity and oscilla-
tions. Where ω is the intrinsic frequency of each node, a is the local
bifurcation parameter, η is additive Gaussian noise with standard de-
viation β, the temporal evolution of the activity, z, in node j is given in
complex domain as:

= + − +
dz
dt

a iω z βη t[ | |] ( )j
j j j j

2

and,

= = +z ρ e x iyj j
iθ

j j
j

This system shows a supercritical bifurcation at aj = 0. Being spe-
cific, if aj is smaller than 0, the local dynamics has a stable fixed point at
zj = 0, and for aj values larger than 0, there exists a stable limit cycle
oscillation with a frequency f = ω/2π. Finally, the whole-brain dy-
namics is described by the following coupled equations:

∑= − − − + − +
dx
dt

a x y x ω y G C x x βη t[ ] ( ) ( )j
j j j j j j

i
ij i j xj

2 2

∑= − − + + − +
dy
dt

a x y y ω x G C y y βη t[ ] ( ) ( )j
j j j j j j

i
ij i j yj

2 2

where Cij is the Effective Connectivity (EC) between nodes i and j, G is
the global coupling factor, and the standard deviation of Gaussian
noise, β = 0.02. The natural frequency (f) of each region was taken as
the peak frequency in the given narrowband of the corresponding re-
gion in the empirical time-series. The simulated activity corresponds to
the BOLD signal of each node. The simulations were run for 30,000 s,
sampled at 2 s, if not stated otherwise. Both the empirical and simulated
BOLD signals were band-pass filtered in narrowband 0.06–0.09 Hz,
since the group differences in coherence and metastability were optimal
in this narrowband. The intrinsic frequency of each node was estimated
as the peak frequency in the associated narrowband of the empirical
BOLD signals of each brain region.

2.5. Optimization of effective connectivity

We implemented a heuristic approach to infer the most likely con-
nectivity matrix (i.e. Effective Connectivity) that maximizes the simi-
larity between empirical and simulated functional connectivity. As an
initial guess, we used DWI-derived structural connectivity matrices
(Fig. 1). First, we adjusted the global coupling parameter (G) to prevent
overflow during the optimization procedure, and to ensure the stability
of the system of equations. Where Ksim and Kemp are simulated and
empirical coherences (average Kuramoto order parameter), we updated
global coupling parameter as: G=G exp(Ksim−Kemp), until the desired
condition, |Ksim−Kemp| < 0.1, was satisfied.

We evaluated both zero-time-lag Functional Connectivity (FC0) and
time-lagged FC (FCτ) for both empirical and simulated BOLD signals.
Time-lagged FC measure was chosen for two reasons. First, it provides an
additional constraint ensuring that the optimal solution is unique. Second,
time-lagged correlations allow inference on the directionality of the con-
nections. The defined the distance metric as Euclidean Distance between
simulated and empirical FC values for both FC0 and FCτ:

∑= − ∈
=

D FC FC l τ( ) , {0, }l
i j

N
ij
sim l

ij
emp l

, 1
, , 2

Then, where E is the average error between empirical and simulated
FC measures;

=
− + −

E
F FC FC FC( ) ( )

2
emp sim emp

τ
sim
τ0 0

where Sij is the anatomical connectivity matrix, N is the number
of regions, and Λ denoted inter-hemispheric links; we updated the
effective connectivity between i and j = (1, …, N) according
to:Cij

update=Cij
current+0.01Eij, if Sij > 0,or Sij∈{Λ}Cij

update=0, if Sij
=0,or Cij

current+0.01Eij < 0
In other words, we updated the EC based on the average error be-

tween empirical and simulated FC measures for non-zero connections
and inter-hemispheric connections. Negative weights were not allowed,
and they all set to zero during the update procedure.
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We accepted the total distance between empirical and simulated FC
measures, DT = D0 + Dτ, for updated EC is lower than the minimum
total distance observed during the procedure. We repeated this proce-
dure using 100 iterations, and the best solution (minimum D) was
considered as EC for a given subject. The entire procedure was also
repeated for bifurcation parameter a = {−0.1, −0.05, 0, 0.05, 1}. The
best fit for the majority of the subjects was achieved at a =−0.05
(Supplementary Fig. 4A). For consistency, we fixed the bifurcation
parameter at a = −0.05 for all the subjects. Finally, the EC strengths
were computed as the sum of input and output weights of each node.

2.6. Computational experiment

Given the inferred EC matrices, we disrupted the dynamics in healthy
controls based on the bifurcation parameter (a) of the supercritical Hopf
Normal Model (Fig. 1). In brief, the local bifurcation parameter char-
acterizes whether the underlying dynamics of each node are primarily
asynchronous (a < 0) or oscillatory (a > 0). The model was discussed in
detail in a recent paper (Deco et al., 2017). First, we computed the FC of
the healthy controls at a =−0.05, where the optimal similarity between
simulated and empirical values was observed. Then, we decreased the
bifurcation parameter by 0.001 at each iteration, spanning values between
−0.05 and −0.15. The FC strengths (FCa) were computed for each a.
Then, the distance between the average FC strength at each bifurcation
parameter and the group averaged empirical FC strength for each clinical
group (PAD, MCI, AD) was calculated. The distance was quantified as
Euclidean distance between predicted and empirical FC. Finally, we used
principal component analysis to investigate the main effects on FC
strength across manipulated bifurcation parameters.

2.7. Statistical analyses

The group comparisons (for coherence, metastability, FC strength, EC
strength) were done using permutation t-test (10,000 permutations), and
multiple comparisons were corrected using FDR approach with
Benjamini &Hochberg algorithm if necessary (Hochberg and Benjamini,
1990). Prior to group comparisons, we regressed out subject's age from
each measure. The networks were visualized using BrainNet Viewer
toolbox in Matlab (Xia et al., 2013). Correlations between CSF biomarkers
(APOE-4, Aβ-42, t-tau and p-tau) and the measures (coherence, metast-
ability, FC strength, EC strength) were estimated as the partial correlations
controlled for age, gender and education level. APOE was quantified as the
carriers and non-carriers of the gene.

3. Results

3.1. Whole-brain connectivity

We characterized the whole-brain connectivity of each group using
mean (coherence) and standard deviation (metastability) of Kuramoto
order parameter, which quantifies the level of synchronization between
brain regions across time. We found significant correlations between
diagnostic category and coherence (r = −0.37, p-value < 0.01), and
metastability (r = −0.33, p-value < 0.01). After regressing out age as
confounding variable, we compared coherence and metastability across
HC, PAD, MCI, and AD groups using permutation t-test (10,000 per-
mutations, p-value < 0.05). The coherence and metastability in the AD
group were significantly lower than those in HC group (coherence: T-
statistic = 3.4, p-value < 0.01; metastability: T-statistic = 3.27, p-
value < 0.01) and those in PAD group (coherence: T-statistic = 2.77,
p-value < 0.05; metastability: T-statistic = 2.84, p-value < 0.01)
(Fig. 2A–B). We found no significant differences in coherence and
metastability across the rest of the groups (Supplementary Table 2).
These results showed that the magnitude and variability of whole-brain
connectivity is decreasing along with the progression of the disease,
which reaches statistical significance in AD.

3.2. Computational model

We proposed a whole-brain computational approach to model the
whole-brain connectivity of each subject. Based on the similarity be-
tween empirical and simulated FC, we estimated the effective con-
nectivity (EC) between brain regions. The average correlation coeffi-
cient between empirical and simulated FC was r = 0.81 (std = 0.03).
Furthermore, the correlation coefficients between empirical and simu-
lated coherence and metastability were r = 0.93 (p-value < 0.001)
and r = 0.72 (p-value < 0.001), respectively (Fig. 2C–D). Therefore,
the proposed model not only showed high similarity to the empirical
FC, but also accounted for the variations in coherence and metast-
ability.

3.3. Regional connectivity

To investigate the regional variations in whole-brain connectivity,
we compared the strengths of functional connectivity (FC) and
strengths of effective connectivity (EC) of PAD, MCI and AD groups
with those of HC group. AD group exhibited significantly decreased FC
strengths widespread across the cortex (Fig. 3A) (Table 2). No sig-
nificant differences were found in FC strengths of PAD and MCI groups.
In contrast, significant decreases in EC strengths were located in left
temporal lobe in AD group (Fig. 3B). Furthermore, EC strengths in PAD
group were significantly decreased in left-precentral gyrus (T-sta-
tistic = 2.82, FDR adjusted p-value < 0.05), left hippocampus (T-sta-
tistic = 3.88, FDR adjusted p-value < 0.05) and right temporal pole

Fig. 2. A Group differences in coherence (average Kuramoto order parameter). B Group
differences in metastability (standard deviation of Kuramoto order parameter). The re-
sults are shown for 0.06–0.09 Hz narrowband signal. The comparisons were done using
permutation t-test (10,000 permuations; ⁎p < 0.05, ⁎⁎p < 0.01) after regressing out age
as a confounding variable. C The correspondence between empirical and simulated co-
herence. D The correspondence between empirical and simulated metastability.

M. Demirtaş et al. NeuroImage: Clinical 16 (2017) 343–354

347



(T-statistic = 2.92, FDR adjusted p-value < 0.05) (Fig. 3C). No sig-
nificant differences were found in MCI group. These results showed that
the model-based estimate of EC restricted the regional alterations to the
left temporal lobe.

3.4. APOE4 and CSF biomarkers

We investigated the relationship between whole-brain/regional
connectivity and APOE4 allele carrier status and CSF biomarkers. We
calculated the partial correlations between each whole-brain/regional
connectivity measure and APOE4 carrier status and CSF biomarkers
(Aβ1–42, t-tau, p-tau) controlling for age, gender and education level.
We performed the analysis across clinical groups (i.e. PAD, MCI, and AD

subjects) and across all subjects (i.e. HC, PAD, MCI and AD subjects),
separately.

Regarding the whole-brain connectivity measures, APOE4 allele car-
rier status showed no significant correlations with coherence and me-
tastability (Table 3). Across all subjects, coherence showed a significant
correlation with Aβ1–42 (rho = 0.23, p-value < 0.05). However, across
clinical groups there were no significant correlations between Aβ1–42 and
coherence (Table 3). Coherence showed no significant correlations with t-
tau and p-tau (Table 3). In contrast, we found no correlations between
metastability and Aβ1–42. Metastability was significantly correlated with
t-tau (across all subjects, rho=−0.27, p-value < 0.01; across clinical
groups, rho =−0.31, p-value < 0.05) and p-tau (across all subjects,
rho =−0.27, p-value < 0.01; across clinical groups, rho =−0.36, p-
value < 0.05) (Table 3). These results showed that Aβ1–42 CSF levels
reflect the attenuation in coherence (average synchronization) due to its
prevalence, but these levels do not correlate with the progression of AD. In
contrast, the correlations between t-tau/p-tau CSF biomarkers and me-
tastability (variability in synchronization) are also consistent with the
progression of AD.

Across all subjects, CSF Aβ1–42 showed significant positive corre-
lations with FC strength and EC strength (Fig. 4A–B) (Table 4). The
spatial maps of these correlations were highly overlapping with the
group differences between AD and HC subjects (Fig. 4A–B). For p-tau
and t-tau CSF biomarkers, we found significant negative correlations
with FC strengths in frontal, parietal and occipital regions, and with EC
strengths in occipital and parietal regions (Fig. 4C–E) (Table 5). Across
clinical groups, CSF Aβ1–42 showed no positive correlations with FC
and EC strengths. In contrast, we found significant negative correlations
between CSF Aβ1–42 and left orbital frontal FC strength (rho = −0.38,

Fig. 3. Group differences in FC and EC strengths. A FC strength of healthy control group vs. Alzheimer's disease (AD) group. B EC strength of healthy control group vs. Alzheimer's disease
(AD) group. C EC strength of healthy control group vs. preclinical Alzheimer's disease subjects (PAD). The comparisons were done using permutation t-test (10,000 permuations) after
regressing out age as a confounding variable. Colorbars indicate T-statistic, where hot colors indicate higher values in healthy control group. Only the regions that showed significant
differences after FDR correction (adjusted p-value < 0.05) were shown.

Table 2
Significant differences in FC and EC strengths.

FC Strength (HC vs. AD) EC Strength (HC vs. AD)

ROI T-statistic ROI T-statistic

l-MOG 4.6237 l-MTG 4.2007
r-PoCG 4.5427 l-IOG 3.9683
l-STG 4.0204 l-STG 3.5094
l-MTG 3.9036 l-HES 3.4922
l-HES 3.7915 l-MOG 3.3404
l-IOG 3.6295 r-INS 3.2251
l-PoCG 3.5312 r-STG 3.0947
r-MOG 3.5258 l-ITG 2.7366
l-ROL 3.4757 EC Strength (HC vs. PC)
r-DCG 3.4686 ROI T-Statistic
l-CUN 3.4414 l-HIP 3.8781
r-ROL 3.4013 r-TPOmid 2.9248
r-SMG 3.3754 l-PreCG 2.8196
r-ORBinf 3.3300
r-SFGmed 3.3281
r-ORBmid 3.3205
l-SOG 3.3086
r-CUN 3.2861
r-ORBsup 3.2579
r-INS 3.2364
l-SMG 3.2118
l-SFGmed 3.1908
l-ANG 3.1634
r-ACG 3.1387
r-IFGtriang 3.0819
r-STG 3.0325
r-SOG 3.0077
l-FFG 2.9761
l-DCG 2.9755
r-SPG 2.8759
l-ACG 2.8703
r-TPOmid 2.8015

FDR-adjusted p-values < 0.05.

Table 3
Partial correlations (rho) between CSF biomarkers and whole-brain connectivity mea-
sures.

Across all subjects

APOE-4 allelle carrier status Aβ-42 t-tau p-tau

Coherence −0.1264 0.2343⁎ −0.1221 −0.1307
Metastability −0.0631 0.1349 −0.2664⁎⁎ −0.2738⁎⁎

Across clinical groups

APOE-4 allelle carrier status Aβ-42 t-tau p-tau

Coherence −0.0398 −0.0004 −0.0079 −0.0965
Metastability −0.019 0.0207 −0.3097⁎ −0.3647⁎

⁎ p-value < 0.05.
⁎⁎ p-value < 0.01.
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p-value < 0.01) and EC strength (rho = −0.30, p-value < 0.05), and
right rectus EC strength (r= −0.31, p-value < 0.05) (Fig. 5A–B). The
spatial maps of the correlations of p-tau and t-tau CSF biomarkers were
relatively consistent across clinical groups with those found across all

subjects (Fig. 5C–E). In particular, superior parietal gyrus, superior and
inferior occipital gyri in left hemisphere were the most consistent re-
gions and the magnitude of the correlations in these regions were
substantially higher across clinical than those across all subjects
(Table 5). Furthermore, FC strength showed significant positive corre-
lations between t-tau CSF biomarker in left dorsal cingulate and be-
tween CSF p-tau in right olfactory cortex (Table 5). The results sug-
gested distinct roles of Aβ1–42 and tau CSF biomarkers in AD.

Fig. 4. CSF biomarker partial correlation maps across all subjects. Upper row shows the relationship between FC strength and each CSF biomarker. Bottom row shows the relationship
between FC strength and each CSF biomarker. Colorbars indicate the partial correlation coefficient (rho) between Aβ-42 and FC (A), between Aβ-42 and EC (B), between p-tau and FC (C),
between p-tau and EC (D), between t-tau and FC (E), between t-tau and EC (F) that were calculated across all subjects controlled for age, gender and education level. Only significant
correlations were colored on cortical surface plots.
We found similar trends in regional connectivity measures (FC and EC strengths) (this figure and Fig. 5) (Supplementary Tables 3–6). We found no significant correlations between APOE4
allele carrier status and FC strengths (across all subjects and across clinical groups) and EC strengths (across all subjects). Across clinical groups, left superior frontal EC strength showed a
significant correlation with APOE-4 allele carrier status (rho = −0.30, p-value < 0.05) (Supplementary Tables 3–6).

Table 4
Partial correlations between Aβ-42 CSF biomarker and FC-EC strengths.

FC strength EC strength

ROI rho ROI rho

l-MTG 0.3402⁎⁎ l-STG 0.2887⁎⁎

l-MOG 0.3293⁎⁎ l-MTG 0.2785⁎⁎

l-STG 0.2946⁎⁎ l-MOG 0.2773⁎⁎

r-IFGtriang 0.2817⁎⁎ l-TPOsup 0.2759⁎⁎

r-PCL 0.2789⁎⁎ l-ROL 0.2528⁎⁎

r-ROL 0.2682⁎⁎ l-IPL 0.2435⁎

l-PoCG 0.2664⁎⁎ l-IOG 0.2409⁎

l-CUN 0.2615⁎⁎ l-PoCG 0.2405⁎

l-SOG 0.2594⁎⁎ r-PCL 0.2400⁎

r-PoCG 0.2574⁎⁎ r-DCG 0.2301⁎

l-SMG 0.2545⁎⁎ r-INS 0.2225⁎

l-ROL 0.2538⁎⁎ r-ROL 0.2210⁎

l-HES 0.2502⁎ l-DCG 0.2191⁎

l-IPL 0.2411⁎ r-STG 0.2150⁎

r-IFGoperc 0.2380⁎ l-SMG 0.2137⁎

r-CUN 0.2358⁎ r-CUN 0.2109⁎

r-DCG 0.2304⁎ l-HES 0.2061⁎

l-ANG 0.2284⁎ l-CUN 0.2053⁎

r-MFG 0.2257⁎ l-SOG 0.1982⁎

l-DCG 0.2252⁎

r-SFGmed 0.2195⁎

r-ORBinf 0.2183⁎

r-SFGfor 0.1991⁎

r-MOG 0.1981⁎

r-SOG 0.1973⁎

r-PreCG 0.1971⁎

⁎ p-value < 0.05.
⁎⁎ p-value < 0.01.

Table 5
Partial correlations between t-tau and p-tau CSF biomarkers and FC-EC strengths.

ROI FC strength

Across all subjects Across clinical groups

t-tau p-tau t-tau p-tau

l-SOG −0.2282⁎ −0.2011⁎ −0.2944⁎ −0.3287⁎

l-IOG −0.2264⁎ −0.2045⁎ −0.4215⁎⁎ −0.4529⁎⁎

l-SPG −0.2187⁎ −0.188 −0.3371⁎ −0.3730⁎

l-PCL −0.1946⁎ −0.1473 −0.2451 −0.2146
r-SFGfor −0.2005⁎ −0.1928 −0.1437 −0.1788
r-MFG −0.2359⁎ −0.2322⁎ −0.199 −0.2253
r-IFGtriang −0.1744 −0.2309⁎ −0.1101 −0.2818
l-PCUN −0.1865 −0.2320⁎ −0.1773 −0.2869
r-ITG −0.1626 −0.1079 −0.3212⁎ −0.276
l-IPL −0.1891 −0.1566 −0.2615 −0.2935⁎

l-DCG −0.0236 −0.0268 0.3080⁎ 0.2415
r-OLF 0.0597 0.0399 0.2894 0.3082⁎

ROI EC strength
Across all subjects Across clinical groups
t-tau p-tau t-tau p-tau

l-IOG −0.2638⁎⁎ −0.2438⁎ −0.3817⁎⁎ −0.4382⁎⁎

r-SMA −0.1903 −0.2124⁎ −0.2237 −0.3048⁎

l-SOG −0.1557 −0.1605 −0.2364 −0.2986⁎

⁎ p-value < 0.05.
⁎⁎ p-value < 0.01.
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3.5. Computational experiment

To link the altered whole-brain and regional connectivity, we con-
ducted a computational experiment. Based on the proposed model, we
systematically manipulated the local bifurcation parameter (a) in
healthy control subjects to characterize the alterations in whole-brain
and regional connectivity due to a global shift in optimal dynamics.
Being specific, we disrupted the local dynamics of all regions in favor of
noisy dynamics in healthy control subjects and checked the effects of
this manipulation on simulated FC strengths. We found that the
Euclidean distances between empirical FC strengths of each clinical
group (PAD, MCI and AD) and predicted FC strengths were minimized
at distinct bifurcation parameter values consistent with the hypothesis
that the divergence from optimal dynamics aligns with the progression
of AD (Fig. 6A). Furthermore, coherence and metastability at the pre-
dicted bifurcation parameter values were consistent with the empiri-
cally observed values in each clinical group (Fig. 6B–C). We used
principal component analysis (PCA) on predicted FC strengths along the
manipulated bifurcation parameter. Then, we extracted the spatial map
based on the factor weights (scores) of the first principal component
(PC) reflecting the main effect of the manipulation with 85% of the
explained variance (Fig. 7A–B). We found that the spatial map of the
first PC was correlated with the FC strengths of HC group (r = 0.97, p-
value < 0.001). Furthermore, the spatial map of the first PC showed
significant correlations with those of CSF biomarkers and cognitive
performance scores (Fig. 7C). These results showed that the attenuation
of the FC strength in each region is proportional to its initial magnitude.
Furthermore, the empirically observed alterations in FC strengths pri-
marily reflect these proportional attenuations due to the disintegration
of the whole-brain connectivity.

4. Discussion

In this paper, we studied the changes in whole-brain and regional
connectivity in PAD, MCI and AD. We treated the condition as a con-
tinuum based on severity comprising PAD, MCI and AD. We found that
the whole-brain connectivity decreased through the continuum reaching

significance only in AD group. Decreased whole-brain synchronization
was also reported recently in AD (Córdova-Palomera et al., 2017). The
alterations in regional connectivity were also consistent with this trend.
We proposed a whole-brain computational model to explore the me-
chanisms behind these alterations.

We showed that the strongly connected brain regions were affected
more severely than other brain regions. Confirming the previous find-
ings on FC impairments in AD, these regions were overlapping with
default mode network (DMN). However, alterations in DMN were also
reported in many other mental disorders (Broyd et al., 2009). This is an
expected result, because the regions forming DMN repeatedly found as
the structural hubs of the brain (Hagmann et al., 2008; Margulies et al.,
2016). We hypothesized that the core alterations in connectivity might
be obscured in FC due to the propagation of impaired activity. To reveal
the connectivity changes in a deeper level, we used model-based in-
ference of effective connectivity (EC). Although these two measures are
related as one is derived from the other, they are not equivalent. First,
unlike FC, EC is explicitly constrained by the anatomical connectivity.
Second, in FC the contribution of direct and indirect connections be-
tween brain regions is unknown, whereas EC seeks the optimal con-
figuration in which the direct connections sufficiently explain FC. It is
important to note that in this study EC inference does not rely on
generative models of underlying neural activity (Friston et al., 2003) or
statistical models (Rogers et al., 2010). Instead, we defined EC as the
parameter space optimized for the given dynamical system that lumps
together various biophysical features of the underlying neural activity
as well as hemodynamic properties of observed BOLD signal. Con-
firming our hypothesis, we found decreased EC strength in AD pri-
marily affecting left temporal lobe, as opposed to the widespread de-
creases in FC strength. These results are more consistent with the
previous findings on the spatial distribution and the lateralization in
early stages of AD (Thompson et al., 2003; Singh et al., 2006). We did
not find significant FC differences in PAD and MCI groups. PAD subjects
exhibited decreased EC strength in several regions including the left
hippocampus, whereas no significant EC differences were found in the
MCI group. Previous studies reported mixed results regarding FC al-
terations in the early stages of the disease. These results were often

Fig. 5. CSF biomarker partial correlation maps across clinical groups. Upper row shows the relationship between FC strength and each CSF biomarker. Bottom row shows the relationship
between FC strength and each CSF biomarker. Colorbars indicate the partial correlation coefficient (rho) between Aβ-42 and FC (A), between Aβ-42 and EC (B), between p-tau and FC (C),
between p-tau and EC (D), between t-tau and FC (E), between t-tau and EC (F) that were calculated across PC, MCI and AD groups controlled for age, gender and education level. Only
significant correlations were colored on cortical surface plots.
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interpreted as a compensation mechanism to maintain cognitive func-
tion under the pathology related insults in the preclinical stage of AD
(Dickerson et al., 2004; Filippi and Agosta, 2011; Sanz-Arigita et al.,
2010). When the brain cannot compensate any longer, cognition levels
cannot be sustained and decline below normal ranges.

We confirmed the relationship between whole-brain and regional
connectivity by conducting a computational experiment. Based on the
inferred EC in healthy control subjects, we calculated the changes in FC
strength with manipulated the local bifurcation parameters. Being
specific, we systematically diverged dynamical system from the bi-
furcation point such that each node exhibited noise-driven dynamics
and the functional integration was disrupted. The severity of the pre-
dicted decrease in FC strength of each node was determined by its FC
strength at the origin. This result demonstrated that the connectivity
hubs in the brain are more vulnerable to the perturbations in local
dynamics. The spatial patterns associated to the perturbations were also
correlated with those associated to the CSF biomarkers. Furthermore,
the bifurcation parameter maximizing the similarity between predicted
and observed FC strengths of each clinical group was consistent with
the diagnosis (i.e. divergence from optimal bifurcation parameter was
higher in AD than in MCI, and higher in MCI than in PAD). These
findings support the view that abnormal synchronization in neural

circuits may underlie the development of clinical symptoms in AD
(Palop and Mucke, 2016). An unexpected prediction of the computa-
tional model was the emergence of spatially structured increases in FC
strengths for slight deviations in bifurcation parameter (Supplementary
Fig. 9). A rapid decrease in variance of the hub regions might be re-
sponsible for these FC increases, which were prominent in cingulate
cortex and precuneus in right hemisphere. Future studies are needed to
investigate counter-intuitive network effects that are critical to inter-
pret FC alterations.

We also investigated the role of genetic and CSF biomarkers during
the progression of AD. We found distinct patterns for Aβ1–42 and tau
CSF biomarkers. The correlations between CSF Aβ1–42 and whole-
brain/regional connectivity were dramatically different across clinical
groups than those found across all subjects. Across all subjects, CSF
Aβ1–42 showed significant correlations with coherence (average syn-
chronization) and FC strengths of the regions that were altered in AD.
Furthermore, the correlations between CSF Aβ1–42 and whole-brain/
regional connectivity were not present across clinical groups. These
results are consistent with the findings that amyloid-β was associated
with abnormal DMN connectivity in elders without dementia (Sheline,
Raichle, et al., 2010b; Sperling et al., 2009). These findings also support
the previous studies, which showed that cortical amyloid load is cor-
related with cognitive function in healthy individuals, but this re-
lationship was absent in AD (Pike et al., 2007). Furthermore, disruption
of the correlations across clinical groups supports the findings that
Aβ1–42 is more relevant to the presence of connectivity alterations, but
not the progression of the symptoms (Musiek and Holtzman, 2015).

In contrast, t-tau and p-tau CSF biomarkers were correlated with
metastability (variability in synchronization) both across all subjects
and across clinical groups. This finding also support the idea that me-
tastability might be a more robust measure of functional integration in
the brain (Deco and Kringelbach, 2014). Furthermore, tau CSF bio-
markers were significantly correlated with FC/EC strengths in posterior
and occipital brain regions. The regional correlation maps of CSF bio-
markers were consistent with those of PET tau and Aβ topographies
(Brier et al., 2016). Similar to the correlations with metastability, t-tau
and p-tau correlations across clinical groups were relatively more
consistent than Aβ1–42. The spatial patterns of these correlations were
much more consistent in EC that those in FC. These results supported
the findings that tau is a stronger predictor of cognition than Aβ (Brier
et al., 2016). In addition, previous studies suggested that the impact of
amyloid-β is functionally less relevant than that of tau tangles
(Yoshiyama et al., 2013). Nevertheless, we found the highest significant
correlations between t-tau/p-tau and FC/EC in sensory and attention
related regions in occipital and parietal lobes. It is important to note
that CSF biomarker regional correlation patterns do not necessarily
correspond to the spatial patterns of amyloid/tau deposition. We
speculate that the discrepancy in t-tau/p-tau CSF biomarker regional
correlation patterns might indicate a breakdown of sensory integration
on the development of cognitive impairments. Finally, APOE4 carrier-
ship showed no significant correlations with whole-brain/regional
connectivity measures with the exception of left superior frontal EC
strength.

This study had several limitations. One limitation rises from the
optimization of EC. Given a highly non-linear model, the use of well-
established techniques such as Bayesian inference is computationally
infeasible. Heuristic approaches to infer EC are difficult to validate
given the complexity of the model and the available data. We addressed
some of these problems by constraining the parameter space to non-
zero connections in structural connectivity (SC) and limiting the para-
meter range. Another limitation is that the model-based estimation of
EC can be strongly influenced by the observed data. One approach to
characterize the links between brain regions is the anatomical con-
nectivity measures based on DWI. Nevertheless, DWI suffers from sys-
tematic biases (Van Essen et al., 2014), which may get aggravated in
subjects with significant neurodegeneration as in AD. Indeed, DWI-

Fig. 6. Computational experiment. FC strengths were calculated after performing simu-
lations with manipulated local bifurcation parameters (within range −0.05 and −0.15)
based on healthy control subjects. A The Euclidean distance between simulated FC
strengths and group averaged empirical FC strengths of PAD (green), MCI (blue) and AD
(red) subjects. Dashed lines indicate the minimum distance between simulated FC
strengths and group averaged empirical FC strengths of each group, colored accordingly.
B The simulated coherence with respect to manipulated local bifurcation parameters. C
The simulated metastability with respect to manipulated local bifurcation parameters.
Gray shadings show the standard deviations of each parameter across subjects. Colored
dots indicate the average empirical coherence and metastability of PAD (green), MCI
(blue) and AD (red) groups. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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based structural connectivity measures performed considerably worse
(Supplementary Fig. 8). Furthermore, directed connectivity between
cortical areas were shown to be abundant in primates (Markov et al.,
2014), which cannot be captured by DWI. We found that the altered
patterns of directed EC provided additional information regarding
clinical groups including impaired prefrontal input strengths in PAD
and MCI groups (Supplementary Figs. 5–7). However, we kept these
results out of scope in this study as comprehensive theoretical analysis
of the computational model is necessary to understand the role of di-
rected connectivity.

This study showed that whole-brain connectivity alterations in AD
progression involve gradual attenuation of overall synchronization
primarily affecting the strongly connected brain networks such as DMN.
The proposed computational modeling approach revealed that these
alterations can be explained by disruptions in local dynamics and the
underlying core connectivity changes might be distinct from those ob-
served in FC. The results of this study provide insights to understand
functional mechanisms of the progression of symptoms in AD.
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