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A Flexible C2 Subdivision Scheme on the Sphere: With Application
to Biomembrane Modelling∗

Jingmin Chen† , Sara Grundel‡ , and Thomas P. Y. Yu§

Abstract. We construct a C2 multiscale approximation scheme for functions defined on the (Riemann) sphere.
Based on a three-directional box-spline, a flexible C2 scheme over a valence 3 extraordinary vertex
can be constructed. Such a flexible C2 subdivision scheme is known to be impossible for arbitrary
valences. The subdivision scheme can be used to model spherical surfaces based on a recursively
subdivided tetrahedron, with only valence 3 and 6 vertices in the resulted triangulations. This
adds to the toolbox of subdivision methods a high order, high regularity scheme which can be
beneficial to scientific computing applications. For instance, the scheme can be used in the numerical
solution of the Canham–Helfrich–Evans models for spherical and toroidal biomembranes. Moreover,
the characteristic maps of the subdivision scheme endow the underlying simplicial complex with a
conformal structure. This in particular means that the special subdivision surfaces constructed here
comes with a well-defined harmonic energy functional, which can in turn be exploited to promote
conformality in surface parameterizations. We develop an efficient parallel algorithm for computing
the harmonic energy and its gradient with respect to the control vertices. A software implementation
(in CUDA and MATLAB) is provided.
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1. Introduction. Subdivision surfaces are a standard technique for modeling free-form
surfaces in computer animation. A major technical breakthrough in its development is the
ability to extend box-splines to handle surfaces of an arbitrary topology. At a finer level the
arbitrary topology problem amounts to dealing with “extraordinary vertices.” Since Euler
characteristics tell us that these extraordinary vertices cannot be avoided in the arbitrary
topology setting, the ability to construct well-behaved extraordinary vertex subdivision rules
is the key to making subdivision surfaces applicable to the free-form setting. A mathematical
theory for analyzing these extraordinary vertex rules has therefore been developed; see, for
example, [21, 24, 29, 32, 31] and the references therein.

The construction of flexible curvature continuous subdivision schemes over extraordinary
vertices is a well-known difficult problem. It is known from a result of Prautzsch and Reif
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460 JINGMIN CHEN, SARA GRUNDEL, AND THOMAS P. Y. YU

[23] that it is impossible to construct a flexible C2 scheme over extraordinary vertices unless
the regular subdivision scheme (assumed in [23] to be based on polynomial splines) is capable
of producing polynomial patches of total degree 8 in the triangle case and bidegree 6 in
the quadrilateral case. Prautzsch and Reif’s degree estimate, however, comes with a caveat,
namely, that in the triangle mesh setting it is not applicable to the valence 3 case. In fact,
the result in [23] is inconclusive about this valence 3 case.

Using a method called jet subdivision, it was shown that a C2 scheme with the same
subdivision stencils as the Loop scheme [17] actually exists in the valence 3 case, but the
scheme requires the use of order 1 jet data and also it does not generate polynomial patches
[30] for general control data. We show in this paper that it is possible to obtain a similar
C2 construction without using jets. Moreover, the scheme developed in this paper, which we
call the “C2g0 scheme,” is based on a relatively simple three-directional box-spline, instead
of a noninterpolatory Hermite subdivision scheme [13], which does not generate piecewise
polynomials.

Our proof (section 2) demystifies the flexible C2 scheme constructed in [30] and also
explains why Prautzsch and Reif’s degree estimate does not hold in the valence 3 case.1

1.1. Applied motivations. Besides filling in a theoretical gap, another motivation for
constructing such a smooth valence 3 scheme comes from the general interest in approximating
spherical (i.e., genus 0) surfaces or functions defined on a spherical domain [26, 19, 10, 18,
12]. Note that a multiscale triangulation of a spherical domain can be constructed based
on recursively subdividing a tetrahedron; such triangulations of the sphere consist only of
valence 3 and 6 vertices. The subdivision scheme developed here thus gives rise to a smooth
multiresolution analysis (MRA) on the topological sphere.

The authors’ primary applied interest is the numerical solution of the Canham–Helfrich–
Evans models [2, 14, 8, 27] for biomembranes. In one version of the models, one seeks a surface
of a prescribed genus g that solves the following variational problem:

(1.1) min
S

=:Willmore(S)︷ ︸︸ ︷∫
S
H2 dA s.t.


(i) area(S) =

∫
S 1 dA = A0,

(ii) volume(S) = 1
3

∫
S [x̂i + yĵ + zk̂] · n̂ dA = V0,

(iii) total-mean-curvature(S) :=
∫
S H dA = M0.

In the above, the constraint values (A0, V0,M0) are fixed (typically by the temperature of the
environment and the type of phospholipid); the minimum is taken over all regular enough
genus g surfaces S.

In [5, 4], we develop a parallel and high accuracy order numerical method for solving the
problem based on subdivision methods. The development there is mainly based on the Loop
subdivision scheme, but the cases of g = 0, 1 can also be implemented based on the C2g0
scheme. Compared to Loop, the C2g0 scheme

(i) has a higher regularity (C1 for Loop versus C2 for C2g0) at extraordinary (valence 3)
vertices, and

1We thank H. Prautzsch for clarifying a key argument in [23]. After the completion of our original
manuscript [11] in 2011, we learned that the same idea was carried out by Karciauskas and Peters [16] in
the quadrilateral case. Their study was motivated by an application rather different from those discussed in
section 1.1.D
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FLEXIBLE C2 SUBDIVISION SCHEME AND BIOMEMBRANE 461

Figure 1. Approximate solutions of (1.1) for various (A0, V0,M0) using the C2g0 subdivision scheme
constructed in this paper, reproduced from Chen’s Ph.D. thesis [4]. Due to a scale invariance of the problem, the
solution surface depends, up to homotheties, only on the so-called reduced volume v0 := V0/[(4π/3)(A0/4π)3/2]
and the reduced total mean curvature m0 := M0/[4π(A0/4π)1/2].

(ii) has a higher approximation order (order 4 for Loop versus order 6 for C2g0) in the
regular setting.

Since the spherical topology (i.e., g = 0) is arguably the most important topology in cell
biology, it is helpful to have such a method with higher approximation order and regularity.
See, for instance, Figure 7. For this particular application, the superior performance of C2g0
is likely attributable more to (ii) than to (i). Yet, the C2 regularity enjoyed by C2g0 makes the
computation of the Willmore energy slightly more efficient: unlike a Loop surface, curvature
of C2g0 surface does not blow up, and is continuous, in the vicinity of any valence 3 vertex.2

The genus 0 surfaces in Figure 1 are obtained by solving (1.1) using the C2g0 subdivision
scheme.

1.2. Three directional box splines. Recall that a standard subdivision surface scheme is
constructed based on a subdivision scheme in the regular grid setting followed by construction
of special extraordinary vertex rules. In this section, we discuss the specific regular subdivision
scheme used in the construction in this paper. In section 2, we show how a flexible C2 scheme
can be constructed in the valence 3 case.

2Details of numerical integration are discussed in [5, 4].D
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462 JINGMIN CHEN, SARA GRUNDEL, AND THOMAS P. Y. YU

The standard Loop scheme is based on the three directional box spline with directions
[1, 0], [0, 1], [1, 1] each repeated twice. Recall the following definition of box-spline [22, 6]:
Let Ξ = {v1, v2, . . . , vk} be a set of k vectors in R2 with the first two vectors being linearly
independent. The box-spline function BΞ is defined as follows. Let B2 be the indicator
function on the parallelogram [v1, v2][0, 1)2, scaled by the constant 1/det[v1, v2], i.e., B2 :=
1[v1,v2][0,1)2/ det[v1, v2]. Then define B3, . . . , Bk =: BΞ recursively by

Bκ(x) =
∫ 1

0
Bκ−1(x− tvκ) dt, κ > 2.(1.2)

When the direction vectors have integral entries, the box spline BΞ(x) can be generated by
a dyadic subdivision scheme, which also means that it satisfies a refinement equation of the
form BΞ(x) =

∑
α∈Z2 aαBΞ(2x− α).

In this paper we consider the three directional box spline with directions [1, 0], [0, 1], [1, 1]
each repeated thrice. This box spline can be generated by a subdivision scheme whose mask
(aα)α has the following symbol (z-transform):∑

α∈Z2

aαz
α1
1 zα2

2 =: â(z1, z2) = z−3
1 z−3

2 (1 + z1)3(1 + z2)3(1 + z1z2)3/128.(1.3)

(For the connections among box-splines, subdivision schemes, and refinement equations,
consult [3, 6, 22].)

Since this scheme has the usual hexagonal symmetry of the regular triangular grid, it can
be used to construct subdivision surfaces in the arbitrary topology setting; the vertex and
edge rules associated with the mask (1.3) are shown in Figure 2. Notice that the vertex rule
has the same stencil as that of the Loop scheme; the edge rule, however, has a bigger stencil
compared to Loop’s but is still dependent only on the data in the 1-rings of the two end
vertices of the edge.

Using standard sum rule conditions from subdivision theory, one can show that this
subdivision scheme is the one and only one, among all the schemes with the same support,
that reproduces all polynomials of total degree 4. In fact, this scheme also reproduces poly-
nomials of total degree 5. On the other hand, the box-spline function associated with (1.3)
consists of degree 7 polynomial pieces (easy to see from (1.2), as each integration increases
the degree by 1), and it is C4 smooth.

3/32

7/16

3/32

3/32

3/32 3/32

3/32 39/128

3/128

1/128

9/64

39/128

3/128

3/128 3/128

1/128

9/64

(a) vertex rule (b) edge rule, with a marquise-shaped stencil

Figure 2. Subdivision rules for the box spline with directions [1, 0],[0, 1],[1, 1] each repeated thrice.
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(a) extraordinary vertex rule (b) extraordinary edge rule
z = 1− 3(s+ t+ u) a = 1− b− 2(c+ d)− e

Figure 3. Valence 3 extraordinary vertex rules. By the end of section 2, the weights will be chosen to be
(z, s, t, u) = (8901, 12606, 885, 2806)/57792 and (a, b, c, d, e) = (233, 248, 171, 29, 15)/896. The overall
subdivision scheme will be called the C2g0 scheme.

2. Valence 3 extraordinary vertex rules. In this section, we develop a valence 3 extraor-
dinary vertex rule based on the regular rules in Figure 2. For this purpose, it suffices to work
on the 3-regular complex; see Figure 4. Recall that the 3-regular complex has a central va-
lence 3 extraordinary vertex with all other vertices being ordinary (valence 6). Away from the
extraordinary vertex, our subdivision scheme uses the rules in Figure 2. In the vicinity of the
valence 3 vertex, our proposed subdivision rules have the stencils, together with the weights
labeled and to be determined, specified in Figure 3. The goal of this section is to determine
a set of weights that give rise to a flexible C2 scheme. Note that, according to Prautzsch and
Reif’s degree estimate [23], such a C2 scheme is impossible for any valence greater than 3
other than 6.

We begin with some well-known ideas in subdivision surface theory and gradually move
toward the less well-known observations.

2.1. Linear algebra. Like any other standard subdivision scheme, our scheme is station-
ary, meaning that the same set of rules is used at all levels. Together with the fact that these
subdivision rules are linear, it is hardly surprising that eigendecomposition plays a key role in
the analysis of subdivision schemes.

Given the support size of our proposed scheme, we need to use three rings of data around
the extraordinary vertex in order to determine the subdivision limit function on the 1-disc
(colored region in Figure 4(a)) around the extraordinary vertex. On the other hand, it is
enough to use just two rings of data around the extraordinary vertex in order to determine
the value of the limit function at the extraordinary vertex. Thus, the subdivision matrix of
our scheme has the following block form:

S =
[
M 0
A B

]
(2.1)
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(a) ordering of vertices; (b) level 0 complex (c) level 1
in red: the 1-disc around (once subdivided) complex
the e.v. (denoted by D)

Figure 4. Ordering and subdivision of the 3-regular complex.

if we order the vertices in the 3-regular complex as shown in Figure 4(a). Here,

M =


z s s s t u t u t u
a b c c e d 0 0 0 d
a c b c 0 d e d 0 0
a c c b 0 0 0 d e d

3/32 7/16 3/32 3/32 3/32 3/32 0 0 0 3/32
9/64 39/128 39/128 3/64 3/128 9/64 3/128 1/128 0 1/128
3/32 3/32 7/16 3/32 0 3/32 3/32 3/32 0 0
9/64 3/64 39/128 39/128 0 1/128 3/128 9/64 3/128 1/128
3/32 3/32 3/32 7/16 0 0 0 3/32 3/32 3/32
9/64 39/128 3/64 39/128 3/128 1/128 0 1/128 3/128 9/64

(2.2)

is the 10× 10 matrix that maps the 2-ring data from one scale to the 2-ring data in the next
finer scale, whereas the whole 19 × 19 matrix S maps the 3-ring data from one scale to the
3-ring data in the next scale. The entries in the blocks A and B come solely from the regular
rules in Figure 2:

A =
1

128


1 39 3 3 39 18 0 0 0 18
3 39 18 1 18 39 3 0 0 3
3 18 39 1 3 39 18 3 0 0
1 3 39 3 0 18 39 18 0 0
3 1 39 18 0 3 18 39 3 0
3 1 18 39 0 0 3 39 18 3
1 3 3 39 0 0 0 18 39 18
3 18 1 39 3 0 0 3 18 39
3 39 1 18 18 3 0 0 3 39

, B =
1

128


1 3 0 0 0 0 0 0 3
0 3 1 0 0 0 0 0 0
0 1 3 0 0 0 0 0 0
0 0 3 1 3 0 0 0 0
0 0 0 0 3 1 0 0 0
0 0 0 0 1 3 0 0 0
0 0 0 0 0 3 1 3 0
0 0 0 0 0 0 0 3 1
0 0 0 0 0 0 0 1 3

.(2.3)

The spectrum of S is the union of the spectra of M and B. The eigenvalues of the 9×9 matrix
B are 1/32, 1/64, 1/128, each repeated thrice. As we will see, the six dominant eigenvalues of
S will be constructed to be 1, 1/4, 1/4, 1/16, 1/16, 1/16, so these eigenvalues must come from
the spectrum of M .

The rotational and reflectional symmetries of a subdivision scheme are necessary for apply-
ing it to the arbitrary topology setting. Rotational symmetry, alone, implies a block circulant
structure in the subdivision matrix S and also the submatrix M . This, in turn, implies that
M can be block-diagonalized by a suitable Fourier matrix.

One may not immediately see the block circulant structure in (2.2), but that is just an
artifact of the way we order the vertices: the ordering in Figure 3(a) is designed to give us
the block structure in (2.1). To see the block circulant structure in M , simply reorder theD
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vertices in the first two rings according to the following permutation:(
1 2 3 4 5 6 7 8 9 10
1 2 5 8 3 4 6 7 9 10

)
.(2.4)

If P is the corresponding row permutation matrix, then

M̃ := PMP T =


z vT vT vT

w C0 C1 C2
w C2 C0 C1
w C1 C2 C0

 ,(2.5)

where v = [s t u]T , w = [a 3/32 9/64]T ,

C0 =

 b e d
7/16 3/32 3/32

39/128 3/128 9/64

 , C1 =

 c 0 0
3/32 0 0

39/128 3/128 1/128

 , C2 =

 c 0 d
3/32 0 3/32
3/128 0 1/128

 .
Now, M̃ is still not block circulant as promised, but close. Let ω = exp(−i2π/3), I be the
3× 3 identity matrix, and 1 = [1 1 1]T . Then the circulant part of M̃ is block diagonalized
by

F =

I I I
I ωI ω2I
I ω2I ω4I

 , i.e., F−1

C0 C1 C2
C2 C0 C1
C1 C2 C0

F =

B0
B1

B2

 ,(2.6)

for some 3× 3 matrices Bi; by computation,

B0 =

b+ 2c e 2d
5
8

3
32

3
16

21
32

3
64

5
32

 , B1 =

 b− c e d
2 −

√
3d
2 i

11
32

3
32

3
64 − 3

√
3

64 i
33
256 + 33

√
3

256 i
3

256 + 3
√

3
256 i

17
128

 , B2 = B1.(2.7)

With z = 1 − 3(s + t + u) and a = 1 − b − 2(c + d) − e, each row of M sums to 1, meaning
that [1 1 · · · 1]T is an eigenvector of M associated with the eigenvalue 1. This, together with
1 + ω + ω2 = 0, implies that

z vT vT vT

w C0 C1 C2
w C2 C0 C1
w C1 C2 C0




1 0 0 0
1 I I I
1 I ωI ω2I
1 I ω2I ω4I



=


1 0 0 0
1 I I I
1 I ωI ω2I
1 I ω2I ω4I




1 3vT

0 B0 − 3evT

B1
B2

 .(2.8)

As such, we reduce M to a block diagonal matrix with one 4 × 4 and two 3 × 3 blocks. We
refer to the 4× 4 block as the 0th block, and Bi, i = 1, 2, as the ith block.D
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We see that 1 is an eigenvalue of the 0th block. For convergence, it is necessary and
sufficient that 1 is a simple eigenvalue. We denote the subdominant and sub-subdominant
eigenvalues by λ and µ, so 1 > |λ| > |µ|.

An eigenvalue λ of M (and also of S) is said to have a Fourier index i if it “comes from”
(i.e., it is also an eigenvalue of) the ith block. A multiple eigenvalue can have multiple Fourier
indices. For simplicity, we assume that M will be constructed to have a real subdominant
eigenvalue λ with geometric multiplicity 2 and a sub-subdominant eigenvalue µ = λ2 with
geometric multiplicity 3; moreover,3

F(λ) = {1, 2}, F(λ2) = {0, 1, 2}.(2.9)

Here F(λ) denotes the set of Fourier indices of the eigenvalue λ. We mention in passing that
the first Fourier index condition is relevant to the injectivity of the characteristic map and the
second is relevant to the curvature behavior in the vicinity of the extraordinary vertices; see
[20, 21] for an in-depth theoretical development. While we do not need this part of the theory
for our purpose, the above set of spectral conditions serves as a convenient guiding principle
for our construction.

On the other hand, these spectral conditions alone are far from being sufficient for a
scheme to be a flexible C2 one. We recall the well-known C1 and C2 conditions in the next
section.

2.2. Characteristic map and C2 condition. Note that if v ∈ R19 is a set of scalar values
assigned to the first three rings of the level 0 3-regular complex (as shown in Figure 4(a)),
then according to our subdivision rules, the subdivision data on the first 2j + 2 rings of the
level j 3-regular complex can be determined. Therefore, we obtain in the limit a subdivision
function

fv : D → R.(2.10)

Here D is the 1-disc around the extraordinary vertex.
It is easy to see that every subdivision function satisfies the scaling relation

fv(u) = fSv(2u) ∀ u ∈ 1
2
D.(2.11)

In particular, if v is an eigenvector of S associated with an eigenvalue µ, then

fv(u) = fµv(2u) = µfv(2u).

Despite the (rather artificial) way we embed D and the 3-regular complex into the plane
as shown in Figure 4(a), one should not think of D as a subset of R2. That said, it is senseless
to talk about the smoothness of fv before we put a suitable differentiable structure on D
(in differential geometry terms) or, equivalently, before we suitably parameterize fv. On the
other hand, since our subdivision scheme is based on a C4 smooth box-spline, any subdivision
function fv is C4 in the interior of each sector of D (assuming fv is parameterized by the
affine coordinates within each of the triangular sectors of D).

3These two conditions should be F(λ) = {1, k − 1} and F(λ2) = {0, 2, k − 2} for a general valence k.D
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The standard way to parameterize subdivision functions is based on characteristic maps,
due to Reif [24]. Assume that we have a subdivision scheme that satisfies the spectral prop-
erties around (2.9). Let u1 and u2 be two linearly independent eigenvectors associated with
the subdominant eigenvalue λ. The characteristic map is given by

χ = (fu1 , fu2) : D → R2.(2.12)

If χ is injective, we can think of χ−1 : χ(D)→ D as a parametrization of D. If χ is also regular,
i.e., χ has a nonsingular Jacobian in the interior of each sector of D, then fv◦χ−1 : χ(D)→ R
is C1 smooth.

If we have a subdivision schemes that satisfies all the conditions above, except that all
the eigenvalues smaller than λ are strictly smaller than λ2 in modulus, then it is quite easy
to show that all fv ◦χ−1 are C2 smooth. Such schemes are also easy to construct; the only
problem is that they are not so useful since they produce limit functions with vanishing
second derivatives regardless of the initial data and hence are not so interesting from an
approximation or modeling point of view. A flexible C2 scheme is one that is both C2 and
capable of producing all quadratic polynomials.

Going back to our original assumption that the sub-subdominant eigenvalue is exactly λ2

with geometric multiplicity 3, let wi, i = 1, 2, 3, be three linearly independent eigenvectors
associated with λ2. Then we have the following well-known result.

Theorem 2.1. Such a subdivision scheme is a flexible C2 one if

span{fwi◦χ−1(x1, x2) : i = 1, 2, 3} = span{x2
1, x1x2, x

2
2}.(2.13)

This result is not specific to the valence 3 case. In fact, everything we have said so far is
either directly applicable to or has a generalization to any valence k > 3.

The condition in Theorem 2.1 seems hard to satisfy and, as illustrated by Reif and
Prautzsch’s degree estimates [23, 25], is indeed hard to satisfy when k > 3. In the rest
of this section, we establish the following.

Proposition 2.2 (main result). The weights in Figure 3 can be chosen such that:
(I) the resulted characteristic map χ is the valence 3 Bers’s chart [1, 7],

(II) the eigenfunctions corresponding to the sub-subdominant eigenvalues satisfy the flexible
C2 condition (2.13).

2.3. Valence 3 Bers’s chart. The valence k Bers’ chart is a piecewise fractional power
function: on the first sector of a k-gon it is given by the analytic map z 7→ z6/k, assuming
that the first sector is affine transformed into the equilateral triangle bounded by [0, 0], [1, 0]
and [cos(2π/3), sin(2π/3)], followed by identifying this equilateral triangle with part of the
complex plane. In the other k − 1 sectors, the chart is defined by rotational symmetry. It is
not hard to check that these charts endow a triangle mesh with a conformal structure.

There is something special about the k = 3 case. First, the only k 6= 6 (and > 3) that
makes 6/k an integer is k = 3. Moreover, we can identify the 3-gon D with the “projective
regular hexagon,” i.e., the regular hexagon with antipodal points identified, as shown in
Figure 5(a)–(b). Then under this identification, the valence 3 Bers’s chart is the single map
z 7→ z2. This representation of the valence 3 Bers’s chart will be very useful in section 2.7.D
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2.3 Valence 3 Bers’ chart

The valence k Bers’ chart is a piecewise fractional power function: on the first sector of a k-gon it
is given by the analytic map z 7→ z6/k, assuming that the first sector is affine transformed into the
equilateral triangle bounded by [0, 0], [1, 0] and [cos(2π/3), sin(2π/3)], followed by identifying this
equilateral triangle with part of the complex plane. In the other k − 1 sectors, the chart is defined
by rotational symmetry. It is not hard to check that these charts endow a triangle mesh with a
conformal structure.

There is something special about the k = 3 case. First of all, the only k 6= 6 (and > 3) that
makes 6/k an integer is k = 3. Moreover, we can identify the 3-gon D with the ‘projective regular
hexagon’, i.e. the regular hexagon with antipodal points identified, as shown in Figure 4(a)-
(b). Then under this identification, the valence 3 Bers’ chart is the single map z 7→ z2. This
representation of the valence 3 Bers’ chart will be very useful in Section 2.7.

piecewise affine 0 0

0

0
1

1

1

1
2

2

2 2

z2

1:2 2:1

(a) (b) (c)

Figure 4: A general valence k Bers’ chart is defined piecewisely. The valence 3 Bers’ chart, however,
can be expressed by the single polynomial z 7→ z2 if we identify the 3-gon D with the ‘projective
regular hexagon’.

2.4 Connection to Prautzsch-Reif’s degree estimate

The valence 3 Bers’ chart also gives a concrete illustration of how a key argument in Prautzsch-
Reif’s degree estimate breaks down in the valence 3 case. It is observed in [19] that if a valence
k characteristic map consists of polynomial patches stitched together in a Cr fashion, and the
polynomial pieces are only of degree r, then the characteristic map must be 6-periodic (see Lemma
5.1 and Theorem 5.1 of [19]), which is, in general, impossible as the characteristic map must also
be k-periodic. (As a result, the polynomial degree must, in general, be > r + 1; this lower bound
is further improved to > 3r/2 + 1 by a finer argument.) The only exception is when k = 3, as
illustrated by the valence 3 Bers’ chart: it is both 3- and 6-periodic, and consists only of polynomial
patches of degree 2 stitched together in a C∞ fashion away from the extraordinary point.

9

Figure 5. A general valence k Bers’s chart is defined piecewisely. The valence 3 Bers’s chart, however, can
be expressed by the single polynomial z 7→ z2 if we identify the 3-gon D with the “projective regular hexagon.”

2.4. Connection to Prautzsch and Reif’s degree estimate. The valence 3 Bers’s chart
also gives a concrete illustration of how a key argument in Prautzsch and Reif’s degree estimate
breaks down in the valence 3 case. It is observed in [23] that if a valence k characteristic map
consists of polynomial patches stitched together in a Cr fashion and the polynomial pieces are
only of degree r, then the characteristic map must be 6-periodic (see Lemma 5.1 and Theorem
5.1 of [23]), which is, in general, impossible as the characteristic map must also be k-periodic.
(As a result, the polynomial degree must, in general, be > r + 1; this lower bound is further
improved to > 3r/2+1 by a finer argument.) The only exception is when k = 3, as illustrated
by the valence 3 Bers’s chart: it is both 3- and 6-periodic and consists only of polynomial
patches of degree 2 stitched together in a C∞ fashion away from the extraordinary point.

2.5. Shaping the spectrum. Since

χ
(
u/2
)

=
1
4
χ(u) ∀u ∈ D,(2.14)

in order to have a chance to satisfy Property (I) above we must force our scheme to have a
subdominant eigenvalue λ = 1/4. So, according to the spectral conditions around (2.9), we
need B0 − 3evT to have 1/16 as a simple dominant eigenvalue and B1, B2 to both have 1/4
and 1/16 as simple dominant and subdominant eigenvalues.

B0, B1, B2 only involve the 4 parameters (b, c, d, e), but B0 − 3 e[s t u] involves all 7
parameters (b, c, d, e, s, t, u). By (2.7), B1 and B2 already have 1/16 as one of their eigenvalues.
If we set

b = c− 3d− 4e+ 1/4,(2.15)

then B1, and hence also B2, both have 1/4 as an eigenvalue; moreover, the corresponding two
eigenvectors of M (which uniquely determine the corresponding eigenvectors of S due to the
block form in (2.1)) are independent of the parameters:

u1 =
1
2

[
0, 2, −1, −1, 8, 3, −4, −6, −4, 3

]T
, u2 =

√
3

2

[
0, 0, 1, −1, 0, 3, 4, 0, −4, −3

]T
.(2.16)
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Thanks to the Ferro–Tartaglia–Cardano formula and symbolic computation, we find that by
further setting

s = [3/16 + 3(c− 2d− 5e+ 8u+ t) + 8(14dt+ 6eu− 18ct+ 24et− 3cu+ 3du)]/
[3− 16(d+ 3e)],(2.17)

B0 − 3evT has 1/16 as an eigenvalue.
Therefore, after eliminating two of the seven parameters by (2.15) and (2.17), our subdi-

vision matrix has the desired eigenvalues. As we shall see later, the C2 condition specified
by Theorem 2.1 will further take away two of the remaining 5 degrees of freedom, and then
we have to choose the remaining 3 parameters in such a way that all the eigenvalues of M
dependent of these parameters are < 1/16.

2.6. Relating valence 3 to valence 6. Everything presented in sections 2.1–2.2 is also
applicable to any valence > 3, and, in particular, to valence k = 6. Let Nr be the number of
vertices in the first r rings of the 3-regular complex, so 2Nr − 1 is the corresponding number
for the 6-regular complex. Corresponding to (2.1), we have a size 2N3 − 1 = 37 subdivision
matrix S6 in the case of valence k = 6 in the following block form:

S6 =
[
M6 0
A6 B6

]
,(2.18)

where all three blocks are determined by the regular rules in (2); M6 is of size 2N2−1 = 19. (We
order the vertices on the 6-regular complex in a way similar to Figure 4(a).) Corresponding
to (2.10), we have Fṽ : H → R, where ṽ ∈ R2N3−1 is any set of data on the first three rings of
the 6-regular complex, H is the 1-disc (a regular hexagon) around the central vertex, and Fṽ
is the corresponding subdivision function.

Figure 5(a)-(b) suggests a “doubling-up” operator from the 3-regular complex to the 6-
regular complex; restricting this operator to the first r rings, we denote it by

Dr : RNr → R2Nr−1.

The observation we need for proving Proposition 2.2 is the following.

Lemma 2.3. If ũ ∈ R2N3−1 is such that Fũ is a homogeneous polynomial p of degree 2`,
then

1. ũ is an eigenvector of S6 associated with eigenvalue 2−2`,
2. ũ ∈ range(D3), so u := D−1

3 ũ is well-defined, and
3. Fũ, being an even function, can be viewed as a function on the projective regular

hexagon H/∼. (Here, x ∼ y⇔ x = ±y.)
Furthermore, if (the parameters in M are chosen such that) Su = 2−2`u, then

R← D : fu = Fũ : H/∼→ R(2.19)

if we identify D with H/∼ (as in Figure 5.)D
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Proof. To appreciate the key idea in this lemma, first imagine that if we have an arbitrary
vector ũ in range(D3). We now subdivide ũ to the limit using the regular subdivision scheme
operating on the 6-regular complex to get the limit function Fũ, and we subdivide D−1

3 ũ to
the limit using our subdivision scheme on the 3-regular complex to get fu. Notice that the
latter is based on a combination of the special valence 3 extraordinary vertex rule, used right
at the vicinity of the valence 3 vertex, and the regular subdivision rule, used away from the
valence 3 vertex, whereas the former has nothing to do with any extraordinary vertex rule.
Therefore, even though the regular subdivision scheme has the right symmetry to guarantee
that Fũ is an even function (since ũ ∈ range(D3)), there is no reason to expect that fu = Fũ.

However, under the assumption that Su = 2−2`u and S6ũ = 2−2`ũ, then, together with
the natural symmetries of S and S6, the extraordinary vertex rule and the regular subdivision
scheme have essentially the same action in the vicinity of the corresponding central vertices,
more precisely,

D3S
ju = Sj6ũ ∀ j = 0, 1, 2, . . . .

Away from the central vertices, both rules are based on the regular rule, so all together we
have fu = Fũ.

Due to the block forms (2.1) and (2.18), to specify the vector ũ (resp., u) in the lemma
above, it is enough to specify its first 2N2 − 1 (resp., N2) entries. Call this shorter vector ũs;
if ũs 6= 0, then ũ is uniquely determined by

ũ =
[

ũs

(2−2`I −B6)−1A6ũ
s

]
.

Notice that ũs ∈ range(D2). In the second half of the lemma above, we can actually weaken
the assumption Su = 2−2`u to MD−1

2 ũs = 2−2`D−1
2 ũs.

2.7. Proof of Proposition 2.2 and choice of parameters. We first prove Proposition 2.2(I)
under only the condition (2.15). We shall only need condition (2.17) (and two new conditions
on the parameters) when we deal with the C2 conditions in Proposition 2.2(II).

The brute-force approach used in [30, Appendix B.7] can be applied here to prove (I).
However, armed with Lemma 2.3, we can much more easily accomplish the task by checking
that ũi := D2(ui), i = 1, 2, are the (unique) data on the regular grid that generate the real and
the imaginary parts of z 7→ z2 under the regular subdivision rule. Of course, the 6-regular
grid, with coordinates denoted here by (x, y), can be identified with Z2, with coordinates
denoted by (x1, x2), via a linear isomorphism,[

x
y

]
=
[
1 −1/2
0
√

3/2

] [
x1
x2

]
,

so we are now back to the shift-invariant setting, and checking the polynomial reproduction
condition above becomes a classical Strang–Fix-type calculation (a well-studied subject by
itself.)

Using standard results in subdivision theory, any monomial of total degree 6 5 can be
written as a linear combination of the integer shifts of the three-directional box spline BΞ
with subdivision mask (1.3). More precisely, if µ = (µ1, µ2), |µ| = µ1 + µ2 6 5, then

xµ =
∑
α∈Z2

cµα BΞ(x− α),(2.20)
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where

cµα =
∑
ν6µ

(
µ

ν

)
ανbµ−ν ,(2.21)

and the bµ, |µ| 6 5, are given by the following table:4

µ1\µ2 0 1 2 3 4 5
0 1 0 −1/2 0 4/5 0
1 0 −1/4 0 2/5 0
2 −1/2 0 2/5 0
3 0 2/5 0
4 4/5 0
5 0

(2.22)

The real and imaginary parts of z 7→ z2 are

x2 − y2 = x2
1 − x1x2 − x2

2/2, 2xy =
√

3(x1x2 − x2
2/2).(2.23)

Using (2.20)–(2.22),5 it is straightforward to check that ũ1 and ũ2 are the unique vectors that
generate these two degree 2 homogeneous polynomials on the x1-x2 plane. This verifies (I).

For (II) (the C2 conditions), we need to force the sub-subdominant eigenvectors of M , wi,
i = 1, 2, 3, after “doubling-up,” to be the unique initial data that generate, under the regular
subdivision rule, the following homogeneous degree 4 polynomials:

(x2 − y2)2 = x4
1 − 2x3

1x2 + x1x
3
2 + x4

2/4,

(x2 − y2)(2xy) =
√

3(x3
1x2 − 3x2

1x
2
2/2 + x4

2/4),

(2xy)2 = 3x2
1x

2
2 − 3x1x

3
2 + 3x4

2/4.

(2.24)

By calculations based on (2.20)–(2.22), we demand M in (2.1) to have the following three
eigenvectors associated with eigenvalue 1/16:

w1 =
1
20

[
12, 2, −13, −13, 212, −33, −28, 102, −28, −33

]T
,

w2 =
√

3
4

[
0, 0, −1, 1, 0, 9, −16, 0, 16, −9

]T
,

w3 =
1
20

[
12, −18, −3, −3, −108, 57, 132, −78, 132, 57

]T
.

(2.25)

Condition (2.17) is only enough to guarantee that M has 1/16 as a triple eigenvalue but not
enough to guarantee the above eigenvector condition. After imposing conditions (2.15) and

4These bµ are computed recursively by the formula: b(0,0) = 1, bµ =
∑

0 6=ν6µ

(
µ
ν

)
2|µ−ν|bµ−ν [(−iD)ν â](0)(1−

2|µ|â(0))−1, where â(ω) =
∑
α a(α)e−iα·ω/4. One can verify the values of bµ in the table using this formula

and (1.3).
5For a more elementary, but more tedious, approach, one can work out the piecewise (degree 7) polynomial

representation of the box-spline BΞ based on (1.2) and use it to work out how to reproduce any polynomial of
total degree 6 5.D
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(2.17), M has five remaining parameters. After representing M [w1 w2 w3]− [w1 w2 w3]/16 in
terms of these five parameters (c, d, e, t, u), we find that two extra linear conditions,

c = 9/64 + 3e, d = 1/64 + e,(2.26)

are enough to guarantee that all entries in M [w1 w2 w3]− [w1 w2 w3]/16 are zeros.
Note that conditions (2.15) and (2.26) are linear but (2.17) is not. However, (2.26) and

(2.17) together imply that
s = 3/16 + 2t,

so all the weights in our extraordinary vertex rule (Figure 3) are linearly dependent on the
three parameters (e, t, u). This is bound to happen as the overall conditions imposed on M
are, after all, linear:

M [u1, u2, w1, w2, w3] = [u1, u2, w1, w2, w3] diag([1/4, 1/4, 1/16, 1/16, 1/16]).

We could have directly used the above to work out the same results; we just happened to go
through the devious path of first working out conditions on the parameters just to satisfy the
eigenvalue conditions (which are nonlinear and are of interest by themselves), before imposing
the eigenvector conditions.

We must still verify that the remaining three parameters (e, t, u) can be chosen such that
all the remaining eigenvalues are strictly less than 1/16 in modulus. Only four eigenvalues of
M are dependent on (e, t, u), and they are 15/128− 7e (repeated twice) and

1/8 + e− 9t/2− 3u/2±
√

13 + 16(8e− 30t− 33u) + 256(4e2 + 81t2 + 9u2 − 84et+ 12eu+ 54ut)/32.

It can be shown analytically that these eigenvalues are smaller than 1/16 in modulus if and
only if (e, t, u) lies in a small bounded open subset of the first octant of the e-t-u space. A
natural choice would be the unique set of parameters that vanish all four eigenvalues, namely,

e = 15/896, t = 295/19264, u = 1403/28896.

This leads to the positive subdivision weights in the caption of Figure 3, and the Jordan
blocks corresponding to the four zero eigenvalues are

(
0 1
0 0

)
and

(
0 0
0 0

)
. This is the only defective

eigenvalue of the subdivision matrix S, a fact to be used in the evaluation algorithm described
in section 3.1.

3. Applications. In the introduction section, we mentioned the application of subdivision
surfaces, developed in [5], in solving the Canham–Helfrich–Evans model (1.1). The idea is to
approximate the sought-for surface by a subdivision surface. A subdivision surface is specified
by a control mesh M = (V,F), where V ∈ R#V×3 records the three-dimensional coordinates
of the vertices of the control mesh, #V denotes the total number of vertices, and F ∈ I#F×3

is a list of triplets of indices from I := {1, . . . ,#V } which records the bounding vertices of
each of the #F triangle faces in the mesh M . We assume that the mesh realizes a closed
simplicial surface.

Surfaces with genus 0 or 1 can be triangulated in such a way that only valence 3 and
6 vertices are involved; see Figure 6. (Conversely, it can be shown by Euler’s relation thatD
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(a) genus 0 (spherical): Ftetra,1 & Ftetra,2 (b) genus 1 (toroidal)

Figure 6. Left 2 panels: Genus 0 surfaces with only valence 3 and 6 vertices (subdivided tetrahedra). Right
2 panels: (4× 5 and 8× 10) regularly triangulated tori, with only valence 6 vertices.

the closed surfaces that are modelled with only valence 3 and 6 vertices must be of genus 0
or 1.) The special scheme developed in this paper can then be applied to numerically solve
the Canham–Helfrich–Evan problem in the genus 0 and 1 cases by fixing F to be one of the
genus 0 or 1 triangulation as in Figure 6 and varying V ∈ R#V×3 by a nonlinear optimization
solver. As such, we solve the following finite-dimensional nonlinear optimization problem as
an approximation to (1.1):

(3.1) min
V∈R#V×3

=:W (V)︷ ︸︸ ︷∫
S[V]

H2 dA s.t.


(i) A(V) :=

∫
S[V] 1 dA = A0,

(ii) V (V) := 1
3

∫
S[V][x̂i + yĵ + zk̂] · n̂ dA = V0,

(iii) M(V) :=
∫
S[V]H dA = M0.

In above, S[V] is the subdivision surface determined by V (and the fixed F .)
We shall use the notation (V,Ftetra) to denote a tetrahedral control mesh as in Figure 6(a).

The connectivity information encoded in Ftetra defines what is usually called an abstract
simplicial complex. We also use the notation Ftetra,j to denote the complex of a j-times
subdivided tetrahedron.

We refer to problem (3.1) simply as a Helfrich problem and the same problem without
constraint (iii) as a Canham problem. In Figure 7 we give an example of the numerical solution
of a Canham problem;6 it illustrates that the C2g0 scheme, being a higher order scheme than
the Loop scheme, can potentially approximates a surface more accurately.

3.1. Evaluation algorithm. In order to compute the various quantities of interest per-
taining to a subdivision surface, e.g., mean and Gauss curvatures, W (V), A(V), V (V), M(V)
in the Helfrich model, and the harmonic energy in the next section, we need to be able to
evaluate the surface parametrizations and their derivatives efficiently. For this purpose, we
adapt the idea from Stam [28]. Since we consider only closed triangle meshes with valence 3
and 6 vertices, there are three types of triangles to handle:

• [Type-0 triangle] These are triangles with valence 6 bounding vertices, and all vertices
adjacent to the three bounding vertices also have valence 6. See Figure 8. In this case,

6We use the solver fmincon() in the MATLAB optimization toolbox, which requires one to input an initial
guess, and function handles for computing the objective (W ) and constraint functions (A, V , M), as well as
their gradients. See [5] and also the related article [9]. A few related problems (see Remark 3.1 and (3.12)) in
the rest of the paper are solved using the same solver.D
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(a) C2g0 (Willmore energy = 25.125) (b) Loop (Willmore energy = 25.303)

Figure 7. Numerical solutions of the Canham problem with reduced volume v0 = 0.18. (a) using the C2g0
scheme and (b) using the Loop scheme. In both cases, the control mesh is based on Ftetra,3 (with 130 vertices).
The resulted control mesh (left) is subdivided three more times and displayed (right). It is believed that the true
solution approaches a double sphere with a catenoid-like neck when v0 → 0. The Loop scheme gives a surface
with self-intersection, while the C2g0 scheme produces a double sphere without self-intersection.

(a) (b)

Figure 8. (a) Type-0 configuration, (b) types of triangle in a twice subdivided tetrahedron.

the surface patch is determined by the surrounding 27 control vertices and the surface
parametrization7 s(v, w) = [X(v, w), Y (v, w), Z(v, w)]T is a single degree 7 polynomial
function in each component and can be evaluated as

s(v, w) = cTQb(v, w),(3.2)

where b(v, w) is a length 36 column vector consisting of any ordered basis of the
space of bivariate polynomials of total degree 7 (we use the Bernstein–Bézeir basis
{ 7!
i!j!k!u

ivjwk : i+ j + k = 7}), Q is a suitable 27× 36 matrix (dictated by the under-
lying three-directional box-spline and the choice of ordered polynomial basis), and c
is the 27× 3 array of control vertices around the type-0 triangle ordered according to
Figure 8(a).

7Here and below, the (v, w) parameters live in the reference triangle Ω := {(v, w) : v ∈ [0, 1] and w ∈
[0, 1− v]}. As such, the barycentric coordinates of (v, w) are (u = 1− v − w, v, w).D
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• [Type-II triangle] These are triangles with valence 6 bounding vertices, but one of
them has an adjacent vertex with valence 3.8 In this case, the surface parametrization
for each component is a potentially different degree 7 polynomial on each of the four
subtriangles of Ω when we midpoint subdivide Ω. The evaluation algorithm is similar
to that of type-0, except that for each of the four subtriangles of Ω we need to add an
extra linear map that maps the control vertices around the type-II triangle to the 27
control vertices that determine the polynomial piece defined on that subtriangle.
There are two subtypes among the type-II faces: those that are on the side (labelled
“II1” in Figure 8(b)) and those that are in the middle (labelled “II2”); these two
subtypes of surface patches are determined by 23 and 21 control vertices, respectively.
• [Type-I triangle] These are triangles with one valence 3 bounding vertex and the other

two being valence 6. In this case, the surface patch is determined by 18 surrounding
control vertices,9 and the surface parametrization consists of an infinite number of
degree 7 polynomial pieces in each component. (In the subdivision surface literature,
these are called infinite spline rings.) In this case each component of the parametrized
surface s(v, w) = [X(v, w), Y (v, w), Z(v, w)]T , (v, w) ∈ Ω, is a piecewise polynomial
with infinite pieces, and there appears to be no convenient, constant time way to eval-
uate p(v, w) for arbitrary parameter values v, w. This is where Stam’s idea comes in,
based on exploiting linearity and stationarity. If c is the 18×3 array of control vertices
around a type-I triangle, and if we decompose c in the (generalized) eigen-basis of the
subdivision matrix Strim (see footnote 9), c =

∑18
i=1 viĉi, then the parametrization can

be written as

s(v, w) =
18∑
i=1

ĉTi b̂i(v, w),(3.3)

where b̂i(v, w) is an “eigen-subdivision function,” i.e., the subdivision limit given by the
“eigen-control data” vi. The observation is that, while s(v, w) seems hard to evaluate,
each b̂i(v, w) is easier to evaluate because it is either “self-similar” in the sense of
b̂i(v/2, w/2) = λib̂i(v, w) when Strimvi = λivi (vi is an eigenvector), or b̂i(v/2, w/2) =
b̂i−1(v, w) + λib̂i(v, w) when Strimvi = vi−1 + λivi (vi is a generalized eigenvector.) In
the former case, b̂i(v, w) is determined by its values on the “outer wedge” Ω1

1∪Ω1
2∪Ω1

3
of Ω (see Figure 9), and for each k = 1, 2, 3, b̂i|Ω1

k in turn has the structure of a type-II`
patch, ` = 1 when k = 1, 3 and ` = 2 when k = 2, so can be evaluated accordingly.
The latter case is handled similarly.

As the discussion above suggests, the implementation of type-I triangles depends on that
of type-II triangles, which in turn depends on that of type-0 triangles. See our MATLAB
implementation EvaluateC2g0.m, available at http://www.math.drexel.edu/∼tyu/C2g0.

8We assume that the valence 3 vertices are isolated enough that when this happens exactly one of the three
bounding vertices will have exactly one valence 3 adjacent vertex. In the case of a tetrahedron, subdividing it
twice will guarantee this property.

9If the type-I triangle is the one bounded by vertices 1,2,3 in Figure 4(a), then the 18 control vertices
that determine the patch are the 19 vertices there with vertex 17 excluded. We also define the corresponding
trimmed subdivision matrix Strim ∈ R18×18 as the matrix S ∈ R19×19 in (2.1)-(2.3) with the 17th row and
column removed.
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(a) (b)

Figure 9. (a) The parameter domain Ω (b) Partition of Ω.

(a) almost round sphere (b) H-shaped starfish (c) pear

Figure 10. Mean and Gauss curvature plots of three C2g0 subdivision surfaces. The control vertices V are
obtained by solving a Helfrich problem (c.f. Figure 1) with F = Ftetra,3 in (a) & (c) and Ftetra,4 in (b).

A standard use of such an evaluation algorithm is the computation of the first and second
fundamental forms based on the following formulas:

I =
[
E=〈sv ,sv〉 F=〈sv ,sw〉
F=〈sw,sv〉 G=〈sw,sw〉

]
, II =

[
e=〈n,svv〉 f=〈n,svw〉
f=〈n,swv〉 g=〈n,sww〉

]
, n = sv × sw/‖sv × sw‖.(3.4)

In Figure 10, we give examples of Gauss (K = det(I−1II)) and mean curvature (H =
1/2 trace(I−1II)) plots for some genus 0 surfaces generated using the evaluation algorithm.
Here the normal vector n points inward, so that H ≡ 1 for the unit sphere.

For our purposes, it is important to note that for any face f in the triangle mesh, the
parametric surface patch can be written as

s = sf = cTf b
type(f), type(f) ∈ {0, II1, II2, I},(3.5)

where cf is formed by selecting the right set of rows from V, whereas btype(f) is a vector of
functions independent of V. For a type-0 face f , this relation is given by (3.2). For a type-I
face f , we write (3.3) in matrix form as s = ĉb̂, V ĉ = cf with V = [v1, · · · , v18] the matrix of
(generalized) eigenvectors of Strim, and then sf = (V −1cf )T b̂ = cTf (V −T b̂), which is now in
the desired form (3.5). Type-II patches are treated similarly.

When various geometric functionals of the subdivision subdivision surface and their gradi-
ents have to be computed for many different V but the same F , it is economical to precompute
the basis functions btype(f), type(f) ∈ {0, II1, II2, I} at quadrature points. The same precom-
putation also facilities a parallel implementation of these functionals and their gradients [5].
Below, we shall see how (3.5) is used in the computation of the gradient of harmonic energy.D
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3.2. Harmonic energy. The harmonic energy, Dirichlet energy, or simply energy of a C1

map ϕ :M→N between Riemannian manifolds (M, g) and (N , h) is defined by

E [ϕ] =
∫
M
‖dϕ‖2dM,(3.6)

where dM is the volume form of (M, g), and the energy density ‖dϕ‖2 at any x ∈ M is the
Hilbert–Schmidt norm of dϕx : (TxM, 〈, 〉g)→ (Tϕ(x)N , 〈, 〉h), i.e.,

‖dϕx‖2 = traceg,h(dϕx∗dϕx) =
∑
i

〈dϕx∗dϕx ei, ei〉g =
∑
i

〈dϕx ei, dϕx ei〉h(3.7)

for any orthonormal basis (ei) in (TxM, 〈, 〉g). See [15, Chapter 8].10 Such a map is called
harmonic if it is a critical point of E . When M is two-dimensional, two “accidents” happen:

(i) The energy does not depend on the exact Riemannian metric on M but only its
conformal class.

(ii) If furthermore M is of genus 0, then every harmonic map is conformal.
To see why (i) is specific to surfaces, under a conformal change of metric g̃i,j(x) = λ(x)2 gi,j(x)
the area form dM =

√
det(gi,j) dx1 ∧ dx2 transforms as dM̃ =

√
det(g̃i,j) dx1 ∧ dx2 =√

λ2(dimM)det(gi,j) dx1∧ dx2 = λ2 dM when dimM = 2, whereas the energy density trans-
forms as traceg̃,h(dϕx∗dϕx) = λ(x)−2 traceg,h(dϕx∗dϕx) regardless of dimM. As such, E [ϕ] is
independent of λ, hence (i), when and only when dim(M) = 2. For (ii), see [15, Chapter 9].

If we endow the spherical or toroidal triangle mesh in Figure 6 with the conformal structure
based on the valence 3 and 6 Bers’s charts, recall Figure 5, then a Riemann surfaceM results.
Moreover, the subdivision functions ϕ :M→ R3 produced by the C2g0 scheme are, according
to Theorem 2.1, more than regular enough to possess a well-defined energy E [ϕ].

3.3. Computing harmonic energy. We describe how to compute E [ϕ] and its gradient
vector with respect the control vertices V. We focus on the spherical case as this is our main
interest. The torodial case is only easier as there are only valence six vertices.

We continue to use the notationM :=M(Ftetra) to denote the Riemann surface after we
endow the (abstract) simplicial complex specified by Ftetra with Bers’s conformal structure.
With Ftetra and M now fixed, it is the data in V that determines the subdivision map

ϕ := ϕV :M→ R3.

We overload notation and write

E(V) := E [ϕV ], and ∇E(V)

for the gradient vector of E , now viewed as a function from R#V×3 to R, at V.

10The exposition in [15, Chapter 8] does not appeal to what operator theorists call the Hilbert–Schmidt
norm. In differential geometry parlance, (3.7) is equivalent to taking the pullback by ϕ of the metric tensor of
N , then identifying it as a linear operator on TxM (this identification is based on the metric on M), followed
by taking the trace of the operator. Regarding the notation traceg,hdϕx∗dϕx in (3.7), the trace of a linear map
from TxM to itself does not depend on any inner product (nor basis); it is the definition of dϕx∗dϕx that relies
on both the Riemannian metrics on M and N .D
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Our algorithm for computing E(V) and ∇E(V) is based on writing the integral (3.6) as a
sum over all the type-0, I, and II faces in Ftetra (recall Figure 8(b)),

E(V) =
∑

f∈Ftetra

∫
f
‖dϕ‖2dM.(3.8)

For each face f ∈ Ftetra, there is a vector of control vertices that determines the surface patch
ϕV |f . In section 3.1, f is always identified with the reference triangle Ω (recall Figure 9), and
ϕV |f is written as sf : Ω→ R3 there. However, this identification distorts the angles specified

by the conformal structure on f . To compute the integral in (3.8) correctly, let τ =
(

1 −1/
√

3
0 2/

√
3

)
,

and then τ−1Ω is an equilateral triangle. Define s̃f = sf ◦ τ , so ds̃f = dsf |τ ·τ (as a 3 × 2
matrix), and∫

[f ]
‖dϕ‖2dM =

∫
τ−1Ω

trace(ds̃Tf ds̃f ) dṽ dw̃ =
∫

Ω
trace(τT Iτ) det(τ−1)dv dw

=
2√
3

∫
Ω
〈sf,v, sf,v〉 − 〈sf,v, sf,w〉+ 〈sf,w, sf,w〉 dv dw,

(3.9)

where I is the first fundamental form in (3.4). Since the integrand can be evaluated using the
algorithm developed in section 3.1, the integral can then be computed based on a numerical
quadrature.

This algorithm can be parallelized over the faces; see [4, 5].
To compute ∇E(V) both sequentially and in parallel, we again use the strategy developed

in [4, 5]. In the case at hand, it is based on the fact that every patch of a subdivision surface
can be expressed in the form (3.5). Write E0(cf ), EII1(cf ), EII2(cf ), EI(cf ) for the integrals in
(3.8)–(3.9) when type(f) = 0, II1, II2, I, respectively; these are viewed as functions

E0 : R27×3 → R, EII1 : R23×3 → R, EII2 : R21×3 → R, EI : R18×3 → R,

and we shall compute their gradients in (3.11).11 The (local) control vertices cf is related to
the (global) vertex list V via a projection: PfV = cf . Pf can be regarded as a “global to local
map” that picks out the rows from V that contribute to the surface sf . This matrix Pf is not
to be formed in actual computation, but it put the energy functional in a form in which the
chain rule can be applied:

∇E(V)︸ ︷︷ ︸
global gradient

=
∑
f∈F

P Tf︸︷︷︸
local to
global
map

∇Etype(f)(cf )︸ ︷︷ ︸
local gradient

.(3.10)

It remains to work out an expression for the local gradient vector ∇Etype(f)(cf ). In virtue of
(3.5), the algebra is the same for each type, say, type(f) = I, by (3.9)

∇EI(cf ) =
2√
3

∫
Ω
∇〈cTf bI

v, c
T
f b

I
v〉 − ∇〈cTf bI

v, c
T
f b

I
w〉+∇〈cTf bI

w, c
T
f b

I
w〉 dv dw

=
2√
3

∫
Ω

[
2bI

v(b
I
v)
T − bI

v(b
I
w)T − bI

w(bI
v)
T + 2bI

w(bI
w)T

]
cf dv dw.

(3.11)

11We write the gradients of Etype(f)(cf ) (resp., E(V)) as a matrix with the same dimensions as cf (resp., V).
This way the matrix products in (3.10) and (3.11) are valid.D
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The same formula holds with “I” replaced by “0,” “II1,” or “II2.”
For the parallel implementation based on (3.10)–(3.11), see [4, 5], and also the CUDA

implementation provided in http://www.math.drexel.edu/∼tyu/C2g0.

Remark 3.1. How big should we expect E(V) to be? There is only one conformal structure
on the sphere, so as a Riemann surface our M(Ftetra) is no different from the unit sphere in
three-space with the conformal structure inherited from R3. Now consider the identity map
from S2 to itself, which has energy 2 · area(S2) = 8π. Using the numerical tools we have
developed, we solve the following problem: minV∈R#V×3 E(V), s.t. A(V) = 4π, the numerical
solution quickly converges to a map with energy equals 25.13274 ≈ 8π for both F = Ftetra,3
and Ftetra,4. We suspect that whenever a genus 0 surface is parametrized over the Riemann
sphere has area normalized to 4π, the energy of the parametrization map is at least 8π.

3.4. Regularizing parameterization via harmonic energy minimization. Since the vari-
ation problem (1.1) is purely geometric and its solution is independent of parametrization,
the solution based on any parametric method must be highly nonunique, simply because any
surface can be parametrized infinitely many ways. This comment, of course, applies only when
we are working at infinite resolution (think Ftetra,j , j → ∞), when the space of parametric
surfaces where we search for our solution allows for all possible parametrizations (of a certain
smoothness class) of the solution surface. In theory, the “degree of nonuniqueness” is charac-
terized by the infinite-dimensional group of diffeomorphisms on the solution surface. From a
practical point of view one may be more interested in the conformal parametrizations; for a
genus 0 surface this reduces the space of solutions from infinite-dimensional to six-dimensional.

When solving (3.1) at a finite resolution j, the above consideration suggests the following:
• Problem (3.1) is bound to exhibit many local minimizers with objective values close to

the global optimum; see Figure 11. These (nearly optimal) local minimizers correspond
to the different parameterizations of the true solution surface.
• For many of these local minimizers, the resulted parametrizations are far from being

conformal, as in Figures 12(a) and 13(a), giving rise to triangulations with many
triangles of bad aspect ratios. Depending on the problem, the same comment may
apply to the global minimizer(s): it may well be the case that at the given resolution,
the best possible approximation to the true solution requires the parametrization to
be highly nonconformal.
• However, at a fine enough scale j, we expect to see nearly optimal solutions that are

nearly conformal.
With the last comment in place, and recalling the fundamental fact from section 3.2 about

the relationship of harmonic energy and conformal parametrization, we expect that for most
local or global minimizers of Problem (3.1) at a fine enough scale j, we can always trade a
small, if not negligible, increase of the Willmore energy for a significant improvement of the
“degree of conformality,” as measured by harmonic energy, in the parametrization. Therefore,
when the quality of parametrization for a numerical solution of (3.1) is a concern, we propose
to apply the following postprocessing step based on the minimum Willmore energy W0 found
after solving (3.1): Solve

(3.12) min
V∈R#V×3

E(V) s.t. A(V) = A0, V (V) = V0, M(V) = M0, W (V) 6 W0 + ε,
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(a) W = 28.2160 (b) W = 28.2168 (c) W = 28.2160
E = 30.9055 E = 28.5888 E = 32.0414

(d) W = 28.2159 (e) W = 28.2159 (f)
E = 27.1374 E = 26.6933

Figure 11. Five different local minimizers of (3.1) with v0 = 0.5, m0 = 1.05 and A0 = 4π, F = Ftetra,3,
obtained from different initial guesses. (For (c), the initial guess is the control mesh of the almost round sphere
in Figure 10(a).) The Willmore energies agree in the first 4 significant digits; the resulted subdivision surfaces
look visually the same (f).

(a) W = 28.2160, E = 32.0414 (b) W = 28.2190, E = 25.3228

Figure 12. (a) The control mesh in Figure 11(c) subdivided (by the C2g0 scheme) 2 more times, displayed
with 2 different views. (b) Solution of (3.12) with ε = 0.003, using the mesh in Figure 11(c) as the initial
guess; the solution is again displayed after 2 subdivision steps and with the same viewing angles.

with a small ε > 0. Experiments verify what we expect: an almost negligible increase in
Willmore energy allows for a substantial decrease in the harmonic energy. See Figures 12
and 13. Note that these experiments are carried out at pretty low subdivision levels: j = 3
(Figure 12) or j = 4 (Figure 13); the empirical success is likely attributable to the high
accuracy order of the subdivision scheme.

4. Conclusions. The spherical topology is ubiquitous enough to deserve special attention,
at least for the biomembrane problem studied in this work. A specialized high order, high
regularity subdivision method is developed. The software implementation in MATLAB and
CUDA can be found in http://www.math.drexel.edu/∼tyu/C2g0.D
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(a) W = 50.1331, E = 46.2684 (b) W = 50.2102, E = 33.5197

Figure 13. (a) A C2g0 approximate solution of the Helfrich problem with v0 = 0.4, m0 = 1.8, A0 = 4π,
F = Ftetra,4. (b) Result based on postprocessing the result of (a) by (3.12) with ε = 0.08. For both (a) and (b),
the control mesh (514 vertices, 1024 faces) is shown at the lower left, the corresponding subdivision surface is
displayed based on subdividing the control meshes two more rounds, and the middle of the surface is zoomed in
and shown on the right.

The subdivision method is well-known for its ability to handle arbitrary topology. While
this paper goes against this pride, the three-directional box spline underlying the C2g0 scheme
can be used to construct a subdivision scheme that handles extraordinary vertices of any
valence. It is just that for valence not equal to 3 and 6, Prautzsch and Reif’s degree estimate
says no flexible C2 rule is possible, meaning that we can only aim for C1 rules, as in the Loop
scheme.

While the use of harmonic energy for piecewise linear surfaces has been a known idea
in applied geometry (for early references, see [7, 12]), the use of harmonic energy for smooth
subdivision surfaces seems unexplored previously, especially when applied to the biomembrane
problem. The empirical success (section 3.4) stimulates us to ask if a Loop embedding function
has a finite harmonic energy with respect to the Bers conformal structure (in the arbitrary
topology setting). Note that a Loop subdivision function is only C1 w.r.t. to the characteristics
coordinates defined by the Loop scheme itself; it is not C1 in Bers’s conformal structure.
However, f :M→N need not be C1 but only possess a square-integrable first derivative (i.e.,
a member of the Sobolev space H1,2(M,N )), in order for the harmonic energy to be defined.

The obvious but difficult question is, what can be said about the numerical solution as an
approximation to the true solution of (1.1) as the scale j →∞?

Acknowledgments. T. Yu would like to acknowledge David Gu, Hartmut Prautzsch, and
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supporting a collaboration between him and the second author.

REFERENCES

[1] L. Bers, Riemann Surfaces, Courant Institute of Mathematical Sciences, New York University, New
York, 1958.

[2] P. B. Canham, The minimum energy of bending as a possible explanation of the biconcave shape of the
human red blood cell, J. Theoret. Biol., 26 (1970), pp. 61–76.

[3] A. S. Cavaretta, W. Dahmen, and C. A. Micchelli, Stationary Subdivision, Mem. Amer. Math. Soc.
453, AMS, 1991, Providence.D

ow
nl

oa
de

d 
11

/1
3/

17
 to

 1
93

.1
75

.5
3.

21
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

482 JINGMIN CHEN, SARA GRUNDEL, AND THOMAS P. Y. YU

[4] J. Chen, Numerical Methods and Uniquness for the Canham–Helfrich Model of Biomembranes, Ph.D.
thesis, Department of Mathematics, Drexel University, 2015; also available online from http://www.
math.drexel.edu/∼tyu/Papers/ChenThesis.pdf.

[5] J. Chen, R. Kusner, T. P.-Y. Yu, and A. Zigerelli, Numerical Methods for the Canham–Helfrich–
Evans Models of Biomembranes, in preparation, 2015.
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