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ABSTRACT

As we navigate a world full of uncertainties and risks, dominated by statistics, we need
to be able to think statistically. Very few studies investigating people’s ability to
understand simple concepts and rules from probability theory have drawn representa-
tive samples from the public. For this reason we investigated a representative sample of
1000 Swiss citizens, using six probabilistic problems. Most reasoned appropriately in
problems representing pure applications of probability theory, but failed to do so in
approximations of real-world scenarios – a disparity we replicated in a sample of
first-year psychology students. Additionally, education is associated with probabilistic
numeracy in the former but not the latter type of problems. We discuss possible reasons
for these task disparities and suggest that gaining a comprehensive picture of citizens’
probabilistic competence and its determinants requires using both types of tasks.
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INTRODUCTION

The English novelist H. G. Wells, the author of science fiction classics such as The TimeMachine and TheWar

of the Worlds, also wrote pamphlets attacking the Victorian social order. In Mankind in the Making (1903), he

argued that it is ‘‘the first and most universal function of the school to initiate a smaller or greater proportion

of the population into the ampler world . . . of the reading and writing man. [. . .] there is also almost

universally in schools instruction in counting, and wherever there is a coinage, in the values and simpler

computation of coins.’’ With some likelihood it is this quotation that later morphed into the famed prediction,
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attributed by scores of authors to Wells, that ‘‘Statistical thinking will one day be as necessary for efficient

citizenship as the ability to read and write.’’1

About a century later, a number of people investigated how far we had – or rather had not – come in this

respect. The mathematician Paulos (2001), for instance, diagnosed a widespread innumeracy – ‘‘an inability

to deal comfortably with the fundamental notions of number and chance’’ (p. 3). He related the story of a

weather forecaster on American television who reported that there was a 50% chance of rain on Saturday and

a 50% of rain on Sunday, concluding that there was a 100% chance of rain that weekend. The inability to

reason appropriately about chance is by no means solely an American affliction. In a survey, 1000 Germans

were asked what ‘‘40%’’ means: (a) one quarter, (b) 4 out of 10, or (c) every 40th person. About one-third of

respondents got the answer wrong (see Gigerenzer, 2002). Recently, Lipkus, Samsa, and Rimer (2001)

developed a numeracy scale, testing basic mathematical and probability concepts and operations, and found

that in a sample of highly educated participants, on average, merely 18% and 32% of participants answered

correctly all of the general and expanded numeracy scale items.

Numeracy matters
Various researchers have argued that some numerical ability fosters good decisions in financial, medical, and

other domains. Greater numeracy, for instance, appears to be linked with more accuracy in judgments about

probabilities associated with prostate cancer screening, with accurately gauging the benefit of mammography

(Schwartz, Woloshin, Black, & Welch, 1997), and more reliance on numeric rather than verbal risk

information from physicians (Black, Nease, & Tosteson, 1995; for more references see Peters, Västfjäll,

Slovic, Mertz, Mazzocco, & Dickert, 2006).2

The present study has two goals. First, we investigate the extent of probabilistic numeracy (or lack thereof)

in a representative sample of Swiss citizens. With probabilistic numeracy, we mean the knowledge of basic

concepts and rules of probability such as the multiplication rule, the conjunction rule, the empirical law of

large numbers, and the ability to perform, if necessary, the adequate calculations. Probabilistic numeracy

focuses exclusively on statistical reasoning, unlike Lipkus et al.’s (2001) more encompassing numeracy

scale.3 The second goal is to investigate three factors that may determine people’s probabilistic numeracy,

namely, (a) the nature of the tasks, (b) people’s level of education, and (c) their exposure to games of chance.
THE CITIZEN: AN INTUITIVE STATISTICIAN OR BEDEVILED BY

COGNITIVE ILLUSIONS?

During most of the second half of the 20th century, two groups of researchers were concerned with the extent

to which people’s intuitive statistical reasoning conforms to laws of probability theory and statistics. In their

programmatic review of empirical work conducted in the 1950s and 1960s, titled Man as an intuitive

statistician, Peterson and Beach (1967) concluded that ‘‘probability theory and statistics can be used as the

basis for psychological models that integrate and account for human performance in a wide range of

inferential tasks’’ (p. 29). In their view, the psychological laws of people’s statistical reasoning and the laws
1This statement is quoted, for instance, in How to Lie with Statistics (Huff, 1954/1993), where it serves as an epigraph. No reference is
given, also in none of the many other texts in which one can find it to be quoted.
2For the development of a ‘‘subjective’’ numeracy scale that is less reminiscent of a mathematics test but is still predictive of risk
comprehension, see Fagerlin, Zikmund-Fisher, Ubel, Jankovic, Derry, and Smith (2007) and Zikmund-Fisher, Smith, Ubel, and Fagerlin
(2007).
3Their numeracy scale tests basic abilities such as (a) converting one quantity into another (e.g., 1% to 10 in 1000), (b) discerning
differences in magnitudes of risks (e.g., which of the following numbers represents the biggest risk of getting a disease? 1%, 10%, 5%),
and (c) performing simple operations involving percentages and proportions (e.g., If person A’s risk of getting a disease is 1% in ten years,
and person B’s risk is double that of A’s, what is B’s risk?).

Copyright # 2008 John Wiley & Sons, Ltd. Journal of Behavioral Decision Making, 21, 457–470 (2008)

DOI: 10.1002/bdm



R. Hertwig et al. Probabilistic Numeracy 459
of probability theory are not in conflict. In contrast, the subsequent heuristics-and-biases research program

has identified an extensive catalogue of deviations between people’s statistical reasoning and rules from

probability theory and statistics. These deviations – ‘‘cognitive illusions’’ – include the conjunction fallacy,

insensitivity to sample size, base-rate neglect, and overconfidence (e.g., Gilovich, Griffin, & Kahneman,

2002; Kahneman, Slovic, & Tversky, 1982). People are subject to these cognitive illusions because they tend

to rely on a limited number of heuristics that ‘‘reduce the complex task of assessing probabilities and

predicting values to simple judgmental operations’’ (Tversky & Kahneman, 1974, p. 1124).

How can the citizen’s mind appear to be akin to that of an intuitive statistician and yet error-prone because

it is powered by quick and dirty heuristics? Although it is tempting to attribute the drastically different views

about human rationality to the drastically different political climates of the 1960s and 1970s – revolutionary

social changes and the promise of unlimited economic and technological progress (e.g., the first man on the

moon) in the sixties versus growing disillusionment toward institutions (e.g., Watergate), the oil crisis and

economic depression in the seventies – more prosaic factors are likely to have triggered the darker view of the

seventies.

One factor is the kind of tasks used to probe probabilistic numeracy. Urns and balls, coins and cards – that

is, games of chance – have long been the staple of probabilists. For instance, the famous exchange of letters

between the French mathematicians Blaise Pascal and Pierre Fermat, in which the fundamental principles of

probability were first formulated, was exclusively devoted to gambling problems (Gigerenzer, Swijtink,

Porter, Daston, Beatty, & Krüger, 1989). The famous St. Petersburg paradox, according to which people are

willing to pay only small amounts to take a gamble that is assumed to have an infinite expected value,

involves nothing but a fair coin. In the 1960s, gambling problems made their way into the laboratories of

psychologists such as Peterson and Beach or Edwards, although often in a more contemporary terminology,

for instance, as bookbag-and-poker chips problems (e.g., Peterson & Beach, 1967, p. 32). In the context of

those games of chance, Peterson and Beach’s concluded, respondents’ statistical reasoning is akin to that of

an ‘‘intuitive statistician.’’

In the 1970s the kind of problems posed by experimenters changed. The problems were no longer pure

applications of probability theory, and they typically did not embody games of chance. Although still of the

textbook variety, the problems designed by Tversky and Kahneman (1974) and others approximated real-

life situations. Compared with the bookbag-and-poker chips problems, they are more interesting and

engaging but at the expense of being more ambiguous in their interpretation. We return to these costs of the

new tasks shortly.

In our study, we used six tasks; four are pure applications of probability theory (henceforth ‘‘theory

problems’’) and two approximate real-world situations (henceforth ‘‘real-world problems’’). Table 1 lists

them and the simple concepts and rules from probability theory that they represent. The theory problems

probe people’s understanding of the probability of a simple event A and of its complement :A (bag and ball

task, the die and dieC tasks), and the multiplication rule for two independent events (coin task). The two

real-world problems are two classic tasks from the heuristics-and-biases research program, the Linda and the

maternity-ward tasks.

The Linda task was designed to investigate whether people’s judgments accord with the ‘‘simplest and

most fundamental qualitative law of probability’’ (Tversky & Kahneman, 1983, p. 294), the conjunction rule.

This rule holds that the probability of a conjoint hypothesis (A&B) cannot exceed that of either of its

constituents, that is, p(A&B)� p(A), p(B). In conflict with this rule, in numerous studies most people ranked

Linda to be more likely a bank teller and active in the feminist movement than a bank teller. The suggested

explanation was that when confronted with a difficult task, people often answer an easier one instead, for

example, they judge representativeness rather than probability (thus employing the representativeness

heuristic). Indeed, Linda resembles a prototypical feminist bank teller more than she resembles a prototypical

bank teller. Studying intuitive thinking in terms of representativeness was also the focus of the second

real-world problem that we included, the maternity-ward problem (Table 1). In Tversky and Kahneman’s
Copyright # 2008 John Wiley & Sons, Ltd. Journal of Behavioral Decision Making, 21, 457–470 (2008)
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(1974) study, most participants thought that the number of days in which more babies born were boys was

about the same in the small and the large hospital, ‘‘presumably because these events are described by the

same statistic and are therefore equally representative of the general population’’ (p. 1125). Sedlmeier and

Gigerenzer (1997) pointed out that the maternity-ward problem has been studied in two versions, one

involving a frequency distribution and the other involving a sampling distribution. The former is a

distribution of values from one sample. In contrast, the latter is a distribution of means from independent

samples of fixed size, drawn from the same population. Our version of the maternity-ward problem involves a

sampling distribution.4

Before we turn to possible determinants of the public’s probabilistic numeracy, let us return to the potential

costs of tasks that approximate real-life situations. One of the costs is an ongoing controversy concerning the

normative status of some of the cognitive illusions documented (e.g., Gigerenzer, 1996, 2001; Kahneman &

Tversky, 1996; Vranas, 2000). The Linda task is a case in point. Gigerenzer (1996) has argued that

characterizing violations of the conjunction rule (and various other rules) as an unequivocal ‘‘cognitive

illusion’’ ignores the existence of conflicting interpretations of probability theory. According to frequentistic

interpretation of probability, for instance, a single-event probability judgment, as required by the Linda task,

is simply meaningless. But even if single-event probabilities are seen as meaningful, as they are by

subjectivist interpretations of probability, the semantic and pragmatic ambiguities inherent in the Linda task

make violations of the conjunction rule defensible (see e.g., Adler, 1984, 1991; Chase, Hertwig, &

Gigerenzer, 1998; Hertwig & Gigerenzer, 1999; Hertwig, Benz, & Krauss, 2008; Hilton, 1995; Politzer &

Noveck, 1991; but see also e.g., Mellers, Hertwig, & Kahneman, 2001; Tentori, Bonini, & Osherson, 2004).

Related concerns have also been raised with regard to other tasks within the heuristics-and-biases program

such as the Bayesian reasoning tasks (e.g., Birnbaum, 1983). For the purpose of this paper, this controversy

suggests that there is no consensus in the literature as to whether or not people who violate the conjunction

rule in the Linda task are guilty of having committed a cognitive illusion.
WHAT DETERMINES CITIZENS’ PROBABILISTIC NUMERACY?

To the best of our knowledge, hardly any study has investigated the degree of the public’s probabilistic

numeracy using a representative sample of citizens.5 Henrich (2001) highlighted both psychologists’ and

economists’ ‘‘extreme reliance . . . on university students as subjects. Many scholars from both fields are

guilty of reaching conclusions about ‘human reasoning’ . . . by relying entirely on this very weird, and very

small, slice of humanity’’ (p. 414). Although our study is not representative of humanity – it does not cut

across cultures – it goes far beyond university students or specific professions. In a representative sample of

Swiss citizens we tested three (by no means exclusive) hypotheses.

According to the first hypothesis, the public’s probabilistic numeracy depends on the kinds of tasks used

(task hypothesis). Specifically, we predict that faced with pure applications of probability theory, people will
4In the original Tversky and Kahneman (1974) version of the task, respondents were told: ‘‘For a period of 1 year, each hospital recorded
the days on which (more/less) than 60% of the babies born were boys. Which hospital do you think recorded more such days?’’ In this
task, the empirical law of large numbers—the intuition that larger samples generally lead to more accurate estimates of population means
(Freedman et al., 1991)—prescribes that the days on which more baby boys are expected to be born is greater in the small than in the large
hospital. In a pilot test, we noticed that this version is difficult to understand for people, talking on the phone. Therefore, we chose a
slightly simpler version based on the wording used of Evans and Dusoir (1977, p. 133–134). In this version, the representativeness
heuristic still predicts that respondents reason that the number of days in which more babies born were boys is about the same in the small
and the large hospital. The statistically correct answer, however, is the large hospital.
5Although there are numerous studies investigating particular professionals such as physicians, investment bankers and meteorologists
(e.g., Eddy, 1982; Murphy & Winkler, 1984), and few studies have employed the Lipkus et al. (2001) numeracy scale in a representative
sample (e.g., Fagerlin et al., 2007).
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more likely reason in accordance with probability theory. In contrast, approximations of real-world situations

will yield lower levels of correct responses. This hypothesis is derived from the discrepancy between the results

reviewed in Peterson and Beach (1967) and those results in the tradition of the heuristics-and-biases program.

According to the second hypothesis, the public’s probabilistic numeracy will also depend on the level of

education (education hypothesis). This hypothesis is derived from Stanovich and West’s (2000)

investigations of individual differences in reasoning and the finding that, across numerous probabilistic

reasoning tasks (investigated within the heuristics-and-biases research program), there is a positive

association between performance in the tasks and cognitive ability, as measured in terms of SAT scores. They

explained this association by the assumption of two reasoning systems, one associative and the other

rule-based, and that students with higher cognitive ability are more likely to give rule-based responses. Rather

than using SAT scores (SATs do not exist in Switzerland), we use the level of education as a proxy

for cognitive ability. We also investigate whether the association between performance in the reasoning tasks

and cognitive ability is equally robust across theory and real-world tasks, respectively. If not, this would

suggest that the different kinds of tasks indeed elicit different cognitive processes, which, in turn, could have

triggered the discrepant findings in the traditions of Peterson and Beach (1967) and heuristics-and-biases.

The third hypothesis specifies another factor that may underlie citizens’ probabilistic numeracy (exposure

hypothesis). Not only early probabilists such as Pascal, Fermat, and Huygens took advantage of games of

chance to develop probability theory: Partaking in games of chance may also provide Jane or Joe Average

with a learning vehicle with which to test their intuitions about chance. If so, it is reasonable to expect that

those people with more exposure to games of chance have had more opportunity to sharpen their intuitions

about chance and probabilities.

METHODS

One thousand respondents participated in this study. A random-quota method according to region (75.6%

German speakers, 24.4% French speakers; 68.2% participants from urbanized vs. 31.8% from rural areas),

sex (49.4% men, 50.6% women), age (15–29 years: 23.8%; 30–49 years: 41.1%, and 50–74 years: 35.2%),

and household size (1–2 people: 43.6%; 3–4: 40.4%; and 5 and more people: 16%) was used to proportionally

represent the Swiss population (over age 14), based on the census in 2000 (Swiss Federal Office of Statistics).

To represent the basis of these census figures, samples were weighted by the quota method using a weighting

variable (values ranged from 0.64 to 1.74). Therefore the data can result in rounding discrepancies. A survey

research firm, the GfK group, experienced in telephone surveys performed the interviews (in September

2004). Respondents were randomly selected by using computer-generated telephone numbers, and up to

50 attempts were made to contact a telephone number (see Zangerl, Munsch, Meyer, & Margraf, 2008).

The interview was designed to investigate in a representative sample of Swiss citizens (a) their

probabilistic numeracy, (b) their exposure to games of chance, and (c) the prevalence of pathological

gambling. To probe pathological gambling, the standardized revised South Oaks Gambling Screen (SOGS-R;

Lesieur & Blume, 1993), adapted for a telephone survey, was administered to those respondents who reported

to have gambled in the last year. In addition, all respondents were asked to report their experience with each of

eleven ‘‘game of chance’’ activities (Table 2), and they responded to the six tasks measuring probabilistic

numeracy (Table 1). Due to a mistake in administering the French version of the Linda and the

maternity-ward tasks, we only include the 756 German-speaking respondents for those two tasks.
RESULTS

Overall, answers to the SOGS-R indicated that 1.6% respondents in our sample are probable pathological

gamblers, and 1.8% are potential pathological gamblers. The prevalence rate of probable pathological
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Table 2. Exposure to games of chance: item that probed citizens’ direct involvement (item 1) with games of chance

Items Options/response categories Results

1. Have you ever participated
(in whichever form) in one
of the following gambling
activities?

Playing lotto/toto, games in casino,
cards for money, slot machine, the
stock market or option market,
bingo for money, ability games for
money, dice for money; buying lottery
scratch tickets; betting on sports, racing

26% (256) never participated during
life-time; 74% (744) participated
in at least one gambling activity during
life time
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gambling is about double that found in an earlier Swiss epidemiological study (Bondolfi, Osiek, & Ferrero,

2000). This sample of gamblers does not differ in education or in probabilistic numeracy from the remaining

sample nor are lower levels of education a risk factor for pathological gambling (Zangerl et al., 2008). We will

not elaborate further on the epidemiological and clinical aspects (see Zangerl et al.) but turn to citizens’

probabilistic numeracy and the three hypothesized determinants.
The impact of task
Does citizens’ probabilistic numeracy hinge on the kind of task? Clearly it does. Table 3 shows the proportion

of correct responses averaged across levels of education for the four theory tasks. Proportion correct ranges

between 45.5% (coin problem) and 79.7% (bag-and-ball problem), with an average score of 64.7%

(German-speaking respondents: 65.8%; French-speaking respondents: 61.3%). In contrast, in the two

real-world tasks – Linda and maternity ward – merely 12.9% and 28.8% of respondents, respectively, arrived

at an answer consistent with the rule (Table 4). In other words, citizens’ probabilistic numeracy, or lack

thereof, depends on the kind of tasks used to probe their competence. Moreover, the level in the theory tasks is

relatively high, compared with chance performance (33%).

To test the robustness of this task disparity in probabilistic numeracy we investigated another sample of

respondents, consisting of 328 first-year psychology students (45 male and 283 female students; 134 from the

University of Geneva and 194 from the University of Basle). They responded to the same six probabilistic

reasoning tasks used in the telephone interview. The proportions correct in the four theory tasks were 94%,

79%, 95%, and 92%, respectively, and thus, on average, slightly higher than in the high-education group of
Table 3. Percentage of correct responses in the four ‘‘theory problems’’ (level of chance performance per task: 33%;
N¼ 1000 respondents)

Level of education/tasks
Bag

and ball Coin Die DieC

Average proportion
of correct responses

Proportion of
‘‘perfect score’’a

Low (Swiss elementary school,
secondary school, junior high school);
N¼ 157

65.6 44.6 52.9 46.5 52.4 19.1

Medium (vocational school, high school);
N¼ 606

79.5 41.7 68.9 59.2 62.3 21.9

High (college, university); N¼ 237 89.6 55.7 91.1 79.2 78.9 44.1
Average proportion of correct responses 79.7 45.5 71.7 62.0 64.7 26.7

Note: In order to not overestimate the public’s level of numeracy, we treated ‘‘I don’t know’’ and missing responses as incorrect responses
(the combined percentage of ‘‘I don’t know’’ and missing responses ranged between 0.8% and 12.1% across cells).
aA person has a ‘‘perfect score’’ if her/his responses are all correct.
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Table 4. Percentage of correct responses in the two ‘‘real-world problems’’ (level of chance performance per task: 33%;
N¼ 756 German-speaking respondents)

Level of education/tasks Lindaa
Maternity

ward
Average proportion
of correct responses

Proportion of
‘‘perfect score’’b

Low (Swiss elementary school,
secondary school, junior high school); N¼ 124

14.5 38.4 26.5 7.3

Medium (vocational school, high school); N¼ 461 11.9 29.1 20.5 2.0
High (college, university); N¼ 171 14.0 21.1 17.6 3.5
Average proportion correct responsesa 12.9 28.8 20.9 3.2

Note: In order to not overestimate the public’s level of numeracy, ‘‘I don’t know’’ and missing responses were classified as incorrect
responses (the combined percentage of ‘‘I don’t know’’ and missing responses ranged between 1.8% and 16.4% across cells).
aSee text for the controversy over whether people violating the conjunction rule have committed a cognitive illusion.
bA person has a ‘‘perfect score’’ if her/his responses are all correct.
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our representative sample (90% vs. 78.9%).6 In contrast, the performance in the Linda and maternity-ward

tasks was 13% and 12%, respectively. Thus, the disparity between the two types of tasks was even larger in

the student than in the representative citizen sample (77% vs. 43.8% points). We return to possible

explanations of this disparity in the discussion.
The impact of education
Does people’s probabilistic numeracy hinge on their level of education? Table 3 shows the number of correct

responses for the four theory tasks, separately for respondents’ highest level of education attained. Except in

the coin task, probabilistic numeracy consistently increases with education, supporting the education

hypothesis. In the high-education group, on average, 78.9% of all responses were correct, compared with a

still much better than chance performance of 52.4% average score in the low-education group. Table 3 also

shows how many respondents at each level of education answered all four theory tasks correctly. In the

high-education group 44.1% of respondents achieved a perfect score, relative to 19.1% in the low-education

group. An analysis of variance showed levels of education for the four theory tasks to be significant

(F(2,1016)¼ 50.609, p< .001): with a higher level of education the number of correct responses increased

linearly (linear contrast p< .001).

Results look drastically different in the two real-world tasks, however. Averaged across the four theory

tasks, respondents with a high level of education scored 26.5% points more correct responses than those with

a low level of education (Table 3). Averaged across the two real-world tasks, this education performance edge

disappeared and was, in fact, even slightly reversed (due to the relatively high score of the low-education

group in the maternity-ward problem) (Table 4). The negligible impact of education is also manifest in the

‘‘perfect score’’: merely 7.3% (low), 2.0% (medium), and 3.5% (high education) of respondents arrived at

correct answers in both tasks, respectively. Relatedly, among those highly educated respondents who

conformed to the multiplication rule in the coin task, merely 10% (17 out of 171) conformed to the related

conjunction rule in the Linda task. The lack of a positive effect of education in the real-world tasks appears

inconsistent with Stanovich and West’s (1998) findings, an issue to which we return in the discussion.
6This difference is likely to be due to the fact that the first-year psychology students were in the middle of attending Statistics 101,
whereas for most people in the high-education group academic training dated back numerous years (average age¼ 44 years).
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Table 5. Sex differences in percentage correct as a function of tasks and levels of education, respectively (positive
differences indicate better male than female performance)

Tasks

Level of education

Low Medium High

Bag and ball 29.9 5.5 14.0
Coin �9.9 4.9 10.4
Die 14.9 13.7 3.5
DieC 13.3 13.3 8.7
Linda 13.2 �0.8 �2.1
Maternity ward �2.3 3.9 �15.1

Average proportion correct responses 9.9 6.8 3.2
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The impact of exposure to games of chance
To investigate the extent to which exposure to games of chance affects probabilistic numeracy, we probed

citizens’ respective exposure (Table 2). Nearly three fourths (744 out of 1000) reported to have participated in

at least one gambling activity and 26% reported never to have gambled at all. To find out whether people with

exposure are more likely to give correct answers, we focus on the four theory problems. (We omit the two-real

world problems for this analysis because there is little variance between people on them, making it difficult to

find any association.) Consistent with the exposure hypothesis, we found that people with no exposure solved,

on average, 2.4 problems of the four theory problems, whereas people with exposure solved 2.6

(t(998)¼�2.513; p¼ .006). The effect size of this difference is small (d¼ 0.18; Rosenthal & Rosnow, 1991).

Finally, we also examined another variable that has been reported to be associated with mathematical

quantitative skills in general, namely, sex (for a excellent review of the findings and candidate explanations;

see Halpern, Benbow, Geary, Gur, Hyde, & Gernsbacher, 2007). Table 5 reports sex differences across all six

tasks times three education levels. In 13 of the 18 differences and across levels of education, males performed

better than females, although sometimes merely by a small margin (Binomial test: p¼ .03).
DISCUSSION

Our investigation of a representative sample of Swiss citizens showed that they have some basic knowledge of

simple probability concepts. In problems that represent pure applications of probability theory, such as

determining the probability of drawing a red ball from a bag with 10 red and 10 blue balls, 80% of all

responses were correct. One should, however, not overestimate the level of competence. Consider the coin

task that requires the multiplication of two independent probabilities and is thus the most complex of the

theory tasks. It resulted in 46% correct responses (Table 3; 79% in the student sample).

The level of performance was quite different in the two tasks that represented approximations of

real-world situations. Merely 21% of responses conformed to the probability rules and a tiny proportion of

3.2 respondents gave correct responses to both tasks (Table 4). There are at least three explanations for this

striking disparity in probabilistic numeracy that we discuss next.
Real-world tasks are designed to elicit errors
One possible reason for the disparity in probabilistic numeracy is that the tasks used in the

heuristics-and-biases program, unlike the theory tasks, were designed with the explicit goal of triggering

errors in probabilistic reasoning. Just as vision researchers construct situations in which the functioning of the

visual system leads to incorrect inferences about the world (e.g., about line lengths in the Müller-Lyer
Copyright # 2008 John Wiley & Sons, Ltd. Journal of Behavioral Decision Making, 21, 457–470 (2008)

DOI: 10.1002/bdm



466 Journal of Behavioral Decision Making
illusion), researchers in the heuristics-and-biases program construct problems such that reasoning by

cognitive heuristics leads to violations of probability theory. In their work on violations of the conjunction

rule, Tversky and Kahneman (1983) mentioned this design feature explicitly: ‘‘Our problems, of course, were

constructed to elicit conjunction errors’’ (p. 311).

If this error propensity in real-world tasks were the reason for the disparity in probabilistic numeracy, it

would have interesting implications for the debate on how dysfunctional people’s probabilistic reasoning is.

The conclusions drawn from the study of visual illusions often differ sharply from those drawn by proponents

of the heuristics-and-biases program. Vision scientists do not conclude from the robustness of the

Müller-Lyer illusion, for instance, that people are generally poor at inferring object lengths. In contrast,

sweeping conclusions have been drawn about people’s ability to reason probabilistically, both by researchers

within and outside of the heuristics-and-biases program. Slovic, Fischhoff, and Lichtenstein (1976), for

instance, concluded: ‘‘It appears that people lack the correct programs for many important judgmental tasks

. . . it may be argued that we have not had the opportunity to evolve an intellect capable of dealing

conceptually with uncertainty’’ (p. 174). The conjunction fallacy impelled paleontologist Stephen Jay Gould

(1992, p. 469) to speculate: ‘‘Our minds are not built (for whatever reason) to work by the rules of

probability.’’ It is worth pointing out that Tversky and Kahneman (1983) cautioned that because their

problems were constructed to elicit violations of the conjunction rule, ‘‘they do not provide an unbiased

estimate of the prevalence of these errors’’ (p. 311).

We suggest that studies involving representative samples and a wide range of tasks (ideally, a

representative sample of tasks gauging probabilistic numeracy; Dhami, Hertwig, & Hoffrage, 2004) promise

to provide us with a less biased estimate of the public’s knowledge of basic rules of probability.
Real-world tasks may have more than one ‘‘correct’’ solution
Another possible reason for the disparity in the public’s probabilistic numeracy relates to the issue we

discussed earlier: the debate regarding the normative status of violations of the conjunction rule in the Linda

task. One group of researchers has argued that these violations are defensible; in fact, that they represent

intelligent and socially rational inferences (e.g., Hertwig & Gigerenzer, 1999). Another group of researchers

has interpreted them as genuine reasoning errors (e.g., Tentori et al., 2004). The theory problems, pure

application of probability theory, rendered it crystal-clear that these tasks are about probabilistic reasoning. In

the Linda task, however, participants have to infer what the experimenter means by ‘‘probable,’’ a term that in

natural language has multiple, related meanings, most of which cannot be reduced to mathematical

probability (e.g. ‘‘plausible’’ or ‘‘conceivable’’). In light of this and other ambiguities in the Linda task, it is

also noteworthy that 135 of the 328 (41%) university students selected the ‘‘don’t know’’ option in the Linda

task, whereas in all other tasks this option was chosen by fewer than 10% of student respondents. One

interpretation of this high number of ‘‘don’t know’’ responses is that many people are reluctant or even

cautious to generalize their knowledge of a basic rule of probability to the Linda task.

One further way to test the ambiguity explanation is to convert ambiguous real-world tasks into less

ambiguous theory tasks, and study whether accordance with the assumed norm increases. For the Linda task,

Tversky and Kahneman (1983) did so by omitting Linda’s personality and thus turning the task into a pure

application of the conjunction rule. As a consequence ‘‘almost all respondents obeyed the conjunction rule’’

(p. 305). They also studied a task that admittedly could be seen as a theory task, namely, the die task (Tversky

& Kahneman, 1983, p. 303), in which people judged the likelihood of three sequences of throws of a

two-colored die. The majority of respondents (63%) violated the conjunction rule. The concern, however, has

been raised that this task also suffers from ambiguities that participants need to resolve, and which may

account for the violations of the conjunction rule (Macdonald, 1986).

Admittedly, semantic and pragmatic ambiguity can explain the discrepancy in performance between the

theory tasks and the Linda task in our study, but it leaves the low performance in the maternity-ward task
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unexplained. One possible interpretation is that the intuitive repertoire of people’s probabilistic reasoning

competence does not include sampling distribution. This in fact is the conclusion of Sedlmeier and

Gigerenzer (1997), who argue that people are endowed with the valid intuition that estimates and predictions

based on larger samples tend to be more accurate. In contrast, people’s intuition does not seem to extend to

sampling distributions that are hard to grasp. They suggested that one reason is that ‘‘frequency distributions

are involved in everyday problems of estimation and prediction, whereas the rule that the variability of a

sampling distribution decreases with increasing sample size seems to have only few applications in ordinary

life’’ (p. 46).
Real-world tasks may be more difficult
Still another possible explanation for the disparity in probabilistic numeracy is that the Linda and the

maternity-ward problems may simply be more difficult than the four theory problems. This is likely to be the

case for the maternity-ward problem that involves two sampling distributions and requires a judgment of their

respective variance – not a trivial task (Sedlmeier & Gigerenzer, 1997). The Linda task, however, is not more

complicated than the corresponding coin task. The coin task requires determining the probabilities first and

then multiplying them; the Linda task requires deducing that the probability of each of two single events

cannot exceed the probability of their conjunction. One may object to our conclusion, as one reviewer did,

that the Linda task involves uncertain constituent probabilities, whereas those of the coin tasks are certain

(i.e., 50% of getting heads vs. tails). Therefore, the Linda task can be deemed to be more difficult than the coin

task, because combining uncertain probabilities is more demanding than combining certain probabilities.

This objection assumes that the Linda task requires first deriving estimates of the uncertain constituent

probabilities and then calculating the conjoint probability. This, however, was not required of our

respondents, who were merely asked to choose which of two statements is more probable (see Table 1). All

that is required is a sense of the two statements’ relative likelihoods.

To conclude, our findings suggest an important addition to future investigations that probe citizens’

probabilistic numeracy. The ability to reason statistically may not only be a function of education, and how

uncertain information is represented (in terms of probability or frequencies; see the debate between

Kahneman & Tversky, 1996, and Gigerenzer, 1996) but also whether a task represents a pure application of

probability theory or an approximation of real-world situations. Consequently, one may investigate each

statistical reasoning task using both representations in parallel, thus finding out how robust the performance

gap between both kinds of tasks is and determining which of the possible causes we have discussed accounts

for the gap. In addition, to reach an unbiased estimate of the public’s probabilistic numeracy requires a

representative sample of tasks.
Determinants of probabilistic numeracy
Beyond the nature of the task, we corroborated another determinant of citizens’ probabilistic numeracy:

education. People with a college or university degree are more likely to respond correctly to the theory

problems (Table 3). The beneficial impact of education, however, disappeared in the Linda and

maternity-ward problems (Table 4). The latter finding seems inconsistent with Stanovich and West’s (1998)

finding: in a study involving students, they found that mean SAT score of those who violated the conjunction

rule in the Linda problem was 82 points lower than of respondents whose answers conformed to the rule.

Although within each of the three education brackets in our representative sample, a positive association

between cognitive ability and performance may exist, we did not find such a positive link across levels of

education (Table 4). Finally, we did find a link, though small in terms of effect size, between exposure to

games of chance and probabilistic numeracy. Those with exposure were more likely to reason appropriately

in the theory problems, and independent of education, males appeared to perform slightly better than females.
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CONCLUSION

At the beginning of the twentieth century, H. G. Wells is reported to have predicted that statistical thinking

will one day be as necessary for efficient citizenship as the ability to read and write. One can safely say that

this day has arrived. Every day, citizens are faced with a baffling array of percentages and probabilities – from

probabilities of precipitation (Gigerenzer, Hertwig, van den Broek, Fasolo, & Katsikopoulos, 2005) and

probabilities of side effects of medication to the risks of household accidents (Hertwig, Pachur, &

Kurzenhäuser, 2005). To find out more about the degree of the citizenship’s probabilistic numeracy and its

determinants, we need to indeed investigate the public. We took a step in this direction, and found that

education, exposure to games of chance, and sex are associated with probabilistic numeracy. In addition, our

findings point to the critical role of the tasks designed to probe probabilistic numeracy.
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