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Enhancement of superexchange pairing in the periodically driven Hubbard model
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Recent experiments performed on cuprates and alkali-doped fullerides have demonstrated that key signatures
of superconductivity can be induced above the equilibrium critical temperature by optical modulation. These
observations in disparate physical systems may indicate a general underlying mechanism. Multiple theories
have been proposed, but these either consider specific features, such as competing instabilities, or focus on
conventional BCS-type superconductivity. Here we show that periodic driving can enhance electron pairing in
strongly correlated systems. Focusing on the strongly repulsive limit of the doped Hubbard model, we investigate
in-gap, spatially inhomogeneous, on-site modulations. We demonstrate that such modulations substantially reduce
electronic hopping, while simultaneously sustaining superexchange interactions and pair hopping via driving-
induced virtual charge excitations. We calculate real-time dynamics for the one-dimensional case, starting from
zero- and finite-temperature initial states, and we show that enhanced singlet-pair correlations emerge quickly
and robustly in the out-of-equilibrium many-body state. Our results reveal a fundamental pairing mechanism that
might underpin optically induced superconductivity in some strongly correlated quantum materials.
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I. INTRODUCTION

Controlling the structural and electronic properties of a
solid by resonantly driving a single low-energy degree of
freedom is emerging as a transformative tool in materials
science [1]. Such excitations often play a decisive role in
stabilizing various broken-symmetry states, and driving them
opens up the possibility to switch between phases. This not
only includes the melting of equilibrium long-ranged order,
such as charge-density waves [2–6], magnetic order [7–9],
and orbital order [9,10], but even more remarkably, inducing
order, such as superconductivity, out of equilibrium [11,12].

To date, light-induced superconductivity has been observed
in several cuprates [13–15] and an alkali-doped fullerene [11]
all with quite distinct physics. This raises the question of how
ubiquitous such effects are, and what mechanism(s) might
underpin their appearance. So far, theoretical exploration has
concentrated on a minimal Fröhlich-type model of phonon-
mediated superconductivity [16,17] subjected to a driving-
induced quench of the electronic hopping amplitude. This was
envisaged as occurring from a modified electronic structure
due to nonlinear phonon coupling [16,18], or from polaronic
suppression due to phonon squeezing [17]. In either case, this
results in an increase in the density of states at the Fermi
level, giving a corresponding increase in the superconducting
coupling constant. Despite the slow collective dynamics and
elevated electron-phonon scattering, fast enhancements of the
superconducting order parameter were predicted.

In this work, we propose a qualitatively different mech-
anism for driving-enhanced superconductivity in strongly
correlated lattice systems. We show that the modulation
of site energies in a bipartite lattice with a frequency �

inside the charge-transfer gap U slows down electron hopping
t → t̃ < t without reducing the superexchange interactions
J or pair hopping αJ . This is because the absorption and
reemission of quanta from the driving field creates virtual

charge-density excitations, leading to additional exchange in-
teractions. Driving-induced contributions, therefore, break the
usual relation J ∝ t2/U , and compensate for the suppressed
hopping contribution. As a result, the normally subordinate J

can induce a strong pairing effect and enhance long-range pair
correlations, even in one spatial dimension. We find that on the
moderate time scales assessed, the resulting nonequilibrium
states are not significantly heated by the driving field. Instead,
driving can substantially reduce the effective temperature of
an initial thermal state on experimentally relevant time scales,
akin to many-body adiabatic cooling.

Specifically, we investigate the Hubbard model with a bare
hopping rate t and a large on-site interaction U � t , subjected
to periodic driving of frequency � that modulates the on-site
energy in time τ with a spatially alternating pattern. We
numerically confirm that this leads to dynamical enhance-
ment of pairing for a one-dimensional system with realistic
finite-frequency driving t < � < U , ramped up on adiabatic
and nonadiabatic time scales, and at zero and finite initial
temperatures. We also analytically study the system in Floquet
theory [19–25] and derive an effective static model to provide
qualitative insights into the nonequilibrium dynamics at low
temperatures. Note that, in contrast to many studies using
Floquet theory, � is not the largest frequency in our setup.

While motivated by experiments, our aim here is to explore
a fundamental principle from a minimal, periodically driven,
strongly correlated model, as opposed to material-specific
ab initio calculations. Nonetheless, organic superconductors
(such as charge-transfer salts) under THz driving are likely
candidate systems in which the mechanism proposed here may
be observed. In these materials, THz pulses can resonantly
excite an infrared-active local molecular vibration often
located in the in-gap regime [26,27]. The ensuing “sloshing”
motion of the molecule is sufficiently large in amplitude and
heavy that its leading-order effect is to couple to the electronic
states via a time-periodic modulation of the on-site energy.
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FIG. 1. (a) A bipartite chain with electron hopping t , exchange
interaction J , and on-site correlation U � t . Singlet pairs move
through the lattice with effective hopping rate αJ . (b) Exciting on-
site vibrational modes with t < � < U greatly suppresses hopping
t̃ � t , but leaves superexchange interaction J and pair hopping αJ

approximately unchanged, resulting in an enhancement of nearest-
neighbor singlet pairing.

These massive vibrations can therefore be considered classical
oscillators for which backaction from the electronic system
can be safely ignored. While the laser pulse itself excites
coherently and uniformly across the system, the material is
assumed to possess a two-molecule unit cell,1 as in Fig. 1, so
that the modulation induced on the two interlocking sublattices
a and b differs in amplitude and/or phase. Such a unit cell might
be composed of different molecules or identical molecules
with differing orientations due to the stacking morphology
[28]. Similar physics can be cleanly realized in optical lattices
filled with ultracold fermionic atoms by “shaking” the lattice
[29–33], with very recent work going in this direction [34],
or by exploiting Raman transitions between internal atomic
states [35]. Our results provide a mechanism by which
superexchange physics may be better exposed in these systems.

This paper is organized as follows. In Sec. II we introduce
the driven Hubbard model, describe the Floquet basis, and
work out the quasienergies for a small system via exact nu-
merical diagonalization. We then use time-dependent density
matrix renormalization group (DMRG) methods in Sec. III
to study the real-time dynamics of the driven Hubbard model
in one spatial dimension. In Sec. IV we derive an effective
static model whose ground and thermal states are used to
approximate the nonequilibrium states of the driven Hubbard
model. Finally, we conclude in Sec. V.

II. THE DRIVEN HUBBARD MODEL

The focus of this work is the driven Hubbard model
Hamiltonian (taking h̄ = 1)

Ĥ (τ ) = Ĥhub + Ĥdrive(τ ), (1)

1For the main effects described here, a two-site periodicity is not
essential, and it may be realized with higher spatial periodicities.

where Ĥhub = Ĥhop + Ĥint − μ
∑

j n̂j , and contributions are
given by

Ĥhop = −t
∑
〈ij〉σ

(ĉ†i,σ ĉj,σ + H.c.), (2)

Ĥint = U
∑

j

n̂j,↑n̂j,↓, (3)

Ĥdrive(τ ) = Va

2
sin(�τ − �φ)

∑
j∈a

n̂j

+ Vb

2
sin(�τ + �φ)

∑
j∈b

n̂j . (4)

Here ĉi,σ with σ = ↑,↓ is the fermionic annihilation operator
for a spin-σ electron on site j , n̂j,σ = ĉ

†
j,σ ĉj,σ , n̂j = n̂j,↑ +

n̂j,↓, and 〈ij 〉 denotes nearest-neighbor sites on a bipartite
lattice composed of a and b sublattices. We denote the lattice
filling by n̄ = ∑

j 〈n̂j 〉/L, where L is the number of lattice
sites. The hopping amplitude is t , U is the on-site Coulomb
repulsion, and μ is the chemical potential. The driving Ĥdrive(τ )
describes a time τ periodic single-particle Hamiltonian with
driving frequency �, corresponding sublattice driving ampli-
tudes Va (b), and a phase difference of 2�φ. For simplicity, we
assume Va = Vb = V for the driving amplitude, which may
be a function of time V (τ ), and a constant phase �φ = π/2
throughout the paper. However, the qualitative features of our
results are expected more generally (see Appendix A). We
next use a Floquet analysis to start investigating the dynamics
induced by Ĥ (τ ).

A. Floquet analysis

Floquet theory [19,22] is based on the time ana-
log of Bloch’s theorem and is applicable here since
Ĥ (τ + T ) = Ĥ (τ ) with T = 2π/�. It states that a com-
plete set of solutions to the time-dependent Schrödinger
equation [Ĥ (τ ) − i∂τ ]| 
(τ )〉 = 0 can then be written as
| ψη(τ )〉 = exp(−iεητ )| φη(τ )〉. The T -periodic Floquet states
| φη(τ + T )〉 = | φη(τ )〉 are solutions to the eigenvalue equa-
tion

[Ĥ (τ ) − i∂τ ]| φη(τ )〉 = εη| φη(τ )〉, (5)

with associated real quasienergies εη that are defined up to
integer multiples of �. Periodicity means that the quasienergy
spectrum possesses a zonelike structure where physically
distinct eigenstates lie within a quasienergy range E − 1

2� <

εη � E + 1
2�, where the choice of E is arbitrary but often

taken as E = 0.
The Hermitian Floquet Hamiltonian ĤF = Ĥ (τ ) − i∂τ acts

on an extended Hilbert space H ⊗ T , which augments the
original Hilbert space H by the space T of square-integrable
T -periodic functions in time. This extended Hilbert space,
whose elements are denoted as |χ〉〉, is endowed with a suitable
scalar product by time-averaging over a period T as

〈〈χ |ξ 〉〉 = 1

T

∫ T

0
〈χ (τ )|ξ (τ )〉dτ, (6)

where | χ (τ )〉 and | ξ (τ )〉 are any T -periodic states in H, and
〈χ (τ )|ξ (τ )〉 is the conventional scalar product for H.
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We take the Fock basis | {nj,σ }〉 of the lattice system, where
nj,σ spin-σ electrons occupy site j , and we construct an
orthonormal Floquet-Fock basis of H ⊗ T as [25]

|{nj,σ },m〉〉 = | {nj,σ }〉eim�τ+i V
2�

sin(�τ )(
∑

j∈a nj −
∑

j∈b nj ). (7)

These basis states include phases for the mth Fourier com-
ponent and those associated with transforming into the frame
rotating with Ĥdrive(τ ).

The matrix elements of the Floquet Hamiltonian ĤF in this
basis are

〈〈{n′
j,σ },m′|ĤF|{nj,σ },m〉〉

= ζm′−m〈{n′
j,σ }|Ĥhop|{nj,σ }〉

+ δm,m′ [〈{n′
j,σ }|Ĥint|{nj,σ }〉 + m�]. (8)

The couplings ζm′−m are given by (also see Appendix A)

ζm′−m = sm′−mJm′−m(ν), (9)

where Jn is the nth-order Bessel function of the first kind,
and ν = V/�. They depend on the difference in the Fourier
components m′ − m, and also on the driving parameter ν as
well as the change in sublattice a occupation s = ∑

j∈a(n′
j −

nj ) = ±1 for the Fock states being connected.
This matrix representation of ĤF has a natural block

structure with respect to the Fourier index m labeling the
Floquet sector replicas of the system. The diagonal blocks
are a matrix representation of J0(ν)Ĥhop + Ĥint in the Fock
basis, i.e., Ĥhub with a renormalized hopping amplitude t̃ ≡
tJ0(ν), and shifted in energy by m�. Correspondingly, the
off-diagonal blocks coupling different m sectors are a matrix
representation of ζm′−mĤhop. In the remainder of this section,
we numerically investigate the Floquet Hamiltonian for a small
system.

B. Small system

Using a small, numerically exactly diagonalizable one-
dimensional lattice, we calculate the quasienergy spectrum
εη as a function of ν from Eq. (5). We concentrate on
the quasienergy states in the m = 0 Floquet sector that
emerge from the low-energy sector of Ĥhub. In Fig. 2(a),
the results for high-frequency driving � � U,t , where the
Floquet sectors are energetically well separated and decouple
in a perturbative sense. The width of the spectrum initially
shrinks with increasing ν, indicating a reduction of the
driven hopping amplitude t̃ < t , consistent with the ζ0 =
J0(ν) dependence. When the driving strength reaches ν =
ν0 ≈ 2.4, where J0(ν0) = 0, the electron hopping and the
superexchange are both fully suppressed. The dynamics of
the system are therefore frozen, as signified by the collapse
of the spectrum to an εη = 0 degeneracy at ν0. With further
increases of ν, the hopping amplitude t̃ becomes negative,
and the quasienergy spectrum correspondingly broadens. This
so-called “dynamical localization” and band-flipping are the
well-known single-particle effect that has been demonstrated
experimentally, e.g., in optical lattices [20,31,36].

A qualitatively different result occurs for in-gap driving
t < � < U , as shown in Fig. 2(b). The quasienergy spectrum
is again seen to reduce in bandwidth with increasing ν

-2
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/
t

0 1 2 3
ν

-2
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η
/
t
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(b)
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�

FIG. 2. The singly occupied subspace of the Floquet quasienergy
spectrum εη, computed exactly for L = 6 sites, with two up-electrons
and two down-electrons. In (a), where � = 100t and U = 20t , the
quasienergy spectrum collapses to a single point at ν0 ≈ 2.4, signaling
complete suppression of t̃ relative to U . In (b), where � = 6t and U =
20t , the spectrum does not collapse to a point, but instead strongly
resembles the spectrum of a t-J Hamiltonian with J > t̃ .

initially, indicating that t̃ is still being suppressed. However,
in contrast to the high-frequency limit the spectrum retains a
finite width proportional to J = 4t2/U , and it is shifted down
by approximately J , even when ν ≈ ν0. Rather than being
frozen out, the dynamics in this driving regime are now being
governed by the normally subordinate superexchange energy J

that appears to be unsuppressed. This observation motivates the
further numerical studies presented in the next section. There
we gather evidence that the driven system has an increased
susceptibility to pair formation and long-range correlations
for driving ν � ν0. This then leads us to derive an effective
static t-J model that describes the singlet-pair dynamics in the
driven state with good accuracy even for strong driving, ν > 1.

III. DRIVING-ENHANCED FERMION PAIRING

Here we consider a one-dimensional driven Hubbard
model, and we study directly its real-time dynamics when
slowly ramping up the driving amplitude, first at zero tem-
perature for both infinite and finite systems, and then at finite
temperature for a finite system. Our numerics are based on
highly accurate time-dependent DMRG methods [37–40] as
implemented in the Tensor Network Theory (TNT) Library
[41], and they are described in more detail in Appendix C.

A. Zero temperature

We calculate the real-time dynamics for the translationally
invariant infinite system starting from the ground state, using a
chemical potential μ = −0.2t , resulting in an approximately
quarter-filled system. The driving amplitude is ramped up
with in-gap driving frequency t < � < U . We characterize
the driving-induced nonequilibrium state | ψ(τ )〉 by studying
its density-density correlations

Nij (τ ) = 〈n̂i n̂j 〉 − 〈n̂i〉〈n̂j 〉,
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FIG. 3. An infinite Hubbard chain with U = 20t , μ = −0.2t , and
driving frequency � = 6t . The driving amplitude is ramped accord-
ing to ν(τ ) = [ν(∞)/2]{tanh [(τ − τ0)/τr] + 1} with final driving
strength ν(∞) = 2.2, ramp time τr = 15/t , and τ0 = 25/t . The plots
show (a) the density-density structure factor N (q,τ ), (b) the spin
structure factor S(q,τ ), and (c) the singlet pairing structure factor
P (q,τ ) as a function of quasimomentum q and time τ . In (a)–(c) we
have averaged over the frequency � oscillations, e.g., those that are
visible in the line-outs shown in Fig. 4(a). Residual low-frequency
oscillations in these quantities are due to the finite ramping time τr. In
(d) the real-space pairing correlation function Pj,j+δ at various time
slices is shown.

the spin-spin correlations

Sij (τ ) = 〈
Ŝz

i Ŝ
z
j

〉
,

with Ŝz
i = (n̂i,↑ − n̂i,↓)/2, and the nearest-neighbor singlet-

paring correlations

Pij (τ ) = 〈b̂†i,i+1b̂j,j+1〉.
Here the operators b̂

†
ij (b̂ij ), given by

b̂
†
ij = 1√

2
(ĉ†i,↑ĉ

†
j,↓ − ĉ

†
i,↓ĉ

†
j,↑), (10)

create (annihilate) a singlet electron pair at sites i and j , and
〈·〉 = 〈ψ(τ ) | · | ψ(τ )〉. We mostly concern ourselves with the
corresponding structure factors,

X(q) =
∑

k

Xj,j+ke
iqk, (11)

for the translationally invariant infinite system, where X is
any of the quantities N , S, or P , and q is the dimensionless
quasimomentum.

We plot the density structure factor N (q,τ ) in Fig. 3(a). The
initial kink at q = 4kF, where kF = n̄π/2 is the noninteracting
Fermi wave vector, is suppressed in favor of peaks at q = ±2kF

as the driving increases. This signifies a doubling of the
wavelength of Friedel oscillations in the system’s density-
density correlations and is indicative of the formation of
bound pairs. We interpret the slope of N (q,τ ) as q → 0 as
a dynamical version of the Luttinger parameter Kρ(τ ) [42].

In equilibrium N (q) ≈ Kρq/π [43,44], and in Fig. 3(a) it
is apparent that the gradient around q = 0 increases at later
times corresponding to an increase in Kρ(τ ). Eventually, Kρ(τ )

exceeds 1 signifying the formation of an attractive Luttinger
liquid.

The spin structure factor, shown in Fig. 3(b), begins with
sharp peaks at 2kF, indicating that the Hubbard ground state
has a tendency toward antiferromagnetic order. At quarter-
filling, this order is incommensurate with the lattice period.
In the presence of periodic driving, the initial peaks are
suppressed and instead a peak at q = π forms, consistent with
the formation of islands of commensurate antiferromagnetic
order. The broadness of this emerging peak shows that the
underlying order is not quasi-long-ranged yet. Indeed, its form
is similar to S(q) = n̄(1 − cos q) expected for a gas of free
nearest-neighbor singlet pairs [45].

We obtain the most direct evidence of pairing via the singlet
structure factor, and in particular its uniform P (q = 0,τ )
component, which contains contributions from both long-
range and short-range correlations. In Fig. 3(c), a broad peak
about q = 0 is seen initially, which under driving eventually
increases in magnitude by a factor of more than 3, and
sharpens. This is consistent with Kρ(τ ) > 1 and suggests that
the driving has formed a quasicondensate of singlet pairs in
momentum space. To isolate the long-range contribution to
P (q = 0,τ ), we examine the real-space singlet correlations
in Fig. 3(d). These correlations confirm a suppression of
2kF modulations at short times, followed by a significant
enhancement of the pairing correlations. They are found to
spread through the system at a rate of approximately t/4 ∼ J ,
consistent with a pair-hopping αJ as shown in Fig. 1 [46]. We
observe that the enhancement reaches a range of approximately
20–30 sites on the time scales considered.

In Fig. 4 we demonstrate the robustness of the pairing dy-
namics for different driving parameters. As shown in Fig. 4(a),
the magnitude of P (q = 0,τ ) oscillates with frequency �

about a mean value that is greatly enhanced with increasing
driving strength ν as long as ν < ν0. The dynamical Luttinger
parameter displayed in Fig. 4(b) increases with driving and
exceeds unity for sufficiently strong driving. This suggests the
onset of attractive interactions within the system. However,
for the largest final driving strengths ν(∞) ≈ ν0, where the
tunneling is suppressed most strongly, P (q = 0,τ ) reaches a
maximum height at intermediate times and then reduces. This
behavior is indicative of the pair state being unstable to decay
toward a resonating valence bond (RVB) type state, as we will
discuss in detail in the next section.

The dependence of P (q = 0,τ ) on the ramping time τr is
shown in Fig. 4(c). Roughly speaking, the ramp is expected to
cross over to adiabatic when the time derivative of its amplitude
ν̇ ≈ ν(∞)/τr ≈ J , i.e., when it is sufficiently smaller than the
dominant energy scale of the final Hamiltonian. This is not
satisfied for the fastest ramps shown in Fig. 4(c), yet within
their ramping profile a moderate enhancement of the pairing is
still induced and is sustained for longer times. For the slowest
ramps considered, the increases in the enhancement begin to
saturate, suggesting they are close to adiabatic for this system.

In Fig. 4(d) we show the final pairing enhancement as a
function of driving frequency. A number of resonance dips
are seen where no singlet-pairing enhancement is observed.
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FIG. 4. (a) The height of the singlet structure factor peak P (q =
0,τ ) at various final driving strengths. The instantaneous value is
indicated by a dotted line, while the moving time average is denoted by
a solid line. (b) The dynamical Luttinger parameter Kρ(τ ) extracted
from the slope of N (q,τ ) at q → 0. (c) The peak of the singlet
structure factor P (q = 0,τ ) for various ramp times. (d) The final
height of the singlet structure factor averaged from τ = 60/t to 80/t ,
P̄ (q = 0) as a function of the driving frequency �. The solid blue
line is drawn to guide the eye. Arrows mark frequencies � = 6t and
7t . All parameters not explicitly given in the plots are the same as in
Fig. 3.

The origin of these is traced back to level crossings in
the Floquet quasienergy spectrum as the ramp is traversed,
which is discussed in more detail in Appendix B. In short,
at these frequencies m > 0 Floquet replicas of the upper
Hubbard band, composed of states containing high-energy
doubly occupied configurations, cross the m = 0 lower Hub-
bard band, composed of states with predominantly singly
occupied configurations. As a result, the driving induces
resonant transitions between these states and m� of energy is
absorbed, creating double-occupancies and destroying nearest-
neighbour pairs. However, away from these resonances the
substantial enhancement reported for � = 6t is observed over
a wide range of frequencies � < U .

Given the relatively slow speed of the spread of pairing
correlations shown in Fig. 3(a), we expect that a finite system
of a few 10’s of sites will adequately capture the physics of
the driven system, particularly for finite-temperature systems
where the range of correlations is suppressed by thermal
fluctuations. Indeed, in Appendix C we directly compare
infinite and finite time-dependent DMRG calculations and
confirm that there is a negligible difference between the
structure factors of the infinite and finite systems.

B. Finite temperature

The relevance of our observations at zero temperature to
real materials hinges on whether this effect survives at finite
temperatures. To answer this, we use the finite-temperature
extension to time-dependent DMRG [47,48]. We then compute
the coherent evolution with periodic driving via Ĥ (τ ) for an
initial thermal state of Ĥhub at inverse temperature β0. For

(a)

0 20 40 60
τt

0

0.2

0.4

0.6

P
(q

=
0

,τ
)

β0t = 1
β0t = 2
β0t = 5
β0t = 10

(b)

FIG. 5. (a) The singlet structure factor P (q,τ ) with an initial
temperature β0 = 5/t . As in Fig. 3, we have averaged over the
frequency � oscillations. (b) The height of the peak P (q = 0,τ )
for several initial temperatures β0. The dotted line shows the
instantaneous value, while the solid line shows the moving time
average. These results were computed for L = 24 sites. All other
parameters not explicitly given in the plots are the same as in Fig. 3.

concreteness, we restrict our considerations here to a finite
system of L sites.

Figure 5(a) shows that enhanced pairing persists at fi-
nite temperature, albeit with a peak of reduced height and
broadened width compared to the zero-temperature case.
In Fig. 5(b), we show the singlet structure factor P (q =
0,τ ) as a function of time for various initial values of
β0. Perhaps counterintuitively, the driven state consistently
exhibits enhanced singlet pairing correlations even when the
initial temperature 1/β0 ∼ t � J far exceeds the pair binding
energy. In the next section, we will introduce an effective
time-independent model to qualitatively capture all the physics
underlying the numerical results discussed so far. In the context
of this effective model, the thermal enhancement can be viewed
as a many-body version of adiabatic cooling.

The reason for this is already apparent from Fig. 2(b).
As the driving amplitude ν approaches ν0, the bandwidth
of the quasienergy spectrum in the m = 0 Floquet sector
is squashed. This is described by changes in the effective
model’s parameters with ν, and from Fig. 4(c) we saw that
for sufficiently slow ramping, ν̇ � J , this change will be
adiabatic. Consequently, the driving substantially reduces
the energy gaps between the many-body eigenstates of this
model while keeping their thermal populations unchanged.
Therefore, the driven state remains approximately thermal, but
at a significantly lower temperature. A similar effect is used in
cold-atom systems, where an adiabatic increase of the lattice
depth results in a lowering of the temperature [49]. Indeed it
has been shown that even for instantaneous quenches, one can
obtain cooling in a wide variety of physical systems [50].

IV. EFFECTIVE t- J MODEL

The numerical results presented in the previous section
indicate that superexchange interaction J and pair hopping
αJ , as in Fig. 1, play a significant role in the driven dynamics
when t < � < U . Moreover, from our calculations we find
[see Fig. 7(b)] that the negligible double occupation in the
initial state remains small in the driven state, once � does not
coincide with any resonance. This suggests that an effective
t-J model may represent an adequate foundation for a Floquet
analysis in this driving regime [51]. The t-J model arises from
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Ĥhub by perturbatively projecting double occupancies out via
the standard approach [52] to yield

ĤtJα = P0[Ĥhop + Ĥex + Ĥpair]P0, (12)

with superexchange and pair hopping contributions

Ĥex = −J
∑
〈ij〉

b̂
†
ij b̂ij , (13)

Ĥpair = −αJ

i �=k∑
〈ijk〉

(b̂†ij b̂jk + H.c.). (14)

Here, the operator P0 = ∏L
j=1(1 − n̂j,↑n̂j,↓) projects onto the

subspace of Fock states without any double occupancies. The
bracket 〈ijk〉 denotes sums over nearest-neighbor sites, not
double-counting bonds. The two-site superexchange Ĥex term
binds nearest-neighbor singlet pairs together with an energy
J . Correspondingly, the three-site pair hopping term Ĥpair

describes the motion of these pairs without breaking their bond.
In equilibrium, the parameters of the t-J model Hamil-

tonian ĤtJα relate to the original Hubbard model through
J = 4t2/U and α = 1/2. The validity of the t-J model relies
on the strongly interacting limit t � U , and thus mandates
J � t . We now proceed with a Floquet analysis of the driven
t-J Hamiltonian defined as

Ĥ ′(τ ) = ĤtJα + P0Ĥdrive(τ )P0, (15)

identical to that described in Sec. II A. Removing U as an
explicit energy scale allows us to examine the behavior with
� as the largest energy scale of the resulting model, while
continually assuming in-gap driving � < U . This approach
will provide us with a simple, intuitive picture of the physics
for in-gap driving. A more detailed description, handling the
interplay between finite U and � in perturbation theory, is
contained in Appendix E. There, starting from the driven
Hubbard model, we explicitly work out the contributions to
the exchange interaction from the electron hopping and from
driving-induced virtual charge excitations. Those calculations
corroborate the picture arising from the t-J model for
sufficiently weak driving strength ν and � < U .

A. Floquet analysis

By calculating a matrix representation of the Floquet
Hamiltonian for the driven t-J model Ĥ ′(τ ), using the Floquet
basis introduced in Sec. II A, we immediately find that the
diagonal blocks are given by the matrix representation of
P0[J0(ν)Ĥhop + Ĥex + Ĥpair]P0. Thus, the hopping is still
suppressed, while the driving-dependent phase factors in the
Floquet basis cancel out for Ĥex and Ĥpair, as they did for Ĥint

in the driven Hubbard model, leaving these terms unaffected.
Assuming � � t , so the Floquet sectors decouple, we find
that the effective Hamiltonian describing the m = 0 sector is a
t-J model with hopping t̃ = J0(ν)t , with J and α unchanged.
The ratio J/t̃ therefore becomes strongly driving dependent,

J/t̃ = 4t

UJ0(ν)
, (16)

and breaks the usual relation J = 4t2/U � t . This allows the
realization of the regime J/t̃ > 1 that is normally inaccessible.

Using this result, a slow increase in the driving strength
ν̇ � J corresponds to adiabatically moving through the phase
diagram of the t-J model into this new parameter regime. For
this reason, we now examine the equilibrium properties of this
effective model and compare them to the driven steady states
obtained in Sec. III.

B. Phase diagram of the t- J model

In one dimension, the ground state of the t-J model, for any
α and below half-filling n̄ < 1, is metallic with Kρ = 0.5 as
J/t → 0. As J/t increases, Kρ also increases monotonically.
When the hopping t � J , then Ĥex + Ĥpair together resemble
a Hamiltonian for hard-core bosons.2 This similarity suggests
that for sufficiently large J/t , superexchange mediates the
formation of nearest-neighbor singlet pairs with binding
energy −J , while the pair hopping gives them a bandwidth
proportional to αJ . This is consistent with the form of the
quasienergy spectrum near ν ≈ ν0 shown in Fig. 2(b).

The pairing effect is captured by simple energetic argu-
ments. Solving the two-electron problem, the binding energy
of nearest-neighbor singlet pairs is given by [53]

Epair = −J − 2αJ − 4t2

J + 2αJ
. (17)

Thus, in the dilute limit, comparing Epair to the energy for two
free electrons Efree = −4t suggests that pair formation will
occur for J/t � 2/(1 + 2α). These nearest-neighbor singlet
pairs subsequently quasicondense to form a superconductor,
characterized by dominant quasi-long-range singlet pair cor-
relations [54],

〈b̂†j+x,j+1+x b̂j,j+1〉 ∼ x−(1+1/Kρ ), (18)

with Kρ > 1 signifying an attractive Luttinger liquid.
For yet larger J/t , the formation of phase-separated

electron-rich and hole-rich regions signaled by a diverging Kρ

might be expected [44]. The exact solution of a Heisenberg
spin chain gives the antiferromagnetic bond energy Ebonds =
−2J ln(2). For α = 1/2 we see that Epair < Ebonds for all
values of J/t , meaning that singlet pairs will never freeze
into larger antiferromagnetic clusters. The pair hopping term
destabilizes antiferromagnetic clusters, even when J/t � 1,
since it homogenizes holes throughout the system akin to
hole repulsion. However, for n̄ � 0.5, superconductivity is not
expected to persist up to J/t → ∞. Instead, an RVB “singlet
gas” appears with short-ranged pair correlations. This picture
of the equilibrium properties of the one-dimensional (1D) t-J
model is borne out by comprehensive exact diagonalization
[55], DMRG [44], and quantum Monte Carlo calculations [53].

The numerical results displayed in Figs. 3 and 4 are
broadly consistent with these equilibrium properties of the
t-J model spanning a wide range of J/t values. In particular,
we may now attribute the increased peak height P (q = 0,τ )
and emergence of quasi-longer-ranged pair correlations to the
driving elevating J/t sufficiently slowly to near-adiabatically

2We note that while the b̂ij and b̂
†
ij operators commute on disjoint

pairs of sites, they do not obey bosonic commutation relations if the
pairs overlap.
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FIG. 6. The time average between τ t = 60–80 of the driven
state’s structure factors for (a) singlet pairing P̄ (q) and (b) spin S̄(q)
from Figs. 3(b) and 3(c) is shown alongside the same quantities for a
t-J ground state with α = 1/2 and an effective Jeff/teff that gives the
closest match to P̄ (q). For ν(∞) = 2.2, the effective Jeff/teff = 2.0.
Repeating this fit for the sequence of driving strengths ν shown in
Fig. 4(a) gives Jeff/teff plotted in (c), with the solid curve reporting
the prediction of Eq. (16). In (d) P̄ (q) of the driven initial thermal
state at inverse temperature β0 was compared to t-J model thermal
states, with J fixed to its equilibrium value and the ratio J/t fixed by
the results in Fig. 6(c), to extract an effective inverse temperature βeff .
A solid line is drawn to guide the eye. The computations for (a)–(c)
were carried out for L = 40 sites, and those for (d) were carried out
with L = 24 sites.

transition the system from its initial metallic phase into
the superconducting phase. This comparison is made more
quantitatively in Figs. 6(a) and 6(b), where the singlet pairing
and spin structure factors from Figs. 3(b) and 3(c) are closely
matched to those of a t-J model superconducting ground state
with J/t ≈ 2. For purposes of comparison with the t-J model,
for simplicity we computed the driven Hubbard states and
t-J ground states with the finite-size time-dependent DMRG
algorithm with L sites.

By repeating the fitting of the zero-temperature driven state
singlet correlations to a t-J model ground state, we extract
an effective superexchange to hopping ratio Jeff/teff as a
function of driving strength ν. The results in Fig. 6(c) show
decent agreement with Eq. (16), and they indicate that the
superconducting phase can be reached with ν(∞) ≈ 2. We also
fit the singlet structure factors of the driven state obtained from
a finite initial temperature to thermal states of the t-J model
to obtain an effective temperature βeff . The results, shown
in Fig. 6(d), show that the driving substantially decreases
the effective temperature, confirming our interpretation as
adiabatically cooling the system.

C. Floquet heating

In general, periodic driving of a generic many-body system
is expected to cause so-called Floquet heating, even far
away from resonances. Finite � corrections will result in the

0 40 80
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S
E
(τ

)

Ω = 6t
Ω = 7t
Ω = 8t

(a)
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0

0.05
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0.2

n
�n
�

Ω = 6t
Ω = 7t
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(b)

FIG. 7. (a) The entanglement entropy SE between a two-site block
and the rest of the zero-temperature, infinite system as a function of
time. (b) The average double-occupancy per site 〈n↑n↓〉 is plotted. The
dotted line shows the instantaneous value, while the solid line shows
the moving time average. The system parameters not explicitly stated
are the same as those in Fig. 3. Frequencies � = 6t and 7t shown
here correspond to the arrows drawn in Fig. 4(d).

system being described by an effective Hamiltonian possessing
non-negligible “unphysical” terms that are both spatially
nonlocal and multibody. Eigenstates of such a Hamiltonian
will be highly delocalized in the eigenbasis of more physical
short-ranged few-body Hamiltonians, such as the Hubbard
and t-J models. Thus the eigenstate thermalization hypothesis
(ETH) [56–58] suggests that in the asymptotic long-time limit,
independent of its initial state, any finite frequency drive results
in all physical observables of the system becoming indistin-
guishable from those of a featureless infinite-temperature state
[59–61]. However, the ETH does not predict the rate of Floquet
heating [62].

Despite operating in a finite frequency driving regime,
on the accessible simulation times the numerical results
presented here do not display significant heating effects.
The time-averaged correlations emerging from the driven
Hubbard model, while possessing some small quantitative
discrepancies, e.g., in Figs. 6(a) and 6(b), are nonetheless
well captured by an effective t-J model rather than a more
pathological Hamiltonian. This suggests that the Floquet
heating rate is small and that our findings are instead consistent
with the notion of prethermalization in driven systems [63–66].

To examine the Floquet heating rate further, we compute
the entanglement entropy between a two-site block and the
rest of the infinite size, zero-temperature chain, as shown
in Fig. 7(a). As expected, it increases when the driving is
ramped up, showing that the driven state is more entangled
compared to the initial Hubbard ground state. However, it
quickly reaches a quasisteady state, and it does not show an
appreciable further increase on the time scales considered,
suggesting that Floquet heating is negligible here. The slow
growth of entanglement in the system is precisely what allows
our simulations to accurately track the dynamics for many 10’s
of hopping times. Even when the system is driven through the
� = 7t resonance [shown in Fig. 4(d)], the entropy shows
a negligible increase after the initial ramp. Although this
resonant driving is rather energetic, creating and destroying
doublons, it induces reversible dynamics [67], and thus it
does not correspond to heating. Nonetheless, the creation of
relatively large numbers of doublons highlights the breakdown
of the effective t-J model description in the resonant case, in
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contrast with the � = 6t drive, which avoids such resonances
and maintains a small double occupancy.

The appearance of very slow Floquet heating rates for
generic many-body systems was examined in several recent
studies [68–71]. They show that an effective static Hamiltonian
Ĥ∗ will describe the system up to times τ < τ∗, where
τ∗ ∝ exp(C�/ε). Here C is a numerical constant of order
unity, and ε is an energy scale bounding the terms in the driven
Hamiltonian [69]. Our results suggest that for in-gap driving,
ε ∼ t , giving a broad time window in which the system is
described by an Ĥ∗. This effective Hamiltonian may not be
exactly a t-J model, but it nonetheless appears to share its
essential physical features, such as supporting a pairing phase.
In such a broad time window, it is likely that dissipation and
other couplings to the environment, which we do not model
here, will govern the long time behavior. Floquet heating is
therefore unlikely to be of dominant practical importance in
experiments.

V. CONCLUSIONS

We have shown that periodic in-gap driving of a strongly
correlated electronic system can slow electrons down while
maintaining the normally subordinate superexchange inter-
action, making J the dominant energy scale. This effect
manifests itself in a many-body one-dimensional setting as
a distinct switching of pair correlations. We showed that the
driven state is similar to what would be expected if J/t

was enhanced to values that are considered unphysical in
thermal equilibrium. Furthermore, these effects were found
to be robust to finite ramp times of the driving and finite
initial temperatures. Our future experimental and theory work
is likely to focus on higher-dimensional systems in which
dynamically enhanced pairing is expected to emerge at smaller
values of J/t [72]. The inclusion of competing instabilities,
such as charge-density waves, and the interplay of driving with
dissipation [73,74] could then provide a fuller picture of this
route to engineering light-induced superconducting states in
quantum materials.

ACKNOWLEDGMENTS

This research is funded by the European Research Council
under the European Union’s Seventh Framework Programme
(FP7/2007–2013)/ERC Grant Agreement No. 319286 Q-
MAC. S.A. and D.J. acknowledge support from the EPSRC
Tensor Network Theory grant (EP/K038311/1).

APPENDIX A: FLOQUET HAMILTONIAN COUPLING

In the main text, we concentrated on the special case of
driving with Va = Vb = V and constant phase �φ = π/2.
Here we go back to the general driving Ĥdrive given in Eq. (4)
and define the Floquet-Fock basis as

| {nj,σ },m〉 = | {nj,σ }〉 exp(im�τ )

× exp

⎡
⎣−i�a(τ )

∑
j∈a

nj − i�b(τ )
∑
j∈b

nj

⎤
⎦,

(A1)

where m is the Fourier component and

�a(τ ) = − Va

2�
cos(�τ − �φ),

�b(τ ) = − Vb

2�
cos(�τ + �φ). (A2)

The Floquet Hamiltonian is defined by the eigenvalue problem
Eq. (5), which in the basis Eq. (A1) becomes

[Ĥ (τ ) − i∂τ ]| {nj,σ },m〉 = [Ĥhop + Ĥint + m�1]| {nj,σ },m〉.
We then use the extended scalar product Eq. (6) to evaluate the
right-hand side as 〈〈{n′

j,σ },m′|Ĥhop + Ĥint + m�1|{nj,σ },m〉〉.
The last two terms are diagonal in the Floquet-Fock basis, so
all the nontrivial physics is contained in the hopping matrix
elements. These are given by

〈〈{n′
j,σ },m′|Ĥhop|{nj,σ },m〉〉

= 1

T

∫ T

0
exp[i(m − m′)�τ + is�a(τ )

− is�b(τ )] dτ 〈{n′
j,σ }|Ĥhop|{nj,σ }〉, (A3)

= ζm′−m〈{n′
j,σ }|Ĥhop|{nj,σ }〉. (A4)

Here we have used the fact that 〈{n′
j,σ }|Ĥhop|{nj,σ }〉 is nonzero

only when an electron (of either spin) moves from a site in
sublattice a to a site in sublattice b, or the reverse. Thus
we can denote the change in the occupation of sublattice
a as

∑
j∈a(n′

j − nj ) = s, and we know that the change
in occupation of sublattice b is

∑
j∈b(n′

j − nj ) = −s, with
s = ±1. The Floquet coupling coefficient ζm′−m depends not
only on the Fourier components but also on the parameters of
the driving Va,Vb,�φ,� and the Fock states being connected
via s. To evaluate ζm′−m, we first expand �a(τ ) − �b(τ ) as

�a(τ ) − �b(τ ) = (Va + Vb)

2�
sin(�τ ) sin(�φ)

− (Va − Vb)

2�
cos(�τ ) cos(�φ). (A5)

Next we use a Jacobi-Anger expansion to break up the
exponentials of trigonometric functions and perform the time-
averaging integration to obtain

ζm′−m =
∞∑

n=−∞
(−i)nJn

(
s

(Va − Vb)

2�
cos(�φ)

)

×
∞∑

n′=−∞
Jn′

(
s

(Va + Vb)

2�
sin(�φ)

)
δn+n′,m′−m.

(A6)

This coupling appears in the Floquet Hamiltonian in Eq. (8) for
the most general driving parameters. For the special case used
in the main text, Va = Vb = V and �φ = π/2, this reduces
ζm′−m in Eq. (A6) to that given in Eq. (9). However, note
that Eq. (A6) displays suppression of the hopping for a much
wider range of driving parameters than this special case. As an
example, in Fig. 8 we take νa = Va/� = 2νb and plot ζ0, the
hopping suppression factor in the limit U → ∞, � → ∞, and
U/� < 1. This shows that the hopping can still be suppressed
to zero even in the case in which νa �= νb and �φ �= π/2.
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FIG. 8. The coefficient ζ0 with unequal a and b driving strengths
as a function of νa and �φ. The dotted line marks the contour ζ0 = 0,
where single-particle hopping is suppressed to 0.

APPENDIX B: CROSSINGS IN THE FLOQUET SPECTRUM

As seen in Fig. 4(d), there are several resonance frequencies
at which pairing (and indeed all correlations) is destroyed
rather than enhanced by the driving. This can be understood
by looking at the Floquet quasienergy spectrum. Since the
spectrum is periodic, high-energy states in the upper Hubbard
band are folded down into the first Brillouin zone −�/2 <

U − m� < �/2, as shown in Fig. 9 for a small system. For
� = 6t , folded upper Hubbard band states do not intersect
the lower Hubbard band portion of the spectrum, and so a
sufficiently slow ramp will adiabatically follow the Floquet
state connected to the undriven ground state. However, for
the � = 7t case, there is a level crossing between these

-2
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η
/t

0 1 2 3 4
ν

-2

0

2

η
/t
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(b)

FIG. 9. The Floquet spectrum εη for an L = 6 site system with
U = 20t , �φ = π . The doubly occupied levels are drawn in red, the
singly occupied are drawn in blue. In (a) � = 6t , and there are no
crossings between singly and doubly occupied states. In (b) � = 7t ,
and we observe a crossing between the upper and lower Hubbard
bands. The two frequencies shown here correspond to the arrows
drawn in Fig. 4(d).

bands. Similar crossings are found for the other resonance
frequencies in Fig. 4(d). By driving through these crossings,
strong excitation of states in the upper Hubbard band is
expected, destroying nearest-neighbour singlet correlations.
Indeed, for the larger system this is what is shown in Fig. 7(b),
where driving at � = 7t is found to result in a 10 times larger
increase in the average density of double occupancies than
driving at � = 6t . The smallness of the latter case supports
our interpretation of the driven system with an effective t-J
model.

APPENDIX C: DETAILS ON NUMERICAL
CALCULATIONS

For the zero-temperature calculations, we computed the
ground state of the Hubbard system using the infinite time-
evolving block decimation (iTEBD) to evolve an initial
translationally invariant infinite matrix product state (iMPS)
in imaginary time until a convergence in the singular values is
reached [40]. Using a fourth-order Suzuki-Trotter decomposi-
tion, and successively refining the time step to systematically
eliminate the Trotter error and bring the final state into
canonical form, we obtain an iMPS with a bond dimension
of χ = 200. We subsequently evolve this iMPS using iTEBD,
and we compute the expectation values given in Sec. III A.

To accurately capture the driven state, our iTEBD calcu-
lations were performed with iMPS bond dimensions up to
χ = 400 and a driving frequency-dependent time step �τ =
2π/(50�). To resolve the fast oscillations in the correlation
functions, they were sampled every 10 time steps. The
correlations were robust to moderate changes in χ and �τ ,
and the cumulative truncation error during the time evolution
remained small.

In Fig. 10, we show the spin and singlet structure factors
for the driven system for finite-size (L = 40) calculation, with
the filling n = 1/2, fixed using a U(1) symmetric MPS. We
compare this to the results obtained for the infinite system
using iTEBD results computed without symmetries, and a
chemical potential μ = −0.2t result. We find essentially
no difference between the results for the finite and infinite
systems, thus demonstrating that the results seen for the
finite system are not a finite-size effect. Consequently, for
simplicity and computational tractability, we use a finite
system for the purposes of finite-temperature calculations and
for comparisons to the t-J model.
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FIG. 10. A comparison of the (a) singlet and (b) spin structure
factors at two different times, computed for the same parameters as
in Fig. 3. The points show results for the finite-size, L = 40 results,
while the line shows the infinite-size results.
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To quantify the amount of Floquet heating in our system, we
compute the entanglement entropy between a two-site block
and the remainder of the infinite system, defined as

SE(τ ) = −Tr[ρC(τ ) log2 (ρC(τ ))], (C1)

where ρC is the reduced density matrix for the two-site block.
The behavior of SE(τ ) is shown in Fig. 7(a) for various driving
frequencies. After ramping up the driving, the entanglement
entropy grows in time, quickly reaching a quasisteady state.
Note that the maximum possible value of SE (for an infinite-
temperature state) is log2(16) = 4. The largest growth is seen
for � = 7t , which was already identified in Fig. 4(d) as a
Floquet resonance. The additional entanglement makes the
resonantly driven case more difficult to capture with an MPS
ansatz due to a rapid growth of truncation error after the
ramp [75]. The growth in SE(τ ) for frequencies away from
resonances are broadly similar to each other and smaller. As
we see no growth in SE(τ ) after the ramp, we find no evidence
of Floquet heating on the time scales considered here.

For the finite temperature calculations, we obtained thermal
states of a finite-sized Hubbard model via imaginary-time
TEBD. An initial matrix product operator (MPO) represen-
tation of the identity matrix (i.e., an infinite-temperature state)
was evolved in imaginary time with a time step �β = 0.01/t

to obtain an MPO representation of the desired thermal mixed
state [48], tuning the chemical potential to obtain desired filling
n̄ = 1/2. We then performed real-time evolution with an MPO
dimension up to χ = 400 to describe the driven state.

APPENDIX D: DIFFERENT FILLINGS

For clarity and its relevance to organic salts, in the main
text we focused on quarter-filling. To confirm that driving-
enhanced singlet pairing is still present away from half-filling,
we repeated the iTEBD calculations presented in Fig. 3.
However, we instead begin the time evolution from ground
states obtained with chemical potentials μ = −1.0t and 1.5t ,
resulting in fillings of n̄ ≈ 0.35 and 0.82, respectively. The
results are shown in Fig. 11. We find that irrespective of
the filling, we obtain qualitatively the same features as in
Fig. 3. Namely, the sharp peaks in the spin structure factor
S(q) are suppressed in favor of a broad peak about q = π ,
and a significant enhancement in the singlet structure factor
of about q = 0 is again observed. However, as discussed
in Sec. IV B, the one-dimensional t-J model with α = 1/2
features suppressed superconducting correlations at dense
fillings, reflected here in the more modest pairing enhancement
at P (q = 0).

APPENDIX E: PERTURBATIVE CORRECTIONS

The virtue of constructing a Floquet Hamiltonian ĤF is that
standard time-independent perturbative methods are applica-
ble to it. In particular, given a Hamiltonian Ĥ = Ĥ0 + λĤ1,
composed of a bare contribution Ĥ0 and a perturbation Ĥ1

with coupling strength λ, we wish to determine an effective
Hamiltonian Ĥeff describing the energy eigenvalues of Ĥ in
a degenerate subspace of eigenstates of Ĥ0 with energy E.
To second order in λ we obtain Ĥeff via a standard projection

FIG. 11. An infinite Hubbard chain with the same system pa-
rameters as in Fig. 3, except for the chemical potential, which is
μ = −1.0t in (a) and (b), and μ = 1.5t in (c) and (d). The respective
spin structure factors are shown in (a) and (c), while the singlet
structure factors are shown in (b) and (d).

approach [52] as

Ĥeff = PĤP − PĤQ
1

QĤQ − E
QĤP, (E1)

where P is the projector onto the degenerate subspace of Ĥ0,
and Q is its orthogonal complement. For Ĥ = Ĥhub/U , where
Ĥ0 = Ĥint/U , λĤ1 = Ĥhop/U , and P = P0, this method
yields the t-J model given in Eq. (12).

We now apply the same approach to ĤF in the enlarged
Hilbert space H ⊗ T using a projector P = P0M0, where
M0 is the projector onto the m = 0 Floquet sector, i.e.,
the dc Fourier component. This approach has the virtue of
dealing with the strong-coupling limit and driving on the
same footing [51]. Specifically, it allows us to determine
an effective time-independent Hamiltonian describing the
stroboscopic evolution that contains perturbative corrections
due to couplings to doubly occupied states and their Floquet
replicas. We find that this again yields the t-J model with
α = 1/2, and t̃ = J0(ν)t as before, but a superexchange
coupling given by

J̃ = J̃kin + J̃light, (E2)

where

J̃kin/t̃ = 4tJ0(ν)

U
(E3)

and

J̃light/t̃ = 4t

UJ0(ν)

∞∑
m=1

[ Jm(ν)2

1 + m�/U
+ Jm(ν)2

1 − m�/U

]
.

(E4)

Note that this second-order result for the effective J̃ for
sublattice driving is identical to that obtained by applying a
driving term describing an ac electric field across the lattice
[23]. In the limit U � �, ν < 1, the expression for J̃ reduces
to Eq. (16) found from the t-J model Floquet analysis.
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In the limit of � → ∞, the energy separation between
the Floquet sectors far exceeds the energy scales t and U

within them. Consequently, the perturbative contributions
to J̃ from m �= 0 sectors can be safely ignored, leaving
a suppressed superexchange given by J̃ /t̃ = 4t̃/U . Indeed,
Eq. (E4) indicates that above-gap driving � > U will lead
generically to a reduction in J̃ . This is because while m < 0
and m > 0 contributions have the same numerator, for m <

0 the denominator is negative and smaller than for m > 0.
It therefore acts against the m � 0 contributions to reduce
J̃ pushing the system further into the metallic J̃ /t̃ � 1
regime.

For in-gap frequencies t < � < U , an interesting interplay
between strong interactions and driving leads to different
behavior. In this case, the leading m < 0 contributions, where
Jm(ν)2 is non-negligible, lie above the retained subspace, so
their denominators are positive. These contributions represent
superexchange processes in which the gap U is bridged
virtually by borrowing m� energy from the driving and
then returned. The net effect of this is to strengthen the
m � 0 contributions resulting in J̃ slightly increasing beyond
its equilibrium value. Since the hopping continues to be
suppressed, in-gap driving can therefore access the regime
J̃ /t̃ > 1.
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