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Abstract
Rationale Pathological gambling has been associated with
dopamine transmission abnormalities, in particular dopamine
D2-receptor deficiency, and reversal learning deficits. More-
over, pervasive theoretical accounts suggest a key role for
dopamine in reversal learning. However, there is no empirical
evidence for a direct link between dopamine, reversal learning
and pathological gambling.
Objective The aim of the present study is to triangulate dopa-
mine, reversal learning, and pathological gambling.
Methods Here, we assess the hypothesis that pathological
gambling is accompanied by dopamine-related problems with
learning from reward and punishment by investigating effects
of the dopamine D2-receptor antagonist sulpiride (400 mg) on
reward- and punishment-based reversal learning in 18 patho-
logical gamblers and 22 healthy controls, using a placebo-
controlled, double-blind, counter-balanced design.

Results In line with previous studies, blockade of D2 recep-
tors with sulpiride impaired reward versus punishment rever-
sal learning in controls. By contrast, sulpiride did not have any
outcome-specific effects in gamblers.
Conclusion These data demonstrate that pathological gam-
bling is associated with a dopamine-related anomaly in rever-
sal learning from reward and punishment.

Keywords Pathological gambling . Dopamine . Reversal
learning . Sulpiride . D2 antagonist

Introduction

Pathological gambling is a psychiatric disorder characterized
by elevated risk seeking and compulsive gambling behaviour.
It can have dramatic consequences including bankruptcy, un-
employment, relationship problems and even attempted sui-
cide in up to 24 % of individuals (DeCaria et al. 1996), and its
prevalence is estimated between 1 and 2 % in Western coun-
tries (Wardle et al. 2010; Welte et al. 2014). In the DSM-5,
pathological gambling (renamed gambling disorder) is recog-
nized as a behavioural addiction based on similarities with
substance addiction in terms of personality traits (impulsivity
and compulsivity), clinical symptoms (tolerance, withdrawal,
and craving), and associated neurobiological mechanisms
(Petry 2007; Potenza 2008, 2013). For example, both sub-
stance addiction and pathological gambling have been associ-
ated with dopamine transmission abnormalities, in particular
dopamine D2-receptor deficiency (Boileau et al. 2013; Clark
et al. 2012; Cocker et al. 2012; Comings et al. 1996; Dalley
et al. 2007; but also see Joutsa et al. 2012; Linnet et al. 2010).
Moreover, pervasive theoretical accounts of addiction suggest
a key role for dopamine-dependent abnormalities in reinforce-
ment learning in both substance addiction (Everitt and
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Robbins 2005; Redish 2004) and pathological gambling
(Redish et al. 2007). In these accounts, aberrant reward pre-
diction error signals lead to compulsive over-selection of ac-
tions directed at targets of addiction.

Empirical evidence supports the link between dopamine,
learning and substance addiction. For example, D2-receptor
stimulation has been shown to remediate cognitive impair-
ments in human drug addicts in the context of reversal learn-
ing, which reflects the ability to flexibly adapt one’s behavior
in response to contingency changes in the environment
(Ersche et al. 2011). This concurs with the suggestion that
low levels of dopamine D2-receptor availability might predis-
pose to compulsive drug taking (Belin et al. 2008; Dalley et al.
2007) and the claim that reversal learning is a valuable tool for
investigating D2-dependent compulsive aspects of pathologi-
cal reward-seeking behaviours (Izquierdo and Jentsch 2012).

By contrast to substance addiction, there appears to be no
empirical evidence for a direct link between dopamine, rever-
sal learning and pathological gambling. Indeed, while re-
search supports links between dopamine and gambling, and
between gambling and learning, there is no evidence for
dopamine-dependent learning abnormalities in gamblers.
Thus, several indices of gambling severity have been associ-
ated with lower density of striatal dopamine D2-receptors
(Boileau et al. 2013; see also Clark et al. 2012), even though
overall group differences have not been reported so far (Linnet
et al. 2010). In rodents, D2-receptor agents have been found to
influence a behavioural analogue of loss-chasing (Rogers
et al. 2013) as well as risk-taking behaviour (St. Onge et al.
2011; Winstanley et al. 2011). Further, gamblers were shown
to exhibit diminished ability to update previously learned re-
ward contingencies, as measured with classic instrumental
reversal learning tasks (Boog et al. 2014; de Ruiter et al.
2009; Vanes et al. 2014). However, a direct link between do-
pamine D2-receptor dysfunction, abnormal learning, and
pathological gambling is still missing.

The aim of the present study was to triangulate dopamine,
gambling and reversal learning by investigating the effects of
the dopamine D2-receptor antagonist sulpiride (400 mg) on
reversal learning in pathological gamblers. Performance was
assessed using a deterministic reversal learning paradigm that
enables separate investigation of reward- and punishment pre-
diction learning. This feature of the task is particularly perti-
nent here, because gamblers have been suggested to be preoc-
cupied with rewards rather than with punishments (Kreussel
et al. 2013; Romanczuk-Seiferth et al. 2014). Moreover this
paradigm was previously shown to be particularly sensitive to
manipulation of dopamine (Cools et al. 2006, 2009; van der
Schaaf et al. 2014). Specifically, we have shown that admin-
istration of 400 mg of sulpiride to young healthy volunteers
altered reward- versus punishment-based reversal learning
(van der Schaaf et al. 2014). This finding is in line with a
series of other studies (Eisenegger et al. 2014; Frank and

O’Reilly 2006; Jocham et al. 2011, 2014) showing effects of
D2-receptor blockade in healthy volunteers on reward- versus
punishment-based learning and reinforcement-based deci-
sions. As such, this paradigm is a valuable tool to assess
whether pathological gambling is accompanied by a dopa-
mine D2-dependent imbalance in learning from reward versus
punishment.

This question is particularly relevant in the light of current
inconsistencies in the literature regarding the effects of dopa-
minergic drugs, and specifically dopamine D2-receptor antag-
onists, in human gamblers. Whereas administration of the D2-
receptor antagonist haloperidol has been reported to increase
the self-reported desire to gamble in pathological gamblers
(Zack and Poulos 2007) and to enhance the impact of reward
on betting behaviour (Tremblay et al. 2011), the same drug
(although at a lower dose) did not alter subjective, physiolog-
ical or motivation-to-gamble responses in recreational gam-
blers in another study (Porchet et al. 2013). So far no study has
investigated the effects of D2-receptor antagonism on reward-
versus punishment-based learning in human gamblers. Based
on previous work (Frank et al. 2004; van der Schaaf et al.
2014), we expected sulpiride to impair reward versus
punishment-based learning in healthy controls. In gamblers,
we expected impaired punishment versus reward-based learn-
ing under placebo. Moreover, we expected that this impair-
ment would be remediated by sulpiride.

Methods

Subjects

Twenty-two male pathological gamblers and twenty-two
healthy men were included following an in depth structured
psychiatric interview administered by a medical doctor (MINI
Plus (Sheehan et al. 1998) and the gambling section of the
DSM-IV Diagnostic Interview Schedule (Robins et al.
1998)). Two gamblers were excluded from the analyses be-
cause of their difficulty understanding the task. An additional
two gamblers were excluded from the analyses because of
comorbid cannabis dependence within the past 6 months
(for details see Supplementary Materials). Therefore, the re-
ported results are based on data from 18 gamblers and 22
controls. Supplementary analyses including the two cannabis
addicts are reported in the Supplementary Materials and con-
firmed the effects of primary interest reported in the main text.
All subjects provided written informed consent, which was
approved by the regional research ethics committee
(Commissie Mensgebonden Onderzoek, regio Arnhem-Nij-
megen, Registration Number: 2011/204, Date: 14 November
2011), and received compensation for participation.

Pathological gamblers were recruited through advertise-
ment (n=14) and addiction treatment centers (n=4), and
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reported not to be medicated or in treatment for their patho-
logical gambling at the time of testing. Controls were recruited
through advertisement. All gamblers, with the exception of
one, qualified as pathological gambler as they met ≥5 DSM-
IV-TR criteria for pathological gambling, and were otherwise
healthy. One gambler qualified as problem gambler as he met
only 4 DSM-IV criteria. The severity of gambling symptoms
was assessed using the South Oaks Gambling Screen (SOGS;
Lesieur and Blume 1987). All gamblers had a minimum
SOGS score of 6 (range=6–18), whereas controls, with the
exception of two subjects, had a SOGS score of 0
(range=0–2).

The two groups were matched for age, net income, body
mass index, and verbal IQ as estimated by the Dutch version
of the National Adult Reading Test (NLV) (Table 1). Subjects
were excluded (from both groups) if they were currently fol-
lowing psychiatric treatment (except cognitive behavioural
therapy; n=2); were using more than four alcoholic beverages
daily; were using psychotropic medication; had a lifetime his-
tory of schizophrenia, bipolar disorder, attention deficit hyper-
activity disorder, autism, bulimia or anorexia, anxiety disor-
der, obsessive compulsive disorder; or had a past 6-month
history of major depressive episode. Given the high comor-
bidity between pathological gambling and other psychiatric
disorders (Lorains et al. 2011), gamblers with the following
comorbidities were included: lifetime history of dysthymia
(n=1); and remitted posttraumatic stress disorder (n=1; remit-
ted>4 years). Excluding these gamblers from the analyses did
not change the results. In addition, three gamblers used can-
nabis weekly in the past 6 months, but did not meet the DSM
criteria for abuse/dependence. Control subjects had no rele-
vant psychiatric history.

Self-report questionnaires were administered to further
characterize the subjects (Table 1): the Fagerstrom Test for
Nicotine Dependence (FTND; Heatherton et al. 1991), the
Alcohol Use Disorders Identification Test (AUDIT; Saunders
et al. 1993), the Hospital Anxiety and Depression Scale
(HADS; Zigmond and Snaith 1983), the Barratt Impulsive-
ness Scale (BIS-11; Patton et al. 1995), and the Behavioural
Inhibition System/Behavioural Activation System scale (BIS/
BAS; Carver and White 1994). Frequent forms of gambling
were assessed using item 1 of the SOGS and are expressed in
terms of the percentage of gamblers who play the following
games at least once a week for money: slot machines (61 %),
card games (61 %), casino games (33 %), sports betting
(28 %), lotteries (22 %), bowling, pool, golf, darts or alike
(5,5 %), stock market (5,5 %).

Procedure

Subjects visited the lab on two occasions; they were tested
once after receiving an oral dose of sulpiride (Dogmatil®,
Sanofi-Aventis; 400 mg), and once after a placebo. The order

of administration was randomized according to a double-
blind, cross-over design. The test sessions were separated by
at least one week. Starting time of test sessions was always
between 9 and 10 am. Subjects were asked to abstain from
recreational drugs 1 week before testing, from alcohol 24 h
before testing, and from caffeine and nicotine the morning
before testing. The behavioural task was part of a larger pro-
tocol and was performed approximately 3.5 h after drug in-
take, and thus coincided with high plasma concentrations of
sulpiride (Mehta et al. 2003).

Background neuropsychological tests (digit span, verbal
fluency, number cancellation, and block completion) were ad-
ministered at the end of the day, 4.25 h after drug intake.
Mood, blood pressure and heart rate were measured immedi-
ately prior to drug intake, as well as 1 and 4.5 h following drug
intake. Subjective mood was measured using the Bond and
Lader visual analogue scales (Bond and Lader 1974) and the
Positive and Negative Affect Scales (PANAS; Watson et al.
1988).

Experimental design

We employed a deterministic reversal learning task similar to
that described elsewhere (Cools et al. 2006; van der Schaaf
et al. 2014). The task was programmed with Presentation soft-
ware (Version 16, Neurobiobehavioral Systems, Inc.). The
layout of the task was adjusted to fit the original instructions
of a casino setting (see Cools et al. 2006) and to be more
intuitive for gamblers. On each trial, subjects were presented
with two gambling cards simultaneously (Fig. 1). One of the
two cards was associated with upcoming reward, the other one
with upcoming punishment. Unlike classic instrumental rever-
sal learning tasks, subjects did not choose between the two
stimuli. Instead one card was highlighted, and subjects had to
learn to predict the outcome associated with this preselected
card by trial-and-error. Responses were made by pressing one
of two buttons—one for reward, the other for punishment—
with the right index or middle finger (counterbalanced across
subjects), and were self-paced. After a 1,000-ms post-
response delay the outcome was presented for 500-ms follow-
ed by a 500-ms intertrial interval. Note that the outcomes were
not contingent on the subjects’ responses, but on the highlight-
ed stimulus; thus, contingencies were Pavlovian rather than
instrumental. The stimulus-outcome contingency reversed af-
ter five to nine consecutive correct predictions. Subjects per-
formed two blocks, each consisting of two runs of 120 trials
(i.e. a total of 480 trials). In one block, reversals were always
signaled by unexpected rewards (Breward block^), and in the
other block reversals were always signaled by unexpected
punishments (Bpunishment block^). Reward consisted of a
smiling emoticon with a B+€100^ sign. Punishment consisted
of a sad emoticon with a B−€100^ sign. The order of blocks
was counterbalanced between sessions and across subjects.
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Error rate on the trials immediately after reversals (i.e.
unexpected reward or punishment) indexes the ability to
update predictions of reward and punishment, i.e. how
well subjects learned from either unexpected reward or
unexpected punishment. On these reversal trials, the same
stimulus was highlighted as on the previous unexpected
outcome trial such that non-outcome-specific require-
ments for motor switching and prediction updating were

matched between reward and punishment conditions. This
enabled direct comparison between reward and
punishment reversals. Subjects were instructed according
to the original procedure by Cools et al. (2006) and were
trained extensively before the experiment so that they un-
derstood the structure of the task and the Pavlovian, rather
than instrumental, nature of the contingencies (for details
see Supplementary Materials).

Table 1 Demographics and self-
report measures Healthy controls Pathological gamblers

n 22 18

Age 32.2 (2.4) 35.2 (1.9) p=0.353

Net income 1,715.9 (235.1) 1,750.0 (193.9) p=0.914

Body Mass Index 23.1 (0.7) 24.1 (0.5) p=0.280

Education—NART 5.6 (0.2) 5.2 (0.2) p=0.202

Verbal IQ—NART 105.2 (2.2) 98.7 (2.8) p=0.072

Digit span—total 15.6 (0.9) 15.1 (0.8) p=0.691

Number of current smokers 10 12 p=0.180

FTND 0.6 (0.3) 2.9 (0.7) p=0.002

AUDIT 6.0 (0.8) 7.3 (0.9) p=0.284

HADS—depression 1.6 (0.5) 4.7 (1.1) p=0.008

HADS—anxiety 2.6 (0.6) 5.1 (0.8) p=0.014

BIS-11 57.5 (1.8) 68.3 (2.9) p=0.002

BIS 17.6 (0.8) 18.4 (0.9) p=0.502

BAS 38.1 (1.2) 42.3 (1.0) p=0.013

SOGS 0.2 (0.1) 12.3 (0.9) p<0.001

If not otherwise stated values represent mean (SEM)

NART National Adult Reading Test (Dutch version), FTND Fagerstrom Test for Nicotine Dependence, AUDIT
Alcohol Use Disorders Identification Test,HADSHospital Anxiety and Depression Scale, BIS-11 Barratt Impul-
siveness Scale, BIS Behavioural Inhibition System, BAS Behavioural Activation System, SOGS South Oaks
Gambling Screen

Fig. 1 Sample trial of the reversal learning task. On each trial,
participants were presented with two gambling cards. One of the
cards was selected by computer and highlighted. Participants then
had to predict, with a left or right button press, whether the card
would be followed by a reward (a smiling emoticon, +100€ sign,

and a high-pitch tone) or punishment (a sad emoticon, −100€ sign,
and a low-pitch tone). After a short delay, the outcome was
presented. The card-outcome associations were deterministic, and
reversed after five to nine correct responses
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Analyses

Error rates on reversal trials (trials immediately after unex-
pected outcomes) were arcsine transformed as is appropriate
when variance is proportional to the mean (Howell 1997).
Error rates on reversal trials were analysed using a mixed
ANOVA (SPSS 19, Chicago, IL) with drug (placebo vs.
sulpiride) and outcome (unexpected reward vs. punishment)
as within-subject factors and group (gamblers vs. controls) as
a between-subject factor. In addition, we assessed the total
number of reversals obtained throughout the task. Because
the stimulus-outcome contingency in the task reversed after
five to nine consecutive correct predictions, and the total num-
ber of trials was fixed, the number of reversals for the reward
and punishment block reflects performance also on the non-
reversal trials.

Results

Figure 2 shows that sulpiride altered reward versus punish-
ment reversal learning in controls, while not altering reversal
learning in gamblers. This observation was substantiated by
anANOVAof the error rates on reversal trials (Table 2), which
revealed a significant interaction of group×drug×outcome
(F(1,38)=5.288, p=0.027). When decomposing the three-
way interaction effect into two-way interaction effects for each
group, we found that this was driven by a drug×outcome
interaction in controls (F(1,21)=4.768, p=0.040). By con-
trast, there was no drug×outcome interaction in gamblers
(F(1,17)=1.183, p=0.292). The drug×outcome interaction
in controls was due to a significant simple main effect of drug
on reward learning (F(1,21)=5.439, p=0.030), not punish-
ment learning (F(1,21)=0.523, p=0.478). Thus, sulpiride in-
duced a shift away from reward learning in controls, while not
altering the balance between reward and punishment learning
in gamblers. Under placebo there was no group×outcome
interaction (F(1,38)=0.976, p=0.329). In addition to the
outcome-specific effects of sulpiride on reversal learning,

there was also an outcome-nonspecific main effect of drug
on error rate (F(1,38)=4.452, p=0.041). This was due to
sulpiride impairing performance across groups and outcomes.
This raises the question whether the impairment is specific to
reversal trials or extends to non-reversal trials. Supplementary
analysis including the within-subjects factor trial type (rever-
sal, non-reversal reward, and non-reversal punishment trials)
revealed a significant group×drug×outcome×trial type inter-
action (F(2,37)=3.581, p=0.038). When decomposing this
interaction into the simple three-way interaction effect for
each trial type, we found that this four-way interaction was
driven by a group×drug×outcome interaction for reversal tri-
als only. In line with that, there was no significant effect of
group, drug or outcome on performance on non-reversal trials
as measured by the total number of reversals (Supplementary
Fig. Fig. S1).

When excluding gamblers with other comorbidities (PTSD
and dysthymia; n=2), the effects did not change. The interac-
tion of group×drug×outcome remained highly significant
(F(1,36)=7.698, p=0.009). Decomposing the three-way inter-
action effect into two-way interaction effects for gamblers
revealed a marginally significant outcome×drug interaction
effect (F(1,15)=3.637, p=0.076) driven by a highly signifi-
cant impairing effect of drug on punishment learning (F(1,
15)=9.370, p=0.008), but not on reward learning (F(1,15)=
0.206, p=0.657). Thus in the comorbidity-free pathological
gamblers, sulpiride tended to induce a shift away from pun-
ishment learning.

The groups did not differ in terms of alcohol use or in terms
of the number of smokers, but they did differ significantly in
terms of nicotine dependence (FTND), depression and anxiety
(HADS), impulsivity (BIS-11), and reward sensitivity (BAS;
Table 1). However, there were no correlations between these
measures and the drug×outcome interaction effect of interest,
suggesting that these between-group differences did not drive
the current observations (all |r|<0.35, p>0.155).

Our results are unlikely driven by nonspecific effects of the
drug manipulation, because heart rate, blood pressure, mood,
and global cognitive function (as measured by background

Fig. 2 The effect of sulpiride on
outcome-specific error rates (i.e.,
mean error rates on trials
following unexpected rewards—
mean error rates on trials
following unexpected
punishment). Sulpiride
significantly impairs reward
versus punishment learning in
controls while not altering the
balance between reward and
punishment learning in gamblers.
Error bars represent 1 SEM;
*p<0.05, ns denotes not
significant
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neuropsychological tests) did not significantly differ between
the placebo and sulpiride sessions in either group (Supplemen-
tary Tables S1-3). Working memory capacity—as a proxy for
dopamine synthesis capacity in the striatum (Cools et al.
2008)—was previously shown to predict the effect of
sulpiride on learning from reward versus punishment in this
paradigm (van der Schaaf et al. 2014). In the current study,
working memory capacity did not correlate with the effect of
the drug in either group. However, it should be noted that the
majority of our sample (independent of group) falls in the low
working memory group as reported by van der Schaaf et al.
(2014), although the difference in the proportion of high and
low working memory capacity subjects between the studies
was only marginally significant (cut-off digit span=17.4;
chi(1)=2.967, p=0.085).

Discussion

Pathological gambling is thought to implicate dopamine,
which is well established to modulate learning from reward
versus punishment (Maia and Frank 2011). Like substance
addiction, pathological gambling has been hypothesized to
be accompanied by dopamine-related impairments in learning
(Redish et al. 2007). However, this hypothesis has hitherto
never been tested. Here, we establish for the first time a link
between pathological gambling, dopamine and learning from
reward versus punishment. Specifically, we show that admin-
istration of sulpiride, a D2-receptor antagonist, impaired
reward- versus punishment-based reversal learning in con-
trols, while not altering reward- versus punishment-based re-
versal learning in gamblers. However, caution is needed as to
the interpretation of the lack of drug effect in gamblers, as
supplementary analyses suggest that sulpiride might even
have the diametrically opposite effect, i.e. impairing punish-
ment rather than reward-based reversal learning, when only
considering gamblers without comorbidities (n=16).

The effect of sulpiride on outcome-specific reversal learn-
ing in controls is generally consistent with previous work
using the same drug and task in healthy volunteers (van der
Schaaf et al. 2014). In this prior study, we showed that the
direction of the effect of sulpiride depended on baseline work-
ing memory capacity, so that sulpiride impaired reward

relative to punishment learning in low working memory par-
ticipants, whereas it improved reward relative to punishment
learning in high working memory participants. The behaviour
of our participants is consistent with the impairments observed
in low working memory participants. Examination of working
memory capacity in our participants showed that the majority
of our sample falls in the low working memory group as
reported by van der Schaaf et al. (2014). This might reflect
the fact that the current sample is more heterogeneous in terms
of age and received lower education than the sample of van
der Schaaf et al. (2014).

The present results reveal a striking difference in how path-
ological gamblers and healthy controls respond to the same
antipsychotic drug. The differential effect of sulpiride on pun-
ishment learning in controls versus non-comorbid gamblers is
intriguing and might be relevant in the context of evidence
that antipsychotic drugs can impair conditioned avoidance
responding (Smith et al. 2004) (although note that our task
was not optimized for measuring actual avoidance of punish-
ment). One possibility is that these results reflect an underly-
ing difference in the endogenous dopamine system. In this
context, it is interesting to note that pathological gambling
has been argued to be accompanied by reduced availability
of D2-receptors (Comings and Blum 2000). Some evidence
for this hypothesis comes from PET studies, showing that
gambling severity and impulsiveness in pathological gamblers
correlate with D2/D3-receptor availability (Boileau et al.
2013; Clark et al. 2012). In addition, there is evidence for
enhanced drug- and task-induced dopamine release in individ-
uals exhibiting compulsive gambling behaviour (Boileau et al.
2014; Evans et al. 2006; Linnet et al. 2010; O’Sullivan et al.
2011; Steeves et al. 2009).

According to current modeling work of striatal dopamine,
D2-receptor blockade might alter reward- versus punishment-
based learning and performance by shifting the balance be-
tween processing in the D1-mediated GO-pathway and D2-
mediated NOGO-pathway of the basal ganglia (Frank 2005;
Maia and Frank 2011). In line with the present observation in
controls, Pessiglione et al. (2006) found that the D2-receptor
antagonist haloperidol impaired reward-learning and attenuat-
ed reward prediction error signals in the striatum, suggesting a
shift to processing in the D2-mediated NOGO-pathway
favouring learning from punishment over learning from re-
ward. Similarly, in a study by Eisenegger et al. (2014) a high
dose (800 mg) of the D2-receptor antagonist sulpiride im-
paired reward-related performance. However, in apparent con-
trast to those previous findings as well as our current observa-
tion in controls, Frank and O’Reilly (2006) found that the D2-
receptor antagonist haloperidol improved reward- versus
punishment-based learning. In addition, a low dose
(200 mg) of the D2-antagonist amisulpride has been found
to improve reward- versus punishment-based learning and
enhance reward prediction error signal in the striatum (Jocham

Table 2 Mean error rates on reversal trials

Healthy controls Pathological gamblers

Placebo Sulpiride Placebo Sulpiride

Reward 0.12 (0.031) 0.17 (0.036) 0.13 (0.031) 0.16 (0.039)

Punishment 0.13 (0.033) 0.10 (0.019) 0.09 (0.023) 0.14 (0.028)

Values represent mean (SEM)
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et al. 2011), suggesting a shift to processing in the D1-
mediated GO-pathway. Note however that at a higher dose
(400 mg), amisulpride impaired both reward and punishment
learning (Jocham et al. 2014). These seemingly paradoxical
findingsmay be explained by the use of different doses, which
may in turn lead to differential action of D2-receptor antago-
nists on pre- vs. postsynaptic receptors in different studies
(Frank and O’Reilly 2006). Reward-related improvements
with D2-receptor antagonists are generally attributed to action
at self-regulatory presynaptic receptors (enhancing dopamine
in the synapse), whereas reward-related impairments with D2-
receptor antagonists are generally associated with action at
postsynaptic receptors. In our study, sulpiride might have
shifted the balance away from reward learning in controls,
consistent with postsynaptic action, but not in gamblers, sug-
gesting a reduction in postsynaptic action of sulpiride in gam-
blers versus controls. In fact, when assessing a comorbidity-
free group of gamblers, sulpiride tended to actually impair
punishment- rather than reward-based learning, raising the
possibility that sulpiride might have acted pre- rather than
postsynaptically. Preferential sensitivity of pre- versus post-
synaptic D2-receptors might make particular sense when syn-
aptic dopamine levels are supra-optimal, e.g. through en-
hanced dopamine release (Boileau et al. 2014). We emphasize
that this hypothesis about the specific mechanism underlying
our effect in pathological gamblers remains speculative. One
reason is that dopamine D2-receptor antagonists like sulpiride
seem to have dose-dependent effects on pre- vs postsynaptic
striatal D2-receptors (Frank and O’Reilly 2006). Our dose of
400 mg has been shown to occupy ∼30 % of striatal postsyn-
aptic D2-receptors (Mehta et al. 2008). However, we have no
way of quantifying the exact occupancy of pre- and postsyn-
aptic D2-receptors in this study. The pre- versus postsynaptic
nature of these D2-receptor effects might be disentangled in
future work, for example by administering a higher dose of
sulpiride, or by exploiting common polymorphisms in the
dopamine receptor D2 gene that are thought to affect the bal-
ance between pre- and postsynaptic action (Frank et al. 2007).

One might have expected a baseline difference in reward-
and punishment-based learning between the groups. Indeed
previous studies have reported slowed learning from punish-
ment on an instrumental reversal learning task (de Ruiter et al.
2009; Vanes et al. 2014) and possibly increased preoccupation
with rewards rather than punishments (Kreussel et al. 2013) in
pathological gamblers versus controls. Surprisingly, in our
study, gamblers and controls learned equally well from unex-
pected rewards and unexpected punishments under placebo.
We are puzzled about this, and hypothesize that this might
reflect compensatory mechanisms in the dopamine system,
related, e.g. to upregulation of dopamine synthesis capacity,
dopamine release, or postsynaptic dopamine receptor sensitiv-
ity. This generally concurs with the view that underlying pa-
thology might not surface as impairment under baseline

conditions, but only when probing the system, for example
by using a pharmacological challenge (Verdejo-García et al.
2008). This also corresponds with the finding that gambling-
related abnormalities in baseline D2-receptor availability
(Boileau et al. 2013; Clark et al. 2012; Joutsa et al. 2012)
are more subtle than these in drug- or task-induced dopamine
release (Boileau et al. 2014; Linnet et al. 2010).

In short, we found that blockade of D2-receptors with
sulpiride impaired reward versus punishment learning in con-
trols, but not in gamblers. By contrast, in comorbidity-free
gamblers, sulpiride impaired punishment, but not reward
learning. This strongly suggests that pathological gambling
is associated with a dopamine D2-receptor-related anomaly
in learning from reward and punishment. Future neurochem-
ical work, using PET or genetics is required to address the
exact neurochemical mechanisms of this anomaly.
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