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Abstract

Much of the complexity of regulatory networks derives from the necessity to integrate multiple signals and to avoid malfunction due
to cross-talk or harmful perturbations. Hence, one may expect that the input-output behavior of larger networks is not necessarily
more complex than that of smaller network motifs which suggests that both can, under certain conditions, be described by similar
equations. In this review, we illustrate this approach by discussing the similarities that exist in the steady state descriptions of a
simple bimolecular reaction, covalent modification cycles and bacterial two-component systems. Interestingly, in all three systems
fundamental input-output characteristics such as thresholds, ultrasensitivity or concentration robustness are described by structurally
similar equations. Depending on the system the meaning of the parameters can differ ranging from protein concentrations and
affinity constants to complex parameter combinations which allows for a quantitative understanding of signal integration in these

systems. We argue that this approach may also be extended to larger regulatory networks.
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1. Introduction

Biological networks are complex — not just by the number
of their components, but also by the number and specificity of
their interactions. Despite increasing knowledge of the molec-
ular keyplayers involved in specific regulatory systems and sig-
naling pathways simulating larger networks does not necessar-
ily lead to deeper insights. It has thus become a useful strategy
to analyze smaller recurring network structures called network
motifs. Since the seminal work of Milo et al. (Milo et al., 2002),
which originally focused on gene regulatory networks, the sys-
tematic analysis of network motifs has led to an increasing
list of circuits that may generate specific input-output behavior
such as ultrasensitivity and thresholds (Goldbeter and Koshland
Jr., 1981; Gunawardena, 2005; Gomez-Uribe et al., 2007), fold-
change detection (Geontoro et al., 2009; Adler et al., 2014;
Olsman and Geontoro, 2016), concentration robustness (Shi-
nar et al., 2007, 2009; Shinar and Feinberg, 2010) or multista-
bility (Ferrell, Jr., 2002; Markevich et al., 2004; Tiwari et al.,
2011; Straube and Conradi, 2013). Using methods from control
theory network motifs were also analyzed from an engineering
perspective (Sauro and Kholodenko, 2004).

Despite this increasing knowledge it has remained challeng-
ing to predict the behavior of larger networks based on the
known behavior of its constituent parts (Rosenfeld et al., 2007).
Exceptions are multistationarity and certain forms of robust-
ness which can be detected based on algebraic properties of a
network (Craciun et al., 2006; Conradi et al., 2007; Shinar and
Feinberg, 2010; Dexter et al., 2015; Sontag, 2017), i.e. without
detailed knowledge of reaction rates and parameters. However,
while these methods can be used to decide whether a given sys-
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tem has a certain property they often do not say much about the
parameter range or the biological conditions under which a cer-
tain behavior occurs. Obtaining this type of information typi-
cally requires more detailed analysis of the governing equations
which will be the strategy advocated in this review.

To this end, we shall focus on mass-action networks with
at most bimolecular interactions. Starting with the most sim-
ple of such systems, the receptor-ligand binding motif, we will
stepwise extend the analysis to more complex network motifs.
First, we show how thresholds and ultrasensitivity can arise
through cooperativity in ligand binding and substrate compe-
tition. Subsequently, we consider covalent modification cycles
which represent the elementary building blocks for many eu-
karyotic signaling networks such as protein kinase cascades
or multisite phosphorylation systems, which are reviewed else-
where (Heinrich et al., 2002; Salazar and Hofer, 2009; Ferrell
Jr. and Ha, 2014). Finally, we discuss regulatory properties of
two-component systems which share some similarity with co-
valent modification cycles, but occur mostly in bacteria (Stock
et al., 2000). Again, we focus on the most simple regulatory
structures leaving out more complicated architectures such as
phosphorelay systems (Tiwari et al., 2011).

A major goal of this review is to highlight structural similari-
ties that exist between the steady state equations characterizing
the input-output behavior of different network motifs. Despite
the fact that the transient dynamics will, in general, be different
for different systems it turns out that in certain limiting regimes
the steady state behavior of the network motifs considered in
this review can be characterized by one of the following three
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types of (quadratic) equations
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where x denotes the concentration for the quantity of interest
while A, B, C, g and «a denote single parameters or parameter
combinations depending on the system. The above three equa-
tions arise in the analysis of receptor-ligand binding (Egs. 1 and
2) and covalent modification cycles (Eq. 3) which may, thus, be
regarded as ’elementary’ network motifs. While the focus of
this review lies on small networks and network motifs the pre-
sented methods may also be applicable to larger networks.

2. Receptor-Ligand Binding

2.1. The LR-type equation
The reversible binding of a ligand to a receptor is described
by the reaction (Fig. 1A)
ky
L+RZLR
ky
where the dissociation constant K; = k /k}; represents a mea-

sure for the binding affinity of the ligand. Assuming that the
concentrations of ligand and receptor are contant, i.e.

(L] +[LR] = Lt @
[R] + [LR] = Ry

the dynamics of the receptor-ligand complex is described by the
ordinary differential equation (ODE)

d[LR]
dt

where Ly and Ry denote the total concentrations of ligand and
receptor, respectively. Eq. (5) is one of the few nonlinear equa-
tions arising in mathematical biology that is exactly solvable
(Tzafriri, 2003). If, initially, the concentration of LR vanishes
its solution is given by

= ky (Lt — [LR]) (Ry — [LR]D) — k; [LR] ~ (5)

1 _ e—[/Ts
[LR](r) = [LR]_ Te—t/n (6)
[LR],
where
Lr+Rr+ K Ly +Rr + K,
(LR). = L \/( — oLk @

are the solutions of the steady state equation (d [LR] /dt = 0)
[LR) = (Ly + Ry + K;) [LR] + LyRy = 0, ®)

and
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denotes the time scale on which the stable steady state is
reached for + > 7, (cf. Eq. 6). Due to the constraint
0 < [LR] < min (L, Ry) the latter is given by [LR]_. As shown
below the quadratic equation (8) frequently arises in the analy-
sis of network motifs, so we denote it by LR-type equation.

It is instructive to analyze the expressions for the steady state
and the time scale 7, in the limits of low and high affinity. For
definiteness we consider the receptor concentration as fixed and
the ligand concentration as variable. In that case, the high-
affinity limit is defined by K; < Ry and the stimulus-response
curve can be approximated by (Straube, 2015)

K,
[LR] ~ Ly (1 - Rr—dLr) ’ Ly <Ry (10)
Ry (1- 24 Lr >R
T Lr—Rr ) ° T T

while the expression for 7, simplifies to (cf. subsection 6.1)
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In the low-affinity limit, defined by K; > Ry, the approxima-
tions read
LrR
[LR] ~ ————T (12)
Kd + LT + RT
1 K,

K. 13
k(;Kd+LT+RT ( )

Ts

Hence, in the high-affinity limit the receptor behaves as a stoi-
chiometric inhibitor since the concentration of the complex in-
creases in 1:1 stoichiometry with the ligand concentration un-
til saturation (Fig. 1B). In contrast, the time scale for reach-
ing the steady state 7, exhibits a non-monotonic dependence
on the ligand concentration with a maximum at Ly = Ry (Fig.
1D). The latter can be rationalized as follows: If there is a sur-
plus of either reaction partner (i.e. Ly > Ry or Ry > L) a
steady state is quickly reached because the probability for any
molecule of the low-abundant species to find a molecule from
the high-abundant species is large during the whole course of
the reaction in which the high-abundant species is rarely de-
pleted. The situation is different when ligands and receptors
are present in comparable amounts (i.e. Ly =~ Ry) because in
the high-affinity regime essentially all ligands will be bound to
receptors in steady state. Hence, as the reaction proceeds both
ligand and receptor pools are depleted simultaneously, thereby
lowering the reaction rate which increases the time scale for
reaching the steady state. In fact, from Eq. (9) one can show
that 7, ~ VK;/R7 when Ly = Ry (cf. Section 6.1). In contrast,
in the low-affinity regime [LR] increases hyperbolically with
the ligand concentration while the time scale for reaching the
steady state remains almost constant for Ly < Ry and decreases
monotonically for Ly > Ry (Fig. 1C and E).

2.2. Synthesis and degradation

It is an interesting question how changing the boundary con-
ditions affects the dynamic behavior of a system. In general,
changing boundary conditions may not only affect the transient
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Figure 1: (A) Receptor-ligand binding motif. (B)-(E) Stimulus-response curves
and time scales for reaching a new steady state in the strong and weak binding
limits. Solid lines represent the exact solutions in Eq. (7) (B,C) and Eq. (9)
(D,E) while the dashed lines denote the approximations in Eq. (10) (B), Eq.
(12) (C), Eq. (11) (D) and Eq. (13) (E). Parameters: k:; = 0.01/(nM - s),
k= k; - K4 where K; = 0.1nM (B,D) and K; = 100nM (C,E).

dynamics, but also the steady state behavior of a system. In the
case of receptor-ligand binding Buchler and Louis have shown
(Buchler and Louis, 2008) that going from a closed system with
mass-conservation to an open system with constitutive synthe-
sis for L and R

05 L 0%5R
and linear degradation of the form
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L—>0, R—>0, LR >0

leads again to a LR-type steady state equation for the receptor-
ligand complex that is given by

kep +ksp+ ks ks
[MF~474LiMM+j%ﬁ:Q (14)
d,LR d,LR

Note that Eq. (8) becomes identical with Eq. (14) through the
substitution
ks L ks R

Ly & —, Ry & —/—, Kd<—>L. (15)
ka 1R d,LR ka iR

Here, « = (kgrkar/karr)kp is defined in terms of the in vivo
dissociation constant kp = (k; + kd,LR) /k; which is always
larger than the in vitro dissociation constant K; = k /k;. For
fixed receptor synthesis rate k; g one may again define a high-
affinity (k < k,g) and a low-affinity regime (x > k;z), and
utilize the correspondence in Eq. (15) to derive approximate
expressions similar to those in Egs. (10) and (12).

2.3. The L-type equation

In many occasions the species of interest is the free form of
the ligand rather than the receptor-ligand complex. The steady
state equation for the free ligand can be obtained from that of
the complex by substituting the conservation relation (4) into
Eq. (8) which yields another type of quadratic equation

[L)* + (Rr + K4 — Lr) [L] = K4Lr = 0 (16)

that we shall denote by L-type equation. Using the approxima-
tions for [LR] and the conservation relation (4) one can read-
ily derive corresponding approximations for [L]. In the high-
affinity limit (K; < Ry) this yields

KyLr

s Ly <R

R 7 (17)
r—Rr+ 5% T > Ry

while the low-affinity approximation (K; > Ry) becomes

Ki+L
Ol N (18)
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From the expression in Eq. (17) we see that [L] exhibits thresh-
old behavior, i.e. below the threshold L7y = Rz it remains low
(O (K4/Rr)), and it increases linearly beyond the threshold.

This threshold-linear response behavior has been observed
in diverse systems. It occurs, for example, in the context of
molecular titration if the active form of a transcription factor is
sequestered by a repressor into an inactive complex (Buchler
and Louis, 2008) or if the translation of a mRNA is inhibited
through sequestration of the target mRNA by a small repres-
sor RNA (Levine et al., 2007). In the latter case Levine et al.
derived the following steady state equation (Fig.2A)

mr] ard —0, 1= BrBT
Br B k

which is structurally identical with the L-type equation (Eq.
16). Here, ag and ar denote the synthesis rates for repressor
and target mRNA whereas A = BrBr/k is related to the mRNA
turnover rates and the association rate (Fig. 2A). Similar as for
the case of receptor-ligand binding in the *high-affinity’ regime
A < ag the concentration of the target mRNA [m7] remains
low until a threshold is crossed beyond which the mRNA level
increases proportionally to the synthesis rate (Fig.2B).

[mr]* + (ag + A — ar) (19)

2.4. Approximation at the threshold

In the high-affinity regime the approximations listed in Eqgs.
(10), (11) and (17) become singular at the threshold (Ly = Ry)
because the leading order of the exact solution of the quadratic
equation becomes of O(\/E) (rather than O(g)) where ¢ =
K;/Rr < 1. To see this more explicitly we set Ly = Ry in
Eq. (8) and expand its solution as

2

HM=R+&— KRy + -2
T > di\T 4

=Rr(1- Ve+0(2)).
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Figure 2: Tunable threshold in gene regulation. (A) Model for the repression of
a target gene through complex formation between target mRNA and repressor
mRNA according to (Levine et al., 2007). (B) If the target-repressor interaction
is sufficiently strong (1 < ag) a sharp threshold develops for the onset of target
gene expression as a function of the synthesis rate. Solid lines were computed
from Eq. (16) with the replacement ([L], Lt,Rr, Kg) — (Br [mr],ar,ar, )
for ag = 1nM/s, Br = 0.1/min and A2 = 0.01,0.1, 1 (bottom to top). Red and
blue dashed lines were computed from Eqs. (17) and (18), respectively.

To reproduce this solution to leading order we modify the ap-
proximation in Eq. (10) as (cf. (Levine et al., 2007))

L+|1- —%
LR~ 4 "\ Kby ) Lr < Rr o0)
—K— Lr>R .
RT(l yprey o) R

Using the same procedure one may derive improved approxi-
mations for 75 (Eq. 11) and [L] (Eq. 17) as well as for many of
the approximations given in the remainder of this review.

2.5. Independent binding to a scaffold protein

Signal transduction often involves recruitment of signaling
molecules to a scaffold protein (Witzel et al., 2012) which one
may think of as kinases for definiteness (Fig. 3A). If binding of
each kinase to the scaffold occurs independently the probability
for the occurrence of a fully assembled complex consisting of
the scaffold and 7 kinases is given by

Pn (SK;...K,) = H?:]Pl (SK)

where p; (SK;) = [SK;] /St is the probability for binding of
a single kinase to the scaffold. In that case the concentra-
tion of the fully assembled complex can be computed from (cf.
(Borisov et al., 2005))

e, [SKi]

ISK: - Kl = =

2

where the concentration of a single scaffold-kinase complex is
determined by the LR-type equation (cf. Eq. 8)

[SKi1* — [SKi1 (St + Kir + Ka)) + S7Kir = 0. (22)

Here, S denotes the total concentration of the scaffold while
K;r and K, ; denote the total concentrations of the kinases and
their dissociation constants, respectively.

The approximate expressions derived for the solution of Eq.
(22) can now be used to construct explicit expressions for the
concentration of the fully assembled complex. To illustrate this
procedure we consider the case n = 3. If all three kinases are
of high affinity (so that K;; < K7 for i = 1,2, 3) the stimulus-
response curve for the fully assembled complex can be approx-
imated by (cf. Fig. 3B)

ST P 0< ST < KIT
Kir, Kir <SSt <Ky
[SKiK>K3] ~ KirKor (23
Sr KZT < ST < K3T
K7 Krr K
= SHZTT T s K3T < ST

Here, we have assumed without loss of generality that K7 <
Kor < Kjr. Interestingly, in the regime K7 < St < Kpr the
concentration of the fully assembled complex is independent of
the scaffold concentration, i.e. the system exhibits ’concentra-
tion robustness’ with respect to changes in S in that regime.
The extent of this regime can be tuned by changing the concen-
trations of the two least abundant kinases (Witzel et al., 2012).
Indeed, when the concentrations of all kinases become equal
the two middle regimes in Eq. (23) disappear leaving a sharp
maximum at S7 = K;r in the response curve (Fig. 3C). As
demonstrated in Fig. 3D a plateau can also be generated with
two high-affinity kinases (K| and K,) and one low-affinity ki-
nase (K3). Combining the corresponding expressions for the
high- and low-affinity approximations of Eq. (22) yields

Ksr

SKiKrhKily —m8M
[S K1 K>K3] Ko+ 57+ Kn

[SKiK>]

where [S K K>] is given by

ST . 0< ST < KlT
[SKiKx] =3 Kir, Kir <Sr <Ky . (24)
—K‘gf" , Kyr <Sr

However, since K3r < K3 for the low-affinity kinase the ac-
tivity of the fully assembled complex in the plateau regime is
substantially reduced by a factor K37/K ;3 < 1 compared to the
case of three high-affinity kinases (Eq. 23).

2.6. Cooperativity and molecular exchange systems

If binding of one ligand affects binding of another ligand the
system is said to exhibit cooperativity. The analysis of such a
scenario is more complicated and even in the simplest case of
two ligands (Fig. 4A) no general solution exists. Depending
on whether binding of the first ligand favors or hinders bind-
ing of the next one the cooperativity can be positive or nega-
tive, respectively. The cooperative-binding motif arises in many
different contexts. Classically, it described mixed-type inhibi-
tion of an enzyme-catalyzed reaction (Cornish-Bowden, 2004)
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Figure 3: Ligand binding to a scaffold protein may lead to concentration robustness. (A) Three kinases (K1-K3) bind independently to a scaffold S with dissociation
constants Ky;. (B-D) Stimulus-response curves for the fully assembled complex as a function of the scaffold concentration. If at least two high-affinity kinases bind
to the scaffold a plateau regime exists in the region K17 < St < Kr where the concentration of the fully assembled complex does not depend on the scaffold
concentration. Parameters: (B) K17 = 10nM, Kr7 = 50nM, K37 = 100nM, K4; = 0.1nM. (C) Ki7 = 10nM, Kz = 0.1nM. (D) K17 = K37 = 10nM, Ko7 = 50nM,
Kai = Kgp = 0.1nM, K3 = 10*nM.
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Figure 4: Cooperativity between ligands binding to a scaffold. (A) Two kinases bind to a scaffold such thatc = Kiz2/K;; > 1 (positive cooperativity) or ¢ < 1(negative
cooperativity). (B) Negative cooperativity leads to more localized concentration profiles for [S K K>] as a function of the scaffold concentration (K7 = 10nM,
Kor =20nM). (C) Strong negative cooperativity generates a sharp threshold and ultrasensitivity for [S K K] as a function of the kinase concentration (S = 40nM,
K>t = 10nM). Note that stimulus-response curves are partially overlapping for S7 < Koy (B) and Kj7 > S7 (C). Dashed lines were computed according to Eqs.
(28) (B) as well as Eq. (31) (C, red curve) and Eq. (32) (C, blue curve). Other parameters: b = 1, K}, = 0.01nM.



where S, K; and K, correspond to the enzyme, the substrate
and the inhibitor, respectively. The same pattern was also used
in a pharmacological context to estimate the binding affinities of
drugs that interact allosterically with a receptor (Ehlert, 1988).
Recently, this motif has been studied in the context of two-
component signaling where a signaling molecule controls the
interaction between a modulator and a response regulator (Ba-
bel and Bischofs, 2016).

The steady states of the cooperative-binding motif are de-
scribed by 3 of the 4 binding equilibria, e.g.

[ST[K1] = Kai [SKi]
[S Ki][Kz] = Kj [SK1 Ko (25)
[S K> [Ki] = Kjy [SK1 K]

together with the three conservation relations

[S1+[SKil+[SK] +[SKiK2] =87
[Ki]1+[SKil+ [SKiK>] = K (26)
[Ka] + [SK>] + [SKi K] = Kor.

Since the free energy change for the formation of the ternary
complex (S K; K>) must not depend on the order in which it was
formed the 4th dissociation constant K, is determined by the
other three constants through the detailed balance relation

Ka - Ky = Ko - K3y

To characterize the steady state operating regimes of the
cooperative-binding motif it is useful to introduce two parame-
ters that measure cooperativity (c) and bias (b) as

.
K Kin Kp
€= =—=—_—
d1

- Ka K

Similar as in the case of the receptor-ligand binding motif one
may distinguish a high-affinity and a low-affinity regime (cf.
Fig. 1). Together with the limiting regimes of strong positive
(c > 1) or strong negative (c <« 1) cooperativity and strong bias
(b < 1) or no bias (b = 1) there are potentially 8§ interesting
operating regimes for this motif.

Recently, Ha et al. showed that in the high-affinity regime
(K}, < S7) the steady states of the ternary complex [S K1 K],
defined by Eqgs. (25) and (26), can be approximated by the
set S = {Sr,Ki7,Kor, x, x_} where x, are the roots of the
quadratic equation (Ha et al., 2016)

Cc

xz— Kir + Koy +
c—b

ST) X+ KirKrr = 0. 27
c—b

This equation can be viewed as a generalized LR-type equation
where the constant term involves the additional scaling factor
¢/ (c—b) (cf. Eq. 1). The elements in S can be combined to
yield approximate expressions for the stimulus-response curve
as a function of various parameters. For example, if K;7 < Koy

the concentration of S K; K, as a function of S7 is given by

St, 0<Sr<Kir
Kir, Kir <SSt < Ky (28)
Xs Kor <S8t

[SK|K>] =

where x. denote the positive (x;) or negative (x_) square root
solution of Eq. (27) depending on whether ¢ < b or ¢ > b,
respectively (Fig. 4B). If ¢ = b Eq. (27) has just the single
solution x = K7 K>7/S r which declines to zero as 1/S 7, sim-
ilarly as in the case of independent binding (cf. Eq. 24). In
the case of strong positive cooperativity (¢ > b) the asymptotic
decline of [S K K>] is described by (cf. subsection 6.2)

KirK. Kir + K
X~ 1T A2T i ST - 1T 2T (29)
Kir + Koy +&Sr €

where € = b/(c — b) < 1, i.e. the concentration of the ternary
complex decays more slowly as in the case of independent bind-
ing (Fig. 4B). In contrast, for strong negative cooperativity
(c < b) the solution of Eq. (27) can be approximated by

Kor <S8t <Kir + Koy

(30)
ST > K]T + K2T

KirKor

{ Kir + Kor =S,
Xy =
nST_(K1T+K2T) ’

where 7 = ¢/(b — ¢) < 1, i.e. in the regime Ky < S7 < K7 +
K> the concentration of the ternary complex decreases almost
linearly leading to a more “localized” concentration profile.

Alternatively, when considered as a function of the kinase
concentration K;7r under conditions when the scaffold is not
saturated (S7 > Kor) strong positive cooperativity generates
a stimulus-response curve

Kir(l-eg2%0) . 0<Kir <Ky
[SKiK2l ~§ Kor (1 -e2L8L) ., Kor < Kir < St
K2T7 ST < KIT

€29}
which is of linear-saturation shape (Fig. 4C, red curve) similar
as obtained for receptor-ligand binding in the case of a high-
affinity ligand (Fig. 1B). In the limit of strong negative cooper-
ativity the approximation for the stimulus-response curve reads
Kir = (St - Kor) ,

Kor,

0<Kir <Sr-Kpr
St —Kyr <Kir <S8t
St < Kir

[SKiK>] ~

(32)
which shows that in the transition region, defined by S 7 — K> <
Kir < S, the response curve changes in an ultrasensitive man-
ner from O (1) to Kp7 (Fig. 4C, blue curve). The width of the
transition region as well as the maximal amplitude of the re-
sponse are given by Kjr, i.e. steep responses require Koy < S7
which limits the dynamic range of the output. By combining
theory with experiments Ha and Ferrell recently showed that
negative cooperativity may lead to sharp thresholds and ultra-
sensitivity in the cooperative binding motif for the case of two
identical ligands (Ha and Ferrell Jr., 2016).

Another class of systems that operates under conditions of
strong negative cooperativity are molecular exchange systems
(Fig. 5). A prominent example are small GTPases which al-
ter between an inactive GDP-bound form and a GTP-bound
form that can act as a signaling molecule for a large variety
of cellular processes (Cherfils and Zeghouf, 2013). In isola-
tion the binary GTPase.GDP / GTPase.GTP complexes are ex-
tremely stable with half-lifes between hours and days (Goody



GTP

Kg Ks
Cred) =5 @) =— G

GoP slow slow TP
% z *a
. © o © B
Kiy [ Kgl|® | K
fast fast
— — (GTPase
K5, &) K5 Gl
GDP GTP

Figure 5: Molecular exchange system operate under conditions of strong neg-
ative cooperativity (K3; > Ks;, i=1,2). Binding of the exchange factor E to
the GTPase lowers the binding affinities for GTP and GDP from the ternary
complexes. In the presence of a high GTP/GDP ratio E mediates the exchange
of GDP for GTP favoring the formation of the GTP.GTPase state.

and Hofmann-Goody, 2002). However, in the presence of a
guanine nucleotide exchange factor (GEF) the dissociation con-
stants of GDP and GTP from the GTPase are increased by sev-
eral orders of magnitude leading to their rapid dissociation and
to nucleotide exchange (Fig. 5). Mathematical models have
shown that there exist intrinsic trade-offs in molecular exchange
systems (Goryachev and Pokhilko, 2006; Straube et al., 2017)
which, in the case of the GTPase cycle, predict an optimal con-
centration for the GEF as a result of a trade-off between high
GTPase activity and fast GDP/GTP cycling.

2.7. Substrate competition and thresholds

Substrate competition arises if at least two ligands com-
pete for a single binding site on a receptor (Fig. 6A). Ex-
amples of substrate competition are numerous including gene
regulation by small RNAs (Levine et al., 2007; Mukherji
et al., 2011) and during development (Kim et al., 2010, 2011),
binding of substrate receptors to ubiquitin E3 ligases (Pet-
roski and Deshaies, 2005; Lydeard et al., 2013), phosphory-
lation/dephosphorylation cycles (Kim and Ferrell, Jr., 2007;
Rowland et al., 2012) and bacterial two-component systems
(Laub and Goulian, 2007; Rowland and Deeds, 2014), the latter
two being discussed in sections 3.3 and 4.3, respectively.

Here, we consider the simplest form of substrate competition
as it arises when two ligands bind to a scaffold protein or to a
receptor (Fig. 6A). In that case the steady states are determined
by the two binding equilibria

Ka [LL.R] = [LI][R], Ka [L2.R] = [L2][R] (33)
and the three conservation relations
[L1]+[L1.R] = L1y
[L2] + [L2.R] = L2¢ (34)
[R] + [L1.R] + [L2.R] = Ry.

Combining Egs. (33) and (34) yields a cubic polynomial which
can be written in the form (Straube, 2015)

(1-&)[L1.R® —ay [L1.R]* — a; [L1.R] + eR7L1% =0 (35)
where a, and a; are given by

a) = — (LIT +RT - LZT + Kdl) + 8(2L1T + RT + Kdl)
ay =L17 (Rt — L27) — L1y (L17 + 2Ry + Kg1) .

Depending on the value of € = K,/ Ky some interesting limit-
ing regimes can be considered.

2.7.1. Competition by relative abundance

If both ligands exhibit the same affinity (K;; = Kp» = Ky), s0o
that competition only arises through relative ligand abundances,
the cubic polynomial reduces to a LR-type equation

[L1.R1? — [L1.R1 (L1 + pRy + pKy) + pRy L1y = 0,

i.e. compared to Eq. (8) the receptor concentration Ry and the
dissociation constant K, are rescaled by a factor

Lly

P=T, + 12y

which measures the relative abundance of L1. From the expres-
sions in Egs. (10) and (12) one may readily obtain the corre-
sponding approximations in the high-affinity (K; <« Rr) and
low-affinity regimes (K; > Ry) as

Ly, Ly <Ry — L2
[LIRI~{ " R (36)
L17+L27RT , LlT > Rr — LZT

and
(L17 + L27) Ry

LIT + LZT + Ry + Kd
respectively. Hence, under conditions when the receptor is sat-
urated (L17 + L27 > Ry) the receptor-ligand complex for high-
affinity ligands (Eq. 36) increases proportional to the relative
abundance of a ligand — in agreement with intuition.

[L1.R] =

2.7.2. Strong substrate competition

If the affinity of one ligand is much higher than that of the
other one the solutions of the cubic equation (Eq. 35) can be an-
alyzed in the limit of strong substrate competition £ <« 1 which
may lead to thresholds and ultrasensitivity (Straube, 2015). For
receptor concentrations below the threshold (which occurs at
Ry = L27) the concentration of L1.R remains low

L1rRr

LIR) ~ e— "L
.

Ry < L27 37
since L2 sequesters all receptors away. Beyond the treshold
(Rt > L27) the response curve can, again, be approximated by
the solution of a LR-type equation

[L1RP - [L1RI (L1 + RY + K ) + LIrRY  ~ 0 (38)

where ReTff = Ry — L2 denotes the effective receptor concentra-
tion. The latter acounts for the fact that the low-affinity ligand
can only bind to receptor molecules that are not yet bound by
high-affinity ligands.

Depending on the relative magnitude between Kyjand L1y
one may use similar approximations for the solutions of Eq.
(38) as for the single ligand in Eqgs. (10) and (12). Hence, if
K41 > Ll7 the response curve increases hyperbolically beyond
the threshold (Fig. 6B) while for K;; <« L1y the response curve



may become highly ultrasensitive (Fig. 6C). In the latter regime
one obtains the approximation

%, O0<Rr <L2r
[L1.R] ~ Ry — L27, 127 <Ry < L1y + L27 , 39)
LlT, L1T+L2TSRT-

Comparing this stimulus-response curve with that for negative
cooperativity (Eq. 32) we see that both exhibit a tripartite struc-
ture with a linear increase in the middle regime. In particu-
lar, there exists a similar trade-off between the steepness of the
response curve, which decreases with L1z, and the dynamic
range, which increases with L17.

The response curve for [L1.R] as a function of the ligand con-
centration L1 can exhibit biphasic behavior and is, thus, more
difficult to obtain (cf. section 6.3). Note that the asymptotic
value for [L1.R] in the limit of L1 > K, as predicted by Eq.
(38), is ReTf / rather than R7. Hence, the latter describes the re-
lation between [L1.R] and L17 only at sufficiently low ligand
concentrations. A more detailed analysis of the cubic equation
(Eq. 35) shows that the behavior of [L1.R] for large L1 can be
approximated by the solution of the L-type equation (Fig. 6D)
(cf. subsection 6.3)

[L1.R? + [L1.R](L27 + eL1y — Ry) —eL17Ry = 0. (40)

When Ry < L2r one may obtain an approximate solution of
this equation by balancing the linear and the constant term

L17Ry

[L1.R] ~ e
&

Ry < LZT (41)

Llr +
In that case the approximation is valid for all ligand concen-
trations and the stimulus-response curve exhibits no biphasic
behavior (Fig. 6E).

3. Covalent Modification Cycles

3.1. Goldbeter-Koshland model and the GK-type equation

In 1981 Goldbeter and Koshland proposed a simple mecha-
nism through which biological systems can generate extremely
high sensitivity (known as zero-order ultrasensitivity) to input
signals (Goldbeter and Koshland Jr., 1981). Interestingly, the
mechanism did not involve cooperative binding of ligands to
an oligomeric enzyme rather than two (converter) enzymes cat-
alyzing the covalent modification and demodification of a target
protein by utilizing energy in the form of ATP. Often, such fu-
tile cycles occur in the form of phosphorylation / dephosphory-
lation cycles as mediated by a kinase and a phosphatase, respec-
tively (Fig. 7), but energy in the form of ATP is also required
for other covalent modifications such as ubiquitylation or ned-
dylation (Dye and Schulman, 2007).

The dynamics of phosphorylation/dephosphorylation cycles,
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+
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Figure 6: Generation of a threshold and ultrasensitivity through substrate com-
petition. (A) Two ligands (L1 and L2) compete for binding to a receptor (R).
(B,C) Steady state concentration of the ligand-receptor complex as a function of
receptor concentration for Ky = 10nM, Kz = 0.01nM (B) and Ky; = 0.1nM,
Kp =0.001nM (C) so that ¢ = Kz /Ky < 1. +L.2 indicate the presence (+)
or absence (-) of L2 (L27 = 0). Other parameters: L17 = 1nM, L27 = 10nM.
Red dashed lines were drawn according to Egs. (37) and (38). (D,E) [L1.R] as a
function of the concentration of the low-affinity ligand for Ry = 20nM (D) and
Rr = 1nM (E). Other parameters: L27 = 10nM, K1 = 10nM, Kz = 0.1nM.
Blue dashed curve was drawn from Eq. (40) while red dashed lines correspond
to Egs. (38) (D) and (41) (E).
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Figure 7: Covalent modification cycle: (A) The substrate S is phosphorylated
by a kinase (K) with ATP as a cofactor and dephosphorylated by a phosphatase
(P). (B) Detailed reaction scheme assuming both kinase and phosphatase reac-
tion follow a Michaelis-Menten scheme and the ATP concentration is constant.



as described by Fig. 7B, is determined by the ODE system

d[dst*] =k [SK]- k3 [S*][P]+ Kk, [S*P] (42)
d [jf] = ki [S1[K] - (k| + ki) [SK]
d [Z:P] =k; [S*][P] - (k; + ko) [S*P] (43)

where [S ], [K] and [P] have to be replaced using the conserva-
tion relations

[S1+[S*]+[SK]+[S*P]=ST
[K]+[SK]=Kr
[P]1+[S*P] = Pr.
The Goldbeter-Koshland model is based on two assumptions:
(i) the enzyme-substrate complexes rapidly approach a quasi-
stationary state defined by
dISK] dI[S*P]
dt —~  dt

and the substrate concentration is much higher than that of the
converter enzymes, i.e.

~0,

ST > max (KT;PT) y

which allows simplifying the conservation relation for the sub-
strate as [S] + [S*] ~ St. Under these conditions Goldbeter
and Koshland derived the following ODE for the concentration
of §* (Goldbeter and Koshland Jr., 1981)

d[S*]
dt

Sr—I[ST1T [S™]
"Ki+Sr—-151 TR+ (ST

~ k (44)
Here, K7, Pr and S 7 denote the total concentrations of kinase,
phosphatase and substrate while K; = (k; +k;)/k are the corre-
sponding Michaelis-Menten constants. The steady state equa-
tion (d [S*]/dt = 0) derived from Eq. (44) will be denoted as
GK-type equation. Note that it is structurally similar to Eq. (3)
mentioned in the Introduction.

To characterize the steady state operating regimes of cova-
lent modification cycles it is useful to introduce dimensionless
quantities through x = [S*]/S7 and K} = K;/Sr which yields
the steady state equation

(45)

K + aK: aK: K
xz—(1+ L 2)x+ 2 =0 127

l—a -« YT kprr

where « is the ratio between the maximal rates of kinase and
phosphatase. The solution of Eq. (45) reads

x:{x_, a<l1 (46)

Xy, a>1
where x. are given by

* % % %\ 2 %
x+=ll+w J_rl 1+K1+aK2 —4aK2.
- 1-a 2 1-a l-a

A systematic analysis of the steady state operating regimes of
covalent modification cycles was given by Gomez-Uribe et al.
(Gomez-Uribe et al., 2007). Depending on whether the con-
verter enzymes are saturated (K < 1) or unsaturated (K} > 1)
there exist 4 operating regimes as depicted in Fig. (8). Zero-
order ultrasensitivity requires both enzymes to be saturated
(max (K;‘ K;) < 1). On the other hand if both enzymes are

unsaturated (min (K*, K;) > 1) the response curve resembles
that of a Michaelian enzyme (Fig. 8B).

Interestingly, if the two converter enzymes operate in oppo-
site regimes the steady state equation resulting from Eq. (44)
becomes similar to one of the two quadratic equations shown
in Egs. (1) and (2). Specifically, if the phosphatase is saturated
while the kinase is unsaturated (K] < 1 < K7) linearization of
the first term in Eq. (44) results in the L-type equation

xX+|—+K,-1|x-K; =0. 47)
a

Since, by assumption, KJ < 1 the response curve exhibits a
threshold defined by Kj/a@ = 1 beyond which the response
curve increases hyperbolically as a function of @ (Fig. 8C).
In the opposite case (K7 < 1 < K7) linearization of the second
term in Eq. (44) results in the LR-type equation

x* - (@K} + K} + 1) x + aK; ~ 0. (48)

Since, by assumption, Ki < 1 the response curve is of linear-
saturation type (Fig. 8D) similar to that of the receptor-ligand
complex in the limit of a high-affinity ligand (Fig. 1B). In this
case the saturation threshold is defined by a K5 = 1.

3.2. High enzyme concentrations

One of the limitations of the Goldbeter-Koshland model is
that it only applies if the substrate concentration is much higher
than that of the converter enzymes. While this condition is
routinely used for in vitro experiments it is rarely satisfied in
vivo (Bliithgen et al., 2006; Legewie et al., 2008). To ana-
lyze enzyme-catalyzed reactions at high enzyme concentrations
Borghans et al. proposed a simple method, known as the total
quasi-steady state approximation (tQSSA), involving a linear
change of variables (Borghans et al., 1996). Their original mo-
tivation was to extend the parameter domain for the applicabil-
ity of the standard QSSA (Segel and Slemrod, 1989). Later on,
the conditions for the validity of the tQSSA have been refined
(Schnell and Maini, 2000; Tzafriri, 2003), and the method has
been successfully applied to more complicated reaction systems
such as the reversible Michaelis-Menten reaction (Tzafriri and
Edelman, 2004), substrate competition (Pedersen et al., 2007),
covalent modification cycles (Gomez-Uribe et al., 2007; Cilib-
erto et al., 2007; Pedersen et al., 2010) and to describe the tran-
sient phase kinetics (Masia et al., 2016).

The tQSSA is based on the idea to introduce the total con-
centration of the phosphorylated substrate as a slow variable

(Y ]=[S*]+[S*P].
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Figure 8: Steady state operating regimes of covalent modification cycles within the Goldbeter-Koshland model. Solid lines were computed from Eq. (46). Red
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(D) K} = 0.01, K} = 10.

Then, addition of Eqs. (42) and (43) leads to

d[Y*]
dt

=k [SK] -k [S*P]. (49)

Here, the concentrations of the enzyme-substrate complexes are
determined by LR-type equations of the form

[SKT = (Kr +S7 —[Y'] + K1) [SK] (50)
+Kr (S7—[Y]) =0
[S*P)* = (Pr +[Y*]+ K2) [S*P] + Pr [Y*] =0.  (51)

Substituting the positive solutions of Egs. (50) and (51) into Eq.
(49) yields the total QSSA. Compared to the standard QSSA
(Eq. 44) it more accurately describes the transient dynamics of
covalent modification cycles (Ciliberto et al., 2007).

However, the total QSSA can also be used to extend the clas-
sification of the steady state operating regimes given by Gomez-
Uribe et al. (Fig. 8) to the case when the concentrations of the
converter enzymes are comparable to or larger than that of the
substrate (Straube, 2017). To this end, we approximate the so-
lutions of Egs. (50) and (51) in the limit of high (K} < K7 and
K, <« Pr) and low affinity (K| > Kr and K; > P7). In the
first case (low-Kj, regime) this yields the approximations

[SK] ~ KT R [Y*] < ST - KT (52)
Sr-[Y1], [Y*]>Sr-Kr
and
Pr, [Y*1>Pr ~

In the second case (high-K), regime) the approximations read

_ Kr(Sr-1[Y"D
K~ v s -1+ K G
Pr Y]

PT + [Y*] +K2'

[S*P] ~ (55)

Altogether this defines 4 operating regimes depending on the
ratio between the Michaelis-Menten constants and the concen-
trations of the converter enzymes. To derive approximate ex-
pressions for [Y*] in a particular regime one has to combine
the expressions in Egs. (52) - (55) in an appropriate manner.
Depending on the parameter of interest and the values of the
remaining parameters several subregimes may exist. For exam-
ple, if both enzymes are saturated (K; < K7 and K, < Pr)
and the total enzyme concentration exceeds that of the sub-
strate (K7 + Pr > Sr) there are 4 subregimes defining [Y*] as
a function of k; depending on whether Ky < Sy and Pr < St
(Fig. 9). Interestingly, when at least one of the enzyme concen-
trations is lower than that of the substrate the response curve
exhibits enhanced sensitivity with ny > 1 (Fig. 9A-C). Con-
versely, when at least one of the enzyme concentrations is larger
than that of the substrate the response curve is independent of
that enzyme concentration, i.e. the system exhibits concentra-
tion robustness with respect to changes in that particular en-
zyme concentration. For example, if Ky > S7 the response
curve becomes independent of K7 although it still depends on
Pr (Fig. 9B). Finally, if both enzyme concentrations exceed
that of the substrate the response curve only depends on the cat-
alytic rate constants and the substrate concentration (Fig. 9D).
Together, this suggests that there are two regimes where cova-
lent modification cycles exhibits both enhanced sensitivity and
concentration robustness (Fig. 9B and C).

To describe the effect of genetic perturbations one is often
interested in [Y*] as a function of the total substrate concen-
tration S7. One can show that in this case the shape of the
response curve depends on the ratio a of the maximal reaction
rates of kinase and phosphatase (Eq. 45). If @ > 1 (@ < 1) the
response curve is monotonically increasing (decreasing) and if
both converter enzymes operate in opposite regimes it may also
change in a non-monotonic manner (Straube, 2017).
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Figure 9: Steady state operating regimes of covalent modification cycles under the conditions of enzyme excess (Kr + Pr > S7) and enzyme saturation (K| < Kr

and K, < Pr). The Hill coefficient ny = In81/In Ry is defined in terms of the response coefficient Rg
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values that elicit 90% (and 10%) of the maximal response. Red dashed lines correspond to the approximate solutions shown above each panel. Parameters: (A)
KT = PT = 0.7,uM, (B) KT = 2/JM, PT = O.Z/JM (C) KT = O.Z,uM, PT = 2,uM (D) KT = PT = 2/JM. Other parameters: ST = I/JM, K1 = K2 = 0.0I,MM, kz = I/S.

3.3. Substrate competition

Apart from the zero-order effect substrate competition repre-
sents an alternative mechanism for the generation of ultrasen-
sitivity in regulatory networks. First experimental evidence for
this effect came from studies of Kim and Ferrell who showed
that the phosphorylation level of the mitotic regulator Weel ex-
hibits a sharp threshold and ultrasensitivity to changes in the
concentration of Cdkl (Kim and Ferrell, Jr., 2007). The lat-
ter is a cell-cycle related kinase that is estimated to have about
200 substrates in budding yeast (Ubersax et al., 2003; Enserink
and Kolodner, 2010). Interestingly, the ultrasensitive response
could be reproduced in a reconstituted system by adding a dif-
ferent high-affinity Cdk1 substrate. However, in the absence
of such substrates the response of phosphorylated Weel was
hyperbolic suggesting that the observed ultrasensitivity did not
arise from the zero-order effect rather than from the competition
between Weel and alternative Cdk1 substrates.

To describe competition effects in phosphoryla-
tion/dephosphorylation cycles Ferrell and Ha proposed a
model (Ferrell Jr. and Ha, 2014) where two substrates (X and
Y) are phosphorylated by a single kinase (K) according to a
Michaelis-Menten scheme whereas dephosphorylation was
assumed to occur by an auxiliary phosphatase in a first-order
process (Fig. 10A). Interestingly, the analysis of this system
yields a cubic steady state equation for the phosphorylation
level of the low-affinity substrate that is structurally similar
to Eq. (35) (Straube, 2015). Hence, one can expect the same
type of input-output behaviors as in the case of receptor-ligand
binding, i.e. hyperbolic, threshold-hyperbolic and ultrasensi-
tive responses. To analyze a particular limiting regime one
may use the approximations derived in Eqs. (37) and (38),
and substitute the parameters in these equations by those
corresponding to covalent modification cycles (cf. Table 1).

For example, in phosphorylation/dephosphorylation cycles
the limit of strong substrate competition is defined by

e-fx1 (56)
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where & = K,/K, represents the ratio between the Michaelis-
Menten constants of the two substrates and

[0%) 1+a1

ﬁ:1+a’2 aq

represents a scale factor that involves ratios between the cat-
alytic rates of phosphorylation and dephosphorylation of the
two substrates (cf. Fig. 10A). Under the condition in Eq.
(56) the concentration of the phosphorylation level of the low-
affinity substrate can be approximated by

Xr Kr

[XP] = Piia; K Kr Kr <K o)
[XP]_, Kr > K;,
where .
K* = Y
- f

defines a threshold concentration and [XP]_ is given by the neg-
ative root of the LR-type equation (cf. Eq. 38)

Kr -

(23]

Kr - K

@y

Xr
1+Ckl

)C2—

K;+XT+K1

=0.
1+CK1

Using the parameter substitutions in Table 1 one can predict that
the response curve increases hyperbolically beyond the thresh-
old if K7 > Xy whereas an ultrasensitive reponse requires
K, « K| < X7. Compared to the case of receptor-ligand bind-
ing both the threshold and the maximal phosphorylation level
of the low-affinity substrate depend on the kinetic parameters of
phosphorylation and dephosphorylation. Specifically, increas-
ing @, increases the threshold while increasing «; lowers the
maximal phosphorylation level (Fig. 10B).

3.4. Bifunctional converter enzymes

In some cases the activities of the two opposing enzymes in
a covalent modification cycle are located on the same protein in
which case modification and demodification are carried out by a
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Figure 10: Substrate competition in phosphorylation/dephosphorylation cycles.
(A) Two substrates (X and Y) compete for access to Cdk1 (K) which mediates
phosphorylation of Weel and Sicl. Dephosphorylation is assumed to follow
pseudo first-order kinetics. (B) Steady state concentration of the phosphory-
lated form of the low-affinity substrate as a function of the kinase concentration
in the ultrasensitive regime. As @1 = k_1/k; and a2 = k_/ky are simultane-
ously increased from 0.01 to 1 the threshold K7 = a2 Y7/ (1 + @2) (short dotted
lines) increases and the maximal amplitude [XP],,,, = X7/ (1 + @) decreases
while the steepness of the response curve remains the same. Red dashed lines
were computed from Eq. (57). Parameters: K| = 0.1nM, K, = 10’3nM,
Xr =1nM,Yr = 1nM, ky = ky = 1/s.
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Table 1: Parameter substitutions for systems with substrate competition as de-
scribed by Eq. (35).
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single bifunctional enzyme. Prominent examples are the isoci-
trate dehydrogenase kinase/phosphatase (IDHKP) involved in
the regulation of the tricarboxylic acid cycle (LaPorte and
Koshland Jr., 1982), the uridylyltransferase involved in nitro-
gen assimilation in E. coli (Garcia and Rhee, 1983; Ninfa et al.,
2000) and the mammalian 6-phosphofructo-2-kinase/fructose-
2,6-bisphosphatase which integrates multiple signals to regu-
late the switch between glycolysis and gluconeogenesis in the
liver (Kurland and Pilkis, 1995; Dasgupta et al., 2014).
Originally, it was believed that bifunctional enzymes medi-
ate graded responses and robustness rather than ultrasensitiv-
ity (Ortega et al., 2002; Shinar et al., 2007, 2009; Hart et al.,
2011a,b; Dexter and Gunawardena, 2013). The latter property
can be readily understood from the observation that the enzyme
concentration cancels out from the steady state equation (Eq.
44) because it appears in the forward (K7) as well as in the
backward rate (P7). Hence, for bifunctional enzymes (with
Ky = Pr) the parameter @ = k| K7/ (k,Pr) = ki/k, becomes
independent of the enzyme concentration so that changes in the
latter would not affect the stimulus-response curves in Fig. 8.
This form of concentration robustness has been related to struc-
tural properties of a network (Shinar and Feinberg, 2010) or
to the existence of certain algebraic invariants (Dexter et al.,
2015). More generally, robustness properties can be understood
in terms of parameter non-identifiability (Sontag, 2017).
Concentration robustness may not only occur with respect to
the enzyme concentration, but also to that of substrates and/or
effectors. Interestingly, this can happen already at the level
of the Goldbeter-Koshland model in the signal-transducing
regime. To see this more explicitly, we rewrite the approxi-
mation for the stimulus-response curve (Fig. 8D) as a function
of the substrate concentration, i.e.
[S*]z{ST(l_(IKf——IST>’ St <ak,

. 58
ST>O’K2 ( )

CZKZ .

Hence, if St > aK, the concentration of the phosphorylated
substrate becomes independent of the substrate concentration
([S™] aK>) so that [S*] exhibits concentration robustness
with respect to S7 in that regime.

Yet, there were known examples of demonstrated ultrasen-
sitivity for bifunctional enzymes (Fig. 11A) raising the ques-
tion how one can understand the emergence of ultrasensitiv-
ity in bifunctional enzyme systems (Straube, 2012). In fact,
the first experimental evidence for enhanced sensitivity in co-
valent modification cycles came from studies with the bifunc-
tional IDHKP (LaPorte and Koshland Jr., 1983) although the
measured stimulus-response curve (Fig. 11B) more resembled
that of a linear-saturation response as it occurs in the signal-
transducing regime (Fig. 8D). Interestingly, both behaviors can
be understood within a common mechanistic model which was
originally proposed by Shinar et al. (Shinar et al., 2009) to de-
scribe IDHKP-mediated robustness in glyoxylate bypass regu-
lation (LaPorte et al., 1985). Later, it was shown by means of
a rapid equilibrium approximation that the Shinar model yields
a GK-type equation (Straube, 2013) if one replaces in Eq. (44)
Michaelis-Menten constants by dissociation constants. Hence,

=~
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Figure 11: Ultrasensitivity in covalent modification cycles with a bifuctional converter enzyme. (A) Ultrasensitive response in the uridylylation of the PII protein
(also known as GInK) by the uridylyltransferase (UTase) which is reciprocally regulated by glutamine (Gln). (B) Isocitrate dehydrogenase (IDH) exhibits a linear-
saturation response as a function of 3-PG which reciprocally regulates the isocitrate dehydrogenase kinase/phosphatase (IDHKP). Circles represent experimental
results from Ref. (Ventura et al., 2010) (A) and (LaPorte and Koshland Jr., 1983) (B). Solid lines were computed based on the reaction network depicted in panel C
using experimentally measured values (Straube, 2013). (C) Reaction mechanism for the phosphorylation of a substrate S by a bifunctional enzyme with two-catalytic

sites according to Ref. (Shinar et al., 2009).

if a bifunctional enzyme exhibits two distinct catalytic sites for
its opposing activities one may expect similar types of stimulus-
response curves as for covalent modification cycles with dis-
tinct converter enzymes (Fig. 8) including ultrasensitivity and
concentration robustness where the latter occurs in the signal-
transducing regime (Eq. 58). In support of this expectation ev-
idence for concentration robustness has recently been observed
in the regulation of cellular Pi homeostasis by PPIPSK which
denotes a family of bifunctional enzymes with two domains for
its kinase and phosphatase activities (Gu et al., 2017).

3.4.1. Bifunctional enzymes with a single catalytic site
Although many bifuctional enzymes seem to exhibit distinct
catalytic sites for their opposing activities there are examples
where modification and demodification are carried out by a sin-
gle catalytic center. The most prominent members of this class
are sensor histidine kinases which are part of two-component
systems (cf. section 4). Based on the crystal structure it seems
that also the IDHKP exhibits just a single catalytic site (Zheng
and Jia, 2010) which would prevent formation of a ternary
S-KP-S* complex as assumed in the Shinar model (Fig. 11C).
This leads to the strange situation that, though the predictions
based on this model quantitatively agree with the measured
stimulus-response curve (Fig. 11B) it mechanistically does not
apply to the case of the IDHKP. However, a revised model tak-
ing into account the structure of the active site as well as sub-
strate dimerization confirms the existence of concentration ro-
bustness for the IDH cycle (Dexter and Gunawardena, 2013).
Apart from concentration robustness one might ask whether
bifunctional enzymes with a single catalytic site may also yield
ultrasensitivity? It turns out that this is, indeed, the case if one
assumes that the opposing activities are reciprocally regulated
by an allosteric effector (Fig. 12A). To this end, we assume
that the enzyme may exist in a kinase state (Ex) and in a phos-
phatase state (Ep), and that binding of the effector to the kinase
state switches it from kinase to phosphatase mode. Interest-
ingly, the response behavior of such a system depends on the
affinity of the effector (Straube, 2014). If the affinity is low
(Ky; > E7) the concentration of the phosphorylated form of
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the substrate exhibits a hyperbolic dependence on the effector
concentration as described by

St

ky /Ky Ly °
L+ 0k &

[57] ~ (59)

Here, K| and K, denote respectively the Michaelis-Menten con-
stants associated with the kinase and the phosphatase activ-
ity, and Ky = k /k; denotes the dissociation constant of the
enzyme-effector complex. In contrast, if the enzyme exhibits
a high affinity for the effector (K; <« Er) the steady state is
determined a GK-type equation of the form

Sr=(8T1 18]

ki (Er — L
A A TR Ky +[S7]

(60)
where E7 — Ly and Ly play the role of an effective kinase and
phosphatase concentration, respectively. In this regime bifunc-
tional enzymes with a single catalytic site may generate similar
response behaviors as covalent modification cycles with distinct
converter enzymes. However, this regime is restricted to low
effector concentration (L7 < E7) where the enzyme is not satu-
rated by the effector.

4. Two-Component Signal Transduction

Two-component systems (TCSs) are modular signal trans-
duction systems which are utilized by bacteria and other mi-
crobes to sense and respond to diverse stimuli (Stock et al.,
2000) such as osmolarity (EnvZ/OmpR), magnesium limitation
(PhoQ/PhoP) or nitrogen assimilation (NtrB/NtrC). While E.
coli comprises about 30 of these systems, other bacteria express
more than 100 TCSs (Alm et al., 2006). Canonical TCSs con-
sist of a sensor histidine kinase (HK) and a cognate response
regulator (RR) which often acts as a transcription factor to ac-
tivate or repress a particular set of response genes. The HK
exhibits up to three distinct activities to modulate the RR phos-
phorylation level: Upon stimulation, the HK autophosphory-
lates at a conserved histidine residue and transfers the phospho-
ryl group to an aspartate residue in the RR receiver domain. The
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Figure 12: Reciprocal regulation in covalent modification cycles with a bifunc-
tional converter enzyme. (A) Reaction mechanism for an enzyme with a single
catalytic site. Ex and Ep denote enzyme states in kinase and phosphatase mode,
respectively. Binding of a ligand L to Ex is assumed to switch the enzyme into
phosphatase mode. (B) Stimulus-response curves for increasing binding affin-
ity. At low affinity K; > Er (Ky = k;/k;:) the response is graded, at high
affinity (Ky; < Er) the response becomes ultrasensitive, but is restricted to
Ly < Et. Dashed curves were computed from Egs. (59) (red) and (60) (blue).
Parameters: Er = 0.1nM, St = 10nM, K| = K; = 0.1nM, ky = ky = 1/s.

unphosphorylated form of the HK often exhibits a distinct phos-
phatase activity towards the phosphorylated form of RR endow-
ing many HKs with a bifunctional design (Goulian, 2010).

4.1. The Batchelor-Goulian Model

More than 20 years ago Russo and Silhavy argued that if
HK autophosphorylation represents the rate-limiting step in RR
phosphorylation TCSs with a bifunctional design should exhibit
special robustness properties. Specifically, the RR phosphory-
lation level should be approximately independent with respect
to variations in both the concentration of the HK and that of the
RR (Russo and Silhavy, 1993). Ten years later, by measuring
the transcriptional activity of OmpR-regulated genes, Batchelor
and Goulian provided the first experimental evidence for con-
centration robustness in TCSs (Batchelor and Goulian, 2003).
They also proposed a simple model that could qualitatively ac-
count for the observed robustness under variations of RR and
HK abundances (Fig. 13A). Under conditions when the HK is
much less abundant than the RR (which is the typical situation
in TCSs) the steady states within the Batchelor-Goulian model
are determined by the LR-type equation (cf. Eq. 8)

[RR*}’ = (C, + RRr + C,) [RR"] + C,RRr ~ 0 (61)
where RR* stands for the phosphorylated form of the RR,
+ k>
C,=-%Kk, and C, =-XK, (62)
k, k;

denote rescaled Michaelis-Menten constants associated with
the phosphatase and the kinase activities of the HK, and RRy
denotes the total RR concentration. In the "high-affinity’ limit,
defined by C; < C,, the solution of Eq. (61) can be approxi-
mated by

RR7,

C,,

RR; < Cp

, 63
RRy > Cp ( )

[RR*] ~ {

i.e. if the concentration of the RR exceeds the threshold C),
its level remains approximately constant. Note that the value
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Figure 13: Concentration robustness in the Batchelor-Goulian model. (A) Re-
action scheme includes HK autophosphorylation (1), phosphotransfer (2) and
HK phosphatase activity (3). (B) Comparison of the Batchelor-Goulian model
with measurements of the RR phosphorylation level as a function of total RR
abundance. Left panel: PhoR/PhoB system (Gao and Stock, 2013). The mutant
PhoB exhibits reduced affinity for PhoR which increases the value of Cj,. The
stimulus-response curves are of linear-saturation type as predicted by Eq. (63).
Right panel: NtrB/NtrC system (Jiang et al., 2012). The stimulus-response
curve exhibits a Michaelian shape as predicted by Eq. (64).

of this constant (C,) only depends on kinetic parameters, but
not on protein concentrations (Eq. 62). In the ’low-affinity’
regime, defined by C; > C,, the solution of Eq. (61) can be
approximated by

C,RR;

[RR* ]|~ — 2 —
C, +RRr + C;

(64)
Interestingly, both types of behaviors were observed experi-
mentally (Fig. 13B). The Batchelor-Goulian model has also
been used to model other regulatory aspects of TCSs such as
the impact of autoregulation (Miyashiro and Goulian, 2008) and
the emergence of cross-talk (Siryaporn et al., 2010). However,
there also exist alternative TCS models which describe, for ex-
ample, phosphotransfer as a reversible reaction (Kremling et al.,
2004; Tindall et al., 2013) or include the formation of dead-end
complexes (Igoshin et al., 2008).

4.2. Reciprocal regulation of HK activities

A quantitative analysis of the input-output behavior of TCSs
is often limited by the fact that the physiological signal sensed
by the HK is not well known (Krell et al., 2010). In cases where
the signal has been identified it became evident that the HK’s
autokinase and phosphatase activities are the primary targets of
regulation (Stewart, 2010; Heermann and Jung, 2010) and that
regulation of these activities often occurs in a reciprocal man-
ner (Jiang and Ninfa, 1999; Chamnongpol et al., 2003; Dubey
et al.,, 2016). Figure 14A shows an example where binding
of an allosteric ligand switches the HK from kinase to phos-
phatase mode, i.e. in the presence of the signal the system is
shut-off and only when the signal becomes limiting the sys-
tem is switched on. Similar regulatory structures have been



observed in the PhoQ/PhoP and NtrB/NtrC systems (Jiang and
Ninfa, 1999; Chamnongpol et al., 2003).

Similar as in the case of covalent modification cycles with
a bifunctional converter enzyme (cf. Fig. 12) the steady state
behavior of a TCS with reciprocal regulation depends on the
affinity of the ligand. If the affinity is low (K; > HKry) the
steady state equation becomes identical with the LR-type equa-
tion in Eq. (61) if C, is replaced by C;‘, = CpK4/Lr where
Ly denotes the total ligand concentration and Ky = k; /k; de-
notes the dissociation constant for ligand binding. Hence, in
this regime the threshold for reaching a constant phosporylation
level as well as the value of this constant depend on the ligand
concentration (Fig. 14B, left panel), i.e. the system exhibits
stimulus-dependent concentration robustness (Straube, 2014).
In contrast, if the ligand exhibits a high affinity for the HK the
steady state is determined by a GK-type equation

kK (HKy - Ly) aprT LIS RO M Ll
K."" + RRy — [RR*] K, + [RR*]
(65)
where Kp denotes the Michaelis-Menten constant associated
with the phosphatase activity of the HK and

1+ kg
d Kapp =K K/’ K
me Tk ke

app _ kt

R

denote apparent constants that can be expressed in terms of rate
constants and the Michaelis-Menten constant associated with
the phosphotransferase activity (K;). Hence, when triggered by
a high-affinity ligand TCSs may behave similarly to covalent
modification cycles and exhibit ultrasensitivity to input signals
(Fig. 14B, right panel). In this regime TCSs may even exhibit
bistability if ultrasensitivity is combined with a positive feed-
back loop, e.g. due to autoregulation of the HK and RR genes
(Wei et al., 2014). However, as can be seen from Eq. (65)
the occurrence of ultrasensitivity is restricted to ligand concen-
trations that are lower than that of the sensor kinase (such that
HKr—Lr > 0) making this operating regime particularly useful
to detect and amplify low-abundant input signals.

4.3. Cross-talk

New input-output functionality of TCSs is often acquired
through gene duplication and subsequent divergence of paral-
ogous genes (Alm et al., 2006; Capra et al., 2012). As a result,
many sensor kinases do not only phosphotransfer to their cog-
nate response regulator, but (on longer time scales) also to those
of other TCSs (Fisher et al., 1996; Skerker et al., 2005). How-
ever, in vivo cross-talk from a HK to a non-cognate RR seems
to be extremely rare being only observable after the cognate RR
and the non-cognate HK have been genetically eliminated (Fig.
15A) (Siryaporn and Goulian, 2008; Groban et al., 2009). To
ensure this high degree of specificity three main mechanisms
have been identified: molecular recognition, phosphatase activ-
ity of the HK and substrate competition (Podgornaia and Laub,
2013). Among these mechanisms molecular recognition ap-
pears to be the most dominant one. Experiments have shown
that the specificity constant of a HK as measured by the k.., /Ky
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Figure 14: Reciprocal regulation in two-component systems. (A) Binding of
a ligand (4) inhibits autophosphorylation (1) and phosphotransfer (2), but acti-
vates the HK’s phosphatase activity (3). (B) Depending on the binding affinity
of the ligand (Ky = k /k:;) the system may either exhibit concentration robust-
ness (left panel) or ultrasensitivity (right panel).

ratio is 10* — 10° times higher for the cognate RR (Fisher et al.,
1996; Grimshaw et al., 1998; Skerker et al., 2005) implying a
huge kinetic preference of a HK for its cognate RR. In fact,
mathematical modeling has suggested that there is a strong se-
lective pressure to eliminate cross-talk between TCSs after gene
duplication before new input-output functionality can be ac-
quired (Rowland and Deeds, 2014).

To understand how a strong kinetic preference may gener-
ate pathway insulation within the Batchelor-Goulian model we
consider the case where one HK phosphorylates its cognate
partner (RR2) and a non-cognate regulator denoted by RR1
(Fig. 15B and C). The steady state equation for the phospho-
rylated form of RR1 is a cubic polynomial that is structurally
similar to Eq. (35) (cf. Supporting Information and Table 1).
Its steady state behavior depends on whether the HK exhibits a
kinetic preference (for RR2) with respect to its phosphotrans-
ferase activity (g, > 1) or with respect to its phosphatase activ-
ity (¢, > 1) where g, and &, are defined by (cf. Fig. 15C)

_ kio/ K2
ki1 /Ky

kp,Z/Kp,Z

and ==
8p kp,l/Kp,l

&t

In the first case (g, > 1) the steady states for [RR;] and [RRT]
are determined (to leading order) by the LR-type equations

[RR)” = [RRS] (RRyr + Cpa + Cra) + CpaRRyr ~ 0 (66)
and
[RR;® = (RRy7 + C\ + Cut ) [RR}] + C\RRiz ~ 0 (67)

where C;ffl = Cp,1 — €,RRy7. Hence, the cognate RR (RR2) be-
haves as if the non-cognate partner was absent while the latter
may exhibit threshold behavior if C;; < RR;r. For autophos-
phorylation rates below a threshold the phosphorylation level



of RR’l‘ remains low, too, i.e.

1 RRi7Cp,

k
[RR;] ~ — . kb < LZRRZT, (68)

Er RRZT - C[,,z KI’

beyond the treshold it increases either hyperbolically (C;; >
RR,7) or in an ultrasensitive manner (Cy; < RR;7) (Fig. 15D).

In contrast, if the HK develops a kinetic preference with re-
spect to its phosphatase activity (g, > 1) the steady state for
[RR;] is still determined by Eq. (66) while that for [RR*I‘] is
determined by a different LR-type equation

[RR;T® = (RRy7 + Cpy + CE1) [RR}] + CpaRRiz ~ 0 (69)

where Ciflf C;1 + &RRyr. In that case no threshold exists
and the order in which the RRs are phosphorylated is reversed.
As a result the non-cognate RR becomes fully phosphorylated
already at low autophosphorylation rates (Fig. 15E). Together
this suggests that to insulate newly emerging TCSs develop-
ing a kinetic preference with respect to the phosphotransferase
rather than the phosphatase activitity should be the better strat-
egy which is supported by the fact that the latter has not been
observed experimentally yet (Siryaporn and Goulian, 2008).

In some cases cross-talk where two RRs are phosphorylated
by a single HK may be a desirable feature of a regulatory net-
work in which case it has been referred to as cross-regulation
(Laub and Goulian, 2007). For example, in the chemotaxis net-
work of E. coli the histidine kinase CheA can phosphorylate ei-
ther of the two regulator proteins CheY and CheB: while CheY-
P controls the sense of rotation of the flagellar motor CheB-
P mediates feedback regulation at the receptor level (Sourjik,
2004). Also, since the threshold for the non-cognate partner
depends on the concentration of the cognate RR (Eq. 68) the
1HK/2RR motif (Fig. 15B) has been suggested as a basis for
constructing a tunable threshold device in the context of syn-
thetic biology applications (Amin et al., 2014).

5. Conclusions

In physics, the superior importance of the harmonic oscilla-
tor derives from its repeated occurrence in different branches
of physics which allows describing diverse phenomena such as
vibrational modes in solid states or oscillations in electrical cir-
cuits using similar equations. In this review we advocated the
opinion that, as far as the steady state behavior is concerned,
elementary network motifs might play a similar role for under-
standing the behavior of larger biological networks. We have
illustrated this approach starting from a simple bimolecular re-
action and adding successively more complexity such as sub-
strate competition, cooperativity or covalent modifications. If
analyzed in the limit of strong or weak coupling (e.g. high or
low affinity of a ligand) or under conditions of substrate excess
the corresponding steady state equations became structurally
similar to those of a bimolecular reaction (L-type and LR-type
equations) or to that of the Goldbeter-Koshland model describ-
ing covalent modifications (GK-type equation).
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Figure 15: Cross-talk and substrate competition in two-component systems.
(A) In vivo, cross-talk from CpxA to OmpR is only observable in the absence
of CpxR and EnvZ (Siryaporn and Goulian, 2008). (B) Cross-talk motif: 1HK
phosphorylates to RRs. (C) Detailed model for the motif in B. (D) If the HK
exhibits a kinetic preference for RR2 with respect to its phosphotransferase
activity (¢; > 1) RR2 becomes insulated and [RR’I‘] exhibits a threshold in the
response curve. Parameters: K1 = Kp2 = 1uM, kpy = kpo = ki1 = 0.1/s,
ko = 1/s. Lower curve: K;; = 10uM, K;» = 0.1uM. Upper curves: K;| =
1luM, K;» = 0.01uM. Dashed curves were computed from Eqs. (66), (67)
and (68). (E) If the HK exhibits a kinetic preference for RR2 with respect to
its phosphatase activity (g, > 1) RR2 becomes insulated, but the non-cognate
RR (RR1) becomes phosphorylated first. Parameters: K;; = K;» = 1uM,
kil = kip = kp1 = 0.1/s, kpp = 1/s, Kp1 = 1luM, Kp» = 0.1uM. Dashed
curves were computed from Eqs. (69) and (66). Other parameters: RRj7 =
RRyr = 10uM, ky = 0.1/s



Different limits may lead to different equations as in the case
of two-component systems where the sensor kinase is recipro-
cally regulated by an allosteric effector (Fig. 14): If the affinity
of the effector is high the system is described by an equation
of the Goldbeter-Koshland type (Eq. 65); in the low-affinity
limit it becomes similar to that of a bimolecular reaction (Eq.
61). In these equations the parameters of the elementary motifs
are typically replaced by parameters with a different meaning
or by parameter combinations. In the latter case information
from different parts of the network is condensed into few ef-
fective parameters (cf. Table 1) which allows for a quantitative
understanding of signal integration.

Despite the fact that different systems can be described by
similar equations the interpretation of the resulting input-output
behavior might be different. For example, under conditions of
substrate excess two-component systems can be described by a
similar equation as receptor-ligand binding. However, for two-
component systems the receptor concentration is replaced by a
rescaled Michaelis-Menten constant which only depends on ki-
netic parameters of the system. As a consequence the stimulus-
response curve for receptor-ligand binding describes saturation
of a receptor by a ligand while that for a two-component system
describes concentration robustness (Fig. 13).

5.1. Challenges and future directions

In this review we focussed on the simplest network motifs
within each class, e.g. two ligands competing for a binding site
on a receptor, for which analytical results are known. How-
ever, in vivo the number of competitors could be substantially
higher which may lead to multiple thresholds and hierarchical
regulation (Levine et al., 2007; Mitarai et al., 2007). As the
number of competitors increases the polynomial order of the
corresponding steady state equations increases, too. To system-
atically derive and analyze such equations algebraic approaches
have proven to be useful (Thomson and Gunawardena, 2009;
Feliu et al., 2012; Estrada et al., 2016). When going from 2
to n competitors or from one covalent modification cycle to n
such cycles, as in a MAP kinase cascade, it will be interesting
to see if the resulting steady state equations can still be reduced
to a L-type, LR-type or GK-type equation. If so, this may pro-
vide a classification of network architectures based on their de-
composability into elementary network motifs. One could also
envision a classification where larger networks, that can be de-
scribed by the same equation as an elementary network motif,
may be replaced by an ’equivalent circuit’ of the motif with
renormalized input-output parameters similar as for electrical
circuits. Such a classification would be particularly useful to
aid the construction and integration of novel regulatory circuits
in the context of synthetic biology.

While this review almost exclusively focussed on steady state
aspects of regulatory networks it remains a major challenge to
decode the information processed by cells that is encoded in the
temporal response of a network (Sasagawa et al., 2005; Thurley
etal.,2012; Levine et al., 2013). For example, the physiological
response may depend on whether a steady state is approached
monotonically or through relaxation after an overshoot (Shin
et al., 2006). In ODE systems with two or more state variables
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a steady state may become unstable in a Hopf bifurcation giv-
ing rise to sustained oscillations which encode information in
their shape and their frequency. Similar as for steady states
an approach based on network motifs was used to classify bio-
logical oscillators (Novak and Tyson, 2008). At least close to
bifurcation points the transient dynamics of such systems can
be described by 'normal form’ equations which contain only a
few effective parameters (Kuznetsov, 1998). Away from bifur-
cation points systems typically have to be analyzed on a case
by case basis, and it remains an open question whether the tran-
sient dynamics of larger networks can be understood in terms
of the known behavior of some elementary motifs. However,
model reduction techniques such as the total QSSA may pro-
vide a suitable starting point for a systematic analysis.

6. Appendix

6.1. Approximations for T

If K; < |Ly —Rr| and Ly # Ry we can approximate Ty,
defined in Eq. (9), by

K,

T (70)

kg_l \/(LT - RT)2 +2K,; (Lt + Ry) + K;
~ Ky
k; |Lr — Ryl \/@
_ KLy + RT))
(Lt~ Rr)?

1
Tk |LT—RT|(

where we have used that V1 + x ~ 1+x/2and 1/ (1 + x) ~ 1—x
when x <« 1. For Ly = Ry the leading order diverges and we

obtain from Eq. (70)
Ka
e

K, 1
Ty = = —
_ k;
ke \/4KdRT +k2 K \/1 e
1 Ky (1 K, )
k{; 4Ry S8Ry ’
In the limit K; > max (L7, Rr) we approximate 7, by
1
Ty = >
_ Lr+R Lr—R
G 1+ 285 (k)
N 1
- Lr+R
(1)

which agrees with the expression in Eq. (13).

6.2. Approximations for the cooperative binding motif

6.2.1. Positive cooperativity
In the limit of strong positive cooperativity (¢ > b) we
rewrite Eq. (27) in the form

P Kir+Kr+eSr)x+(1+e)KipKor =0 (71)



where

&= < 1.

c—-b
For fixed S ~ O (K7, K>r) substituting the Ansatz
X =X+ &x; +O(82)
into Eq. (71) yields
xg — (Kir + Kar) xo + KirKor = 0 (72)

and

2xox1 — (Kir + Kor) X1 — S7x0 + K17 Kor = 0. (73)
Since x < min (K7, K>7) the solution of Eq. (72) is given by
Kir + Koy |Kir — Kor|

=T 2
| Kir Kir < Kor
Kor, Kir > Kor

Substituting this solution into Eq. (73) and solving for x; gives

S7-K
_KITKT_KT s Kir < Koyr <Sr

1= S7-Kir :
—Korg =k, K <Kir <S8t

Together, this yields the approximation

_ ST*KZT)
KIT(l CkrKir )

_ ST_KIT)
KZT(I EKlr—Kzr ’

K]T<K2T <ST

(74)
Kor <Kir <Sr

which has been used to construct the solution in Eq. (31).

For large S 7 the term &S 7 must not be neglected against K7
and K7 in the linear term of Eq. (71). Specifically, if S >
K7 + K7 the linear term becomes dominant so that balancing
it with the O (1) part of the constant term yields the asymptotic
form of the solution (cf. Eq. 29)

Kir K>y

B Kir + Ko
K1T+K2T+8ST’ ’

Sr >

6.2.2. Negative cooperativity
In the case of strong negative cooperativity (¢ < b) we
rewrite Eq. (27) in the form

= (Kir + Koy = (1 +m)S7)x = nKi7Kor = 0 (75)

where
< 1.

n= b
-c
Substituting the Ansatz
X = Xo + nx; +O(772)
into Eq. (75) yields
(xo = Kir + Kar = S1) %0 =0 (76)

and

2x0x1 — (Kir + Koy = S7) x1 +S7x0 — Kir Koy = 0. (77)

The non-negative solutions of Eq. (76) are given by

) _
X =0

)CE)2) =Kir+Kyr—Sr, St <Kir+Ksr.

Substituting xg) into Eq. (77) and solving for x; gives

Kir K
) 1rKor
X, ==, ST>K1T+K2T

! St — (K7 + Kor)

Ki7K

©) 1rKor
x'==|Sr——|, Sr<Kir+ K.
! (T Kir + Koy — St re s

Together, this yields the approximation (cf. Eq. 30)

KirKor _
U BLi =i vy SR Kir <St - Kor (78)

Kir +Kyr = S7, Kir > St - Koy

which has been used to construct the solution in Eq. (32).

6.3. Stimulus response curve for substrate competition at large
substrate concentration

The steady state for [L1.R] is determined by the cubic equa-
tion in Eq. (35). To derive an approximate expression for the
stimulus response curve in the limit L1y > (R — L27) /& with
e = Kp/K;1 < 1 we note that [L1.R] < Ry remains bounded
as L1y becomes large so that the cubic term can be neglected
in that limit. Then, keeping only the dominant terms from the
coefficients of the linear and the quadratic terms, the stimulus
response curve is determined to leading order by

Li7 [L1.R* = L17 (Ry — L27 — eL17) [L1.R] + eR7L13 ~ 0

which agrees with Eq. (40).
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Cross-talk in two-component systems
The phosphorylation of two response regulators (RRs) by a single sensor kinase (HK), as depicted
in Fig. 15C, is described by the reaction mechanism
ki ke
HK* + RR; = HK*- RR;, — IHK—i—RR* 1=1,2

ky

HK + RR® = HK-RR*'™ HK + RR;, i=1,2

HK = HK"

where HK™* and RR; denote the phosphorylated forms of the sensor kinase and the response
regulator, respectively. The corresponding ODE system reads

d[ZRﬂ = ky;[HK*-RR) -k}, [RR] [HK] + k,; [HK-RR;] (S1)
d[HK] o )
o = kR [HE]+ ki [HK]—%—;ICM [HK*-RR|] (S2)
= 3 (ki [REVHE] = (kyy - hy) [HE-RE])
d[HfZ_RRi] = k' [RR|[HK"] — (k;y + ki) [HK*-RR;] (S3)
HICRIE] e (RRS)(HK] — (ky,+ by) R (54

where [RR;], [RR,] and [HK?] have to be replaced according to the conservation relations

[RR,] + [RR] + [HK*-RR)) + [HK-RR}] = RRy (S5)
[RRo] + [RRS] + [HK*-RRy) + [HK-RR] = RRyr (S6)
[HK]+[HK*]+z2:[HK*-RRi}+i:[HK-RR;“] = HKrp. (S7)

i=1 i=1

We assume that both RRs are in excess so that

[RRi] = RRir — [RR]] (S8)
[RRQ] ~ RRQT — [RR;] .

S1



Under steady state conditions the enzyme-substrate complexes are given by

[RR|[HK"]  (RRir — [RE]]) [HK”]

HK*-RR;] = ~
[HK*-RR)) 5. X, (S9)
7 Kp’Z

where the Michaelis-Menten constants are defined by

i + k;ﬂ kyi + kiz )
ti — T—: and pi = Tip, 1 = 172
Addition of Egs. (S2) and (S4) yields at steady state
k}? * kt 1 k kt 2 *
ki ki ki

ky ki1 [RRl] ki o [RRQ]
= Or (g g Bat R Mz VR e
< - krp Kia * krp Kio | |

K (1, b REir — [RR{] | ks RRyr — [RRy]
ke Ki ke Ko

2
|

) [HK™] (S10)
where we have used the conservation relations Eqgs. (S8) in the last line. Similarly, addition of
Egs. (S1) and (S4) yields the steady state relations

kt,l [HK*—RRl] - ka [HK—RRT]
kio [HK*-RRy) = k,o[HK-RR}].

Replacing the enzyme-substrate complexes by the relations in Egs. (S9) and the conservation
relations Egs. (S8) yields

(RRyr — [RR]]) [HK”] [RE]] [HK]
kt,l ~ kpyl—
Kt,l Kp,l
(BRyr — [RR3]) [HK”] [RES] [HK]
Kt o kp 2 .
Kt,Z Kp,2

Finally, replacing [H K| on the right-hand sides by the expression in Eq. (S10) the factor [H K*|
cancels on both sides of the equation resulting in the steady state equations

(RRir — [RRY]) [RR;] ky ( kg RRyp — [RRY] | kio RRor — WRS])
k ~ ok ——-2 1+ = + = S11
tl Ky n! Kp1 ki kk Kia kx K2 S
(RRyr — [RRj) RE3] i (), o RByr — [RRA) | o RRor — [RR]
kt,2 kp,Q + 1 - T '
Ko Kpo kg ki Kia ke Kz

S2



By defining the rescaled Michaelis-Menten constants C),; and C;; through

ki ky .
Cpﬂ' = Kp,i ande = _Kt,ia 1 = ]_, 2
kp,i kt,i
Egs. (S11) can be written in the form
(RRyr — [RRY)) - [RR;] (1 N RRyr — [RR;] N RRor — [RR;])
Cia Cpa Cia Co
(RRyr — [RR3)) - [RR}] (1 N RRir — [RR;] N RRor — [RR;]) .
Cia Cp2 Cia Cia

Taking the ratio of both equations yields
Cpa (REyr — [RR]]) _ Cpa (RRyr — [RRS])

Cia [RR] G [RR3)
o Ror [RRY]
RRj] = - o
RR) = & — (RE) + [BR
where

Cpﬂ _ kpﬂ/Kp,?
Op72 ka/Kp,l

Cia . kio/Kio

and & = =
T Cy kui/Kia

Ep =

(S12)

(S13)

(S14)

denote the ratios of the kinetic preferences of the HK’s phosphatase activity (e,) and the HK’s

phosphotransferase activity (e;) with respect to the two RRs.
Substituting the relation

Ror 2 (Rir — [RR]])

Ror — [RR3] = = (Rir — [RR;]) + [RRj]

into Eq. (S12) yields a cubic equation for [RR}] which can be written as

g &
< - —”) [RR:]® — (RRlT +Cp1 — pRRyp + Ciy — 2 (2- RRip + Cpy + Om)) [RR}]

&t

+RRq7 (Cp,1 — €pRR2T - i—p (RRlT + 2Cp,1 + Ct,l)) [RRI] + i—pcp,lRR%T
t t

By symmetry the steady state equation for [RRj] is given by

€ 1 €
(1 — —t) [RR}]® — (RRQT + Cpo = —REir+ Cip = g—t (2- RRyr + Cpo + (Jt,g)) [RR}?
p

P
&t

1
+RRQT (Cpg - —RRIT -
p

€p

S3

(S15)

0.

(S16)

€
(RRor +2C, 5 + Ct,2)> [RR3] + g_tOP,QRRgT = 0.
p



Note that these equations are structurally identical with that for the receptor-ligand complex
arising in the competition of two ligands for a receptor binding site in Eq. (35) if one makes the
substitutions (cf. Table 1)

[RRY] ¢ [L1.R], RRir ¢ Llr, 2 e, (S17)

&t

Cp71 < RT, EpRRQT S LQT, Ct71 g Kdl
in the case of Eq. (S15) and

(RR] 5 [L1.R], RRar ¢ Llp, L e

€p

1
Cpo <+ Ry, —RRiyp < L2p, Cio < Ky

€p

in the case of Eq. (S16).
In the limit €, — oo (with €; constant) the dominant terms in Eqs. (S15) are

—Z—p [RR}‘P + (apRRgT + i—p (2-RRyr +Cp1 + Ct,1)> [RR’{]2
t t

+RRyp (epRRQT + ‘Z—’: (2Cp1 + RRip + Ot,l)) [RRY] + i—’zop,lRRfT ~ 0

which can be factorized as

([RR;) — RRir) ([RR;)” — (RRyr + Cpy + Ci1 + & RRyr) [RR}] + Cp1 RRi7) = 0.
Hence, [RR}] = Rir or [RR;] is a solution of the LR-type equation

[RR:]? — (RRyp + Cypy + Cyy + £,RRor) [RRY] + Cyy RRyp = 0.
In contrast, in the limit &, — oo the dominant terms of Eq. (S15) are given by
([RR:)* = (Cor + RRuir + Gy — £,RRor) [RRi] + RRir (Cya — £, RRor)) [RE;] = 0.

Hence, [RR}] =~ 0 or [RR]] is a solution of the LR-type equation

[RR;]” — (RRir + Cp1 — €pRRor + Cy1) [RR;] + (Cp1 — £y RRer) RRi7 & 0. (S18)

Note that similar as for Eq. (38) the solution of Eq. (S18) is only defined for C,; > ¢,RRar or
ki > (kp2/Kp2) RRor. In the opposite case (ki < (ky2/K,2) RRor) the approximation can be
obtained by substituting the corresponding quantities (S17) into Eq. (37) which yields

1 RRirCpa kp2
Et RRQT — sz’ K

p,2

[RR!] ~ k<

RRyr.

S4



For [RR;] as described by Eq. (S16) the dominant terms are can be factorized as
[RR3] ([RR3)* — (RRor + Cpa + Ci) [RR3] + RRyrCh ) ~ 0
if &, — oo and
(RRor — [RR3)) ([RR3)* — [RRS) (RRar + Cpa + Cia) + RRyrCs) ~ 0.

if £, — co. Hence, in either limit the steady state of [RRj] is determined by the same quadratic
equation which is identical with that of the Batchelor-Goulian model for a single RR (cf. Eq. 61).
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