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Cross-talk in two-component systems

The phosphorylation of two response regulators (RRs) by a single sensor kinase (HK), as depicted
in Fig. 15C, is described by the reaction mechanism
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where HK∗ and RR∗
i denote the phosphorylated forms of the sensor kinase and the response

regulator, respectively. The corresponding ODE system reads
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where [RR1], [RR2] and
[
HKP

]
have to be replaced according to the conservation relations

[RR1] + [RR∗
1] + [HK∗-RR1] + [HK-RR∗

1] = RR1T (S5)

[RR2] + [RR∗
2] + [HK∗-RR2] + [HK-RR∗

2] = RR2T (S6)
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2∑

i=1

[HK-RR∗
i ] = HKT . (S7)

We assume that both RRs are in excess so that

[RR1] ≈ RR1T − [RR∗
1] (S8)

[RR2] ≈ RR2T − [RR∗
2] .
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Under steady state conditions the enzyme-substrate complexes are given by
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where the Michaelis-Menten constants are defined by
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Addition of Eqs. (S2) and (S4) yields at steady state
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where we have used the conservation relations Eqs. (S8) in the last line. Similarly, addition of
Eqs. (S1) and (S4) yields the steady state relations

kt,1 [HK∗-RR1] = kp,1 [HK-RR∗
1]

kt,2 [HK∗-RR2] = kp,2 [HK-RR∗
2] .

Replacing the enzyme-substrate complexes by the relations in Eqs. (S9) and the conservation
relations Eqs. (S8) yields
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Finally, replacing [HK] on the right-hand sides by the expression in Eq. (S10) the factor [HK∗]
cancels on both sides of the equation resulting in the steady state equations
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By defining the rescaled Michaelis-Menten constants Cp,i and Ct,i through
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Kp,i andCt,i =
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Kt,i, i = 1, 2

Eqs. (S11) can be written in the form
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Taking the ratio of both equations yields
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where
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and εt ≡
Ct,1

Ct,2

=
kt,2/Kt,2
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denote the ratios of the kinetic preferences of the HK’s phosphatase activity (εp) and the HK’s
phosphotransferase activity (εt) with respect to the two RRs.

Substituting the relation
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2] =
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εp
εt
(R1T − [RR∗

1])
εp
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into Eq. (S12) yields a cubic equation for [RR∗
1] which can be written as(
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)
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2 (S15)
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)
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By symmetry the steady state equation for [RR∗
2] is given by(
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)
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2] +
εt
εp
Cp,2RR2

2T = 0.

S3



Note that these equations are structurally identical with that for the receptor-ligand complex
arising in the competition of two ligands for a receptor binding site in Eq. (35) if one makes the
substitutions (cf. Table 1)

[RR∗
1] ↔ [L1.R] , RR1T ↔ L1T ,

εp
εt

↔ ε, (S17)

Cp,1 ↔ RT , εpRR2T ↔ L2T , Ct,1 ↔ Kd1

in the case of Eq. (S15) and

[RR∗
2] ↔ [L1.R] , RR2T ↔ L1T ,

εt
εp

↔ ε

Cp,2 ↔ RT ,
1

εp
RR1T ↔ L2T , Ct,2 ↔ Kd1

in the case of Eq. (S16).
In the limit εp → ∞ (with εt constant) the dominant terms in Eqs. (S15) are

−εp
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which can be factorized as

([RR∗
1]−RR1T )

(
[RR∗

1]
2 − (RR1T + Cp,1 + Ct,1 + εtRR2T ) [RR∗

1] + Cp,1RR1T

)
≈ 0.

Hence, [RR∗
1] ≈ R1T or [RR∗

1] is a solution of the LR-type equation

[RR∗
1]

2 − (RR1T + Cp,1 + Ct,1 + εtRR2T ) [RR∗
1] + Cp,1RR1T ≈ 0.

In contrast, in the limit εt → ∞ the dominant terms of Eq. (S15) are given by(
[RR∗

1]
2 − (Ct,1 +RR1T + Cp,1 − εpRR2T ) [RR∗

1] +RR1T (Cp,1 − εpRR2T )
)
[RR∗

1] ≈ 0.

Hence, [RR∗
1] ≈ 0 or [RR∗

1] is a solution of the LR-type equation

[RR∗
1]

2 − (RR1T + Cp,1 − εpRR2T + Ct,1) [RR∗
1] + (Cp,1 − εpRR2T )RR1T ≈ 0. (S18)

Note that similar as for Eq. (38) the solution of Eq. (S18) is only defined for Cp,1 > εpRR2T or
k+
K > (kp,2/Kp,2)RR2T . In the opposite case (k+

K < (kp,2/Kp,2)RR2T ) the approximation can be
obtained by substituting the corresponding quantities (S17) into Eq. (37) which yields

[RR∗
1] ≈

1

εt

RR1TCp,1

RR2T − Cp,2

, k+
K <

kp,2
Kp,2

RR2T .
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For [RR∗
2] as described by Eq. (S16) the dominant terms are can be factorized as

[RR∗
2]
(
[RR∗

2]
2 − (RR2T + Cp,2 + Ct,2) [RR∗

2] +RR2TCp,2

)
≈ 0

if εt → ∞ and

(RR2T − [RR∗
2])

(
[RR∗

2]
2 − [RR∗

2] (RR2T + Cp,2 + Ct,2) +RR2TCp,2

)
≈ 0.

if εp → ∞. Hence, in either limit the steady state of [RR∗
2] is determined by the same quadratic

equation which is identical with that of the Batchelor-Goulian model for a single RR (cf. Eq. 61).
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