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Abstract

or probiotic capabilities.

Background: Recent studies highlight the utility of quantitative trait locus (QTL) mapping for determining the
contribution of host genetics to interindividual variation in the microbiota. We previously demonstrated that similar
to the gut microbiota, abundances of bacterial taxa in the skin are significantly influenced by host genetic variation.
In this study, we analyzed the skin microbiota of mice from the 15th generation of an advanced intercross line
using a novel approach of extending bacterial trait mapping to both the 16S rRNA gene copy (DNA) and transcript
(RNA) levels, which reflect relative bacterial cell number and activity, respectively.

Results: Remarkably, the combination of highly recombined individuals and 53,203 informative SNPs allowed the
identification of genomic intervals as small as <0.1 megabases containing single genes. Furthermore, the inclusion
of 16S rRNA transcript-level mapping dramatically increased the number of significant associations detected, with
five versus 21 significant SNP-bacterial trait associations based on DNA- compared to RNA-level profiling,
respectively. Importantly, the genomic intervals identified contain many genes involved in skin inflammation and
cancer and are further supported by the bacterial traits they influence, which in some cases have known genotoxic

Conclusions: These results indicate that profiling based on the relative activity levels of bacterial community
members greatly enhances the capability of detecting interactions between the host and its associated microbes.
Finally, the identification of several genes involved in skin cancer suggests that similar to colon carcinogenesis, the
resident microbiota may play a role in skin cancer susceptibility and its potential prevention and/or treatment.

Keywords: QTL mapping, Skin microbiota, 165 rRNA transcript, Skin cancer

Background

Mammals host a wide range of complex and diverse mi-
crobial communities in association with their barrier or-
gans, which contribute to critical aspects of host biology.
Accordingly, many studies of the resident microbiota in
the past decade provided primary surveys in a variety of
different contexts (e.g., organ, disease state, genotype,
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development, geography) [1-5]. A salient feature of
these studies is the revealing of substantial diversity be-
tween individuals. Thus, a thorough understanding of
the fundamental factors that govern the assembly and
stability of bacterial communities is of critical import-
ance. Broadly speaking, studies addressing these ques-
tions identify the environment, diet, and host genetics as
important contributors to interindividual variation in
host-associated communities [6—8].

The influence of host genetics on bacterial community
structure has been addressed by a number of different
approaches in human and mouse models, such as twin
studies [9, 10], comparison of mouse inbred strains [11,
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12], quantitative trait locus (QTL) analysis [13, 14], and
more recently first genome-wide association studies
[15-19]. These studies provide valuable insights into the
role of host genetics in shaping the structure of the bac-
terial communities, although are largely limited to gut
communities.

The skin offers numerous niches for microbes and ac-
cordingly harbors complex bacterial communities [20],
which differ between distinct body sites and individuals.
However, individuals display greater intrapersonal than
interpersonal similarity within a specific skin habitat
over time [21, 22], suggesting that in addition to other
principles governing community stability, host genetics
may be a contributing factor to these observed patterns.
In a recent study, we addressed whether host genetic
variation contributes to variation in the skin microbiota
in mice by employing a QTL mapping approach to the
fourth generation of an advanced intercross line (AIL)
[23]. This revealed a total of 13 regions of the mouse
genome significantly associated to skin bacterial traits,
although the large size of the defined genomic regions
(from 9 to 33 megabases) did not easily allow for more
detailed characterization of the individual genes
involved.

In this study, we aimed to improve the mapping reso-
lution of QTLs for skin microbial abundances by using
the 15th generation of the previously used AIL [23],
which we generated through the continuous random
intercrossing of individuals, and by increasing the
marker density to 53,203 informative SNPs. Further-
more, we introduced a novel means of microbial pheno-
typing in a QTL context by performing 16S ribosomal
RNA (rRNA) profiling at both the gene copy (DNA) and
transcript (RNA) levels, which reflect relative bacterial
cell number and activity, respectively. Our analysis re-
veals numerous genomic regions associated with skin
microbial abundances, in several cases containing single
immune- and/or skin cancer-related genes, whereby 16S
rRNA transcript-level profiling was considerably more
effective in terms of the number of associations identi-
fied. This suggests that bacterial activity levels may pro-
vide deeper insight into mechanisms of host-microbe
interactions than DNA-level profiling alone.

Results

Skin microbiota composition in the AIL mapping
population

In order to fine-map genomic regions influencing bac-
terial taxon abundances in the skin, we analyzed a total
of 270 mice from the 15th generation (hereafter G;5) of
the same AIL from which we previously analyzed the
4th generation (G,) [23]. An important factor to con-
sider when analyzing the G5 mice is that the AIL was
transferred from an animal facility at the University of
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Rostock to a new animal facility at the University of
Lubeck, shortly after the analysis of the G, mice was
conducted. Thus, prior to QTL mapping, we conducted
a thorough ecological analysis of the G;5 mice in order
to re-evaluate the bacterial taxa present and to aid the
interpretation of mapping results. Furthermore, given
that the skin harbors comparatively low biomass com-
munities and is in constant contact with the environ-
ment, we reasoned that bacterial 16S rRNA transcripts
may in some cases better reflect true resident skin bac-
teria interacting with their host. Thus, we performed
16S rRNA gene amplicon (V1-V2 hypervariable regions)
sequencing on the Illumina MiSeq platform using both
bacterial genomic DNA and RNA reverse transcribed
into complementary DNA (cDNA) as template. In total,
we analyzed nearly two million sequences after quality
filtering and processing, with a normalized coverage of
3500 sequences per sample for each of the DNA- and
RNA-based datasets, which we refer to as the “standing”
and “active” communities, respectively.

First, we analyzed community composition at the
phylum and genus levels (Fig. 1). Overall, the mean rela-
tive abundances of the major phyla and genera vary
largely between the standing and active datasets
(Table 1). Proteobacteria is the most abundant phylum
in both standing and active datasets (46 and 44%, re-
spectively) and does not significantly differ between
them. Bacteroidetes and Firmicutes, on the other hand,
display significant contrasting patterns between the
standing and active communities, with Bacteroidetes be-
ing more abundant at the DNA compared to the RNA
level (19 versus 13%, respectively) and Firmicutes being
almost twofold more abundant at the RNA compared to
the DNA level (29 versus 16%, respectively). Actinobac-
teria and Cyanobacteria make up a smaller proportion of
the standing communities (5.3 and 4.7%, respectively)
and are further significantly reduced in the active com-
munities (3 and 2.5%, respectively). These relative pat-
terns at the RNA compared to the DNA level are also
largely reflected by the respective most abundant genera
belonging to each of these phyla (Fig. 1c, d; Table 1).

To further examine the correspondence of abundances
at the DNA and RNA levels for a single taxon, we inves-
tigated their correlations. Among the most abundant
taxa, we observe overall moderate to poor correlations;
Proteobacteria, Bacteroidetes, unclassified Lachnospira-
ceae, unclassified Clostridiales, and Staphylococcus abun-
dances show a moderate, positive, and significant
correlation, whereas Firmicutes abundances correlate
poorly between the standing and active datasets (Fig. 2a,
b). This indicates that the presence and activity of taxa
vary distinctively across individuals and bacterial groups.

Next, we compared the overall community compos-
ition between the G5 and G, populations. Although
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Fig. 1 Relative abundances of phyla and genera. The five most abundant phyla and genera are shown. a Major phyla in standing (DNA-based)
communities. b Major phyla in active (RNA-based) communities. ¢ Major genera in standing (DNA-based) communities. d Major genera in active
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Table 1 Mean relative abundances of major taxa between
standing and active communities in the G;s population

Rank Taxon Paired Wilcoxon test
Phylum Proteobacteria 043
Phylum Bacteroidetes 1.68% 1072
Phylum Firmicutes 397x 107"
Phylum Actinobacteria 224x107°
Phylum Cyanobacteria_Chloroplast 397x 107"
Genus Streptophyta 665x 107"
Genus Staphylococcus 6.04x107"°
Genus Un.Lachnospiraceae 22x107"
Genus Streptococcus 6.65x 107"
Genus Un.Clostridiales 15%107°

Significant p values (<0.05) after Benjamini-Hochberg [27] correction for mul-
tiple testing are indicated in italics

Un unclassified

there is a large degree of overlap in terms of the major
taxa present, significant differences between these two
mouse cohorts are already apparent among phylum-level
abundances, whereby the former G, cohort is dominated
by Firmicutes in contrast to the G5, which is dominated
by Proteobacteria (Fig. 3a—c). Systematic community-
level differences are also clearly revealed by beta diver-
sity analyses (Additional file 1), whereby the standing
and active communities of the G;5 display much more
similarity to each other than either does to the standing
communities of the G, despite the differences in abun-
dance between the DNA- and RNA-based profiling out-
lined above.

Patterns of variation among Core Measurable Microbiota
taxa

For further analysis, we defined a “Core Measurable
Microbiota” (CMM) [13] (see “Methods”) for the Gz
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Fig. 2 Correlation between standing and active relative abundances for representative taxa. a Phyla. b Genera. Spearman’s correlation:
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population, which in total contains 92 taxa from the
genus to the phylum level and 44 species-level oper-
ational taxonomic units (OTUs). The CMM traits repre-
sent a small fraction (9 and 0.2%, for CMM taxa and
OTUs, respectively) of all detected taxa, but their cumu-
lative abundances represent more than 90 and 60% of
taxon and OTU abundances, respectively, within the en-
tire standing and active datasets. Due to the known
technical challenges of metagenomic analysis of low mi-
crobial biomass samples such as the skin [24, 25], we
evaluated the possible influence of contamination during
experimental procedures on our ability to reliably meas-
ure the CMM and other traits included in the QTL

analysis (CMM traits plus those previously significant in
the G, population, see below) using “SourceTracker”
[26]. This analysis reveals minimal estimates of contam-
ination for the mapped genera and species-level OTUs
(97% similarity threshold), whereby estimates for the ac-
tive communities are in each case lower (mean + stand-
ard deviation, genus: DNA 5.2 + 3.4%, RNA 3.8 + 3.5%;
OTU: DNA 3.2 £2.2%, RNA 2.5 + 2.5%).

To assess the degree of interindividual variation within
each CMM trait, we calculated summary statistics of the
relative abundances in the standing and active datasets
(Additional files 2, 3, 4, and 5). The relative abundances
of the CMMs vary greatly across individuals. For
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example, in the standing communities, unclassified Beta-
proteobacteria ranges from 1.5 to 100%, while Staphylo-
coccus_OTUI6 varies from 1.3 to 17.3%. Examples in the
active communities include Campylobacter, which
ranges from 2.1 to 31.9%, and Acinetobacter OTUIS,
which ranges from 0.7 to 44.9%. As expected, the most
abundant CMMs harbor the highest dispersion across
individuals, whereas the least abundant ones display
tighter dispersion.

To measure the influence of the cage environment,
gender, and age on the interindividual variation in the
CMMs, we built a mixed effects model for each CMM
trait using the log;o-transformed relative abundance as
the response variable, gender and age as fixed explana-
tory variables, and cage as a random term, separately for
the standing and active communities. Accordingly, we
quantified the fractions of total variance explained by
each of these factors (Additional files 6, 7, 8, and 9),
which varies considerably across CMM traits and be-
tween the standing and active datasets. For example, in
the standing communities, only 0.52% of the total vari-
ance in Enterobacteriaceae abundance is explained by
cage, whereas cage explains 32.98% of the total variance

in Deltaproteobacteria abundance, and similar patterns
are observed for the active communities. Within individ-
ual CMM traits, some display large correspondence be-
tween the standing and active communities (e.g., cage
explains 21.14 and 17.20% of variation in Peptostrepto-
coccaceae abundance in DNA- and RNA-based data, re-
spectively), whereas others do not (e.g., cage explains
12.05 compared to 0% of the variation in Alistipes abun-
dance in DNA- compared to RNA-based data, respect-
ively). On average, the fraction of total variance
explained by cage is higher in the standing compared to
active communities (DNA: genus to phylum taxa
12.91%, species 12.67%; RNA: genus to phylum taxa
10.58%, species 9.42%). Similar to the cage environment,
the variance explained by gender and age also fluctuates
substantially across CMM traits and their relative pat-
terns in the standing and active communities. However,
the fraction of total variance explained by gender and
age combined is higher in the active compared to stand-
ing communities (DNA: genus to phylum taxa 12.44%,
species 12.59%; RNA: genus to phylum taxa 25.26%, spe-
cies 16.61%). Importantly, after accounting for cage, gen-
der, and age effects, the remaining residual variation still
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comprises the greatest proportion of total variance for
nearly all CMM traits. The residuals for all mapped
traits are provided in Additional file 10.

QTL mapping of the skin microbiota in the G5

To identify regions of the host genome influencing vari-
ation in skin microbial traits in the G;5 population, we
performed linkage mapping (see “Methods”) on the 136
CMM traits described in addition to alpha diversity. Fur-
ther, in an attempt to potentially replicate previously
identified QTLs, we additionally included those CMM
traits that showed significant associations with the host
genome in the G4 and are present in the Gys, but do not
meet the criteria to be defined as part of the CMM in
the Gis. In total, we identified 13 significant (p <0.05)
and 12 suggestive (p<0.1) QTLs among the standing
and active community traits (Fig. 4, Table 2). Notably,
QTL sizes span narrow confidence intervals ranging
from 5 to 0.08 Mb, which in some cases contain single
genes, and the phenotypic variance explained by
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individual peak SNPs averaged across all traits accounts
for approximately 9% of the total variance. Five QTLs
are defined for the standing communities, two of which
have pleiotropic effects. For example, the genomic re-
gion on chromosome 9, ranging from 77 to 80 Mb, is as-
sociated with variation in both Deltaproteobacteria and
Bacteroidetes_ OTU23. In comparison, 21 QTLs are
present among the active communities, none of which
overlap with those identified for the standing communi-
ties. Two of the active QTLs are for Prevotellaceae,
whereas the same region is identified at the genus and
species levels for Ralstonia (Table 2). Further, we identi-
fied a single QTL influencing genus-level alpha diversity
(Chaol) in the active communities.

To further evaluate the reliability of bacterial traits as
measured by NGS-based methods, we independently an-
alyzed three bacterial traits for which QTLs were de-
tected (Betaproteobacteria, Epsilonproteobacteria, and
Streptococcus) by performing qPCR measurements on a
random subset of 80 mice using group-specific primers.
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The relative abundances assessed by sequence profiles
and qPCR estimates display significant positive correla-
tions for all three traits (Spearman’s correlation: Epsilon-
proteobacteria:  r=0.40, p=0.0003; unclassified
Betaproteobacteria: r=0.25, p = 0.02; Streptococcus: r =
0.36, p=0.0012; p values corrected according to
Benjamini-Hochberg [27]), thus supporting the reliability
of our bacterial phenotyping methods.

To determine whether we replicate previously detected
QTLs in the G4 population, we compared the identified
genomic regions in the G5 to our previous study [23].
The most promising trait is Neisseria, which was associ-
ated to chromosome 14 (confidence interval 56 to
69 Mb) in the G, population. In G5, the confidence
interval ranges from 60.55 to 60.98 Mb, the LOD score
of the peak SNP is 9.01, and the percent explained vari-
ance is 14.24%, although it is not significant at our deter-
mined genome-wide thresholds (Additional file 11). We
did, however, discover four genomic regions contained
within regions previously detected in the G, that are sig-
nificantly associated with four CMM traits in the Gis
population (Table 2), although the bacterial taxa are not
the same.

In addition, we compared the intervals detected in our
Gy5 analysis to published human GWAS and mouse
QTL studies. While none of the loci previously
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associated with skin microbial traits in humans [16, 28]
were contained within our G5 intervals, we detect some
overlap with QTL studies of the gut microbiota in mice
[3, 13]. These include the QTL on chromosome 10
(111.57-113.68 Mb) for the genus Ralstonia and corre-
sponding OTUs, which overlaps with a pleiotropic gen-
omic region from Benson et al. [13] on chromosome 10
associated with Coriobacteriaceae (106—122 Mb) and
Lactococcus and Streptococcaceae (100-111 Mb). Add-
itionally, our QTL on chromosome 12 (6.59-8.05 Mb)
for Prevotellaceae overlaps with a QTL on chromosome
12 (-26 Mb) for Ruminococcaceae identified by Benson
et al. [13]. Finally, our QTL located on chromosome 15
(95.01-95.39 Mb) for unclassified Betaproteobacteria
overlaps with a QTL for Rikenellaceae on chromosome
15 (92.73-97.39 Mb) identified by McKanite et al. [3].

Analysis of candidate regions

Due to the narrow confidence intervals identified in the
G5, we were able to identify many promising candidate
genes. In Table 3, we list the genes related to the im-
mune response and/or other skin biological processes
contained within our confidence intervals whose func-
tions are supported by experimental evidence. The func-
tions of the potential candidate genes are further
summarized in Additional file 12 and can largely be

Table 3 List of potential candidate genes located in the defined confidence intervals

Trait Category Chr Immune-related genes

Genes related to skin biological processes

DNA Order 8 -

Order 9  Gclc

Deltaproteobacteria

Deltaproteobacteria

Cdh13

Un.Bacteroidetes_OTU23 Species 9 Gcle, Fbxo9, Ick, Gsta4, Eeflal Gstad, Gstal, Gsta2, Cd109, Ddx43,Col12al

Bradyrhizobium_OTU8 Species 13 Trim38, Hfe, Btnlal, Btn2a2 -

Clostridium_XI_OTU29 Species 13 Trim38, Hfe, Btnlal, Btn2a2, Cmah Cmah

RNA  Acinetobacter_OTU51 Species 1 Cops5 Arfgefl

Prevotellaceae Family 1 CIKI -

Staphylococcus_OTU15 Species 3 Ppp3ca -

Streptococcus Genus 10 Scyl2 Seyl2

Prevotellaceae Family 12 - Apob

Halomonas Genus 13 Sox4 Prl, Sox4, Cdkal, E2f3

Streptophyta Genus 14 Mmpl4, Psmbil, Cebpe, II25, Psmel, Psme2, Irf9, Mmp14, Ltb4r2, Ltb4r], Psmel, Mcptl1, Mcpt4,
Rnf31, Mdp1, Rabggta, Ripk3, Cmal, Mcpt1, Mcpt4, — Psme2, Prmt5, Slc7a8, Cmtmb5, Pck2, Rec8,
Mcpt8, Ctsg, Gzmd, Gzmn, Gzmf, Gzmc, Gmzb, Nedd8, Tlgm1, Dhrs1, Ctsg, Gzme, Gmzb,
Homez Atp12a, Tinf2

Flavobacteriales Order 14 - Pou4f1

Un.Betaproteobacteria Genus 15 - Nell2

Epsilonproteobacteria, Order, 17 - Pkdcc

Campylobacteraceae family

Serratia_OTU117 Species 18 - Ppargcib, Csnkilal

Un.Lachnospiraceae_OTU82 Species 19  Dock8 Dock8

Only genes whose functions are experimentally demonstrated to be related to immune response and/or to other skin biological processes are reported. Genes in

bold indicate the presence of the peak SNP
Chr chromosome, Un unclassified
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divided into five diverse groups: immune response, inter-
action with bacteria and viruses, skin developmental
processes, susceptibility to autoimmune diseases, and
susceptibility to skin cancer. Genes belonging to the lat-
ter two groups are the most frequent. Regarding skin
cancer, we find genes involved in squamous cell carcin-
oma (SCC), melanoma, actinic keratosis, skin hyperpig-
mentation, and epithelial dysplasia. For autoimmune
diseases, we report genes mainly associated with psoria-
sis, inflammatory arthritis, acute allergic reaction, and
ichthyosis.

The significance of the biological functions listed
above is also supported by pathway and gene ontology
enrichment analyses, which in addition reveal further in-
teresting functions (Additional files 13 and 14). Among
the enriched pathways are several involved in apoptosis
and tissue homeostasis including apoptotic DNA frag-
mentation and tissue homeostasis, granzyme A-
mediated apoptosis, caspase cascade in apoptosis, and
the effects of calcineurin in keratinocyte differentiation.
Additional significantly enriched pathways include glu-
tamate metabolism activities, which are also revealed by
the biological process analysis. Interestingly, glutamate is
a key neurotransmitter of the central nervous system,
but recent studies show that glutamate receptors are
expressed in non-neuronal tissues such as the skin and
that glutamate signaling is dysregulated in numerous
cancer forms including melanoma [29, 30]. Further path-
ways include immune-related functions (e.g., B cell re-
ceptor signaling pathway, fMLP-induced chemokine
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gene expression in HMC-1 cells, and MEF2D in T cell
apoptosis) and, interestingly, the nitric oxide signaling
pathway. Of note, nitric oxide plays diverse biological
functions, and in the skin, it is involved in the mainten-
ance of barrier function, melanogenesis, erythema, im-
munosuppression, and the protection of keratinocytes
against UV-induced apoptosis [31, 32]. On the other
hand, the biological process analysis reveals phosphate
ion metabolism as the most enriched term. Previous
studies show that phosphate, a critical element for divid-
ing cells, likely modulates the activity of cancer cells
[33], and elevated levels of serum phosphate have been
related to lung and skin carcinogeneses in mouse models
[34]. Additional enriched terms include regulation of cell
polarity and several transport functions (e.g., anion, cat-
ion, sodium, and acidic amino transport).

Two exceptional candidate regions are those associ-
ated with Deltaproteobacteria (standing communities)
and unclassified Betaproteobacteria (active communi-
ties), which each contain only a single gene: cadherin 13
(Cdhi3) and neural epidermal growth factor-like 2
(Nell2), respectively (Fig. 5). Cdhl3 codes for a cell ad-
hesion molecule that is specifically expressed in the basal
keratinocytes of the human and mouse epidermis [35].
Cdhl13 expression is also observed to be significantly re-
duced in both invasive cutaneous SCC and psoriasis vul-
garis lesions and is thus considered to be an endogenous
negative regulator of keratinocyte proliferation and also
a crucial preserver of healthy skin architecture [36—38].
Nell2, on the other hand, is reported to be specifically
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expressed in the epidermis (keratinocytes) of patients
suffering from atopic dermatitis [39]. Several other note-
worthy candidates are described in the “Discussion.”

Discussion

In this study, we performed the first high-resolution
genetic mapping of skin microbial traits in the mouse
genome. While the overall degree of replication between
the G4 and G5 is low (possible reasons are discussed
below), up to five genomic regions display some evi-
dence of overlap between the two cohorts, and the
greatly improved results of the G;5 analysis provide sev-
eral points of novel insight into the nature of host-
microbe interactions in the skin. This is on the one hand
made possible by the highly advanced nature of the
mapping population (ie., the 15th generation of an ad-
vanced intercross) and high marker density (>50,000 in-
formative SNPs). On the other hand, we also introduced
a novel means of microbial “phenotyping” in a QTL set-
ting by performing 16S rRNA profiling on the transcript
level, which proved to be more effective in detecting sig-
nificant associations. One of the most surprising and in-
triguing aspects of our findings is the preponderance of
identified candidate genes involved in cancer-related
processes, which is also supported by aspects of the mi-
crobial traits themselves as discussed below.

Comparison between the G4 and G5 populations
Many potential factors could contribute to the overall
lack of replication we observe between the G4 and G5
study. From the genetic perspective, Greene et al. [40],
for example, addressed the question of failing to repli-
cate genetic associations between distinct datasets and
concluded (using simulations) that in part, changes in al-
lele frequency can lead to opposite allelic effects on the
phenotype. Further, a recent QTL study of the gut
microbiota performed on two distinct generations of the
same advanced intercross line (generations 4 and 10)
similarly replicated and refined only four genomic re-
gions in the more advanced generation, whereby three of
the QTLs concerned phylogenetically related traits be-
tween cohorts. The authors explained that this poor rep-
lication could be due to false-positive QTLs and/or a
disparate microbiome composition between the genera-
tions as a result of phenotypic and/or genotypic drift
[41]. Indeed, in our study, we note significant changes in
community composition that occurred between the G,
and Gy, which is not surprising given the movement be-
tween two different animal facilities and the multitude
of factors concerned with animal husbandry known to
influence the microbiome [42].

Moreover, we note that an additional aim of the G,
study was to simultaneously evaluate the role of host
genetics for skin microbiota composition and
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susceptibility to autoimmune skin blistering, for which
we induced an immunization-based disease model in a
subset of the G4 mice [23]. This could in part explain,
e.g., the significantly higher proportion of Firmicutes in
the G, compared to the G;5 (ANOVA, p =22 x107),
as this phylum is known to dominate the skin micro-
biota in the context of inflammatory disorders such as
psoriasis and atopic dermatitis [43, 44]. However, we
note that this difference can not be solely due to disease
in the Gy, as a subset of these animals was not immu-
nized and Firmicutes are uniformly distributed across in-
dividuals (Fig. 3b).

Finally, although our mapping approach treats each
microbial taxon as an independent trait, microbial abun-
dances may also change in an interrelated manner due
to complex community interactions. To determine
whether interdependencies between taxa may have chan-
ged in the context of the community-level differences
we observe between the G, and G;s, we inspected the
interactions between the relative abundances of CMM
phyla within each population and indeed observe crucial
changes in community interactions. In the G, popula-
tion, every phylum is strongly negatively correlated with
Firmicutes, with Proteobacteria showing the strongest
negative association (Fig. 6a). In the G5 population, we
observe the opposite pattern; every phylum is negatively
correlated with Proteobacteria, with Bacteroidetes exhi-
biting the strongest negative relationship (Fig. 6b). Thus,
a change in the overall structure of community interac-
tions between the two cohorts may also alter the nature
of host genetic influence on the skin community, i.e.,
our observations may in part represent gene x environ-
ment interactions.

16S rRNA profiling at the DNA versus RNA level

Several possible explanations can be provided for the in-
creased success in mapping 16S rRNA transcript-level
traits. First, in comparison to the bacterial communities
inhabiting the lower gastrointestinal tract, the skin har-
bors a lower biomass and is in constant contact with the
environment. Thus, environmental noise from non-
resident microbes, which are less likely to display active
growth in the skin, is more likely to obscure the signal
of resident microbes when 16S rRNA gene profiling is
performed at the DNA level. As an example, we more
closely examined the QTL analyses between DNA- and
RNA-based abundances for unclassified Betaproteobac-
teria, a taxon for which the two relative abundance esti-
mates are strongly and positively correlated (Spearman’s
correlation: r=0.62, p<22x107'°). Additional file 15
shows the Manhattan plot for QTL mapping of unclassi-
fied Betaproteobacteria based on DNA and RNA. This
reveals a strong overlap between the LOD scores gener-
ated for DNA- and RNA-based measurements, but the
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peak that defines a significant QTL on the RNA level
does not reach the genome-wide significance threshold
for DNA.

Second, in contrast to the example of the unclassified
Betaproteobacteria QTL described above, we observe an
overall poor correlation between the taxon abundances at
the DNA versus RNA level, which in some cases is charac-
terized by taxa with high activity but low abundance (see,
e.g., unclassified Lachnospiraceae in Fig. 2). Thus, it is
likely that many taxa observed at the RNA level are below
the limits of reliable measurement at the DNA level. Fur-
ther, observations at the bacterial transcript level may be
more likely to be representative of interaction with the
host. This hypothesis is consistent with previous observa-
tions of DNA- versus RNA-level bacterial community pro-
filing in a dynamic aquatic habitat, where bacterial
activity, but not presence alone, varied along with fluctua-
tions in environmental parameters [45].

Candidate genes and bacterial traits

In addition to the genomic intervals for which only sin-
gle genes are present (Cdhi3 and Nell2, above), several
other regions contain highly interesting candidate genes,
whose potential functional role in host-microbe interac-
tions is in some cases further supported by the bacterial
traits with which they putatively interact. The QTL for
Acinetobacter_OTUS51 (RNA level) on chromosome 1
contains a potential immune-related interaction, as the
Cops5 gene (synonyms CSNS5, Jabl) found in this inter-
val was shown to influence T cell development [46],
whereas Acinetobacter itself was demonstrated to protect
against allergic sensitization and inflammation in the

skin by influencing the balance between TH1, TH2, and
anti-inflammatory responses [47]. However, Cops5 may
alternatively or in addition represent another potential
cancer-related interaction, as it is also known to play a
critical role in cell proliferation, apoptosis, and regula-
tion of genomic stability and DNA repair [48]. Abnormal
expression of CopsS was demonstrated to impact car-
cinogenesis in several cancer types including breast can-
cer, laryngeal cancer, and oral squamous cell carcinoma
(SCC) [49-51]. Further, Ivan et al. [52] assessed CopsS
in various melanocytic lesions and found higher expres-
sion levels of Cops5 in metastatic melanomas, suggesting
that Cops5 may influence the survival and growth of
melanoma cells.

As mentioned above, the QTL for Deltaproteobacteria
(DNA level) on chromosome 8 contains Cdhl13 (Fig. 5),
which is expressed in keratinocytes and involved in sus-
ceptibility to SCC and malignant melanoma. Interest-
ingly, the Deltaproteobacteria class includes sulfate-
reducing bacteria that generate hydrogen sulfide (H,S),
which can have genotoxic properties [53] and is impli-
cated in the pathogenesis of ulcerative colitis [54-56], a
disease associated with increased colon cancer risk. On
the other hand, H,S is also recognized as an endogenous
gasotransmitter and was demonstrated to play a func-
tional role in human cutaneous microvasculature [57]
and a protective role in systemic sclerosis-associated
skin  fibrosis  [58]. Thus, further functional
characterization of potential H,S-producing bacteria in
the skin and in the context of Cdhi3 as a regulator of
keratinocyte proliferation and skin architecture may be
warranted.
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A final highly notable example is the QTL for Halomo-
nas (RNA level) on chromosome 13, which contains the
Sox4 gene belonging to the SoxC class of transcription
factors. Sox4 is known to inhibit apoptosis and increase
proliferation and is thus highly linked to carcinogenesis
[59]. Foronda et al. [60] further addressed the role of
Sox4 (which is the only member of the SoxC class that is
expressed in the skin) in skin homeostasis and cancer by
making a skin-specific deletion of Sox4 in combination
with a chemically induced carcinogenesis model. The
authors report reduced tumor progression and number
in Sox4-deficient mice compared to wild type, indicating
an oncogenic activity of Sox4 in the skin. Interestingly,
extracts from Halomonas meridiana bacteria isolated
from brine pools of the Red Sea were demonstrated to
have significant anticancer activity (apoptosis) in human
cancer cell lines [61], raising the intriguing possibility
that resident skin microbes play a role in endogenous
anticancer activity from a hologenomic perspective.

Conclusions

The path from QTL mapping to gene/mutation identifi-
cation and functional characterization is complex and
challenging. Through the use of high-resolution map-
ping and the introduction of phenotyping based on mi-
crobial activity, our study makes a substantial step
towards understanding the host genetic component to
interindividual variability in the skin microbiota and its
potentially important fitness consequences. In particular,
the preponderance of cancer-related candidate genes
identified should motivate greater attention to the role
of host-microbe interactions in cancer susceptibility and
their potential as preventative and/or therapeutic targets.
Finally, we suggest that adding activity-based community
profiling may greatly enhance the capability to detect
biologically meaningful host-microbe interactions in a
wide variety of microbiome study settings.

Methods

Animals and skin sample collection

MRL/MpJ, NZM2410/]J, BXD2/Ty], and CAST/Ei] mice
were purchased from the Jackson Laboratory (Maine,
USA) and kept under conventional conditions. To gen-
erate a heterogeneous intercross line, these individuals
were intercrossed at an equal strain and sex distribution
as described previously [23]. Male and female offspring
used in the study were transferred to separate cages ac-
cording to family. Animals were held under specific
pathogen-free conditions at a 12-h light/dark cycle with
food and water ad libitum. All 270 animals (98 males
and 172 females) were housed in the University of
Libeck, Germany, and sampled from the 15th gener-
ation of this advanced intercross line at a mean age of
5.9 months. All animal experiments were approved by
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the “Ministerium fiir Energiewende, Landwirtschaft,
Umwelt und ldndliche Rdume des Landes Schleswig-
Holstein” in Kiel, Germany (reference number: V 312—
72241. 122-5 (12-2/09)).

An identical region from the left ear of each mouse
was sampled, snap frozen, and stored at —-80 °C until
processing. During the dissection process, tools were
carefully sterilized by flaming 70% ethanol. Total DNA
and RNA were extracted simultaneously using the All-
Prep DNA/RNA Qiagen kit. The working surface and pi-
pettes were decontaminated with RNase AWAY®
(Thermo Fisher Scientific). An additional 2-h room
temperature incubation step was included after
homogenization in order to increase the nucleic acids’
dissolution in the RLT buffer. RNA was treated with
DNase (RNase-Free DNase Qiagen, stock solution con-
centration) for 15 min, twice. cDNA synthesis was per-
formed  using  High-Capacity = ¢cDNA  Reverse
Transcription Kits (Applied Biosystems). In addition,
RNA purity was checked by a negative reverse tran-
scriptase (without transcriptase) PCR and agarose gel
electrophoresis.

16S rRNA gene sequencing and processing

We amplified the V1-V2 regions of the bacterial 16S
rRNA gene following a dual indexing approach for each
sample. The primer pair (5'-AATGATACGGCGAC-
CACCGAGATCTACACXXXXXXXXTATGGTAATTGT
AGAGTTTGATCCTGGCTCAG-3') and (5'CAAGCA-
GAAGACGGCATACGAGATXXXXXXXXAGTCAGT-
CAGCC TGCTGCCTCCCGTAGGAGT-3") contains the
lumina P5 (forward) and P7 (reverse), denoted by
italics, whereas the underlined italic sequences represent
the broadly conserved bacterial primers 27F and 338R.
A 12-base linker sequence (underlined only) was added
to the bacterial primer in order to increase the annealing
temperature of the sequencing primer, as recommended
by Illumina. Both primers contained a unique eight-base
multiplex identifier (Index; designated as XXXXXXXX)
in order to tag each PCR product. PCR amplifications
were conducted in a 12.5-uL volume containing 100 ng
of either DNA or cDNA template using the Phusion®
Hot Start II DNA High-Fidelity DNA Polymerase (Finn-
zymes, Espoo, Finland). Cycling conditions were as fol-
lows: initial denaturation for 30 s at 98 °C; 35 cycles of
9 sat 98 °C, 30 s at 55 °C, and 30 s at 72 °C for DNA,
30 cycles of 9 s at 98 °C, 30 s at 55 °C, and 30 s at 72 °C
for cDNA; final extension for 10 min at 72 °C. Reactions
were duplicated and products were merged in order to
obtain a final volume of 25-pL PCR for each sample.
Negative controls were performed using blank (tem-
plate-free) reactions with different combinations of for-
ward and reverse primers such that all primers were
checked for contamination, which were required to be
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negative as inclusion criteria. Further, negative extraction
controls for each round of DNA/RNA extraction (n = 14,
i.e., in total, 28 negative extraction controls, as DNA and
RNA are split during the procedure) were included. For
all samples, PCR product concentrations were first
quantified on an agarose gel using image analysis soft-
ware (Bio-Rad). After quantification, products were
mixed together to make equimolar subpools. Subpools
were then extracted from agarose gel with the Qiagen
MinElute Gel Extraction Kit and quantified with the
Quant-iT™ dsDNA BR Assay Kit on a Qubit fluorometer
(Invitrogen). Finally, subpools were combined in one
equimolar pool for each library. Pools were further puri-
fied using AMPure® Beads (Agencourt), and complete li-
braries were run on an Agilent Bioanalyzer prior to
sequencing, as recommended by Illumina. The Ampli-
con libraries were sequenced on a MiSeq using the
MiSeq Reagent Kit v3 600 cycles sequencing chemistry.

No mismatch to the barcode was allowed while de-
multiplexing (CASAVA, Illumina). Raw forward and re-
verse reads were merged in USEARCH (v.7) [62] as fol-
lows: forward and reverse reads were truncated before
alignment at the first base where the quality score
dropped below Q=2; the maximum number of mis-
matches allowed in the overlap region was 2; the mini-
mum length of the forward and reverse reads after
truncating was 200 bp; the minimum length of the over-
lap region was 150 bp; the minimum length of the
merged read was 270 bp; the maximum length of the
merged read was 330 bp. Merged reads were filtered by
the parameter of expected error (E=0.5), as recom-
mended [63]. Finally, chimeric sequences were removed
in UCHIME [64] using the SILVA Gold reference data-
base [65].

Taxonomic classification and OTU binning

RDP Multi-Classifier (v.9.0) [66] implemented in Mothur
(v.31) [67] was applied to assign taxonomy from the
phylum to the genus level using a 0.80 confidence
threshold and 1000 iterations. Sequences classified as
Archaea, unknown, or Mitochondria were removed.
Afterwards, sequences were aligned to the SILVA refer-
ence database. Sequences that failed to align were ex-
cluded. To avoid spurious OTUs, aligned sequences
were further de-noised using the pre-cluster algorithm
executed in Mothur, as recommended by Schloss et al.
[68]. Prior to OTU binning, samples were rarefied to an
even sequence depth of 3500, except for one sample that
had 3134 reads, in order to control for varied sequen-
cing depth and biases in ecological community analysis.
Operational taxonomic units were binned at a 97% simi-
larity threshold using the Mothur average clustering
algorithm.
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SNP genotyping and founder haplotype reconstruction
Genomic DNA was isolated from liver tissue and incu-
bated in 500 pL of 50 mM NaOH at 95 °C for 2 h. The
reaction was neutralized by the posterior addition of
50 pL of 1 M Tris-HCl (pH 8.0). DNA was further proc-
essed with DNeasy Blood & Tissue Kit (Qiagen) accord-
ing to the manufacturer’s instructions. The extracted
DNA was quantified using NanoDrop and normalized to
50 ng/pL in TE buffer (10 mM Tris, 1 mM EDTA; pH =
8). We used the high-density mouse universal genotyp-
ing array, MegaMuga (Illumina), which can hybridize up
to 77,800 SNPs, to genotype the mice as well as the four
founder individuals. Raw genotyping data were first ana-
lyzed using GenomeStudio Data Analysis Software (Illu-
mina). Then, using PLINK (v.1.07) [69], SNPs missing in
the founder individuals and SNPs with a minor allele
frequency of 10% or below were removed. We obtained
53,203 informative SNP markers distributed genome-
wide, with an average spacing of 0.04 Mb and standard
deviation of 0.09 Mb. The four founder haplotype prob-
abilities were calculated at each SNP marker for every
sample by splitting the chromosomes using the “hdesign”
function from the “HAPPY” (v.2.4) R package [70].

Core Measurable Microbiota

To determine the set of microbial traits to be included
in the QTL mapping, we defined a Core Measurable
Microbiota (CMM) to include only bacterial taxa (genus
to phylum level) with at least five reads in at least half of
the samples, and species-level OTUs with at least five
reads in at least one third of the samples. These thresh-
olds were applied to the DNA- and RNA-based datasets
separately, whereby in total 92 taxa (genus to phylum
level) and 44 OTUs were included. We added a value of
0.5 to the absolute abundances of all CMMs, and then
converted the absolute abundances into relative abun-
dances. In order to reduce skewness, relative abundances
were logo-transformed.

SourceTracker analysis

SourceTracker [26] analysis was performed on the level
of mapped genera and species-level OTUs (97% similar-
ity threshold) under default parameters. The training set
included the negative extraction controls for which a
weak PCR product was detectable and sufficient post
quality filtering read number was achieved (16 out of 28
with >1000 reads, remaining samples containing 1 to
797 (mean 99) reads or no PCR product).

Summary statistics of the CMMs and partitioning of
variance

All statistical analyses were performed in R (v.3.2.2) [71].
In order to assess the magnitude of variability of the
CMMs, summary statistics were calculated on each
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CMM (taxa and OTUs). Multivariate analysis of variance
was applied on the CMMs log;,-transformed relative
abundances. We tested the effects of weight, gender, age,
and cage environment on the variation in the CMM
relative abundances in DNA- and RNA-based datasets;
the three latter factors showed a significant overall effect
(p<0.05) and were thus included in the QTL mapping
model. To measure the effects of these factors on vari-
ation in CMM trait abundances across samples, we built
a mixed effects model in the “lme4” (v.1.1-10) R package
[72] for each CMM trait (taxa and OTUs) in the DNA-
and RNA-based datasets, which included gender and age
as fixed factors and cage as a random term. The variance
components were measured using the “VarCorr” func-
tion. Marginal R*, which represents the proportion of
variance explained by fixed factors [73], was calculated
using the “r.squaredGLMM” function in the “MuMIn”
(v.1.15.1) R package [74].

QTL mapping

Linkage mapping was performed with a mixed model
approach using the “QTLRel” (v. 0.2-14) R package [75]
in DOQTL (v. 1.2.0) [76]. We fit an additive model that
regresses the logjo-transformed relative abundances of
each CMM trait (taxa and OTUs) on the four founder
haplotype contributions. To adjust for different degrees
of mice relatedness, a kinship matrix was defined by cal-
culating correlation coefficients between samples using
the “kinship.probs” function from the DOQTL package.
The kinship matrix was incorporated into the model in-
stead of pedigree records, as recommended by Svenson
et al. [77] and Gatti et al. [76]. Gender and age
(expressed in days) were incorporated as fixed covariates
and cage as a random term in the mapping model. To
determine significance thresholds for the LOD scores of
each marker/trait, we applied a permutation procedure
described by Churchill and Doerge [78]. This procedure
consists of shuffling the phenotypes (i.e., the log;o rela-
tive abundances) across the genotypes and re-runs the
QTL model to generate new LOD scores. We repeated
this process 5000 times for each marker/trait. After-
wards, using the newly generated distribution of LOD
scores, we determined the 90th and 95th percentiles and
used them to define the suggestive (0.1) and significant
thresholds, respectively. Finally, we compared the LOD
scores generated in the original QTL scan to the defined
significance thresholds: suggestive (genome-wide alpha <
0.1) and significant (genome-wide alpha <0.05). Only
the LOD scores that met or exceeded either the suggest-
ive or significant thresholds were considered to indicate
the presence of a putative QTL and reported in our re-
sults. We set QTL confidence intervals at 1.5 LOD drops
on either side of the peak position.

Page 14 of 17

Quantitative and ecological analysis

Alpha diversity indices (i.e., Shannon entropy and
Chaol) were calculated in the “vegan” (v.2.3.0) R pack-
age [79] on the entire dataset at both the genus and
OTU levels. For each alpha diversity measure, we calcu-
lated summary statistics and partitioning of variance and
performed QTL mapping only for Chaol, as described
above. Comparison of mean relative abundances of
major phyla and genera between the standing and active
communities was performed using a paired Wilcoxon
test. The correlation of relative abundances between the
standing and active dataset was performed using Spear-
man’s correlation. Correlations between the abundances
of major phyla in the standing communities of genera-
tions 4 and 15 were calculated using Spearman’s correl-
ation in the “Hmisc” (v.3.17-0) R package [80]. p values
were adjusted using the Benjamini and Hochberg
method [27], and correlation coefficients were visualized
using the “corrplot” (v.0.73) R package [81].

Real-time quantification of bacterial traits

16S rRNA gene primers targeting Betaproteobacteria,
Epsilonproteobacteria, Streptococcus, and total bacteria
were used to perform real-time quantification on a ran-
dom subset of 80 out of the 270 mice. The taxon-
specific primers include F_AACGCGAAAAACCT-
TACCTACC and R_TGCCCTTTCGTAGCAACTAGTG
for Betaproteobacteria, F_TAGGCTTGACATTGATA-
GAATC and R_CTTACGAAGGCAGTCTCCTTA for
Epsilonproteobaceria  [82], F_CTWACCAGAAAGG-
GACGGCT and R_AAGGRYCYAACACCTAGC for
Streptococcus [83], and F_ACTCCTACGGGAGGCAG-
CAG and R_ATTACCGCGGCTGCTGG for total bac-
teria [84]. Real-time quantitative PCR was carried out in
a volume of 10 pL on a PikoReal Real-Time PCR System
using 96-well plates and three technical replicates for
each sample. Each PCR mixture consisted of 5 uL of
PowerUp SYBR PCR Master Mix (Applied Biosystems),
0.5 pL of each primer (10 uM), 2.5 pL of water, and 2 pL
of the original cDNA template used for 16S rRNA gene
sequencing (1:20 dilution). The amplification program
consisted of (i) initial step at 95 °C for 10 min, (ii) 45 cy-
cles of denaturation at 95 °C for 15 s and annealing/ex-
tension at 60 °C for 1 min, and (iii) 1 cycle at 60 °C for
30 s and a melt ramp from 60 to 95 °C. The relative
quantification of a given bacterial trait was determined
by comparing taxon-specific and total bacteria Ct values

as expressed 2—(delta-delta Cr values).

Pathway and gene ontology enrichment analysis

For the enrichment analysis, we selected a list of genes
that includes the two nearest genes to the peak SNP on
either side of the chromosome (maximum four genes
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per interval) and performed the analyses based on two
categories including pathways (Biocarta) and ontologies
(Biological Processes). We used the tool Enrichr [85]
and sorted the results based on the combined score from
the enrichment analysis.

Additional files
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Additional file 1: Figure S1. Principal coordinate analysis of beta
diversity indices of skin microbiota in populations G5 and G. (A) Bray-
Curtis, (B) Jaccard indices. Indices are calculated on genera abundances
after normalization of sequencing depth to 2500 reads per sample in

Bray-Curtis, * = 0.38, p=1.10""; Jaccard, =047, p=1.10"", based on
1000 permutations. SD: standard deviation. (TIF 392 kb)

Additional file 2: Table S1. Summary statistics of CMM taxa and alpha
diversity indices as profiled based on DNA. Means, standard deviations

(STD), minimum (Min), maximum (Max), and coefficient of variation (CV)
values of relative abundances in population G5 (n = 270). When taxa are
redundant, only the lowest rank is shown. Un: unclassified. (XLSX 15 kb)

Additional file 3: Table S2. Summary statistics of CMM taxa and alpha
diversity indices as profiled based on RNA. Means, standard deviations
(STD), minimum (Min), maximum (Max), and coefficient of variation (CV)
values relative abundances in population Gys (n = 270). When taxa are
redundant, only the lowest rank is shown. Un: unclassified. (XLSX 15 kb)

Additional file 4: Table S3. Summary statistics of CMM OTUs and
alpha diversity indices as profiled based on DNA. Means, standard
deviations (STD), minimum (Min), maximum (Max), and coefficient of
variation (CV) values of relative abundances in population Gys (n = 270).
Un: unclassified. (XLSX 12 kb)

Additional file 5: Table S4. Summary statistics of CMM OTUs and
alpha diversity indices as profiled based on RNA. Means, standard
deviations (STD), minimum (Min), maximum (Max), and coefficient of
variation (CV) values of relative abundances in population G;s (n =270).
Un: unclassified. (XLSX 12 kb)

Additional file 6: Table S5. Estimates of proportions of explained
variance by explanatory variables for genus- to phylum-level taxa (DNA).
Estimates for random components (cage and residual) and fixed terms
(gender and age) are calculated for each of the CMM taxa logq-relative
abundances and alpha diversity indices as profiled based on DNA in
population Gys (n=270). When taxa are redundant, only the lowest rank
is shown. Un: unclassified. (XLSX 14 kb)

Additional file 7: Table S6. Estimates of proportions of explained
variance by explanatory variables for genus- to phylum-level taxa (RNA).
Estimates for random components (cage and residual) and fixed terms
(gender and age) are calculated for each of the CMM taxa logq-relative
abundances and alpha diversity indices as profiled based on RNA in G;s
(n=270). When taxa are redundant, only the lowest rank is shown. Un:
unclassified. (XLSX 14 kb)

Additional file 8: Table S7. Estimates of proportions of explained
variance by explanatory variables for OTUs (DNA). Estimates for random
components (cage and residual) and fixed terms (gender and age) are
calculated for each of the CMM OTUs log;-relative abundances and alpha
diversity indices as profiled based on DNA in G;s (n = 270). When taxa are
redundant, only the lowest rank is shown. Un: unclassified. (XLSX 13 kb)

Additional file 9: Table S8. Estimates of proportions of explained
variance by explanatory variables for OTUs (RNA). Estimates of
proportions of explained variance by random components (cage and
residual) and fixed terms (gender and age) are calculated for each of the
CMM OTUs log;o-relative abundances and alpha diversity indices as
profiled based on RNA in Gys (n=270). When taxa are redundant, only
the lowest rank is shown. Un: unclassified. (XLSX 13 kb)

Additional file 10: Table S9. Residuals of the linear mixed models
for all mapped taxa and alpha diversity measures. Un: unclassified.
(XLSX 1069 kb)

both populations G;s and G, DNA: standing, RNA: active. Goodness of fit:

Additional file 11: Figure S2. Manhattan plot of Neisseria_OTU1320
QTL mapping. Significant thresholds (p < 0.05) are shown in a continuous
line; suggestive thresholds (p < 0.10) are shown in a discontinuous line.
Chr: chromosome. (TIF 219 kb)

Additional file 12: Table S10. Functions of the potential candidate
genes. Un: unclassified. (XLSX 15 kb)

Additional file 13: Figure S3. Pathway and biological process
enrichment analysis of candidate regions. A. Pathways analysis (Biocarta).
B. Biological processes. Significant enrichment results after correction for
multiple testing (p < 0.1) are displayed in color; non-significant enriched
terms are colorless. For the biological process analysis, only combined
scores higher than 2.5 are reported. (TIF 581 kb)

Additional file 14: Table S11. Full details of pathway and biological
process enrichment analyses for candidate regions. (XLSX 71 kb)

Additional file 15: Figure S4. Manhattan plot for unclassified
Betaproteobacteria QTL. Significant thresholds (p < 0.05) are shown in a
continuous line; suggestive thresholds (p <0.1) are shown in a
discontinuous line. Chr: chromosome, Un: unclassified. (TIF 572 kb)

Abbreviation
OTU: Operational taxonomic unit
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