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Abstract

In nature microorganisms live in complex microbial communities. Comprehensive taxonomic and
functional knowledge about microbial communities supports medical and technical application such as
fecal diagnostics as well as operation of biogas plants or waste water treatment plants. Furthermore,
microbial communities are crucial for the global carbon and nitrogen cycle in soil and in the ocean.
Among the methods available for investigation of microbial communities, metaproteomics can
approximate the activity of microorganisms by investigating the protein content of a sample. Although
metaproteomics is a very powerful method, issues within the bioinformatic evaluation impede its
success. In particular, construction of databases for protein identification, grouping of redundant
proteins as well as taxonomic and functional annotation pose big challenges. Furthermore, growing
amounts of data within a metaproteomics study require dedicated algorithms and software. This review
summarizes recent metaproteomics software and addresses the introduced issues in detail.

A. Highlights
¢ Metaproteomic studies profit from dedicated software tools
e Metagenomes and protein database constraints improve protein identification
e Grouping of proteins by shared peptides or sequence similarity reduce redundancy
* Several possibilities for taxonomic and functional classification of proteins exist

¢ Scalability of software and databases enables handling of big data amounts

B. Keywords
e Bioinformatics
o Software
e Big data
e Environmental proteomics
e Microbial communities

® Mass spectrometry

C. Content

1. Introduction
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1. Introduction

Microorganisms represent 50-78% of Earth’s total biomass (Kalimeyer et al., 2012) and occur in all
environments. Some microorganisms produce biomass by photosynthesis whereas others act as

composers and degrade dead biomass. Microbial species live in complex microbial communities in which
they have to compete or cooperate with each other. Understanding the functioning of the microbial
communities is important, because microbial communities in the human gut effect health (Erickson et
al., 2012; Heintz-Buschart et al., 2016; Kolmeder et al., 2016) and several technical applications such as
waste water treatment plants (Pittker et al., 2015; Wilmes et al., 2008) and biogas plants (Abram et al.,
2011; Hanreich et al., 2012) rely on the metabolic activity of microbial communities.

Methods for the investigation of microbial communities target the microbial cells, their genes, their
transcripts, their proteins and their metabolites (Hever et al., 2015). Since proteins carry out most

functions in cells, including catalysis of biochemical reactions, transport and cell structure, protein
amounts correlate quite well with microbial activity (Wilmes and Bond, 2006). The investigation of all
proteins from one species is called proteomics. In contrast metaproteomics is the study of proteins from
multiple organisms. It was introduced by Wilmes et al. (2006+2004) and Rodriguez-Valera (2004). The
typical metaproteomics workflow comprises protein extraction and purification, tryptic digestion into
peptides, protein or peptide separation and tandem mass spectrometry (MS/MS) analysis. Proteins are
identified by comparing experimental mass spectra and theoretical mass spectra predicted from
comprehensive protein databases. For a detailed discussion about the metaproteomics workflow please
refer to Hettich et al. (2013), Becher et al. (2013}, Heyer et al. (2015), Wéhlbrand et al. (2013). Up to now
most metaproteomics studies characterize the taxonomic and functional composition of complex

microbial communities in their specific environment (Abram et al., 2011; Kan et al., 2005; Ram et al.,
2005; Wilmes and Bond, 2006). A few recent studies additionally correlated the taxonomic and
functional composition with certain environmental/process parameters or diseases (Erickson et al., 2012;
Hever et al., 2016; Kolmeder et al., 2016). However, three issues within bioinformatic data evaluation
hampered previous metaproteomics studies (Muth et al., 2013).

First, metaproteomes consist of up to 1,000 different species (Schliter et al., 2008). Due to high

complexity metaproteomics data analysis requires a greater computational effort, necessitating bigger
hard drives, more memory, more processors and more efficient algorithms. A main issue is the database
search against comprehensive protein databases. Whereas handling of small protein databases below 1
GB is not critical, usage of the entire NCBI reference database requires extended computational time and
may fail due to software or hardware limitations.

Second, identical peptides belonging to homologous proteins cause redundant protein identification
(Herbst et al., 2016). As a result taxonomic and functional interpretation of results becomes ambiguous.
A peptide may belong to the lactate dehydrogenase (1.1.1.27) of different members of the genus
Lactobacillus, which ferment sugars to lactate. But it may also belong to some representatives of the

order Clostridiales fermenting lactate to acetate (Kohrs et al., 2014).

Third, protein identification is difficult if the taxonomic composition is unknown or protein entries are
missing from protein databases. For example the UniProt/TrEMBL database contains only proteins from
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698,745 species (http://www.ebi.ac.uk/uniprot/TrEMBLstats, status 16.12.2016), but the number of
microbial species on Earth is estimated to be up to one trillion (Locey and Lennon, 2016). Thereby,
already small changes in the protein sequence between related microorganisms have a big impact on
protein identification. One mutation in every tenth amino acid leads to completely different tryptic
peptides which hinder the identification of any peptide for the investigated protein.Since—protein
identificationrelies-on-thissequence-information; Thus, researchers started to sequence metagenomes
alongside metaproteomics studies (Ram et al., 2005; Tyson et al., 2004). Alternatively, they use
metagenomes from similar samples for protein identification.

As a consequence of these issues, standard proteomics software is often insufficient for metaproteomics
studies missing the identification of unsequenced species or the comprehensive taxonomic and
functional description of microbial communities. Thus, researchers favor special tools. Therefore, this
review provides an overview about dedicated metaproteomics software and bioinformatic strategies.

In addition to two previous reviews on bioinformatics in metaproteomics (Muth et al,. 2013 +2016) we
present the impact of combining metagenomes on protein identification and address future hardware
requirements and handling of big data.

After a brief introduction to metaproteemics—studies—and thestate—of proteomics—software, current

metaproteomics software tools are discussed. Subsequently, this review illuminates the creation of
protein databases for protein identification investigating several biogas plant samples in a use case. Then
the grouping of redundant protein identifications, the evaluation of taxonomic and functional results as
well as quantification in metaproteomics studies are discussed. Finally, data storage and deployment
solutions for big data as well as future challenges, perspectives and demand for metaproteomics

software are considered.
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2. Status of proteomics software and latest trends

For the comprehensive bioinformatic processing of MS data different software tools exist. These include
software for peak picking in MS-spectra, software for protein identification via database search
algorithms and tools for comparison of protein expression patterns. A comprehensive summary of all
these software tools can be found in the OMIC tools database (http://omictools.com/, retrieved: 09-02-
2017, (Henry et al., 2014)) and in several reviews (Cappadona et al., 2012; Gonzalez-Galarza et al., 2012).

Latest trends in proteomics software are the development of proteomics tool libraries such as OpenMS
(Sturm et al., 2008), Compomics (Barsnes et al., 2011) or Trans-Proteomic Pipeline (Keller and
Shteynberg, 2011). These libraries comprise software tools for each step of the processing workflow,
ranging from data management to data analysis. Noteworthy are also webservices, such as Expasy
(Gasteiger et al., 2003), which provide a collection of small bioinformatic tools for biochemical analyses

of proteins.

Repositories for MS-data such as PRIDE are used to enable long-term storage and to make published MS-
data available to other researchers (Vizcaino et al., 2016). In this context general formats for exchange of
MS results are necessary. Current standard in the proteomics community are the mzldentML format
(Jones et al., 2012, mzTab format (Griss et al., 2014) and mzML format (Martens et al., 2011).

Recent proteomics software combines several database search algorithms. For example, the SeachGUI
tool (Vaudel et al., 2011) enables the parallel protein database search with eight different database
search algorithms. Further developments are software tools for improved MS-operation and
quantification. Search items for these developments are “data independent acquisition” (Doerr, 2015),
“multiple and single reaction monitoring” (Colangelo et al., 2013) as well as “absolute quantification”
(Cappadona et al., 2012). He j i i i
FOVRI

Within the last years many powerful software tools were developed but their use was often restricted to
a few scientific groups. Reasons were missing maintenance or availability after funding periods ended.
Furthermore, many biological research groups lack bioinformatic skills to set up comprehensive software
workflows or client-server architectures. In some cases even the conversion of data into the required
input formats fail. In order to tackle these problems governments started to fund the collection,
maintenance and support of research software tools. Examples are the Galaxy project
(https://usegalaxy.org/, retrieved: 09-02-2017, (Afgan et al, 2016), ELIXIR (https://www.elixir-
europe.org/, retrieved: 09-02-2017, (Crosswell and Thornton, 2012)) or de.NBI (https://www.denbi.de/,
retrieved: 09-02-2017).

4. Software dedicated for metaproteomics

To address the three issues specific to metaproteomics biocinformatic data evaluation, researchers
started to develop special software tools and workflows [Tablel, Figure 1]. These tools apply different
concepts, which will be discussed later. Graph2Pep/Graph2Pro (Tang et al., 2016) and Compile
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(Chatterjee et al., 2016) focus on tailoring protein databases for optimal protein identification. UniPept
(Mesuere et al., 2015), Prophane (Schneider et al., 2011), Megan CE (Huson et al., 2016) and Pipasic
(Penzlin et al., 2014) enable taxonomic analysis, functional data evaluation and/or protein grouping.
Additionally, several groups assembled comprehensive software workflows for metaproteomics, e.g.
Galaxy-P (Jagtap et al., 2015), MetaPro-IQ (Zhang et al., 2016), MetaProteomeAnalyzer (Muth et al.
2015a) and others {Heintz-Buschart et al., 2016; May et al., 2016; Tanca et al., 2013). Among these
workflows, the MPA is particularly user-friendly. It allows the user to control the entire bioinformatic
workflow via an intuitive graphical user interface. Another noteworthy metaproteomics software tool is
MetaProSIP (Sachsenberg et al., 2015). It supports the detection and quantification of isotope ratios for
Protein-SIP experiments.

To ensure comparability of results between all these tools, standards for data exchange are crucial
(Timmins-Schiffman et al., 2017). Consequentially, the Human Proteomics Standard Initiative is planning
to extend the proteomics mzldentML format in order to support metaproteomics data. Version 1.2.0 of
the mzldentML format (Jones et al., 2012) will support the representation of redundant protein groups
(http://www.psidev.info/mzidentml, retrieved: 09-02-2017).

Another often neglected aspect is the reproducibility of results using different metaproteomics software
tools. So far, only Tanca et al. {2013) tested their complete metaproteomics workflow for a defined
mixed culture of nine different microorganisms. A comparison where multiple research groups evaluate
an identical sample would also be desirable.

5. Construction of user databases for protein identification

Protein database selection affects the number of identified proteins as well as the identified taxonomies
and identification increases. In consequence, the estimated FDR and thus, the threshold for accepting
protein identifications are higher and may lead to the rejection of true protein identifications.

Optimal databases would only include proteins and posttranslational modifications present in the
sample and detectable by MS. However, taxonomic composition and protein abundance are usually
unknown for environmental samples. Furthermore, protein content between analyzed samples may
differ significantly. Therefore, database selection is a challenging task (Muth et al., 2015b; Tanca et al.,
2016). This issue is further complicated by the adherence of the research community to the FDR concept
(Muth et al., 2015b).

Originally Elias et al. (2007) established the FDR concept for comparable protein identification in pure
culture proteomics. in particular, the FDR enables comparability between different mass spectrometers
and database search algorithms. Subsequently, the proteomics community accepted the FDR calculation
as the standard to control the quality of protein identifications. An FDR of 1% was defined as threshold
(Barnouin, 2011). However, a condition for the successful estimation of the FDR is that the database fits
well to the sample. This is not guaranteed for metaproteomics studies, resulting in inaccurate
approximations of the FDR. Therefore, it would be desirable that the metaproteomics community revises
the FDR concept questioning the decoy based approach. Instead protein identifications could be
classified using machine learning approaches.

Principally researches have two options to construct their database for metaproteomics studies. The first
strategy is to sequence the whole metagenome or metatranscriptome [Figure 2A] (Ram et al., 2005;
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Tyson et al., 2004) and to translate the genes to proteins by tools such as Transeq or Sixpack
(http://www.ebi.ac.uk/Tools/st/, retrieved 07.06.2017). The second is to use comprehensive sequence
databases [Figure 2_1] and apply reasonable constraints. Recently, sequencing of metagenomes became
affordable, due to high-throughput sequencing technologies such as lllumina sequencing {Bentley et al.,
2008; Jinemann et al., 2014; Jinemann et al., 2013). However, several different processing states of
metagenomes could be used as protein databases [Figure 2A]. After Illumina sequencing and quality
control, metagenome data are present as reads. Reads are short fragments of about 150 base pairs,
which can be translated into about 50 amino acids [Figure 2B]. Subsequently, the translated reads are
assembled to contigs and redundant reads are removed [Figure 2C]. Contigsray-containseveralgenes.
In some high resolution metagenome studies, it is even possible to assemble the entire genome of single
microorganisms (Campanaro et al,, 2016). The disadvantage of reads and contigs is that all six reading
frames are considered during the translation of DNA sequences into protein sequences. This multiplies
the amount of data by six. Contigs may also contain several genes, which complicates the taxonomic and

functional interpretation. Hence, genes are predicted from the contigs and non-coding DNA fragments
are removed [Figure 2D]. Therefore, assembled metagenomes with gene predictions are the preferable
databases for protein identification. Sometimes it is even possible to reconstruct the whole genome of
single microorganisms within the microbial community, which is called binning.

Since these assembled metagenome protein databases match the actual sample, FDR estimation should
be valid. However, the bioinformatic workflow to assemble metagenomes can also influence the protein
identification (Tanca et al., 2016). For example, during metagenome assembly redundant reads where

only one amino acid differs are sometimes condensed into a single read. This ignores protein isoforms
and can lead to the loss of protein identifications. In contrast, a high number of translated reads in a
database decrease protein identifications due to an increase in the FDR. In line with these problems,
some authors experienced a higher number of protein identifications with read databases instead of
contig databases (Timmins-Schiffman et al., 2017). Better protein identification was also observed by
Tang et al. 2016 (Tang et al., 2016) applying a graph-centric usage of reads as database.

The sequencing of metatranscriptomes is similar to metagenome sequencing [Figure 2A]. In principle
only translation of RNA to DNA is required. Identification of proteins against metatranscriptomes is
beneficial, since organisms only transcript genes that are currently used (Wilmes et al., 2015).

Sequencing a metagenome or metatranscriptome for each sample is not always possible due to the high
cost and effort for the sequencing and the data processing. Thus, researchers use metagenomes from
similar samples or comprehensive databases such as UniProtKB/SwissProt, UniProtKB/TrEMBL (UniProt
2015), UniRef (Suzek et al., 2007), NCBI (Coordinators, 2017) or Ensemble (Yates et al., 2016) [Figure
2_1]. Database searches against complete comprehensive databases require long computation times and
decrease the number of identified proteins due to the overestimation of the FDR. Reasonable constraints
on these comprehensive databases are therefore necessary. For example Jagtap et al. (2013) proposed
to search in two steps. Taxonomies or proteins identified in the first error-tolerant search are used to
restrict the protein database for the second search [Figure 2_2]. This abviously increases computation
times, but reduces the FDR and the threshold for protein identifications. In the end more proteins are
identified, but how well this approximates the real FDR remains unclear. Another option for reduction of
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the FDR is to perform several searches against smaller sub databases and to merge their results
afterwards (Muth et al., 2016; Tanca et al., 2016) [Figure 2_3]. A more reasonable approach to constrain
the protein database is taxonomic foreknowledge, because in some cases taxonomic composition of the
sample is known (Tanca et al., 2016) [Figure 2_4]. For example, sequencing of the 16S-rRNA gene
provides a taxonomic profile. Nevertheless, performing pre-searches against all taxonomies can help to

avoid excessive constraints on protein taxonomy during the actual searches.

A smart idea to decrease computational time for protein database searches was recently proposed by
May et al. (2016). They searched against peptide databases instead of protein databases [Figure 2 E].
This reduces the size of the search space due to the grouping of identical peptides from homologous
proteins.

To summarize, all strategies to constrain protein databases carry some pitfalls and we would recommend
researchers to try different approaches. Despite all these strategies for protein database construction,
inaccurate FDR estimation hampers metaproteomics studies. Solutions other than the target-decoy
approach are required to validate protein identifications across different MS and database search
algorithms. A promising step towards this direction represent semi-supervised machine learning
algorithms such as the software tools Percolator (Kall et al., 2007) or Nokoi (Gonnelli et al., 2015). They
distinguish correct and incorrect peptide-to-spectrum matches using a classificator based on learning

algorithms from real data.

5. Construction of user databases for protein identification: A use case

In order to visualize the impact of user databases a case study was conducted for a metaproteome
analysis of three different biogas plant samples (BGP01, BGP02, BGP03). After phenol extraction, SDS-
PAGE separation into ten fractions (Heyer et al., 2013) and LC-MS/MS measurement using an Orbitrap
Elite (Heyer et al., 2016) different protein databases were tested [Figure 3]. First the samples were
searched against the UniProtkB/SwissProt database. Second several metagenomes from biogas plants
were tested (metagenome 1, metagenome 2, metagenome 4, metagenome 5 (Stolze et al., 2016),
metagenome 6 (Schliiiter et al., 2008). Of these metagenomes number 1 and 2 were prepared for BGP0O1
resp. BGP02. A metagenome from a waste water treatment plant (WWTP) (Plttker et al., 2015) from was
used as a negative control. Furthermore, the impacts of combining databases as well as of combining the
results were evaluated.

The smallest numbers of identified metaproteins could be identified by the protein database search
against the WWTP metagenome followed by the search against the UniProtKB/SwissProt database.
Better results were obtained with the biogas plant metagenomes. Instead of 900 metaproteins for the
protein database search against UniProtKB/SwissProt database about 2.000 metaproteins were
identified using the biogas plant metagenomes. In some cases metagenomes appeared to be
interchangeable, because metagenomes from other biogas plant samples showed equal or even better
numbers of identified metaproteins as matching metagenomes, e.g. BGP02 and metagenome 2. This
result questions whether the generation of a corresponding metagenome for each sample is always
necessary. The combination of different metagenomes additionally increased the number of identified
metaproteins to about 4.000 (combination metagenome 1+2+4+5+6). However, the number of
additional metaprotein identifications decreased for each additional metagenome included in the
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search. In contrast the combination of metagenome 5 and the poorly matching metagenome from a
waste water treatment plant (WWTP) decreased the number of identified metaproteins showing that an
increased size of the database led to an increased chance of false positive hits and an increased FDR. The
highest number of identified metaproteins was obtained with the separate search against all
metagenomes (metagenome 1;2;4;5;6) and subsequent combination of the resuits. Focusing on central
metabolism and plotting the metaproteins into KEGG map 1200 clearly shows a higher coverage of
pathways using the combined single searches (Figure 4). This strategy avoided the increase of the FDR
due to the bigger database, but the statistical correctness of this approach is questionable. However, it
circumvents the accumulation of redundant sequence data in a combined database contributing to
increased database size and FDR. Therefore, the removal of redundancy using peptide based databases
could be a strategy to combine databases without increasing the FDR. Furthermore, the fact that
combined metagenomes outcompete single corresponding metagenomes points out that many
metagenome sequences do not comprehensively represent the microbial communities.

6. Protein inference problem and the grouping of proteins into “metaproteins”

Redundant identifications arising from homologous proteins share identical peptides and are therefore
indistinguishable from each other. This hampers result evaluation and sample comparison within
metaproteomic studies.

For pure culture proteomics Niewjetzki et al. (2003) proposed to use the least number of proteins to
explain all peptides. But this neglects the presence of protein isoforms or proteins from unsequenced
microorganisms (Hettich et al., 2013) often found in analyses of metaproteomics data. To solve this issue
the metaproteomics community started to develop concepts for grouping of redundant protein
identifications [Table 2]. The metaprotein concept, introduced by Muth et al. (2015a), provides a good
summary on protein grouping. Similar amino acid sequences (protein rules) or shared peptide
identifications (peptide rules) constitute suitable criteria for grouping of homologous protein
identifications into metaproteins. Conveniently, UniRef Clusters (Lu et al., 2014; Suzek et al., 2007) and
KEGG Ontologies (Gotelli et al., 2012; Kanehisa et al., 2016) already classify most proteins on their
sequence similarity. An easy retrieval of these classifications is enabled by the UniProtKB database,
which is accessible through the UniProtJAPI library (Patient et al., 2008). Alternatively, proteins can be
grouped when they share at least one identified peptide (Kohrs et al., 2014; Lu et al, 2014) or an
identical peptide set (Keiblinger et al., 2012; Kolmeder et al., 2012; Schneider et al., 2011). It should be
noted that for peptide comparison, the isobaric amino acids leucine and isoleucine are not
distinguishable from each other.

All these strategies reduce the redundancy of the protein identifications successfully. However, only
grouping based on identified peptides considers different conservation levels of the protein sequences.
Thus, it enables a better taxonomic classification. Unfortunately, sample comparison using the peptide
rule requires the protein grouping across all samples. Furthermore, the grouping may change as soon as
additional samples are added. In consequence, grouping according to sequence similarity, such as UniRef
clusters, is better suited for sample comparisons (Heyer et al., 2016; Kohrs et al., 2017).
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In some instances it is desirable to consider the production of homologous proteins by different species.
Homologous proteins often share peptides, which only differ in one or two amino acids. This indicates
that these proteins should not be grouped together. To consider this bicinformatically, the Levenshtein
distance {Levenshtein, 1966) between peptides of a protein group can be calculated (Muth et al., 2015a).
Taxonomic foreknowledge is another option to improve metaprotein grouping. Protein groups can be
restricted to certain phylogenetic affiliations, e.g. only proteins from the same genus.

7. Taxonomic and functional result evaluation

Comprehensive metaproteomics studies aim to describe the taxonomies and functions of complete
microbial communities. In particular, the functions performed by each taxon should be elucidated.
Protein taxonomy [Table 3] is usually defined according to the NCBI Taxonomy (Federhen, 2012). It
comprises the classification for all taxonomic levels into the phylogenetic tree starting from species,
genus and family via class, order and phylum to the kingdom and superkingdom levels.

In contrast to pure culture proteomics, a large portion of identified peptides in metaproteomics may
belong to several proteins from different species. Thus, the taxonomic value of an identified peptide is
estimated using the lowest common ancestor (LCA) of the protein taxonomies where this peptide occurs.
Protein taxonomy is then defined as the LCA of the peptide identifications (Huson et al., 2011; Jagtap et
al., 2012) or on the basis of unique peptides (Karlsson et al., 2012; Rooijers et al., 2011). Certain taxa
have a much larger number of unique peptides, which biases the taxonomic profile towards these taxa.
In general, unique peptides are fairly uncommon, as the analyses by UniPept demonstrate (Mesuere et
al., 2015). The LCA approach is imprecise as well, because peptide taxonomy is often assigned on the
order level and not on the species level. To refine the taxonomy profile Huson et al. (2016} propose to
weigh the identified peptides and their LCA taxonomy by the amount of unique peptides. Another
approach to improve the precision of the taxonomic profile is to weigh identified peptides by their

spectral count and their occurrence in reference proteomes (Penzlin et al., 2014). Still, evaluation and

comparison of taxonomic profiles is often challenging due to the high complexity of the data. This has led
to several new approaches for data evaluation and visualization. The Krona plot (Ondov et al., 2011)
clearly visualizes the taxonomy profile of a sample over all taxonomic levels. Furthermore, calculating
community indices such as richness and evenness can give a general overview about the taxonomic
profile of different samples (Heyer et al., 2016; Marzorati et al., 2008). In addition, specific interactions
between single taxa can be examined by co-occurrence networks (Heyer et al., 2016; Huson et al., 2016;
Jenssen et al., 2001).

Several approaches with varying degree of specificity exist to assign functions to proteins [Table 3]. The
protein acetyl-coenzyme A synthetase (P27550) is selected as example. It belongs to the acetate
catabolism, which is sufficient to classify this proteins function. In other cases however, it is necessary to
know that this protein transfers a coenzyme or contributes to chemotaxis. Originally, researchers studied
the function of proteins separately through biochemical assays. Later their results were compiled,
standardized and stored in databases. Recently, the functions of proteins from new species are derived
from sequence similarity to functionally classified proteins. Functional classification of proteins with
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similar sequences is provided by databases such as KEGG ontology (KO) (Kanehisa et al., 2016), cluster of
orthologous groups (COG) (Tatusov et al., 2000} and evolutionary genealogy of genes: non-supervised
orthologous (eggNOG) (Huerta-Cepas et al., 2016).

Proteins of the same function possess differences in their amino acid sequence, but the sequences of
their functional domains are highly conserved. Accordingly, the PFAM (Finn et al., 2016), the TIGRFAM
database (Haft et al., 2013), the SMART database (Letunic et al., 2015) and the InterPro database (Finn et
al., 2017) provide a functional classification based on similar functional domains. For example, acetyl-
coenzyme A synthetase (P27550) possesses an acetyl-coenzyme A synthetase domain and an AMP-

binding enzyme domain.

It is important to note that functional annotation of proteins can be divided into categories such as
molecular function, biological process or ligand, which are organized hierarchically. This is achieved by
gene ontologies (GO) (Ashburner et al., 2000) and UniProtKB keywords (UniProt, 2015). For acetyl-
coenzyme A synthetase (P27550) the UniProtkB keyword of the category ligand is ATP-binding protein,
which belongs to the group of nucleotide-binding proteins. Enzyme commission numbers (EC) are
another functional characterization of proteins (Bairoch, 2000). They use a four digit number code to
classify enzymes depending on the catalyzed biochemical reaction. The EC for acetyl-coenzyme A
synthetase (P27550) is 6.2.1.1, where 6 classifies it as a ligase, 6.2 as forming carbon sulfur bonds, 6.2.1.
as acid-thiol ligase and 6.2.1.1. as acetate Co A ligase.

Conveniently, access to this taxonomic and functional metainformation is already provided by well
annotated databases, such as UniProtKB. The entire database is available via the UniProt webpage and
can be accessed programmatically via connectors such as the UniProtJAP! (Patient et al., 2008).

Metagenomes miss taxonomic and functional annotation. Therefore, metagenome sequences are
annotated by BLAST (Altschul et al., 1990) to link them to sequences of annotated proteins. Contigs may
contain several genes with different functions, which can lead to false annotations. Moreover, the best
BLAST hit is not always the correct one (Timmins-Schiffman et al., 2017) and for searches with short
sequences, such as peptides, parameters for the BLAST should be adapted (MS-BLAST (Shevchenko et al.,
2001)). Moreover, BLAST requires extensive computational time, which was addressed by development
of the time-saving DIAMOND tool (Buchfink et al., 2015).

Another aim of metaproteomics studies is the analysis of certain metabolic pathways. Therefore,
identified proteins can be visualized in the different metabolic and interaction pathways, using the
pathway repositories MetaCyc (Caspi et al., 2016), KEGG pathways (Kanehisa et al., 2016) and Reactome
(Fabregat et al., 2016). For KEGG pathways the web-based Interactive Pathways Explorer (iPath) (Yamada
et al., 2011) provides an improved visualization and supports pathway analysis. Mapping of proteins to
pathways is provided via the EC and KO numbers. Unfortunately, metabolic networks are incomplete,
since many pathways are still unknown or specific for a minority of species. To overcome this limitation
researcher started to create their own metabolic pathway maps. To achieve this, biochemical reactions,
represented by EC numbers of identified proteins, were connected (Tobalina et al., 2015). A similar
approach was chosen by Roume et al. {2015) aiming to identify key functions within a microbial
community. Metabolic networks were modelled as a graph, where proteins (KO number) represented
nodes and metabolites represented edges. Finally they defined key functions as nodes with high
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neighborhood connectivity. In future, networks based on metaproteome data could be used to predict
metabolic fluxes, using software tools such as the CellNetAnalyzer (Klamt et al., 2007).

8. Quantitative data analysis in metaproteome studies
Protein quantification is crucial for comparative metaproteomics studies. Indeed different approaches
for quantitative proteomics exist, e.g. isotopic chemical labelling of peptides {(Vaudel et al., 2010). But

due to interference of these approaches with contaminating compounds many metaproteomics studies
simply rely on the estimation of protein amount by counting identified peptides or spectra and
normalizing these results (Ishihama et al., 2005), (Zybailov et al., 2007). Depending on data-dependent
selection of precursor ions and successful peptide identification these approaches are inaccurate and
possess a small dynamic range [Tabb2003]. The quantification of the peptide peak intensity or area
(Griffin_et al., 2010) using tools such as Progenesis QI (http://www.nonlinear.com/progenesis/qi-for-
proteomics/) or MaxQuant (Tyanova et al., 2016) is preferable. Alternatively, data-independent
acquisition of MS/MS data (SWATH, MS) combines peptide identification and quantification capturing
all possible fragment information of all precursors for subsequent protein quantification from complex
data (Bilbao et al., 2015). The most accurate quantification can be achieved by targeting only a single
peptide (“single reaction monitoring”) or a limited selection of peptides of a certain protein (“single
reaction monitoring”). For example, Saito et al. (2015) used this approach to quantify two nitrogen
regulatory proteins for cyanobacterial taxa within microbial samples from the Central Pacific Ocean. The
addition of isotopically labeled peptide for absolute quantification and the application of the Skyline
software (MaclLean et al., 2010) further improve this approach.

However, selection of peptides for targeted metaproteomics is more challenging than in pure culture
proteomics, because a peptide may belong to multiple proteins from different taxa. Thus, the Unique
Peptide Finder of the UniPept webservice (Mesuere et al., 2016) was developed to facilitate the selection
of unique peptides for a certain taxa.

8. Strategies for storing and deployment of huge data
Metaproteomics experiments comprise a massive amount of data including MS spectra, identified
peptides and proteins as well as taxonomic and functional information. Our latest large-scale
metaproteomics study produced about two Terabyte of data comprising roughly 15 million spectra and
23,000 identified metaproteins (data not shown). Consequently, appropriate data storage using a
database management system (DBMS) is beneficial. Key challenges for DBMS are high speed for writing
and reading data as well as efficient data storage. Since MS acquisition and search algorithms are
relatively slow, writing speed has a negligible impact. In contrast, reading speed can be limiting, because
researches want to evaluate all data at once. Furthermore, lists of thousands of proteins are unfeasible
when inspecting results. Instead, researchers favor meaningful summaries, comparisons and intuitive
visualizations. But this requires demanding database queries.
Relational database management systems, which use the “Structured Query Language” (SQL), have been
the norm to manage data in the past. In recent years, alternatives to SQL have gained popularity and are
aggregated under the term NoSQL (“Not only SQL”). Relational database management systems store
data in separate tables, which are connected via unique relations. NoSQL database management systems
Magdeburg University | Bioprocess Engineering
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use other concepts to store data like key-value  associations  (Berkeley DB
(http://www.oracle.com/technetwork/database/database-
technologies/berkeleydb/overview/index.html, retrieved: 09-02-2017)), columns (Apache Cassandra
(http://cassandra.apache.org/, retrieved: 09-02-2017)), documents (MongoDB
(https://www.mongodb.com, retrieved: 09-02-2017)) or graphs (Neo4j, (www.neo4j.com, retrieved: 09-
02-2017)).

NoSQL databases where motivated by the disadvantage in SQL databases to store all data in one place.
In an analogy SQL databases can be imagined as a large building, which only a limited number of persons
at a time can enter. An SQL query would be a person searching the building and collecting the
information requested. If too many people search the building at a time, they will hinder each other and
slow down the query process. NoSQL databases aim to address this issue of scalability. For instance, in
our analogy Apache Cassandra creates a new identical building as soon as too many people try to enter.
In consequence, NoSQL databases can handle more and more complex data requests. The disadvantage
of NoSQL databases is reduced data consistency and large hard disc requirements due to multiple
instances of the databases.

In sum NoSQL databases are highly beneficial for metaproteomics data. In line Chatterlee et al. (2016)
already used MongoDB for storing sequence information and Muth et al. (2015a) Neo4j for flexible result
queries. Additionally, Measure et al. (2015) are planning to use Berkeley databases to store the
taxonomic value of each tryptic peptide.

Another trend of data storing and deployment which could be useful to increase the speed of data
processing in metaproteomics is fast data (Braun et al., 2015 ). The fast data approach makes it possible
to stream single spectra data to the cloud and process the data in real time for storing the results into
the database. In other words, it parallelizes the data processing step and the measurement step to
reduce experiment time. For example already the software MaxQuant Real-Time (Graumann et al., 2012)
picks up this idea and processes the MS data in real time.

9. Future challenges, perspectives and demands

Predictions about the future of metaproteomics software need to anticipate future applications for
metaproteomics. Foreseeable trends are an increase in MS resolution and therefore more data that will
be acquired. Since metaproteomics is still an emerging field, an increase in the number of research
studies about complex microbial communities is expected. A great potential for the application of
metaproteomics are process control in technical applications as well routine diagnostics of fecal samples.
So far it is known that microbial communities in the human gut system are linked with autoimmune and
allergic diseases, obesity, inflammatory bowel disease (IBD), and diabetes (Clemente et al., 2012).
Consequently, the number of samples in clinical settings could rise to several thousand per day. Such an
increase in sample numbers requires software tools that can handle huge data amounts. For routine
diagnostics the total computation time may not exceed a few hours, so that a complete metaproteomics
analysis may require less than one day. Another aspect is that software for medical applications has to
conform to high quality standards and specific privacy regulations. Moreover, medical staff without a
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special bioinformatic background should be able to operate such software tools. Although the routine
usage of metaproteomics is still in question, the development may proceed quickly. For example, MALDI-
MS based identification of microbial isolates became a standard procedure in clinical laboratories.

Strategies to facilitate software usage are to provide it via Docker (e.g. Bioconda
https://bioconda.github.io/, retrieved: 09-02-2017) or web services to avoid problems with the
installation and configuration of complex software frameworks. For example, developers of the MPA are
planning to provide their software platform as web service within the de.NBI project. Most users with a
medical or biological background would favor a graphical ready-to-use software tool. In contrast,
bioinformaticians prefer modular software packages operated from the command line. The latter
strategy enables flexible assembly of workflows and an easy improvement of single modules. The
challenge for future development of metaproteomics software is to satisfy both sides.

Because metaproteomics is still a developing field, universal standards still have to be adopted by the
community. Implementation of ring trials for metaproteomics data processing could further insights into
the comparability of software tools, and enable the introduction of quality standards.

Further improvement requires the validation of protein identifications by the FDR estimation. In contrast
to pure culture proteomics the estimated FDR is not always correct since the protein sequences for the
investigated samples are often unknown. A solution might be the usage of semi-supervised machine
learning algorithms such as the software tools Percolator or Nokoi (Gonnelli et al., 2015).

The use of protein databases could be standardized as well. While some researchers use comprehensive
protein databases, others use diverse metagenomes, which differ in the processing state and origin. A
solution might be the generation of non-redundant (May et al., 2016), fusion metagenomes for each
type of microbial community. Thereby, this fusion metagenome should be assembled as far as possible.

Additionally, the binning of metagenomes may also improve the protein database quality. Proteins of the
same function or metabolic pathway are often located adjacent on a contig or operon. Thus, they should
feature equal expression patterns.

The key to handle the increased amount of data is the real-time processing of all arising MS data as well
as the scalability of the software and the database. This means that the single computational steps
operate in parallel and hardware resources can be allocated on demand, e.g. by cloud computing (Mell
and Grance, 2010). To guarantee the long term maintenance and support for such systems, it is
reasonable to follow the latest trends from the industry instead of developing own solutions. Suitable
frameworks, among others, are Apache Spark (http://spark.apache.org/, retrieved: 09-02-2017) for
analyzing data distributed in the cloud and OpenStack (https://www.openstack.org/, retrieved: 09-02-
2017) to manage the instances running on the cloud.

Another strategy to decrease computation time is the smart deployment of hardware resources.
Graphical processing units (GPU) can perform specific calculations in parallel. On the other hand central
processing units (CPU) are suited for general tasks, but work serially. Identification of MS/MS spectra is a
calculation that can be parallelized. In line, the protein database search algorithm X!Tandem was
recently adopted to utilize a GPU (He and Li, 2015).
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Beside adaptation of metaproteomics to bigger data volumes and the decrease of computation time,
improved bioinformatic strategies are required to increase the number of identified spectra. State-of-
the-art metaproteomics studies only achieve identification of 5-30% spectra. An estimated 30% of all
spectra belong to solvent and background components (Griss et al., 2016).This means at least another

30% spectra remain unidentified. Better metaproteomics software should contribute to overcome this
issue. The generation of more suitable metagenomes for protein identification may increase the amount
of identified spectra significantly. Inversely, assembly of metagenomes can be validated using peptides

identified in metaproteomics studies (Nesvizhskii, 2014). Fherearealse-alternativestothe generationof

- Spectral libraries
represent another strategy to handle unidentified spectra (Lam et al., 2007). They could store and cluster
spectra from any sample. Samples can be also compared based on their unidentified spectra. Interesting
spectra can be annotated later using protein database search algorithms. Due to the drastic reduction of

candidates, manual de novo sequencing is also possible (Frank and Pevzner, 2005). Function and
taxonomy of de novo peptides can be derived by MS-BLAST search (Shevchenko et al., 2001). However,
de novo sequencing of peptides is hampered by the short length of tryptic peptides which impede MS-
BLAST identification. Better de novo and MS-BLAST results could be achieved by other proteases such as
Lys-C (Jekel et al., 1983) or Arg-C, which result in longer peptides. Due to increased computational power
and more precise MS it may become possible to search against a database containing all theoretical
peptides for a specific mass (Sadygov, 2015). This would also solve problem with the database size

dependency of the FDR estimation.

Finally, metaproteomics software can benefit from the incorporation of data from other multi-omics
techniques (Brink et al., 2016; Heintz-Buschart et al., 2016), e.g. metabolome data. For a detailed
overview on multi-omics data processing, please refer to Franzosa et al. (2015) (Franzosa et al., 2015).

Due to increased computational power and more precise MS it may become possible to search against a
database containing all theoretical peptides for a specific mass (Sadygov, 2015). Spectral libraries
represent another strategy to handle unidentified spectra (Lam et al., 2007). They could store and cluster
spectra from any sample. Samples can be also compared based on their unidentified spectra. Interesting
spectra can be annotated later using protein database search algorithms. Due to the drastic reduction of
candidates, manual de novo sequencing is also possible (Frank and Pevzner, 2005). Function and
taxonomy of de novo peptides can be derived by MS-BLAST search (Shevchenko et al., 2001). However,
de novo sequencing of peptides is hampered by the short length of tryptic peptides which impede MS-
BLAST identification. Better de novo and MS-BLAST results could be achieved by other proteases such as
Lys-C (Jekel et al., 1983) or Arg-C, which result in longer peptides.

Finally, metaproteomics software can benefit from the incorporation of data from other multi-omics
techniques (Brink et al., 2016; Heintz-Buschart et al., 2016), e.g. metabolome data. For a detailed
overview on multi-omics data processing, please refer to Franzosa et al. (2015) (Franzosa et al., 2015).
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10. Conclusions

Metaproteomics represents a powerful tool for the taxonomic and functional characterization

of complex microbial communities from environmental samples. In the future it has the
potential to become a valuable tool for routine diagnostics, e.g. analysis of human feces.
However, success of metaproteomics studies depends on dedicated software tools. These tools
must be capable to handle big data, but also need to be useable by people with no background
in bioinformatics. To achieve these goals, web services and software tools capable of parallel

computing are reasonable (e.g. cloud computing). This would decrease computational costs and
enables small laboratories to perform metaproteomics studies. Moreover, metaproteomics

studies will benefit from software supporting the taxonomic and functional interpretation of
results. Even if it is obvious, the close cooperation of bioinformaticians and biologists should
also be considered during software development.
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5. Figures &tables

Figure 1: Workflow for metaproteome analyses. Software tools specific for metaproteomics are
highlighted in bold. Beside tools for single steps of the bioinformatic analysis also comprehensive
software platforms are available (K).

Figure 2: Database construction for protein identification.

Figure 3: Impact of different metagenomes and their combination on the number of identified
metaproteins.

Figure 4: This figure shows the identified metaproteins of sample BGPO1 after protein database
search against different databases mapped against the KEGG map 1200 (central carbon
metabolism. Green: metaproteins identified by protein database search against
UniProtKB/SwissProt; blue: metaproteins identified additionally by protein database search
against the combined metagenomes (1+2+4+5+6); red: metaproteins identified additionally by
protein database search against the single metagenomes (1,2,4,5;6).

Table 1: Overview about metaproteomic specific issues and appropriated software resp.
bioinformatic strategies

Table 2: Strategies for grouping of redundant homologous proteins to metaproteins

Table 3: Strategies for taxonomic and functional annotation of proteins.
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Table 2

Protein rule 1. UniRef-Cluster Grouping of proteins when they have 50%, 90% or (Lu et al., 2014; Suzek
100% sequence similarity. Protein clustering et al., 2007)
provided by UniRef Cluster [Suzek2007}.

2. KEGG Ontologies Grouping of protelns when they are similar to {Gotelli et al., 2012;
functional dassified genes within KEGG Ontology  Kanehisa et al., 2016)
[Mal 2005]. KEGG Ontologies are provide by

UnlProtKB databases [JAPI PAPER].
Peptide rule 1. Shared peptide set Group proteins when they share the same (Keiblinger et al., 2012;
peptides. Kolmeder et al., 2012;
Schneider et al., 2011)

2. One shared peptide Group proteins when they have one identified {Kohrs et al., 2014; Lu
peptide In common etal., 2014)

3. One shared peptide + Group proteins when they share the same (Muth et al., 2015a)

Levenshtein, distance < 2 peptides, but not if they have two similar peptides

with less than 2 point mutations differences. This
tracks the production of one protein by different
microorganisms.

Taxonomy rule 1. Phylogenetic affillation Extends other rules by a certaln phylogenetic (Muth et al., 2015a)
affillation.



Table 3

Taxonomic classification

Functional classification

Pathway mapping

1. Lowest common
ancestor

2. Weighted lowest
common ancestor
3. Peptide similarity
estimation and
expression level
weighting

4. Unique peptides

1. KEGG Orthologies
(KO)

2. Cluster of
orthologues genes
(COG)

3. Evolutionary
genealogy of genes:
Non-supervised
Orthologous Groups
(egeNOG)

4. PFAM

5 TIGRFAM

6. SMART

7. InterPro

8. Enzyme Comission
number (EC}

9. UniProt Keywords

10. Gene ontologies
1. MetaCyc

2. KEGG pathways

3. Reactome

4. Interactive Pathways
Explorer (iPath)

5. CellNetAnalyzer

Define taxonomy as the lowest common ancestor
into the phylogenetic tree.

Adjust the lowest common ancestor by unique
identification for the single taxa.

Weight taxonomy of identified peptides by their
spectra abundance and their occurence in a
reference proteome.

Define taxonomy and taxonomy profiles only based
on unique peptides.

Grouping of genes with same function by sequence
similarity.

Grouping of genes with same function by sequence
similarity.

Extension off COG by non-supervised orthologous
groups constructed from numerous organisms.

Database of conserved functional units, represented
by a set of aligned sequences with their probabilistic
representation (hidden Markov model}.

Database of conserved functional units, represented
by a set of aligned sequences with their probabilistic
representation {hidden Markov model). In contrast
to PFAM TIGRFAM emphasize protein function and

Functional domain database. Based on mam-xally
curated hidden Markov models.

Functional analyses of protein sequences by
classifying them into families and predicting the
presence of domains and important sites. Signatures
are provided by 14 different member databases
{among others PFAM, TIGRFAMS, SMART).

Numerical classification scheme for enzymes, based
on the chemical reactions they catalyze

Hierachical classification of protein functions.

Hierachical classification of protein functions.
Curated database of experimentally confirmed
metabolic pathways.

Collection of manually drawn pathway maps
representing knowledge on the molecular interaction
and reaction networks.

Pathway database.

Web-based tool for the visualization, analysis and
customization of pathways maps.

MATLAB toolbox providing computational methods
and algorithms for exploring structural and functional
properties of metabolic, signaling, and regulatory
networks.

(Huson et al., 2011; Jagtap et
al,, 2012)
(Huson et al., 2016}

(Penzlin et al., 2014)

(Rooijers et al., 2011;
Karisson et al., 2012)

(Kanehisa et al., 2016)

(Tatusov et al., 2000)

(Huerta-Cepas et al., 2016)

(Finn et al., 2016}

(Haft et al., 2013)

(Letunic et al., 2015)

(Finn et al., 2017}

{Bairoch, 2000)

(UniProt, 2015)

{Ashbumer et al., 2000)
(Caspi et al., 2016)

{Kanehisa et al., 2016)

(Fabregat et al., 2016)
{Yamada et al., 2011)

(Klamt et al., 2007
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