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Abstract. We present state-of-the-art computations of propagation and absorption

of electron cyclotron waves, retaining the effects of scattering due to electron density

fluctuations. In ITER, injected microwaves are foreseen to suppress neoclassical tearing

modes (NTMs) by driving current at the q = 2 and q = 3/2 resonant surfaces.

Scattering of the beam can spoil the good localization of the absorption and thus impair

NTM control capabilities. A novel tool, the WKBeam code, has been employed here

in order to investigate this issue. The code is a Monte Carlo solver for the wave kinetic

equation and retains diffraction, full axisymmetric tokamak geometry, determination

of the absorption profile and an integral form of the scattering operator which describes

the effects of turbulent density fluctuations within the limits of the Born scattering

approximation. The approach has been benchmarked against the paraxial WKB code

TORBEAM and the full-wave code IPF-FDMC. In particular, the Born approximation

is found to be valid for ITER parameters. In this paper, we show that the transport

in ITER is diffusive unlike in present experiments, thus causing up to a factor of 2

to 4 broadening in the absorption profile. However, the broadening depends strongly

on the turbulence model assumed for the density fluctuations, which still has large

uncertainties.

1. Introduction

In order to obtain stable operation of a tokamak reactor, instabilities endangering the

confinement or performance of the plasma need to be controlled, preferably in automatic

manner. One of such instabilities is the neoclassical tearing mode (NTM) [1]. In

existing machines, NTM mitigation and suppression has been successfully obtained using

electron-cyclotron current drive (ECCD) to replace the missing bootstrap current inside

the magnetic island [2]. The effect relies on the ability to focus and steer electron-

cyclotron (EC) beams by mirrors, thus enabling accurate localization of the driven
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current profile. This demands accurate knowledge of the equilibrium, i.e. the location

of the resonance surface where the beam will be aimed. By controlling injection angles

(poloidal/toroidal), the necessary amount of current can be driven inside the NTM island

to stabilize it. Correspondingly, effort has been put to predict whether such a control

system is plausible for ITER [3, 4]. Based on these analyses, the EC upper launcher (UL)

has been assigned mainly to control NTMs [5, 6, 7, 8]. During the development of the

UL EC system, the physics phenomena possibly jeopardizing the stabilization of NTMs

have been identified [9]. Out of these phenomena, the most important and still difficult

to quantify issue is the beam broadening by the scattering due to turbulent density

fluctuations and this paper aims to give more insight in this area using state-of-the-art

modeling.

When the injected microwave beam propagates in the plasma, density fluctuations

act as random lens and refract the beam. The effect of these fluctuations on beam

broadening depends on the fluctuation characteristics and the relative position of the

fluctuations to the resonance surface where the current is to be driven. Since these

factors are particularly favorable for existing machines, beam broadening is fairly

difficult to measure. However, some evidence of such of an effect has been recently

reported [10] and more effort is put to further investigate the issue experimentally.

Simultaneously, modeling efforts have been reported to study this effect [11, 12].

Unfortunately, most of the modeling tools like beam or ray tracing codes are not

applicable in the presence of small scale fluctuations. The current work aims to overcome

these issues by presenting simulations carried out using the wave kinetic approach.

The turbulent fluctuations can be assumed to be frozen in the plasma - characteristic

velocities of turbulent structures are much smaller than the beam group velocity and at

the same time the beam power is on over several turbulence turnover times. Therefore,

the effect of turbulence can be studied by averaging over large number of realizations

of the turbulent fields or by means of the formalism of the wave kinetic equation which

allows us to derive an averaged scattering operator describing directly the average effect

of turbulence on the beam. While the former strategy is usually adopted by full-wave

codes [13], the latter is the choice of WKBeam code [14] used in this work. The main

advantage of this reduced model is the reduced cost of the computations, while keeping

the key physics in the model, namely, beam diffraction, scattering (adopting the Born

approximation as described below), absorption and full axisymmetric tokamak geometry.

The scattering operator in general includes the possible scattering from the launched

mode to secondary mode [15]. In the case of ITER, power converted from first-harmonic

ordinary to extraordinary mode is reflected at the corresponding cut-off at the plasma

boundary, thus causing stray radiation. However, cross-polarization scattering does not

lead per se to beam broadening and will not be discussed in this paper.

After this introduction, in Section 2, we present the theory behind the WKBeam

code and give a short overview of the scattering operator. Verification and benchmarking

studies are briefly discussed to build trust on the implementation of the theory. We will

present the model to be used for density fluctuations. The underlying radiation transport
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process is discussed in detail. For focused beams, the impact of turbulent fluctuations

on beam broadening increases with machine size. The effect is predicted to be large for

ITER, but a measurement of the effect is difficult on existing machines. Moreover,

depending on the parameters, the transport can be diffusive or superdiffusive. In

present-day experiments like ASDEX Upgrade, the transport tend to be superdiffusive,

which leads to the formation of elevated tails in the absorption profile but a limited

reduction of the peak absorption. On the other hand, the same analysis tells that ITER

lies in the diffusive regime. In Section 3, we will introduce the main inputs of the studied

15 MA ITER H-mode scenario, together with the beam and mirror parameters. We will

show the absorption profiles of the beams with and without the fluctuations and also

present relevant scans over the input quantities that cannot be realistically extrapolated

to ITER. Results show up to a factor of 2.5-4.5 broadening in the deposition profiles

compared to the case without fluctuations. In Section 4, we discuss the implications of

our results to NTM control in ITER.

2. Theoretical background and numerical models

2.1. Wave kinetic equation

The wave kinetic equation with random fluctuations was originally formulated in [16]

adapting a statistical approach proposed by Karal and Keller [17] in combination

with Weyl-symbol calculus for the phase-space representation of the wave field [18].

The specific form of the wave kinetic equation relevant to coherent wave beams and

implemented in WKBeam [14] is usually written in coordinates normalized to the scale

L of the equilibrium plasma profiles so that the semiclassical parameter κ = ωL/c = k0L

appears explicitly in the theory; here ω is the launched frequency, c the speed of light

in free space, and k0 = ω/c is the wave number in free space. It is important to note

that the scale length L refers to the averaged plasma equilibrium which does not include

turbulent fluctuations. Hence the parameter κ is large even in presence of short-scale

fluctuations and the semiclassical limit κ→ +∞ can be considered, yet not directly on

the solution of Maxwell’s equations for the wave field, but rather on the averaged wave

energy density, which is represented by the averaged Wigner function. The wave kinetic

equation describes the statistically averaged Wigner function of the beam in the limit

κ → +∞. We refer to Weber et al [14] for a sketch of the derivation. Here instead we

start from the wave kinetic equation written in physical coordinates as appropriate for

the applications. It reads

{Hα, wα} = −2k0γαwα +
∑
β

Sαβ (wα, wβ) (1)

Hαwα = 0, (2)

where, for each propagation mode labeled by Greek indices, Hα is the Hamiltonian of

standard ray-tracing theory [19, 20], γα the absorption coefficient, Sαβ the scattering

operator to be discussed below in more detail. The unknown is the statistically averaged
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Wigner function wα = wα(x,N) which depends on the spatial coordinates x and the

refractive index N . The left-hand side is written in terms of canonical Poisson brackets

on the (x,N) phase space, given by

{Hα, wα} = ∇NHα · ∇xwα −∇xHα · ∇Nwα. (3)

One should notice that the wave kinetic equation has the form of a steady-state kinetic

equation with an additional constraint. The Wigner function can be associated to the

electric field energy density. It has an analogous role to distribution function of the

kinetic theory as we can derive integral expressions over the Wigner function for any

quantity that can be written in terms of |E|2, e.g., the absorption profile. The constraint

merely means that there is no energy on phase-space points that do not satisfy the

dispersion relation of the mode, Hα = 0. Further details on the Monte Carlo solution

of the wave kinetic equation and on how to construct such integrals of Wigner function

are given in [14].

In WKBeam, the Hamiltonians Hα = e∗αDeα are computed from the cold-plasma

dispersion tensor Dij = N2δij−NiNj−εij with ε = (εij) being the cold-plasma dielectric

tensor [21] and eα(x,N) the polarization unit vector of the mode α; in a cold plasma,

there are two propagation modes, namely the ordinary mode (O-mode, α = O) and the

extra-ordinary mode (X-mode, α = X).

The absorption coefficient γα, on the other hand, is computed from the hot-plasma

dielectric tensor accounting for relativistic electron-cyclotron resonance interaction.

More specifically, one can write γα = Im(N) · ∇NHα where Im(N) is the imaginary

part of the refractive index vector which is computed in the WKBeam code by the same

routines used in the complex-geometrical-optics code GRAY [22] and the paraxial WKB

code TORBEAM [23].

The general form of the scattering operator includes cross-polarization scattering

terms from mode α to mode β and is given by

Sαβ (wα, wβ) (x,N) =

∫
[σβα(x,N ′, N)wβ(x,N ′)

− σαβ(x,N,N ′)wα(x,N)]dN ′, (4)

where the integration is over the refractive index space. Here the scattering cross-section

σαβ(x,N,N ′) = 2πk0|e∗α(x,N)(1− ε)eβ(x,N ′)|2

×
( k0

2π

)3

Γ(x,N −N ′)δ(Hβ(x,N ′)), (5)

describes a momentum-preserving three-wave interaction process in which a mode α

carrying refractive index N interacts with turbulence exchanging momentum ∆N and

thus scattering into a mode β with refractive index N ′, with momentum conservation

N−N ′ = ∆N . The spatial position is not changed in the scattering event. The variation

in momentum ∆N is provided by the turbulence spectrum Γ which is rigorously defined

as the Wigner transform of the two-point correlation function of the relative electron

density fluctuations δne, namely,

Γ(x,N) =
1

ne(x)2

∫
e−ik0N ·sE(δne(x+ s/2)δne(x− s/2))ds, (6)
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where ne is the average electron density profile of the plasma.

In the WKBeam code, the two-point correlation function of the electron density

fluctuations is a critical input quantity. Such information is usually not easily recovered,

neither from experimental data nor from simulations. Therefore we make use of a model

which is based on the current theoretical understanding of turbulence in a magnetized

plasma, thus reducing the required inputs to quantities that can be inferred from

available data. The model used in this work amounts to
1

ne(x)2
E(δne(x+ s/2)δne(x− s/2)) = F (x)2e−

1
2
s·A(x)s, (7)

where F (x) is a scalar function accounting for the spatial localization of turbulent density

fluctuations and

Aij(x) = L−2
⊥ (δij − bi(x)bj(x)) + L−2

‖ bi(x)bj(x),

is a tensor accounting for the anisotropy of turbulence in magnetized plasmas, L⊥ and

L‖ being the correlation lengths in perpendicular and parallel directions with respect to

the unit vector b of the equilibrium magnetic field. The input parameters for the code

are thus reduced to the function F , which is usually specified on the poloidal plane of

the tokamak and the two correlation lengths, cf. section 2.3 below. The function F in

particular can be identified with the root-mean-square density fluctuations: In fact, we

have, upon setting s = 0,

F (x) =

√
E(δne(x)2)

ne(x)2
≡
[δne
ne

]
rms

(x),

and the average here is a statistical average (no spatial averaging should be performed).

A further advantage of this model is that the integral in spectrum Γ can be computed

analytically.

2.2. An estimate of the effect of density fluctuations

The effect of the scattering operator on the solution of the wave kinetic equation can

be rather complicated and it is in general not just a diffusion process. We can in

fact distinguish two radically different regimes, namely, a superdiffusive regime in which

scattering deforms the tails of the wave energy distribution only with little consequences

for the quality of the beam, and a diffusive regime in which the whole wave energy

distribution spreads with a significant broadening of the beam. An indication on the

scattering regime can be obtained from the total scattering cross-section

Σα(x,N) =
∑
β

∫
σαβ(x,N,N ′)dN ′,

which is the average number of scattering events per unit of propagation length for the

mode α and near the phase-space point (x,N). If ∆` is the distance traveled by a beam

in the turbulent plasma, then

λα = 〈Σα〉∆`,



6

where 〈Σα〉 is the average of Σα(x,N) along the beam path (reference ray), gives an

estimate of the average number of scattering events for that beam. For λα � 1 we expect

to have diffusive solutions with significant broadening of the beam. It is therefore useful

to have simple estimates for such a parameter.

We begin with the analytical calculation of the spectrum Γ, which in view of

equation (7) amounts to( k0

2π

)3

Γ(k0, x,N) =
F (x)2

(2π)3/2σ2
⊥σ‖

exp

(
−N

2
⊥

2σ2
⊥
−
N2
‖

2σ2
‖

)
,

where we have introduced the parameters σ⊥ = (k0L⊥)−1 and σ‖ = (k0L‖)
−1 that play

the role of spectral widths and cylindrical coordinates defined by

N = N‖b(x) +N⊥(e1(x) cosφN + e2(x) sinφN),

with (e1, e2, b) being an orthogonal reference frame constructed around the unit vector

b of the local magnetic field.

Turbulence in a magnetized plasma is well within the limit k0L‖ � 1 both because

of the high frequency of the wave and the flute-mode character of turbulence. Hence we

can consider the limit σ‖ → 0+, for which one has( k0

2π

)3

Γ(k0, x,N)→ F (x)2

2πσ2
⊥

exp
[
− N2

⊥
2σ2
⊥

]
δ(N‖). (8)

The presence of the Dirac’s delta-function together with two key properties of the cold-

plasma dispersion tensor allow us to compute the total cross-section exactly. The key

properties are: (i) The dispersion relation Hα(x,N) = 0 corresponds to N⊥ = nα(x,N‖)

with nα a known function; (ii) The dispersion tensor and thus the polarization vectors

eα(x,N) depend only on N⊥, N‖ and not on the polar angle φN . Particularly (i) implies

δ(Hβ(x,N ′)) =

∣∣∣∣∂Hβ

∂N⊥

∣∣∣∣−1

δ(N ′⊥ − nβ(x,N ′‖)).

In view of such properties and in the limit σ‖ → 0+, we obtain

Σα =
k0F

2

σ2
⊥

∑
β

Mαβ

∫ 2π

0

e−(nαnβ/σ
2
⊥)(1−cos(φN−φ′N ))dφ′N ,

where Σα has been evaluated “on-shell”, i.e., on the dispersion surface N⊥ = nα(x,N‖),

and we have defined the matrix of coefficients

Mαβ = nβ

[
|e∗α(x,N)(1− ε)eα(x,N ′)|2

|∂Hβ(x,N ′)/∂N⊥|

]
exp

(
−(nα − nβ)2

2σ2
⊥

)
, (9)

where both nα and nβ should be evaluated at (x,N‖), while the term in square brackets

should be evaluated at N ′‖ = N‖ and N ′⊥ = nβ(x,N‖).

The remaining integral can be computed by means of the Jacobi-Anger expansion,

eiz cos θ =
∑
n∈Z

inJn(z)einθ,
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where Jn(z) are the Bessel functions and the sum is over the set Z of integer numbers.

We can use this identity with z = −inαnβ/σ2
⊥ and θ = φN − φ′N and only the term

n = 0 gives a contribution. At last we obtain

Σα =
2πk0

σ2
⊥

[δne
ne

]2

rms

∑
β

Mαβe
−nαnβ/σ2

⊥I0(nαnβ/σ
2
⊥), (10)

and In(z) = i−nJn(iz) are the modified Bessel functions of first kind and, in particular,

I0 is even so that I0(−nαnβ/σ⊥) = I0(nαnβ/σ⊥).

Expression (10) is valid under the only assumption of long parallel correlation length

k0L‖ � 1 which is usually satisfied in cases of interest. If in addition, we consider the

limit σ⊥ = (k0L⊥)−1 → 0+ which is often the case for beams in the EC frequency range,

the Hankel’s large-argument expansion of the modified Bessel function,

I0(z) ∼ ez/(2πz)1/2,

yields the simpler expression

Σα ∼
√

2πk0

[δne
ne

]2

rms

[∑
β

Mαβ(nαnβ)−1/2

]
k0L⊥,

which exhibits the linear dependence with k0L⊥.

With the aim of practical estimate of scattering, however, it is convenient to further

simplify the expression for Σα. In most cases the toroidal injection angles are modest,

hence we consider the simple case of perpendicular propagation. In the reference frame

in which the local magnetic field define the third axis and the refractive index belongs

to the plane spanned by the first and third axis (Stix reference frame), perpendicular

propagation implies N = (N⊥, 0, 0). For the ordinary mode α = O we find

eO(x,N) =

 0

0

1

 , HO = N2
⊥ − 1 +

ω2
pe

ω2
, e∗O(1− ε)eO =

ω2
pe

ω2
,

where ωpe is the electron plasma frequency. As a result, for perpendicular propagation,

MOO =
1

2

ω4
pe

ω4
. (11)

Even under such simple conditions, the calculations for the extra-ordinary mode α = X,

although doable, yield rather cumbersome results. In fact one has

eX(x,N) ∝

 D
S+HX

i

0

 , HX =
N2
⊥

2
− S +

√
N4
⊥

4
+D2,

with the proportionality constant for eX being determined by |eX |2 = 1 and

e∗X(1− ε)eX = 1− SS
2 −D2

S2 +D2
,

where

S = 1−
ω2
pe

ω2 − ω2
ce

, D =
ωce
ω

ω2
pe

ω2 − ω2
ce

,
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are the standard parameters of the cold-plasma dielectric tensor and ωce > 0 is the

electron cyclotron frequency (defined with the elementary charge so that it is a positive

number). The dispersion relation HX = 0 in this case corresponds to

N2
⊥ = (S2 −D2)/S,

as expected, but the Hamiltonian HX has been computed as the eigenvalue of the

dispersion tensor. Then we have

MXX =
1

2

[S2 +D2 − S(S2 −D2)]2

S2(S2 +D2)
. (12)

In this specific case of perpendicular propagation, the cross-polarization terms MOX and

MXO are both exactly zero, no matter how close the mode dispersion surfaces are. This

is due to the block-diagonal structure of the matrix 1− ε with the polarization eO and

eX being in the subspace of the two different diagonal blocks of the matrix. The fact

that modes are exactly decoupled for perpendicular propagation independently of the

fluctuation level can also be inferred directly by inspection of Maxwell’s equations.

The expression for MXX is still rather complicated for practical use. Instead of an

exact calculation one could consider an easier lower bound. This can be computed on

noting that the maximum and minimum values of any quadratic form F (z) = z∗Az,

where z is a complex vector satisfying z∗z = 1 and A a complex positive semi-definite

Hermitian matrix, amount to the maximum and minimum eigenvalues, respectively. We

can therefore obtain a bound for e∗α(1− ε)eβ as well as for ∂Hα/∂N⊥ = e∗α∂D/∂N⊥eα.

Since we are interested in the X-mode for perpendicular propagation, we can limit our

calculation to the blocks of the matrices orthogonal to the O-mode polarization and

computing the eigenvalues we obtain

ω2
pe

ω(ω + ωce)
≤ e∗X(1− ε)eX ≤

ω2
pe

ω(ω − ωce)
, 0 ≤ ∂HX

∂N⊥
≤ 2N⊥.

The lower bound on the derivative of HX cannot be used as we need |∂HX/∂N⊥|−1.

That however allows us to obtain a lower bound for ΣX . In summary we have

ΣO =

√
π

2
k0

[δne
ne

]2

rms

ω4
pe

ω4

k0L⊥
nO

, (13)

for the ordinary mode while, with the lower bound for MXX ,

ΣX ≥
√
π

2
k0

[δne
ne

]2

rms

ω4
pe

ω2(ω + ωce)2

k0L⊥
nX

, (14)

for the extra-ordinary mode, both results being valid for perpendicular propagation

under the limits k0L‖, k0L⊥ � 1.

A simple estimate of the parameter λα can now be readily written by using either

equation (13) or (14) as relevant to the considered mode. In order to compute λα
rigorously we should average Σα over the propagation path of the beam in the turbulent

plasma. For simplicity however we can evaluate Σα, which for perpendicular propagation

depends on x only, at a given point in space chosen to represent the typical value of

plasma parameter in the turbulent region. Then we can write an estimate for λα which
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can be evaluated for a given tokamak scenario without need of ray- or beam-tracing

calculations. That is,

λα ≈
√
π

2

1

nα

[δne
nc

]2

rms
(k2

0L⊥∆`)

{
1, α = O,

ω2/(ω + ωce)
2, α = X,

(15)

and we have introduced the cut-off density nc = ne(ω/ωpe)
2. The authors would

like to remind that this chain of approximations and simplifications were made to

obtain a simplified expression for the categorization of the transport regimes. In the

implementation of the code, the general expression (4) is evaluated during a scattering

event as described in [24].

2.3. Model for density fluctuations

The turbulence model employed in WKBeam simulations consists in a model profile for

the function F defined in equation (7), which is the root-mean-square relative electron-

density fluctuations. We model F as a function of the radial coordinate ρp =
√
ψp,

where ψp is the normalized poloidal flux (ψp = 0 and ψp = 1 corresponds to magnetic

axis and the separatrix, respectively), and the geometrical poloidal angle θ. At first we

shall assume that F is a purely radial profile, i.e.,

F (ρp, θ) = Fr(ρp),

with Fr depending only on the radial coordinate ρp. The specific profile used for Fr was

selected based on the experimental work in [25, 26] and it is shown in Figure 1. It is

a piecewise defined function combining core region until ρp = 0.97, a (linear) ramp-up

region at ρp = 0.97 − 1.0 and a constant edge region at ρp > 1.0. The core value in

H-modes is a few percent (and has a negligible effect on the beam broadening), here

it is chosen to be 2%. While the edge level dominates the beam broadening and here

it was selected to be 20%. A Gaussian centered at ρp = 1 is shown for comparison,

as it has been used in the earlier works [12, 11]. As this extrapolation from current

experiments to ITER is definitely uncertain, a scan for the edge value is presented in

section 3.3. The correlation length was assumed to scale like Lc ≈ 5 − 10ρs, where ρs
is the sound gyroradius. The authors are familiar that this scaling might break down

when going from open to closed field lines. As the temperature of the plasma is a radial

function, so is the expected correlation length. In this paper, however, a constant value

of the correlation length was used as the main effect of the fluctuations can be isolated

to a radial domain close to the edge (we note, however, that the theory allows a radial

dependency on the correlation length). Using ITER parameters, the correlation length

in the studied scenario at the location of interest is 1-2 cm. Consequently, a value of 2

cm was used and a scan around this value is presented in 3.3.

In the plasma core, the turbulence exhibits strong ballooning structure leading to

poloidal dependency in the density fluctuation amplitude. In general this ballooning

behavior can be modeled using

F (ρp, θ) = Fr(ρp)
1

2
(1 + cos (θ)) , (16)
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Figure 1. Radial function of the density fluctuation amplitude. Extrapolation from

experimental H-mode profiles and a Gaussian profile centered at the separatrix are

illustrated.

where θ is the geometrical poloidal angle. For ITER, this ballooning leads to the shape

illustrated in Figure 2. In this figure the radial function shown in Figure 1 was used.

At the location where the UL EC beam enters the plasma, the value of the fluctuation

amplitude is roughly half of the midplane value. However, only very marginal amount

of information exists about the ballooning in open field lines either experimentally or

theoretically [27, 28, 29], and even these observations are often of limited interest for us

(limiter plasmas, L-mode). To compensate for these uncertainties, a scan over different

fluctuation amplitude levels is performed, as detailed in the following sections.

2.4. Verification and validation studies

To ensure that the implementation of the theory is handled properly, several benchmarks

have been carried out. These included a benchmark study without the fluctuations

against well benchmarked and validated TORBEAM code [23]. Several different

scenarios were studied, including various ASDEX Upgrade discharges and ITER. These

cases involve variation in kinetic profiles, magnetic fields and also injection angles. Both

the beam shape and absorption profiles were compared. In most of the cases, for which

an ASDEX Upgrade example is shown in figure 3 and ITER examples in figures 4

and 5, both the beam and the profiles are extremely close to each other. However, some

discrepancy in the absorption profiles were observed in particular for large toroidal

injection angles like shown in 5. The reason for these discrepancies is thought to be a

combination of physical differences between the codes (TORBEAM adopts the paraxial

approximation, so that all the relevant information is computed on the central ray only)

and the projection to flux surfaces necessary in the TORBEAM side when constructing

the absorption profile.

Furthermore, the code was benchmarked against full-wave code IPF-FDMC [30].

In these studies, the effect of fluctuations on the beam shape was studied under ITER-

relevant conditions, i.e. ne/nc ≈ 0.2. The main goal of this benchmark was to find
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Figure 2. Ballooning of the density fluctuation using equation (16). The amplitude

of the fluctuations is normalized to peak value. Note that at the region where the

microwave beam enters the plasma, the fluctuation amplitude is roughly half that of

the midplane value.
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Figure 3. Comparison of the TORBEAM EC beam and WKBeam beam a) and

deposition profile b) in ASDEX Upgrade discharge # 25485. The beams are on top

of each other, deposition profiles are not identical. Perpendicular injection with zero

toroidal angle.
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Figure 4. Comparison of the TORBEAM EC beam and WKBeam beam a) and

deposition profile b) in ITER. The beams are on top of each other, deposition profiles

are on top of each other. This was carried out for a perpendicular beam injection.
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Figure 5. Comparison of the TORBEAM EC beam and WKBeam beam a) and

deposition profile b) in ITER. The beams are on top of each other, deposition profiles

are similar. This was carried out for nominal toroidal injection angle of 20 degrees.

the threshold above which the Born approximation employed in WKBeam breaks down

(details will be presented in a separate publication). This threshold is expected to be

a function of the fluctuation amplitude and, therefore, a scan against this variable was

carried out until the codes disagreed. The main result is that the WKBeam method

agrees well with the full-wave calculations in the levels of fluctuations amplitudes

expected in ITER, i.e. δne/ne < 40 % as shown in Fig. 6. Therefore the basic
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physics assumption upon which the WKBeam code relies appears valid under ITER-like

conditions.

Figure 6. Demonstration of breaking down of the Born approximation using

ITER relevant parameters. Full-wave and WKBeam codes agree well for fluctuation

amplitudes δne/ne < 40%.

2.5. Transport regimes - comparison of AUG and ITER

As an example of present-day experiment, we take ASDEX Upgrade discharge #25485.

There the EC beam was in X-mode polarization with a frequency of 140 GHz. Using

the information of the plasma quantities, we may construct a 2D map of the scattering

parameter in eq. (15) as a function of k0L⊥∆` and δne/nc as motivated by this equation.

For this analysis, we have set a Gaussian layer around the separatrix, as illustrated in

Fig. 1 and calculated the distance s the beam travels in this layer. The nominal values

for the correlation length was 0.4 cm for AUG and 2 cm for ITER and the nominal

amplitude was δne/ne =10%. In Fig. 7 we show the λ = 1 curve together with the

nominal values of λ for the parameters discussed above. Clearly ITER is well in the

diffusive regime, while AUG nominal values are close to boundary but on the super-

diffusive side.

For illustrative purposes, we considered also modified cases with L⊥ =2 cm and

δne/ne =20% for AUG and L⊥ = 0.2 cm for ITER. With these parameters, the

scattering parameter ends up clearly on the diffusive side in the AUG case and close

to the boundary in ITER case. As the derivation of the scattering parameter includes

several approximations, the boundary cannot be considered to be sharp. Moreover, the

real transport, within the limits of our model, can be obtained by running the code
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and it was done for the two cases discussed above. The resulting statistically averaged

electric energy density ∝ E(|E|2) after the fluctuation layer as a function of a distance

along the perpendicular distance to the EC beam is illustrated in 8 and 9. The diffusive

beam shape in both cases can accurately fitted with a Gaussian while the superdiffusive

case has characteristic high tails, that suggest a Kappa or Lévy distribution [31, 32]. To

further illustrate this, we fitted a generalized Cauchy distribution with

E2
fit(x) =

a2

(x2 + b2)c
, (17)

where a, b and c are free parameters of the fit. Using the beam shape coming from

WKBeam to generate the least-square fit, c has a value of 2.18±0.20 (95 % confidence

level), which is very close to Cauchy distribution (c = 2). We have also counted the

number of scattering events along each ray. In the diffusive regime, almost all rays

(> 99%) have scattered at least once and most of them several times, whilst in the

superdiffusive regime only a fraction of the rays undergo a scattering event (depends

on how deep in the superdiffusive regime one lies, but here for example roughly 20 %)

and having more than one event for a ray is very unlikely. Last remark is the difference

between the superdiffusive beam shapes of ITER and AUG examples, in ITER the high

tails are more visible than in the AUG case. This can be explained by the fact that in

AUG case the fluctuation layer is so short, and the scattering probability correspondingly

low, that not enough scattering events occur to raise the tails, and the original Gaussian

beam shape is retained rather well.
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Figure 7. Transport regimes in AUG and ITER. Everything below λ = 1, like

AUG nominal parameters, is superdiffusive and above, like ITER and AUG modified

parameters, is diffusive.
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Figure 8. Shape of the EC beam after the fluctuation layer in AUG discharge #

25485 with diffusive and superdiffusive parameters. Gaussian fit is suitable only for

diffusive regime, while superdiffusive beam has characteristic high tails.

3. Results for ITER electron cyclotron upper launcher

3.1. Simulated scenarios

We have concentrated in this paper on the 15 MA Q=10 standard H-mode ITER

scenario. It is the most important mission of ITER and thus it deserves special attention.

Here we have modelled the flat-top phase according to the simulations presented in

Ref. [33]‡. The relevant 1D profiles of electron density and temperature are shown in

Figure 10 and flux surfaces of the equilibrium in Figure 11 (the distorted shape around

the X-point is due to an equilibrium re-processing and does not affect the results in the

top region, where the beam propagates).

Relevant parameters for the EC beams are given in Table 1. Four different

configurations are listed, namely the upper steering mirror (USM) and lower steering

mirror (LSM) and both are separately optimized for current drive at q = 2 and q = 3/2

surfaces, where the most dangerous NTMs are expected to occur in the given scenario.

‡ The flat top phase of Case#001 from Ref. [33] is used, which corresponds to the run with PPF file

# 53287/fkochl/jul2811/seq.1/ppfseq.17416.
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Figure 9. Shape of the EC beam after the fluctuation layer in ITER with diffusive

and superdiffusive parameters. Gaussian fit is very accurately modeling the diffusive

and quiescent beam shape, while Cauchy fit is necessary for super-diffusive parameters

with elevated tails.
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Figure 10. The kinetic profiles of electron density (left, solid) and temperature (right,

dashed) in 15 MA ITER scenario.

3.2. Absorption profiles and effect of ballooning

In figure 12 we show the absorption profiles of electron cyclotron beams. The set of

profiles on the left-hand side of the figure (around ρp = 0.77) corresponds to deposition

on the q = 3/2 surface while the set on the right-hand side (around ρp = 0.87)

corresponds to the q = 2 surface. Red/blue color represents the case with/without

density fluctuations, respectively, while the solid line shows the USM configuration

and the dashed line the LSM configuration. An immediate observation is that the

beams are broadened by a factor of ≈ 3 in all cases. Another peculiar feature of the
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Figure 11. Flux surfaces of 15 MA standard H-mode scenario of ITER.

Quantity USM (q=2) LSM (q=2) USM (q=3/2) LSM (q=3/2)

Frequency (GHz) 170 170 170 170

Mode O O O O

Input power (MW) 1 1 1 1

beam width (cm) 5.047 4.813 5.047 4.813

Focal length (cm) 318.6 200.1 318.6 200.1

Antenna R (cm) 699.9 705.4 699.9 705.4

Antenna z (cm) 441.4 417.8 441.4 417.8

Toroidal angle (deg) 20 20 20 20

Poloidal angle (deg) 46.8 40.5 54.7 50.1

Resonance surface (ρp) 0.87 0.87 0.77 0.77

Table 1. Most important beam parameters for USM and LSM including both (2,1)

and (3,2) resonance surfaces.

scattered profiles is the non-Gaussian shape. It can be explained by a combination of

beam-broadening-induced geometrical factors and aberration effects (these are naturally

included in the model as each ray carry information of the refractive index N and also

of the temperature that affects the absorption). The effect of density fluctuations is

similar to both mirrors and both resonance surfaces, while the geometric distortion of

the Gaussian shape is slightly stronger for inner q = 3/2 surface compared to outer

q = 2. Each of these simulations was carried out using 400k-2M rays, which allows a

statistically well-converged determination of the power deposition profiles.

One major uncertainty of the density fluctuations in open field lines is related to

ballooning. In the core region with nested flux surfaces, the fluctuations are strongly

damped at the high-field side but only very scarce information is available for the open

field line region of H-mode plasmas that is interesting for the present study. To evaluate



18

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.01

0.02

0.03

0.04

0.05

0.06

ρ
p

M
W

/m
3

 

 

USM no fluct.
USM 10% SOL
USM 20% SOL
LSM no fluct
LSM 10% SOL
LSM 20% SOL

Figure 12. Absorption profiles for both mirrors and both resonance surfaces with and

with out the scattering of density fluctuations.

the effect of ballooning on the profile broadening, we have assumed a core-like ballooning

given by eq. (16). A simulation was carried out for USM q=(2,1) configuration,

assuming 20% fluctuation amplitude at the outer midplane. For comparison, the results

are shown together with 20% and 10% fluctuation amplitudes without ballooning in

Fig. 13. As expected, the ballooning case is very close to the 10% fluctuation amplitude

case as the level of fluctuations at the location where the EC beam enters the plasma

is roughly half of the midplane value, in this case 10%.

3.3. Fluctuation parameter scans

Since some of the key input parameters have large uncertainties, a scan has been

performed to assess the dependence of the results on these parameters. As a basis

for this scan, we have selected USM configuration for the q = 2 resonance surface.

The scanned variables are the fluctuation amplitude δne/ne and the correlation length

Lc = L⊥ shown in figure 14. In this figure we show the full width at half-maximum

(FWHM) of the deposition profile compared to the quiescent case. It is readily noticed

that the effect of fluctuations is to broaden the beam by a factor of 1.7 to 5.1, in the

range of most likely fluctuation amplitudes by a factor of 2.5 to 3.5. In this scan no

ballooning was assumed. In the case of correlation, inverse proportionality is observed.

Different properties of the turbulence in the open-field-line region are mimicked through

different values of the correlation length. An investigation of the different statistical

properties of the edge turbulence requires a separate study and is left for future work.
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Figure 14. Beam broadening (FWHM of the deposition profile compared to the case

without fluctuations) as a function of the fluctuation amplitude.

4. Implications to ITER

We have shown that using realistic parameters for the turbulence, the EC beam

broadening is of the order of a factor of 2.5 to 3.5. In this paper we have only shown
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the broadening of the absorption profile while the NTM mitigation relies in the driven

current inside the island. However, the driven current density can be directly linked to

the absorption as [34]

〈j〉 = η〈dP
dV
〉, (18)

where the current drive efficiency η is a function of position. The broadening of the power

profile applies also to the current density profile apart for the variation of η across the

deposition profile, which is usually negligible for localized EC deposition. A general

formulation of the power threshold to mitigate NTMs is discussed e.g. in [9], which

is largely based on the analyses of the generalized Rutherford equation presented in

[35, 36]. We may repeat the calculation assuming the beam driven current is broadened

by factor of 1, 2 or 3. The resulting power is shown in figure 15. The conclusions of [9]

still remain: with the broadened beams continuos wave injection (cw) demands more

than the nominal power available in the EC UL (13.3 MW per row of mirrors, ≈20 MW

in total [9]), while the modulated (mod) power is still managable. Although in this case

the whole UL might need to be reserved for NTM suppression only.
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Figure 15. Power required for complete (2,1) NTM suppression as a function of

marginal island width for beam with nominal power deposition profile a), broadened

by a factor of 3. Similar figure with the broadening by a factor of two was published

in [9].

5. Summary

To summarize, in this paper we have presented simulations of electron cyclotron wave

propagation and absorption in ITER, retaining the effects of scattering due to edge

density fluctuations.This is particularly important for the upper launcher of ITER

because of NTM stabilization. The simulations were carried out using WKBeam code

that was benchmarked against paraxial beam-tracing code TORBEAM and full-wave
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IPF-FDMC code. In particular, we showed that the Born approximation utilized in

the WKBeam code is applicable in the parameter range of ITER. We analyzed the

scattering operator which describes the effects of turbulence on the wave, showing that

the transport due to density fluctuation can be of diffusive or superdiffusive nature.

Moreover, it was shown that nominal parameters for ASDEX Upgrade tokamak lie barely

on the superdiffusive regime while ITER is deeply on the diffusive regime. Because of

this and because of the larger machine size, a larger beam broadening can be expected

in ITER.

The input needed for the averaged scattering includes statistical averages over the

turbulence, namely the fluctuation amplitude δne/ne, that was assumed to be a function

of radial coordinate ρp and the poloidal geometrical angle θ, and the perpendicular

correlation length L⊥. Based on our present knowledge, and “educated guess” for

the value of these quantities in the ITER 15 MA standard H-mode scenario has been

discussed. Extensive scans have been performed in order to assess the sensitivities of

the results to the relevant parameters. Thereafter, simulations were carried out to

calculate the beam broadening defined as a increase of the FHWM of the absorption

profile. Broadening by a factor of 1.7 to 5.1 was observed depending on the turbulence

parameters. In the most likely regime of parameters a broadening by a factor of 2.5 to 3.5

is found. It was observed that the ballooning like poloidal dependence of the fluctuation

amplitude decreases the broadening to levels found with half of the fluctuation amplitude

without the ballooning, leading to roughly a decrease of broadening by a factor of 2.

Parameter scans were shown for the most important turbulence parameters, i.e. the

fluctuation level in the SOL and the correlation length. Last but not least, it was

shown that, even with a factor of 3 broadening, NTM mitigation by ECCD in ITER

is still plausible but modulation of EC power could become necessary to achieve NTM

suppression within the available power.

6. Outlook

In this paper we concentrated on the most important ITER mission, i.e. the 15 MA

standard H-mode and only in flat-top phase. The next steps include similar analysis in

other time slices and scenarios. Moreover, ITER is equipped with equatorial launcher

(EL) that is foreseen to be mostly used for plasma heating and control applications.

Some recent work has been carried out to investigate whether this system could be

used to drive current in the q=1 surface to destabilize sawtooth [6, 37]. Therefore, the

work will be extended to EL as well. Although in this paper we considered only beam

broadening effects, the mode-to-mode scattering should not be forgotten. It is important

both for NTM mitigation, as part of the power is not coupled to plasma, and to stray

radiation studies. We expect mode-to-mode scattering to be important also for EL.

Recent numerical development of WKBeam code aims to generalize the input magnetic

field for full 3D geometry. This enables to study scattering phenomena in stellarators, in

particular W7-X that is equipped with good diagnostics possible capable of measuring
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beam broadening. Furthermore, larger scale turbulent blobs and ELM structures might

affect the propagation of EC waves. Future work to estimate this effect in terms of

NTM mitigation is foreseen.
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[15] L. Guidi, O. Maj, H. Weber, A. Köhn, A. Snicker, and E. Poli. Cross-polarization scattering of

diffracting electron-cyclotron beams in a turbulent plasma with the wkbeam code. Journal of

Physics: Conference Series, 775(1):012005, 2016.

[16] Steven W. McDonald. Wave kinetic equation in a fluctuating medium. Phys. Rev. A, 43:4484–

4499, Apr 1991.

[17] Frank C. Karal and Joseph B. Keller. Elastic, electromagnetic, and other waves in a random

medium. Journal of Mathematical Physics, 5(4):537–547, 1964.

[18] Steven W. McDonald. Phase-space representations of wave equations with applications to the

eikonal approximation for short-wavelength waves. Physics Reports, 158(6):337 – 416, 1988.

[19] I B Bernstein. Physics of Fluids, 18:320, 1975.

[20] Yu A Kravtsov and Yu I Orlov. Geometrical Optics of Inhomogeneous Media. Springer Verlag,

Berlin, 1990.

[21] M. Bornatici et al. Electron cyclotron emission and absorption in fusion plasmas. Nuclear Fusion,

23(9):1153, 1983.

[22] D. Farina. A quasi-optical beam-tracing code for electron cyclotron absorption and current drive:

Gray. Fusion Science and Technology, 52(2):154–160, 2007.

[23] E. Poli, A.G. Peeters, and G.V. Pereverzev. Torbeam, a beam tracing code for electron-cyclotron

waves in tokamak plasmas. Computer Physics Communications, 136(1):90 – 104, 2001.

[24] H Weber. IPP Report 5/134, 2013.

[25] S J Zweben, J A Boedo, O Grulke, C Hidalgo, B LaBombard, R J Maqueda, P Scarin, and J L

Terry. Edge turbulence measurements in toroidal fusion devices. Plasma Physics and Controlled

Fusion, 49(7):S1, 2007.

[26] G D Conway. Turbulence measurements in fusion plasmas. Plasma Physics and Controlled Fusion,

50(12):124026, 2008.

[27] C Silva, H Figueiredo, P Duarte, and H Fernandes. Characterization of the poloidal asymmetries

in the isttok edge plasma. Plasma Physics and Controlled Fusion, 53(8):085021, 2011.

[28] G.R. Tynan, J.A. Boedo, D.S. Gray, R. Van Nieuwenhove, G. Van Oost, and R.R. Weynants.

Effects of radial electric fields on the turbulence and transport in the textor edge and sol plasma.

Journal of Nuclear Materials, 196:770 – 774, 1992.

[29] T.L. Rhodes, R.J. Taylor, E.J. Doyle, Jr. N.C. Luhmann, and W.A. Peebles. Poloidally asymmetric

response of turbulence to the h mode on the cct tokamak. Nuclear Fusion, 33(12):1787, 1993.
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