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SIESTA [S.P. Hirshman, R. Sanchez and C.R. Cook, Phys. Plasmas 18, 062504 (2011)] is a recently
developed MHD equilibrium code designed to perform fast and accurate calculations of ideal MHD
equilibria for three-dimensional magnetic configurations. Since SIESTA does not assume closed
magnetic surfaces, the solution can exhibit magnetic islands and stochastic regions. In its original
implementation SIESTA addressed only fixed-boundary problems. That is, the shape of the plasma
edge, assumed to be a magnetic surface, was kept fixed as the solution iteratively converges to
equilibrium. This condition somewhat restricts the possible applications of SIESTA. In this paper we
discuss an extension that will enable SIESTA to address free-plasma-boundary problems, opening up
the possibility of investigating problems in which the plasma boundary is perturbed either externally
or internally. As an illustration, SIESTA is applied to a configuration of the W7-X stellarator.

PACS numbers: 52.25.Fi, 52.35.Ra, 52.25.Gj, 05.40.-a

I. INTRODUCTION

SIESTA is an iterative MHD equilibrium solver that
looks for lower energy states starting from nearby equi-
libria with nested magnetic surfaces1, being one of just a
handful of MHD equilibrium codes2–4 that does not as-
sume the existence of magnetic surfaces. SIESTA uses
the nested equilibrium solution found by the VMEC
code5 to provide: 1) a (fixed) background set of quasi-
polar coordinates, (sv, θv and φv), in which calculations
are carried out, and 2) an initial guess for the equilibrium
magnetic field and pressure fields to start the iterative
search of an equilibrium solution. Here, φv = φ is the
geometrical toroidal angle; θv = θ∗, the non-geometrical
poloidal angle that VMEC internally uses to maximize
the compression of the harmonic content of the solution6;
finally, sv =

√
s, with s being the normalized magnetic

toroidal flux that VMEC uses as radial coordinate.
SIESTA, as VMEC, is a spectral code in which the

curvilinear components of all fields are expanded in
Fourier series in the poloidal (θv) and toroidal (φv) an-
gles. For the sake of simplicity, SIESTA currently as-
sumes stellarator symmetry7, so that all fields exhibit
either cosine,

C(sv, θv, φv) =

M∑
m=0

N∑
n=−N

Cmn(sv) cos(mθv + nNpφv),

(1)
or sine,

S(sv, θv, φv) =

M∑
m=0

N∑
n=−N

Smn(sv) sin(mθv + nNpφv),

(2)

symmetry, depending on the parity of the field of interest.
The values of the harmonics of the three contravariant
components of the magnetic field (i.e., Bsv [sine parity],
Bθv [cosine] andBφv [cosine]) and the plasma pressure (p,
cosine) are iteratively varied by SIESTA until it reaches
a minimum of the total MHD energy integrated over the
plasma volume,

W =

∫ [
B2

2µ0
+

p

γ − 1

]
dV, (3)

consistent with the imposed boundary conditions and
MHD conservation laws for flux and mass. As it is
well known, the MHD energy becomes quasi-stationary
only when the ideal MHD force, J×B−∇p, vanishes8.
SIESTA looks for zeros of this nonlinear force, in terms of
the plasma displacement vector, using an iterative non-
linear Newton method1. The use of the VMEC coordi-
nate system ensures that the number of Fourier harmon-
ics that need to be included in SIESTA is kept down to a
minimum, improving considerably both the convergence
of the Newton method and the overall performance of
the code. In addition, the solution of the linear prob-
lem that appears at each step of the non-linear Newton
method is also searched iteratively, combining Krylov
and conjugate-gradient methods with accurate physics-
based preconditioning to further accelerate convergence
to the desired tolerance1.

Another subtle aspect of SIESTA is that it does al-
low for a certain (and controlled) departure from ideal
MHD during the iterative procedure. In purely ideal
MHD codes with nested surfaces, magnetic islands (and
the stochastic regions that may result from their super-
position) are prevented from opening up by the forma-
tion of (parallel) current sheets at the resonant mag-
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netic surfaces9–11. SIESTA allows for the diffusion of
these resonant currents (and therefore, the violation of
the frozen-flux theorem of ideal MHD) by interlacing the
preconditioned ideal steps with a few resistive steps. In
real devices, the very small diffusivity makes this a very
slow physical process, that is significant only at the cur-
rent sheet region. SIESTA accelerates this process by
artificially increasing the resistivity (and also, via the
rescaling of the relevant eigenvalues done by the internal
preconditioning), but its application during the iterative
procedure is done in a way that the main (non-resonant)
components are barely affected [More details about the
use of resistivity can be found in the original SIESTA
reference1.].

As it was mentioned earlier, the original version of
SIESTA was developed as a fixed-boundary code1. That
is, its spatial domain is the plasma volume, whose bound-
ary is defined by the isosurface sv = 1. Boundary con-
ditions are imposed at this boundary that ensure that,
while the MHD energy is minimized, any plasma dis-
placement considered always vanishes there. As a re-
sult, both the magnetic field and the plasma pressure
remain fixed at the boundary during the iterative pro-
cedure, with Bs (since sv = 1 is a magnetic surface)
and p set to zero. There are however situations of rel-
evance in which one would like to be able to calculate
the changes to the plasma boundary caused by different
actions. For instance, during the application of resonant
magnetic perturbations close to the plasma edge, as those
often used to try to control ELM activity in tokamak H-
modes12. Or when unbalanced plasma currents appear
in zero-current stellarators, driven for instance by exter-
nal heating or the pressure gradient, as could be the case
of the W7-X stellarator14. For that reason, this paper
introduces a new methodology that enables SIESTA to
perform free-plasma-boundary equilibrium calculations.

The paper is organized as follows. In Sec. II, the fun-
damentals of the new approach are described. They in-
clude the extension of the calculation domain beyond the
plasma edge, the construction of an adequate numerical
mesh throughout the extended region (Sec. II A) and the
construction of a proper initial guess, for both magnetic
field (Sec. II B) and pressure (Sec. II C), over the ex-
tended domain. The extended capabilities of the new
version of SIESTA are illustrated in Sec. III, where we
use it on a selected configuration of the W7-X stellarator.
Then, some final conclusions will be drawn in Sec. IV.

II. FREE-PLASMA-BOUNDARY EXTENSION
PROCEDURE

In order to enable SIESTA to perturb the plasma
boundary while looking for equilibrium solutions with
lower MHD energy, the computational domain needs
to be expanded so that the plasma boundary (the old
sv = 1) becomes an internal surface (that will probably
cease to coincide with the sv = 1 isosurface of the fixed

Figure 1. Illustration of the extended domain used by SIESTA
for the W7-X stellarator runs that will be discussed in Sec. III.
(A smoothed version of) W7-X’s vaccum vessel, shown in
green, defines the sv = sw surface. The magnetic surfaces
of the VMEC solution for the same run are shown in black,
the last of them corresponding to sv = 1.

background coordinate system). Although any volume
that includes the plasma could be used, it seems natural
to consider the volume inside the vacuum vessel of the
device of interest (see Fig. 1). The strategy we will then
follow is to consider the boundary of the extended vol-
ume as a new fixed boundary, at which suitable boundary
conditions will be imposed. In this way, SIESTA can be
run in fixed boundary mode with respect to the extended
volume, while being run in free boundary mode with re-
spect to the plasma edge. Several things must be done
before SIESTA can be run in this manner, though. First,
the background coordinate system that VMEC provides
must be extended over the region going from the original
plasma boundary (sv = 1) to the new boundary. Sec-
ondly, suitable initial guesses for both the magnetic and
pressure fields, from which SIESTA will start to iterate,
must also be provided over the extended region.

A. Mesh extension

The extension of SIESTA’s background coordinate sys-
tem beyond the plasma edge of the VMEC solution (i.e.,
sv = 1) is done as follows. First, it is assumed that
the vacuum vessel (or any other external surface chosen
for this purpose) corresponds to an isosurface of the ex-
tended background coordinate system sv = sw, for some
value sw > 1 yet to be determined. Although it should
be kept in mind that sv = sw needs not be a magnetic
surface. In fact, since magnetic surfaces typically vary
during SIESTA’s iterative procedure, be it in fixed- or
free-plasma-boundary mode, there is no guarantee that
sv = s0 will remain a magnetic surface in the final equi-
librium solution for any value of s0, except for s0 = 1
in fixed-boundary mode. Then, Nφ toroidal planes are
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Figure 2. Sketch illustrating the construction of the extended
coordinate system in the region in between the plasma and
the vacuum vessel. First, poloidal rays are extended at each
toroidal plane until they intersect the vessel. The collection
of all intersections form the sv = sw surface, where sw is to
be determined. Intermediate isosurfaces are constructed for
sv > 1 by dividing each poloidal ray in a fixed number of
equal segments. The value of the label sv at each of the new
surfaces is defined by requiring that the increase in volume
roughly grows as the average minor radius.

considered for the angle values,

φiv =
2π

Np

(
i− 1

Nφ

)
, i = 1, · · · , Nφ, (4)

being Np the number of periods of the configuration. On
each of these toroidal planes, Nθ poloidal angles are se-
lected,

θkv = 2π

(
k − 1

Nθ

)
, k = 1, · · · , Nθ. (5)

At the i-th toroidal plane, one can easily trace the ray
that goes from the axis (sv = 0) to the plasma edge
(sv = 1), i.e. θv = θkv in real space, by summing up the
series,

Rk,i(s
l
v) =

M∑
m=0

N∑
n=−N

Rmn(slv) cos(mθkv + nNpφ
i
v) (6)

Zk,i(s
l
v) =

M∑
m=0

N∑
n=−N

Zmn(slv) sin(mθkv + nNpφ
i
v) (7)

for increasing slv = (l − 1)ds, l = 1, 2, 3 · · ·Ns. Here,
ds = 1/(Ns − 1) is the spacing in between isosurfaces
that SIESTA uses for fixed-boundary calculations.

To extend the rays beyond sv = 1, we extrapolate both
Rmn(slv) and Zmn(slv) using a second-order polynomial
fit of their values at sNs

v , sNs−1
v and sNs−2

v (see Fig. 2).
Thus, when summing the series for l > Ns, the rays cross

Figure 3. Contour plot of the jacobian,
√
g, over the extended

computational volume built for the W7-X configuration exam-
ined in this paper by using the prescription described in the
main text. Isosurfaces of constant sv, rays of constant θv and
toroidal planes can be clearly identified from the gridding.

the plasma edge and move towards the vacuum vessel.
In general, each ray will require a different value of l >
Ns (say, l = lik for the i-th ray on the k-th toroidal
plane) to cross the vacuum vessel. Therefore, there is
no single value of l such that sv = slv provides a unique
label for the vacuum vessel, but it is required that it be an
isosurface of the extended background coordinate system.
In order to define a more adequate label we proceed as
follows. First, the last isosurface of the domain, sv = sw,
is defined as the collection of the intersections with the
vacuum vessel of all poloidal rays in all toroidal planes
(in cases in which the shape of the last surface contains
regions with large degrees of indentation, the intersection
points obtained may lie too close to each other in some
parts of the boundary; in those cases, an on-boundary
resampling of the intersection positions is done before
continuing the procedure). The actual value of sw still
needs to be determined. Next, we divide the part of
each ray that goes from sv = 1 to sv = sw in N ′s equal
segments. Isosurfaces in the extended volume are now
successively defined by the collection of the end points
of the first segment of all rays, the collection of the end
points of the second segment of all rays, and so forth
until the vacuum vessel is reached. The value of the
label slv for the l-th collection (l > Ns) is then assigned
by requiring that the increment in volume enclosed by
the l-th isosurface,

V (slv) =

∫ 2π

0

dθv

∫ 2π

0

dφv
√
g(slv) = (8)

=

∫ 2π

0

dθv

∫ 2π

0

dφvR

(
∂R

∂sv

∂Z

∂θv
− ∂Z

∂sv

∂R

∂θv

)
grows as the square of the radial label sv that defines
each magnetic surface. That is,

slv = sl−1v

(
V (slv)

V (sl−1v )

)1/2

, l = Ns+1, · · · , Ns+N ′s. (9)
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Once the new radial label is defined in this way, the ja-
cobian

√
g (see Fig. 3), as well as all other metric quanti-

ties, can be easily computed in the extended volume from
the Rmn and Zmn harmonics that define each isosurface
for sv > 1. These harmonics are obtained in turn via
the Fourier inversion of the Rk,i(s

l
v), Zk,i(s

l
v) pairs, for

l > Ns (see Eq. 7). As the final touch of the extension,
the mesh over the vacuum region is resampled along s to
ensure that the spacing in the extended volume remains
the same as that used for the plasma region, sv ≤ 1.

The method just described is the one used for all calcu-
lations included in this paper and it shows to work very
well. However, it is possible to do the extension in other
ways. For instance, a method based instead on using an-
alytical interpolation formulas is described in Appendix
A.

B. Magnetic field guess in the extended domain

When it comes to the construction of an initial guess
for the magnetic field in the extended computational vol-
ume, several options are possible. Although theoretically
equivalent, it turns out that not all of them are equally
optimal after being discretized on SIESTA’s numerical
mesh. To choose among these options, we have required
that two conditions be met in order to facilitate the con-
vergence of SIESTA and make the quality of the final
solution better (i.e., a smaller force residual). First, the
magnetic field must remain smooth over the extended
volume to avoid the introduction of spurious eigenvalues
in the Hessian of the problem. Secondly, it must have
(almost) zero divergence, since SIESTA does not incor-
porate any divergence-cleaning strategy at this time.

The first way that comes to mind in order to construct
a global guess for the magnetic field is probably to use the
VMEC solution (that is, the contravariant Bθv and Bφv

components, since Bsv = 0) for all interior isosurfaces
(i.e., for sv ≤ 1). In addition, one needs to estimate the
three contravariant components of the magnetic field in
the vacuum region of the extended coordinate system.
We have tested several ways to do this. The first method
we have tried is to evaluate Biot-Savart’s law at each
mesh point with sv > 1 using the currents that VMEC
provides,

BJVMEC

(r, sv ≥ 1) =
µ0

4π

∫∫∫
sv≤1
dV ′

JVMEC(r′)× (r− r′)

|r− r′|3
,

(10)
and add to it the vacuum magnetic field created, at the
same location, by the external coils [For instance, in the
case of W7-X discussed in this paper, the vacuum field
has been computed using IPP’s MAG3D code13.] It is
worth pointing out that, although the integration could
be carried out directly in SIESTA coordinates, it is more
computationally efficient to consider a local cylindrical or
cartesian basis for the current vector, and then to project
the result of the integral onto the local contravariant basis

Figure 4. Left: Color plot for |B| for the W7-X magnetic
field obtained by combining the VMEC field for sv < 1 with
the vacuum field plus the one obtained from Biot-Savart’s law
(Eq. 11) for sv > 1. Right: Color plot for |B| for the field
obtained by combining the vacuum field and the one obtained
by integrating Biot-Savart’s law using VMEC currents over
the whole domain (the sv = 1 surface is shown in dashed
magenta line). Both are shown at the toroidal plane φv = 0.

at r to get each of the contravariant components of B.
Otherwise, Christoffel symbols15 must be computed to
relate the coordinate basis vectors at any arbitrary pair
of locations within the volume, which is a very intensive
computation.

A second (and faster) approach is to take advantage of
the so-called virtual casing principle16,17, that permits to
substitute the volume integral in Eq. 11 by the surface
integral

BJVMEC

(r, sv ≥ 1) =
µ0

4π

∫∫
sv=1

dS′
K(r′)× (r− r′)

|r− r′|3
, (11)

where the current sheet is given by,

K(r, sv = 1) =
[BVMEC × n]sv=1

µ0
, (12)

where n is the (outwards) normal vector at each location
in sv = 1.

We have tested both approaches and found that both of
them fail to provide a sufficiently smooth magnetic field
across sv = 1, which messes up SIESTA’s convergence
(see Fig. 4; left frame, that shows a color plot of |B| with
a clear discontinuity at s = 1). This situation remains,
although somewhat improved, even after applying some
of the schemes proposed in the literature to remove this
discontinuity18 (namely, to use again the virtual casing
principle to remove the vacuum field contribution from
the VMEC solution and to replace it by the vacuum field
computed directly from the coils).

It is clear that the easiest way to avoid these discon-
tinuities at sv = 1 is to avoid any patching at sv = 1
of fields computed in different ways. For instance, one
could discard the VMEC magnetic field for sv ≤ 1, inte-
grate instead Eq. 11 inside of the plasma region and add
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Figure 5. Left: Color plot for log(|∇ · B|) for the W7-X
magnetic field obtained by combining the vacuum field and
the one obtained from Biot-Savart’s law (Eq. 11) over the
whole extended domain. Right: Color plot for log(|∇ · B|)
for the magnetic field obtained as the curl of the magnetic
potential obtained by combining the vacuum one and the one
obtained by integrating Eq. 17 (the sv = 1 surface is shown in
dashed magenta line). Both are shown at the toroidal plane
φv = 0.

to it the vacuum field generated by the external coils.
The resulting field does not have any discontinuity at
sv = 1 (see Fig. 4; right frame). In fact, it often pro-
vides a much closer guess to the final solution since it
may already contain magnetic islands and stochastic re-
gions within sv < 1. However, this method is still not
an optimal choice since, due to the inaccuracies of the
numerical integration of Biot-Savart’s law, an unaccept-
ably large non-zero divergence is present for the desired
resolution (see Fig. 5; left frame). This excessively large
value of the divergence would regretfully be preserved
during the iterative procedure, since SIESTA does not
perform any divergence cleaning procedure, which would
yield a low quality magnetic field after converging.

The divergence problem can be easily resolved by con-
sidering instead the magnetic vector potential, A =
(Asv , Aθv , Aφv ), and by differentiating it numerically in
such a way that the divergence is identically zero on
the SIESTA mesh. Indeed, in general coordinates, the
magnetic field is obtained as [here, we use the notation

B̃α =
√
gBα]:

B̃sv =
∂Aφv

∂θv
− ∂Aθv

∂φv
(13)

B̃θv =
∂Ass
∂φv

− ∂Aφv

∂sv
(14)

B̃φv =
∂Aθv
∂sv

− ∂Asv
∂θv

. (15)

Since SIESTA needs the magnetic field on the radial half
mesh, defined as, shk = ds(k − 1/2), k = 1, 2, · · ·Ns +
N ′s− 1, Asv must be defined on the half radial mesh, but
Aθv and Aφv

must both be given on the full radial mesh,

sfk = ds(k−1), k = 1, 2, · · ·Ns+N ′s. It is straightforward

Figure 6. Left: Color plot of log(|J|) for the original VMEC
solution inside sv = 1; Middle: color plot for the same
quantity as obtained by performing the consistency check de-
scribed in the text (i.e., evaluating µ−1

0 ∇ × ∇ × A) on the
W7-X magnetic potential vector obtained by performing the
integral that appears in Eq. 16. Right: Color plot of log(|J|)
obtained instead by performing the same consistency check
on the magnetic potential vector obtained from solving the
differential equation Eq. 17. Both are shown at the toroidal
plane φv = 0.

to prove that the divergence of the resulting magnetic
field now identically vanishes on the half radial mesh.

In order to estimate the vector magnetic potential, we
first tested a scheme analogous to the one we outlined
earlier for the magnetic field. That is, to integrate nu-
merically

AJVMEC

(r)=
µ0

4π

∫∫∫
s≤1
dV ′

JVMEC(r′)

|r− r′|
, (16)

over the whole extended volume, and to add to the re-
sult the magnetic potential vector created by the currents
flowing in the external coils [provided again by IPP’s
MAG3D code]. This approach might appear the per-
fect solution since no patching of solutions is done, thus
avoiding all discontinuities at sv = 1, and a zero diver-
gence of the field is guaranteed over the whole volume.
Regretfully, we found that yet another problem appears
due to the numerical inaccuracies accumulated during the
several coordinate transformations needed to obtain the
results on the SIESTA mesh (the integration of Eq. 16
is carried out in Cartesian (or cylindrical) coordinates,
and then transformed to SIESTA’s coordinates to avoid
an expensive evaluation of Christoffel symbols; also, the
vacuum magnetic potential is provided by MAG3D in
cylindrical coordinates). The problem can be made ap-
parent by performing the consistency check of calculat-
ing ∇ × (∇ ×A)[= µ0J] on the obtained magnetic vec-
tor potential. Clearly, the result should be very close to
the original VMEC currents (shown in the left frame of
Fig. 6) only for sv < 1, where the plasma is present, and
zero (or very small) everywhere else in the extended com-
putational domain. However, unphysical current densi-
ties do appear in the vacuum region, that can locally be
significant (see middle frame of Fig. 6).

Although these currents could probably be avoided by
carrying out all numerical integrations directly on the
SIESTA mesh, the computational cost of doing it this
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way is very large, due to the aforementioned need to eval-
uate all Christoffel tensors at every point in the mesh.
Thus, we have tested another method, that has turned
out to be much faster and more efficient. We simply
invert numerically Ampére’s law inside the extended do-
main:

∇× (∇×Aguess) = µ0J
VMEC, s ≤ sw, (17)

differentiated on the SIESTA extended coordinate sys-
tem, and using the currents VMEC provides as the
source. The procedure is much simpler than any of the
ones described earlier, since the Aguess and JVMEC vec-
tors are now related locally, meaning that one does not
have to deal with coordinate transformations or Christof-
fel symbols. To have a unique, meaningful solution,
Eq. 17 is supplemented with two boundary conditions
that prescribe the value of the vector potential at the
sv = ε � 1 and sv = sw isosurfaces. These values are
computed by integrating Eq. 16 and by adding to the
result the vacuum potential vector (provided by IPP’s
MAG3D in this case) at those two surfaces. In this way,
the presence of the external coils is felt in the solution
through the boundary condition, without having to carry
out any additional coordinate transformation. The re-
sulting Poincaré plot for the magnetic field is virtually
identical to the one that would be obtained from the in-
tegrating procedure but, if the same consistency check is
now applied, one finds that all current densities in the
vacuum region are virtually zero, as they should be (see
Fig. 6, right frame).

After all these trials and tests, the procedure we have
finally implemented in SIESTA is to obtain the magnetic
potential from Eq.17, and then build the initial guess for
the magnetic field evaluating

Bguess = ∇×Aguess, sv ≤ sw, (18)

at every point in the SIESTA mesh by using the internal
SIESTA’s discretization scheme (Eq.13).

C. Plasma pressure guess in the extended domain

Regarding the guess for the pressure field, pguess(r), a
natural choice would be to use the pressure profile pro-
vided by VMEC for sv < 1, and to set it to zero else-
where. This choice leads however to numerical problems
for SIESTA’s iterative scheme for at least the following
reason. The local deviations in pressure and magnetic
field that, according to ideal MHD8, a plasma displace-
ment ξ causes from its current state (p0, B0) are:

δp = −(ξ · ∇)p0 − Γp0∇ · ξ (19)

δB = ∇× (ξ ×B0) (20)

If p0 vanishes for sv > 1, it is clear that one could build
many different non-zero displacement fields ξ that vanish
for sv ≤ 1, but that are non-zero and parallel to B0 for

sv > 1. None of these displacements change the total
MHD energy, since δp = δB = 0 everywhere. Thus, if
such displacements are allowed, the kernel of the numer-
ical Hessian of the problem becomes huge which causes
severe convergence problems. In order to avoid the for-
mation of such a kernel, we have considered instead a
finite, fast-decaying pressure profile for sv > 1.

D. Boundary conditions at sv = sw

The last piece needed to complete the free-plasma-
boundary extension of SIESTA is to choose the boundary
conditions that will be applied at the new fixed boundary,
sv = sw. In the original SIESTA implementation, sv = 1
was assumed to stay a true magnetic surface. Thus, it
was natural to prescribe p(1) = Bs(1) = 0. In the ex-
tended version, this ceases to be the case since s = sw
needs not be a magnetic surface [Indeed, the vacuum
magnetic field calculated from the coils is usually not
tangent to the vacuum vessel.]. Instead, we do impose
p(sw) = 0 and keep B(sw) at the same value that the ini-
tial guess for the magnetic field had at s = sw. The phys-
ical justification for this choice comes from the fact that
most vacuum vessels are made of steel (with a conduc-
tivity σ ∼ 106(Ω ·m)−1) and have widths ∆ ∼ (1−2)cm,
which yields a penetration time for the magnetic field
through the vessel of τm ∼ µσ∆2 ∼ (200 − 300) µs.
Therefore, the vacuum field has plenty of time to pen-
etrate the vessel before the plasma discharge even starts,
at least for stellarators. The non-linear response of the
plasma is not included in our chosen boundary condition
for B, but we think that the error made will be rela-
tively small considering that sw is far from the plasma
edge. We will provide numerical evidence supporting this
claim for the W7-X case used to illustrate SIESTA’s new
capabilities in the next section. It is left to a future ex-
tension of this work to iterate on this boundary condition
by including the changes of the plasma response during
the SIESTA iteration.

III. FREE-PLASMA-BOUNDARY SIESTA
CALCULATIONS FOR THE W7-X

STELLARATOR

The Wendelstein 7-X (W7-X) stellarator14 is an exper-
imental device located in Greifswald, Germany by the
Max-Planck-Institute for Plasma Physics. It is one of
the largest stellarators in operation with a major radius
R0 = 5.5m, a minor radius a = 0.53m, and a magnetic
field up to B0 = 3T made possible by superconducting
coils. The five period (Np = 5) W7-X has been designed
to have low magnetic shear, optimized for small boot-
strap current and equipped with an island divertor for
particle and power control.

The W7-X configuration that we have chosen to il-
lustrate the new free-plasma-boundary capabilities of
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Figure 7. Rotational transform (above) and plasma pressure
(below) radial profiles for the W7-X configuration examined
in this paper. The locations of the lowest order rational sur-
faces are indicated, in the rotational transform profile, with
horizontal dashed lines.

SIESTA has the rotational transform profile shown in
the left frame of Fig. 7. Several rational surfaces ex-
ist at locations with sv < 1 as shown in the figure, but
they are of relatively high order. Its more salient feature,
however, is that the low-order 5/5 rational is located just
outside the plasma edge in order to provide the basis for
an island divertor magnetic field topology to isolate the
plasma from the vacuum vessel.

The vacuum field for this configuration, as provided
by IPP’s MAG3D code is shown in Fig. 8. It clearly
shows the 5/5 magnetic island just outside the plasma
edge considered by VMEC at sv = 1, whose boundary is
shown in magenta. Its presence makes this configuration
a particularly useful test case to illustrate the new free-
plasma-boundary capabilities of SIESTA, since we expect
the island to modify the plasma edge significantly, once
the equilibrium solution is extended all the way to the
vacuum vessel.

The VMEC equilibrium solution (converged down to
a normalized force residual

〈
|F|2

〉
∼ 10−20, where the

brackets stand for volume average) naturally has per-
fectly nested magnetic surfaces all the way to sv = 1,
as advertised (see Fig. 9). We have used Ns = 49 ra-
dial points, M = 20 and N = 16, that amounts to
roughly 700 different harmonics. Cross-sections of the
magnetic surfaces obtained by VMEC, for an average
β ≡

〈
2µ0p/B

2
〉
∼ 0.8%, are shown in Fig. 9.

Figure 8. Poincaré plot at the toroidal plane φv = 0 of the
vacuum magnetic field for the W7-X configuration used, as
provided by IPP’s MAG3D code.

Figure 9. Several toroidal cross-sections (at toroidal angles
φv = 0, π/(2Np), π/Np) of the magnetic surfaces obtained by
the VMEC code for the W7-X configuration under study.

A. Fixed-boundary calculation

First, we proceed to run SIESTA in its standard fixed-
boundary mode. The β ∼ 0.8% VMEC equilibrium
previously described provides both the fixed background
coordinate system and the seed magnetic field to start
the iteration. The number of isosurfaces considered in
the SIESTA run is the same as in the VMEC solution,
Ns = 49, although the fields have been resampled on
SIESTA’s radial coordinate, since sv =

√
s. The har-

monic content of the solution is also the same as that of
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Figure 10. Poincaré plot at the toroidal plane φv = 0 of
the magnetic field of the converged equilibrium obtained by
SIESTA when run in fixed boundary mode.

VMEC, M = 20 and N = 16.
After a few iterations in which a finite, albeit small

resistivity is applied, the resistive step is removed and
the solution is allowed to converge to a final equilibrium
in which the average force residual is of the order of〈
|F|2

〉
∼ 10−20. No perturbation of the seed field has

been applied, but a small, finite resistivity is allowed in
the first few iterations to permit the adjustment of the
pressure if needed. The final equilibrium magnetic field
is shown in Fig. 10, where a Poincaré plot for the fi-
nal magnetic field is shown at the toroidal cross-section
φv = 0. As expected, no visible magnetic island appears
for sv ≤ 1 since no low-order rational surfaces are present
there. In fact, it is very similar to the VMEC solution
(Fig. 9). The corresponding reduction in the total MHD
energy is small with respect to the VMEC solution being
roughly δW/W ∼ 10−7.

B. Free-plasma-boundary calculation

We illustrate next the capabilities of the new extension
of SIESTA. As previously advertised, the vacuum vessel
of W7-X (or, more precisely, a smoothed-out version of
it) is used as the new external boundary. It is shown in
green in Fig. 11 (a 3D portion of it is also shown in Fig. 1).
The extended mesh that results from following the pro-
cedure described in Sec. II A is also shown in Fig. 11. It
has a total of 82 isosurfaces (i.e., Ns = 49;N ′s = 33).
The first 49 isosurfaces (that is, those with sv ≤ 1) are
in essence those of the VMEC solution, albeit resampled
to be evenly spaced with respect to the new radial label
sv =

√
s. The next 33 isosurfaces correspond to val-

ues of the radial coordinate sv > 1. The last isosurface,
sv = sw, naturally coincides with the smoothed-out vac-
uum vessel. Regarding the number of harmonics, M = 20
and N = 16 has been chosen in order to properly capture

the complex harmonic content of the external region, in-
troduced in part by the shape of the vacuum vessel. In
fact, that is why we chose those values for the previous
VMEC runs, in spite of the fact that a good VMEC so-
lution is possible with less harmonics. All the required
metric information (the jacobian, for instance, is shown
in Fig. 2) has been computed, over the extended mesh,
using the procedure described in detail in Sec. II A.

The converged results of the SIESTA free plasma
boundary run, which took close to 4 hours running in
16 XEON processors of the E5 family, (with a normal-
ized residual force

〈
F 2
〉
∼ 10−18) are shown in Figs. 12

and 13. The corresponding reduction in the total MHD
energy is now significant, δW/W ∼ 10−5, since it is two
orders of magnitude greater than the change of energy
achieved in the previous fixed-boundary run, where no
islands appeared in the equilibrium. Fig. 12 shows the
Poincaré plot of the converged magnetic field for the con-
figuration under study. As it is clearly shown, the mag-
netic island associated to the 5/5 rational surface is now
wide enough as to penetrate the sv = 1 surface (shown
in magenta), thus deforming the plasma boundary (see
also Fig. 14). This is a direct consequence of the finite
pressure of the equilibrium, as it becomes apparent after
comparing this Poincaré plot with that shown in Fig. 8
for the vacuum case. The phase of the island in the finite
pressure case remains the same as that of the vacuum, in
contrast to what is sometimes found for higher-β cases,
where the phase of the island may also shift. Due to the
small β, the position of the magnetic axis also remains
unchanged with respect to the vacuum case, due to the
negligible Shafranov shift.

Fig. 13, on the other hand, shows a set of selected
isosurfaces for the plasma pressure for two of the W7X

Figure 11. Left: cross-sections of magnetic surfaces at
toroidal angles φv = 0, π/Np for sv ≤ 1, including the vac-
uum vessel (in green) for W7-X; Right: same cross-sections
for the final extended mesh up to sv = sw.
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Figure 12. Poincaré at the toroidal plane φv = 0 of the mag-
netic field of the converged equilibrium obtained by SIESTA
when run in free-plasma-boundary mode.

Figure 13. Left: pressure isosurfaces shown at the toroidal
section φv = 0 for the equilibrium solution obtained by
SIESTA in fixed-boundary for the W7-X equilibrium with
0.8% discussed in the text; Right: pressure isosurfaces for
the converged equilibrium solution found by SIESTA when
run in free-plasma-boundary mode instead. In all plots, the
sv = 1 surface is shown in magenta; the sv = sw surface is
shown in green.

runs previously described. On the left, contours are
shown for the SIESTA fixed-boundary converged solu-
tion which, in essence, is identical to the original VMEC
solution for this case. On the right, the pressure con-
tours shown correspond to the final equilibrium solu-
tion found by SIESTA when run in free-plasma-boundary
mode. As can be seen, the few resistive iterations that
took place at the beginning of SIESTA’s nonlinear iter-
ation have allowed the pressure contours to align them-
selves with the modified magnetic structure, in order to
satisfy B · ∇p = 0. In the process, the shape of the
plasma boundary has been modified to adapt to the new
topology existent across the region where the 5/5 islands

are present, as shown in more detail in Fig. 14. It is
also worth noting that the pressure isosurfaces that ap-
pear for sv > 1 correspond to the (very tenuous) pressure
that was included in the vacuum region (see discussion in
Sec. II C) in order to avoid a Hessian with a large, non-
trival in the linear problem that SIESTA solves at each
step of the nonlinear Newton iteration. They are absent
in the fixed-boundary solution.

Finally, we are now in the position to check the va-
lidity of the assumption made in Sec. II D regarding the
modification of the value of the magnetic potential vector
at s = sw by the nonlinear plasma response being small.
Fig. 15 shows the isolevels of the relative difference at
sv = sw between the magnitude of two magnetic vector
potentials: the one used as boundary condition, and the
one resulting from integrating plasma and coil currents
from the converged SIESTA solution. As can be seen,
the modification is small as expected, having an average
value of just 2%. Furthermore, if we examine only the
most important resonant harmonic in this configuration,
i.e. (m = 5, n = 5), the error drops to 0.02% at the
vacuum vessel.

IV. CONCLUSIONS

A free-plasma-boundary extension of the SIESTA
MHD equilibrium code has been presented. By enlarging
SIESTA’s computational volume, the plasma edge ceases
to be considered a fixed boundary, being now able to
freely change in order to balance any pressure or mag-
netic forces that might be present. As a result, SIESTA
is now in the position to address problems in which a per-

Figure 14. Plasma boundaries at the upper part of the
φv = 0 cross-section for the original VMEC and SIESTA
fixed-boundary runs (shown in dashed magenta) and the fi-
nal plasma boundary obtained by SIESTA when run in free-
plasma-boundary mode (in blue).
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Figure 15. Isolevels of |A1 −A2| / |A1| on one period of the
boundary surface at sv = sw. Here, A1 is the value of the
magnetic potential vector used as boundary condition (see
discussion in Sec. II D) while A2 is the magnetic potential
vector obtained by integrating all the currents (plasma and
coils) of the final SIESTA solution.

turbed plasma edge might become important, such as the
application of edge magnetic resonant perturbations12,
or the possible distortion of the plasma edge due to un-
balanced plasma currents such as bootstrap or heating-
induced currents19.

It is important to keep in mind that, in all SIESTA
free-plasma-boundary runs, the vacuum magnetic field
(or, more precisely, the magnetic vector potential) cre-
ated by the external coils must be explicitly provided.
At least, on the two surfaces used to provide the bound-
ary conditions to solve Eq. 17. For the W7-X configura-
tion studied in this paper, the vacuum vector potential
has been calculated by means of IPP’s MAG3D code.
But for applications to other devices, this information
will have to be provided by the user. Work is currently
underway to make SIESTA capable of extracting this in-
formation from the same files (the so-called (mgrid) files)
that VMEC uses when run in free-boundary mode20.

V. APPENDIX A. ALTERNATIVE MESH
EXTENSION SCHEME VIA INTERPOLATION

FORMULAS.

The mesh extension procedure that was described in
Sec. II A relied on the building of a proper database of
points over the extended domain, from which the sv-
isosurfaces of the SIESTA coordinate systems was built.
The starting point was a set of intersections of the ex-
trapolated poloidal rays of the VMEC coordinate system
with the last closed surface (usually the vacuum vessel),
calculated at each toroidal plane. The undesired accu-
mulation of these intersection points that often appears
near regions with large indentation was dealt with by
point resampling over the last closed surface, if needed.
This method works very well and has been used in all the
calculations included in the paper, but it is not the only
one possible.

In this appendix, we discuss a second possibility based

Figure 16. Cross sections at toroidal angle φ = π/(2Np) of
the magnetic surfaces obtained over the extended volume (in
red, the original VMEC surfaces for sv ≤ 1; in blue, over
the extended region) for the W7-X configuration examined
in Sec. III B using linear, quadratic and quadratic with slip
interpolation formulas discussed in Appendix A.

on the use of interpolation formulas. The starting point
is to express the vacuum vessel position in a Fourier series
analogous to the one VMEC uses, although with θ the
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geometrical angle, not VMEC’s internal angle.

RVV(θ, φ) =
∑
m,n

RVV
mn cos(mθ − nNpφ); (21)

ZVV(θ, φ) =
∑
m,n

RVV
mn sin(mθ − nNpφ), (22)

We will also introduce the notation,

R1(θ, φ) =
∑
m,n

Rmn(sv = 1) cos(mθ − nNpφ) (23)

Z1(θ, φ) =
∑
m,n

Zmn(sv = 1) sin(mθ − nNpφ), (24)

for the positions of the points located at the last VMEC
closed surface, sv = 1, at the same angle value (i.e., for
θ∗ = θ).

We now seek an interpolation formula that will gen-
erate the extension of the mesh between VMEC’s last
closed surface and the vacuum vessel while, at the same
time, providing continuity of all quantities and their
derivatives across the sv = 1 surface. It turns out that
linear interpolation is not good enough. Indeed, if one
tries, for fixed θ and φ (we drop their dependence in
what follows, although it is implicitly assumed), a linear
formula such as:

R(ρ) = R1 + ρ(RVV −R1) (25)

Z(ρ) = Z1 + ρ(ZVV − Z1), (26)

one obtains an interpolation that has no continuous
derivative at s = 1. This is clearly appreciated in the
upper frame of Fig. 16, that shows the cross-section of
the extended coordinate system for the W7-X configura-
tion at toroidal angle φ = π/(2Np). The reason is that θ
and θ∗ are very different angles, although we have used
them as if they were the same.

This limitation can be avoided by moving to a
quadratic representation such as:

R(ρ) =
R1
s

2

[
1− ρ2 − (1− ρ)2)

]
+R1 +

+ρ2(RVV −R1) (27)

Z(ρ) =
Z1
s

2

[
1− ρ2 − (1− ρ)2)

]
+ Z1 +

+ρ2(ZVV − Z1). (28)

Here R1
s and Z1

s are the radial derivatives at the sv = 1
surface. The result of using the second-order interpola-
tion is shown in the middle frame of Fig. 16. Clearly, all
derivatives are now continuous across the sv = 1 surface.
However, some additional curvature (to the poloidal rays)
has been introduced in the process that would introduce
undesired additional angular dependences in the metric
tensor, compared to how they behave inside sv = 1.
These undesired effects can be ameliorated by introduc-
ing a poloidal slip function λ(θ) that allows each of the
initial vessel points to slide poloidally along the vessel
while preserving the vessel shape (in a spirit that is very
similar to how points on the vessel were poloidally redis-
tributed in the procedure described in Sec. II A to avoid
accumulation near regions with large indentation):

R(λ, θ) = RVV(θ + λ) (29)

Z(λ, θ) = ZVV(θ + λ). (30)

The only requirement on λ is that 1 + dλ/dθ > 0, so
that the new angle distribution stays monotonic. We
determine λ(θ) by minimising (as a function of θ, at each
toroidal plane) the curvature of each poloidal ray, roughly
given by:

κ−1 ∼
√
R2
ρρ + Z2

ρρ. (31)

The significant improvement of applying the sliding is il-
lustrated in the lower frame of Fig. 16, where the largely
reduced curvature of the poloidal rays for sv > 1 is ap-
parent.
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