Supplementary Data for

Analysis of network motifs in cellular regulation: structural
similarities, input-output relations and signal integration

Ronny Straube



Cross-talk in two-component systems
The phosphorylation of two response regulators (RRs) by a single sensor kinase (HK), as depicted
in Fig. 15C, is described by the reaction mechanism
ki ke
HK* + RR; = HK*- RR;, — IHK—i—RR* 1=1,2

ky

HK + RR® = HK-RR*'™ HK + RR;, i=1,2

HK = HK"

where HK™* and RR; denote the phosphorylated forms of the sensor kinase and the response
regulator, respectively. The corresponding ODE system reads

d[ZRﬂ = ky;[HK*-RR) -k}, [RR] [HK] + k,; [HK-RR;] (S1)
d[HK] o )
o = kR [HE]+ ki [HK]—%—;ICM [HK*-RR|] (S2)
= 3 (ki [REVHE] = (kyy - hy) [HE-RE])
d[HfZ_RRi] = k' [RR|[HK"] — (k;y + ki) [HK*-RR;] (S3)
HICRIE] e (RRS)(HK] — (ky,+ by) R (54

where [RR;], [RR,] and [HK?] have to be replaced according to the conservation relations

[RR,] + [RR] + [HK*-RR)) + [HK-RR}] = RRy (S5)
[RRo] + [RRS] + [HK*-RRy) + [HK-RR] = RRyr (S6)
[HK]+[HK*]+z2:[HK*-RRi}+i:[HK-RR;“] = HKrp. (S7)

i=1 i=1

We assume that both RRs are in excess so that

[RRi] = RRir — [RR]] (S8)
[RRQ] ~ RRQT — [RR;] .
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Under steady state conditions the enzyme-substrate complexes are given by

[RR|[HK"]  (RRir — [RE]]) [HK”]

HK*-RR;] = ~
[HK*-RR)) 5. X, (S9)
7 Kp’Z

where the Michaelis-Menten constants are defined by

i + k;ﬂ kyi + kiz )
ti — T—: and pi = Tip, 1 = 172
Addition of Egs. (S2) and (S4) yields at steady state
k}? * kt 1 k kt 2 *
ki ki ki

ky ki1 [RRl] ki o [RRQ]
= Or (g g Bat R Mz VR e
< - krp Kia * krp Kio | |

K (1, b REir — [RR{] | ks RRyr — [RRy]
ke Ki ke Ko

2
|

) [HK™] (S10)
where we have used the conservation relations Eqgs. (S8) in the last line. Similarly, addition of
Egs. (S1) and (S4) yields the steady state relations

kt,l [HK*—RRl] - ka [HK—RRT]
kio [HK*-RRy) = k,o[HK-RR}].

Replacing the enzyme-substrate complexes by the relations in Egs. (S9) and the conservation
relations Egs. (S8) yields

(RRyr — [RR]]) [HK”] [RE]] [HK]
kt,l ~ kpyl—
Kt,l Kp,l
(BRyr — [RR3]) [HK”] [RES] [HK]
Kt o kp 2 .
Kt,Z Kp,2

Finally, replacing [H K| on the right-hand sides by the expression in Eq. (S10) the factor [H K*|
cancels on both sides of the equation resulting in the steady state equations

(RRir — [RRY]) [RR;] ky ( kg RRyp — [RRY] | kio RRor — WRS])
k ~ ok ——-2 1+ = + = S11
tl Ky n! Kp1 ki kk Kia kx K2 S
(RRyr — [RRj) RE3] i (), o RByr — [RRA) | o RRor — [RR]
kt,2 kp,Q + 1 - T '
Ko Kpo kg ki Kia ke Kz

S2



By defining the rescaled Michaelis-Menten constants C),; and C;; through

ki ky .
Cpﬂ' = Kp,i ande = _Kt,ia 1 = ]_, 2
kp,i kt,i
Egs. (S11) can be written in the form
(RRyr — [RRY)) - [RR;] (1 N RRyr — [RR;] N RRor — [RR;])
Cia Cpa Cia Co
(RRyr — [RR3)) - [RR}] (1 N RRir — [RR;] N RRor — [RR;]) .
Cia Cp2 Cia Cia

Taking the ratio of both equations yields
Cpa (REyr — [RR]]) _ Cpa (RRyr — [RRS])

Cia [RR] G [RR3)
o Ror [RRY]
RRj] = - o
RR) = & — (RE) + [BR
where

Cpﬂ _ kpﬂ/Kp,?
Op72 ka/Kp,l

Cia . kio/Kio

and & = =
T Cy kui/Kia

Ep =

(S12)

(S13)

(S14)

denote the ratios of the kinetic preferences of the HK’s phosphatase activity (e,) and the HK’s

phosphotransferase activity (e;) with respect to the two RRs.
Substituting the relation

Ror 2 (Rir — [RR]])

Ror — [RR3] = = (Rir — [RR;]) + [RRj]

into Eq. (S12) yields a cubic equation for [RR}] which can be written as

g &
< - —”) [RR:]® — (RRlT +Cp1 — pRRyp + Ciy — 2 (2- RRip + Cpy + Om)) [RR}]

&t

+RRq7 (Cp,1 — €pRR2T - i—p (RRlT + 2Cp,1 + Ct,l)) [RRI] + i—pcp,lRR%T
t t

By symmetry the steady state equation for [RRj] is given by

€ 1 €
(1 — —t) [RR}]® — (RRQT + Cpo = —REir+ Cip = g—t (2- RRyr + Cpo + (Jt,g)) [RR}?
p

P
&t

1
+RRQT (Cpg - —RRIT -
p

€p

S3

(S15)

0.

(S16)

€
(RRor +2C, 5 + Ct,2)> [RR3] + g_tOP,QRRgT = 0.
p



Note that these equations are structurally identical with that for the receptor-ligand complex
arising in the competition of two ligands for a receptor binding site in Eq. (35) if one makes the
substitutions (cf. Table 1)

[RRY] ¢ [L1.R], RRir ¢ Llr, 2 e, (S17)

&t

Cp71 < RT, EpRRQT S LQT, Ct71 g Kdl
in the case of Eq. (S15) and

(RR] 5 [L1.R], RRar ¢ Llp, L e

€p

1
Cpo <+ Ry, —RRiyp < L2p, Cio < Ky

€p

in the case of Eq. (S16).
In the limit €, — oo (with €; constant) the dominant terms in Eqs. (S15) are

—Z—p [RR}‘P + (apRRgT + i—p (2-RRyr +Cp1 + Ct,1)> [RR’{]2
t t

+RRyp (epRRQT + ‘Z—’: (2Cp1 + RRip + Ot,l)) [RRY] + i—’zop,lRRfT ~ 0

which can be factorized as

([RR;) — RRir) ([RR;)” — (RRyr + Cpy + Ci1 + & RRyr) [RR}] + Cp1 RRi7) = 0.
Hence, [RR}] = Rir or [RR;] is a solution of the LR-type equation

[RR:]? — (RRyp + Cypy + Cyy + £,RRor) [RRY] + Cyy RRyp = 0.
In contrast, in the limit &, — oo the dominant terms of Eq. (S15) are given by
([RR:)* = (Cor + RRuir + Gy — £,RRor) [RRi] + RRir (Cya — £, RRor)) [RE;] = 0.

Hence, [RR}] =~ 0 or [RR]] is a solution of the LR-type equation

[RR;]” — (RRir + Cp1 — €pRRor + Cy1) [RR;] + (Cp1 — £y RRer) RRi7 & 0. (S18)

Note that similar as for Eq. (38) the solution of Eq. (S18) is only defined for C,; > ¢,RRar or
ki > (kp2/Kp2) RRor. In the opposite case (ki < (ky2/K,2) RRor) the approximation can be
obtained by substituting the corresponding quantities (S17) into Eq. (37) which yields

1 RRirCpa kp2
Et RRQT — sz’ K

p,2

[RR!] ~ k<

RRyr.
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For [RR;] as described by Eq. (S16) the dominant terms are can be factorized as
[RR3] ([RR3)* — (RRor + Cpa + Ci) [RR3] + RRyrCh ) ~ 0
if &, — oo and
(RRor — [RR3)) ([RR3)* — [RRS) (RRar + Cpa + Cia) + RRyrCs) ~ 0.

if £, — co. Hence, in either limit the steady state of [RRj] is determined by the same quadratic
equation which is identical with that of the Batchelor-Goulian model for a single RR (cf. Eq. 61).
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