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Abstract. Estimating quantities is an important everyday task. We an-
alyzed the performance of various estimation strategies in ninety-nine
real-world environments drawn from various domains. In an extensive
simulation study, we compared two classes of strategies: one included
machine learning algorithms such as general regression neural networks
and classification and regression trees, the other two psychologically plau-
sible and computationally much simpler heuristics (QEst and Zig-QEst).
We report the strategies’ ability to generalize from training sets to new
data and explore the ecological rationality of their use; that is, how
well they perform as a function of the statistical structure of the envi-
ronment. While the machine learning algorithms outperform the heuris-
tics when fitting data, Zig-QEst is competitive when making predictions
out-of-sample.
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1 Introduction

Being able to accurately estimate quantities can be of utmost importance — for
instance, for a company that needs to estimate the demand for a new product,
or for a government that wants to quantify the effects of legislative changes. An
abundance of estimation algorithms have been proposed, some as prescriptive
strategies that have been developed to minimize prediction errors, and some as
descriptive strategies that have been developed as models of human estimates.
Estimation strategies differ in computational complexity. On the one hand,
there are sub-symbolic strategies such as artificial neural nets that require heavy
computation. On the other hand, there are much simpler symbolic strategies that
could eventually even be executed solely on paper, such as estimation heuristics
that have been proposed in the context of the simple heuristics program [T2].
This program posits that human rationality is bounded, but that cognitive lim-
itations do not necessarily have to be a disadvantage. To the extent that simple
heuristics are able to exploit the structure of information in the environment in
which humans have to function, they can still reach a high level of performance.
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The study of this match between the architecture of decision strategies and en-
vironmental structures is central to the study of ecological rationality [3]. In this
contribution, two heuristics that have been developed within the simple heuris-
tics framework are pitted against a selection of machine learning algorithms to
test for comparative strengths and weaknesses across a range of empirical (data)
environments with binary predictor variables (henceforth: cues) and a continuous
criterion.

2 Algorithms in the Competition

2.1 Simple Estimation Heuristics

The two heuristics considered here are based on the QuickEst-heuristic, which
exploits the fact that in most environments the distribution of criterion val-
ues follows a power law [45]. The first variant (QEst), requires the following
preparatory steps:

1. For each of the k binary cues b; with possible values 0 and 1, calculate s ;
and sg,; as the average criterion value for all cases o in the learning set (L)
with b;(0) = 1 and b;(0) = 0, respectively.

2. Let s = max(s1,, 50) and s; = min(s1,, s0.;)- Recode the cue values such
that sj’ = 51,

3. Order the k cues in ascending order of s;, so that for (ci, ... ¢):
81 <85 < ... <5

QEst can be represented as a minimal binary-tree (see Fig. [l left side): the tree
has k levels following the root node and one exit node on each level following
the root node, except for the last level, which has two exit nodes. The cues
are assigned in ascending order s; to the k decision nodes beginning with the
root node. To create an estimate for a case o, cues are looked up in the order
determined above, and once a negative cue value ¢; is encountered, an exit node
is reached and s; is returned as the estimate. Only if no single negative cue
value is found, the mean for all cases in L that do not have a single negative cue
value will be predicted.

The only difference between QEst and the original QuickEst is that QuickEst
rounds the estimates to the next spontaneous number [4], as it has been designed
to model human inferences (and humans tend to generate "round” estimates).
Because in an environment in which the criterion distribution follows a power
law there are many cases with small criterion values (and these cases will tend
to have negative cue values), QEst reduces information search by design and will
likely be able to return estimates after inspecting only very few cues. Note that
neither of the two variants has free parameters.

The second variant that we introduce and test in this paper, the Zig-QEst-
heuristic (2Q, see Fig. [l right side), differs from QuickEst on still another di-
mension: It sorts out the extreme cases on both sides of the distribution first.
Cues are put into sequence by choosing the cue with minimum s~ and maximum
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Fig. 1. Structure of the QEst-heuristic (left) and the Zig-QEst-heuristic (right)

s, alternatingly (Fig. [ right side, shows one of the two possible structures).
An exit node associated with an s~ is reached when the corresponding cue has
a negative value and an exit node associated with s, when the corresponding
cue has a positive value. The first exit node is placed based on the maximum
absolute deviation from the mean max(|s;j — |, |7 — s; |) across all cues. As
a benchmark, the prediction of the mean observed in L was added as a third
heuristic. The heuristics were implemented in Borland Delphi 6.0.

2.2 Machine Learning Algorithms

The following strategies were chosen from the wide spectrum of algorithms and
heuristics that have been proposed in statistics and machine learning as solu-
tions to estimation tasks that involve generalization to unknown quantities. The
general regression neural network (GRN) [6] earned the reputation of being able
to perform well even for small learning sets (in contrast to, for example, back-
propagation networks). This feature is particularly relevant for the present study
that uses real-world datasets, which typically do not contain huge numbers of
cases and cues. GRN’s topology consists of a layer of input units that distribute
information to a second radial basis layer, and a final linear layer connected to
output units. The radial basis layer consists of pattern nodes that represent the
exemplars found in L. Their activation is nonlinearly related to the distance of
new cases to these exemplars, and a new prediction is essentially constructed as
a blending of values known for exemplars with similar input features. In addi-
tion, GRN only has one free parameter, the smoothness parameter o, which is
set to 1.0 in the simulation.

As a second representative of data-mining algorithms, we picked the method
of Classification and Regression Trees (CRT) [7]. CRT has been successfully ap-
plied to many estimation tasks in pattern classification and estimation. Unlike
the first algorithm, CRT does not belong to the class of exemplar-based models.
Any instance of a CRT model can be easily translated into rule lists, so that
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the application of CRT can be considered as rule-based decision making. Trees
are constructed by a partitioning algorithm that recursively separates the set of
cases in L into subsets based on single cue values while maximizing their distinc-
tiveness: A common splitting criterion for estimation tasks is the minimization
of the predicted squared error, when the mean of cases in the subsets is used as
an estimate. Subsets that fall below a minimum size are not split any further.
The implemented CRT algorithm has one free parameter: the minimum size for
parent nodes that are considered for splits, which is set to 5 in the simulation.
We also included OLS multiple regression (LR) in this category, as it can be
considered a standard workhorse in statistical analysis that comes with a proven
track record of usefulness in estimation tasks [§]. Finally, as the cues in the task
are binary, we added estimation trees (EstT) to the set. EstT make estimations
based on a precise match of new cases with known cases: For any profile of cue
values that has been observed before, the mean of criterion values for known
cases with the exact cue profile is used as an estimate, otherwise the mean of all
known cases is predicted. These algorithms were all implemented in Matlab 7.9.

3 Simulation Setup

3.1 Environments

The performance of the estimation heuristics and strategies mentioned above
has been tested in ninety-nine datasets from various data repositories, on-line
data collections, and textbook materials [TOTOTTIT2T3ITATSTOTATIITINZ0].
The datasets were chosen from a diverse range of fields, such as economics, com-
puter science, sports, medicine, social sciences, engineering, and biology. The
selection of datasets was completed prior to the first simulation run so that it
could not have been influenced by the desirability of results. Continuous predic-
tor variables were binarized by using the mean as threshold. On average, there
are 292.2 cases (Range: 11-3450) and 7.4 cues (Range: 2-22) in each dataset.

3.2 Accuracy Criterion

Because the criteria of the ninety-nine environments differed dramatically with
respect to their scales, we had to standardize the performance of the algorithms
before we could aggregate across environments. Specifically, the performance (A)
of a given strategy s in a given data environment d was standardized as

E(S) - Et

A(s) =1- E._E,’

(1)

where E(s) represents the MSE for the algorithm’s predictions:

Bls)= > (o, 5) — ylo0)* 2)
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FE; is the fitting MSE performance of the estimation tree in the full dataset,
that is, with a learning set that consisted of all cases. If U(x) is the subset of
cases in L with cue values identical to those of case x, then the prediction of the
estimation tree is the mean of criterion values in this subset.

E, is the lower bound for E(s), if deterministic predictions have to be made for
the full dataset based on the cue values, as the mean minimizes MSE for all cue
equivalence classes. As the upper bound for the prediction error, in contrast, we
take the variance of criterion values in the full dataset (E,, = 0*(y)), because this
variance is equivalent to the minimal MSE of a model that completely disregards
cue information. The criterion A(s) is a linear transformation of F(s) that maps
any MSE between these two extremes to the interval [0; 1], such that lower MSEs
correspond to higher values on A(s). There may be subsets of the full dataset
for which A(s) > 1, and ill-fitted models can generate values below 0.

3.3 Learning Conditions

Fitting and prediction accuracy were measured for each strategy in every envi-
ronment under two conditions: Algorithms were trained and fitted to a learning
set of either 50% or 75% of randomly chosen cases from the full dataset and
predicted the criterion values in the hold-out set that consisted of the remaining
50% or 25% of the cases in the datasets. All seven algorithms were tested on the
same randomly generated subsets, and there were 1000 trials for each combina-
tion of dataset, algorithm and learning set size (for a total of 1,386,000 fitting
and 1,386,000 prediction accuracy results).

4 Simulation Results

4.1 Fitting and Prediction

The results, averaged across the nintey-nine datasets, are presented in Fig. 2] on
the left side for fitting, and on the right side for prediction. When fitting known
data, the winners of the competition are the machine learning strategies: The
best performing strategy is EstT, which is optimally suited to fit data with binary
cues (the average accuracy is larger than 1, as it is easier for estimation trees
to fit smaller samples). Not far behind in the race are CRT and GRN, followed
by LR. In contrast, the two simple heuristics perform much worse, about half
way between the machine learning strategies and the mean model as the lower
benchmark. As expected, fitting results for the 50% condition are slightly better
than for the 75% condition, as it is easier to fit a smaller number of cases with
the same number of parameters.

For the prediction task the results are markedly different. First, and as ex-
pected, each algorithm performs worse than in fitting. Second, and as expected,
results for the 75% condition are better, because larger learning sets yield bet-
ter parameter estimates. Third, and more interestingly: the estimation tree and
CRT are no longer competitive. In the 50% condition, the best performance is
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Fig. 2. Average Accuracy-Score (A) for the fitting and prediction of strategies across
the ninety-nine data sets: the bar colors represent the learning condition (the size of
the learning sets)

reached by GRN and ZQ and in the 75% condition the winner is LR. Both the
complex GRN and the simple ZQ-heuristic perform on similar levels, while QEst
fails to make good predictions. The difference in accuracy loss between fitting
and prediction clearly signals that the complex models over-fit the data. Finally,
the difference in performance of LR between the 50% and 75% condition under-

scores the importance of large sample sizes for generalizable parameter estimates
in LR-models.

4.2 Ecological Rationality

The number of datasets used in this study allows for a more detailed analysis
of performance differences between strategies across environments, which can be
valuable from both a descriptive and prescriptive point of view. In this paper,
we will restrict ourselves to report results of a comparison between the most
complex algorithm and one of the simple heuristics: GRN and ZQ. Figure [
shows the difference in predictive accuracy in the 50% condition across datasets,
ordered by difference.

Although both algorithms exhibit a similar average prediction accuracy, their
relative performance varies across environments. The differences between envi-
ronments that favor one of the two are not obvious, but some correlation results
may shed some light on their nature: the difference in favor of GRN is correlated
positively with the number of cases in the datasets (r=.32, p=.001) and nega-
tively with the number of cues (r=-.24, p=.016). The performance of both strate-
gies is positively correlated with the number of cases and negatively correlated
with the number of cues. This pattern suggests that GRN can reap larger bene-
fits than ZQ from bigger learning sets and also from a reduction in the number
of variables. Further, while the average point-biserial correlation between cues
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Fig. 3. Predictive Accuracy for GRN and Z(Q for each of the ninety-nine data sets
ordered by decreasing A(A) = A(GRN) — A(ZQ). The length of the vertical lines
corresponds to |A(A)|

and criterion in the full dataset is positively correlated with the performance of
both algorithms, it shows a positive correlation with the difference between the
algorithms (r=.292, p=.003).

5 Discussion

The results of the horse-race simulation clearly demonstrate that predictive ac-
curacy is not necessarily linked to the algorithmic complexity of the strategies. In
fact, ZQ, a simple non-compensatory heuristic, which is a plausible candidate for
modeling estimation by boundedly rational humans, compared favorably with
the machine learning algorithms when the performance across ninety-nine real-
world datasets was assessed in cross-validation. The ecological analysis further
suggests that the heuristics are less prone to over-fitting, as they suffer less from
a decrease in sample size and can cope better with a large number of variables
than the machine learning algorithms. The ZQ heuristic drastically outperformed
the QEst heuristic and should be more vigorously studied in future research.

These results are in line with previous simulation results for non-compensatory,
lexicographic heuristics in pair-comparison [21] and classification [22] tasks. This
study also supports the claim that the study of strategies (here, strategies for
estimation) cannot be separated from the study of environments in which these
strategies are applied [23].
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