Supplementary Data for

Analysis of network motifs in cellular regulation: structural similarities, input-output relations and signal integration

Ronny Straube

Cross-talk in two-component systems

The phosphorylation of two response regulators (RRs) by a single sensor kinase (HK), as depicted in Fig. 15C, is described by the reaction mechanism

$$
\begin{aligned}
& H K^{*}+R R_{i} \underset{k_{t, i}^{-}}{\stackrel{k_{t, i}^{+}}{\rightleftarrows}} H K^{*}-R R_{i} \xrightarrow{k_{t, i}} H K+R R_{i}^{*}, \quad i=1,2 \\
& H K+R R_{i}^{*} \underset{k_{p, i}^{-}}{\stackrel{k_{p, i}^{+}}{\rightleftarrows}} H K-R R_{i}^{*} \xrightarrow{\stackrel{k_{p, i}}{\rightrightarrows}} H K+R R_{i}, \quad i=1,2 \\
& H K \underset{k_{K}^{-}}{\stackrel{k_{K}^{+}}{\rightleftarrows}} H K^{*}
\end{aligned}
$$

where $H K^{*}$ and $R R_{i}^{*}$ denote the phosphorylated forms of the sensor kinase and the response regulator, respectively. The corresponding ODE system reads

$$
\begin{align*}
\frac{d\left[R R_{i}^{*}\right]}{d t}= & k_{t, i}\left[H K^{*}-R R_{i}\right]-k_{p, i}^{+}\left[R R_{i}^{*}\right][H K]+k_{p, i}^{-}\left[H K-R R_{i}^{*}\right] \tag{S1}\\
\frac{d[H K]}{d t}= & -k_{K}^{+}[H K]+k_{K}^{-}\left[H K^{*}\right]+\sum_{i=1}^{2} k_{t, i}\left[H K^{*}-R R_{i}\right] \tag{S2}\\
& -\sum_{i=1}^{2}\left(k_{p, i}^{+}\left[R R_{i}^{*}\right][H K]-\left(k_{p, i}^{-}+k_{p, i}\right)\left[H K-R R_{i}^{*}\right]\right) \\
\frac{d\left[H K^{*}-R R_{i}\right]}{d t}= & k_{t, i}^{+}\left[R R_{i}\right]\left[H K^{*}\right]-\left(k_{t, 1}^{-}+k_{t, i}\right)\left[H K^{*}-R R_{i}\right] \tag{S3}\\
\frac{d\left[H K-R R_{i}^{*}\right]}{d t}= & k_{p, i}^{+}\left[R R_{i}^{*}\right][H K]-\left(k_{p, i}^{-}+k_{p, i}\right)\left[H K-R R_{i}^{*}\right] \tag{S4}
\end{align*}
$$

where $\left[R R_{1}\right],\left[R R_{2}\right]$ and $\left[H K^{P}\right]$ have to be replaced according to the conservation relations

$$
\begin{align*}
{\left[R R_{1}\right]+\left[R R_{1}^{*}\right]+\left[H K^{*}-R R_{1}\right]+\left[H K-R R_{1}^{*}\right] } & =R R_{1 T} \tag{S5}\\
{\left[R R_{2}\right]+\left[R R_{2}^{*}\right]+\left[H K^{*}-R R_{2}\right]+\left[H K-R R_{2}^{*}\right] } & =R R_{2 T} \tag{S6}\\
{[H K]+\left[H K^{*}\right]+\sum_{i=1}^{2}\left[H K^{*}-R R_{i}\right]+\sum_{i=1}^{2}\left[H K-R R_{i}^{*}\right] } & =H K_{T} . \tag{S7}
\end{align*}
$$

We assume that both RRs are in excess so that

$$
\begin{align*}
& {\left[R R_{1}\right] \approx R R_{1 T}-\left[R R_{1}^{*}\right]} \tag{S8}\\
& {\left[R R_{2}\right] \approx R R_{2 T}-\left[R R_{2}^{*}\right] .}
\end{align*}
$$

Under steady state conditions the enzyme-substrate complexes are given by

$$
\begin{align*}
{\left[H K^{*}-R R_{i}\right] } & =\frac{\left[R R_{i}\right]\left[H K^{*}\right]}{K_{t, i}} \approx \frac{\left(R R_{i T}-\left[R R_{i}^{*}\right]\right)\left[H K^{*}\right]}{K_{t, i}} \tag{S9}\\
{\left[H K-R R_{i}^{*}\right] } & =\frac{\left[R R_{i}^{*}\right][H K]}{K_{p, i}}
\end{align*}
$$

where the Michaelis-Menten constants are defined by

$$
K_{t, i}=\frac{k_{t, i}+k_{t, i}^{-}}{k_{t, i}^{+}} \quad \text { and } \quad K_{p, i}=\frac{k_{p, i}+k_{p, i}^{-}}{k_{p, i}^{+}}, \quad i=1,2 .
$$

Addition of Eqs. (S2) and (S4) yields at steady state

$$
\begin{align*}
{[H K] } & =\frac{k_{K}^{-}}{k_{K}^{+}}\left[H K^{*}\right]+\frac{k_{t, 1}}{k_{K}^{+}}\left[H K^{*}-R R_{1}\right]+\frac{k_{t, 2}}{k_{K}^{+}}\left[H K^{*}-R R_{2}\right] \\
& =\frac{k_{K}^{-}}{k_{K}^{+}}\left(1+\frac{k_{t, 1}}{k_{K}^{-}} \frac{\left[R R_{1}\right]}{K_{t, 1}}+\frac{k_{t, 2}}{k_{K}^{-}} \frac{\left[R R_{2}\right]}{K_{t, 2}}\right)\left[H K^{*}\right] \\
& \approx \frac{k_{K}^{-}}{k_{K}^{+}}\left(1+\frac{k_{t, 1}}{k_{K}^{-}} \frac{R R_{1 T}-\left[R R_{1}^{*}\right]}{K_{t, 1}}+\frac{k_{t, 2}}{k_{K}^{-}} \frac{R R_{2 T}-\left[R R_{2}^{*}\right]}{K_{t, 2}}\right)\left[H K^{*}\right] \tag{S10}
\end{align*}
$$

where we have used the conservation relations Eqs. (S8) in the last line. Similarly, addition of Eqs. (S1) and (S4) yields the steady state relations

$$
\begin{aligned}
k_{t, 1}\left[H K^{*}-R R_{1}\right] & =k_{p, 1}\left[H K-R R_{1}^{*}\right] \\
k_{t, 2}\left[H K^{*}-R R_{2}\right] & =k_{p, 2}\left[H K-R R_{2}^{*}\right] .
\end{aligned}
$$

Replacing the enzyme-substrate complexes by the relations in Eqs. (S9) and the conservation relations Eqs. (S8) yields

$$
\begin{aligned}
& k_{t, 1} \frac{\left(R R_{1 T}-\left[R R_{1}^{*}\right]\right)\left[H K^{*}\right]}{K_{t, 1}} \approx k_{p, 1} \frac{\left[R R_{1}^{*}\right][H K]}{K_{p, 1}} \\
& k_{t, 2} \frac{\left(R R_{2 T}-\left[R R_{2}^{*}\right]\right)\left[H K^{*}\right]}{K_{t, 2}} \approx k_{p, 2} \frac{\left[R R_{2}^{*}\right][H K]}{K_{p, 2}}
\end{aligned}
$$

Finally, replacing $[H K]$ on the right-hand sides by the expression in Eq. (S10) the factor $\left[H K^{*}\right]$ cancels on both sides of the equation resulting in the steady state equations

$$
\begin{align*}
& k_{t, 1} \frac{\left(R R_{1 T}-\left[R R_{1}^{*}\right]\right)}{K_{t, 1}} \approx k_{p, 1} \frac{\left[R R_{1}^{*}\right]}{K_{p, 1}} \frac{k_{K}^{-}}{k_{K}^{+}}\left(1+\frac{k_{t, 1}}{k_{K}^{-}} \frac{R R_{1 T}-\left[R R_{1}^{*}\right]}{K_{t, 1}}+\frac{k_{t, 2}}{k_{K}^{-}} \frac{R R_{2 T}-\left[R R_{2}^{*}\right]}{K_{t, 2}}\right) \tag{S11}\\
& k_{t, 2} \frac{\left(R R_{2 T}-\left[R R_{2}^{*}\right]\right)}{K_{t, 2}} \approx k_{p, 2} \frac{\left[R R_{2}^{*}\right]}{K_{p, 2}} \frac{k_{K}^{-}}{k_{K}^{+}}\left(1+\frac{k_{t, 1}}{k_{K}^{-}} \frac{R R_{1 T}-\left[R R_{1}^{*}\right]}{K_{t, 1}}+\frac{k_{t, 2}}{k_{K}^{-}} \frac{R R_{2 T}-\left[R R_{2}^{*}\right]}{K_{t, 2}}\right) .
\end{align*}
$$

By defining the rescaled Michaelis-Menten constants $C_{p, i}$ and $C_{t, i}$ through

$$
C_{p, i}=\frac{k_{K}^{+}}{k_{p, i}} K_{p, i} \quad \text { and } C_{t, i}=\frac{k_{K}^{-}}{k_{t, i}} K_{t, i}, \quad i=1,2
$$

Eqs. (S11) can be written in the form

$$
\begin{align*}
& \frac{\left(R R_{1 T}-\left[R R_{1}^{*}\right]\right)}{C_{t, 1}} \approx \frac{\left[R R_{1}^{*}\right]}{C_{p, 1}}\left(1+\frac{R R_{1 T}-\left[R R_{1}^{*}\right]}{C_{t, 1}}+\frac{R R_{2 T}-\left[R R_{2}^{*}\right]}{C_{t, 2}}\right) \tag{S12}\\
& \frac{\left(R R_{2 T}-\left[R R_{2}^{*}\right]\right)}{C_{t, 2}} \approx \frac{\left[R R_{2}^{*}\right]}{C_{p, 2}}\left(1+\frac{R R_{1 T}-\left[R R_{1}^{*}\right]}{C_{t, 1}}+\frac{R R_{2 T}-\left[R R_{2}^{*}\right]}{C_{t, 2}}\right) \tag{S13}
\end{align*}
$$

Taking the ratio of both equations yields

$$
\frac{C_{p, 1}}{C_{t, 1}} \frac{\left(R R_{1 T}-\left[R R_{1}^{*}\right]\right)}{\left[R R_{1}^{*}\right]}=\frac{C_{p, 2}}{C_{t, 2}} \frac{\left(R R_{2 T}-\left[R R_{2}^{*}\right]\right)}{\left[R R_{2}^{*}\right]}
$$

or

$$
\begin{equation*}
\left[R R_{2}^{*}\right]=\frac{R_{2 T}\left[R R_{1}^{*}\right]}{\frac{\varepsilon_{p}}{\varepsilon_{t}}\left(R_{1 T}-\left[R R_{1}^{*}\right]\right)+\left[R R_{1}^{*}\right]} \tag{S14}
\end{equation*}
$$

where

$$
\varepsilon_{p} \equiv \frac{C_{p, 1}}{C_{p, 2}}=\frac{k_{p, 2} / K_{p, 2}}{k_{p, 1} / K_{p, 1}} \quad \text { and } \quad \varepsilon_{t} \equiv \frac{C_{t, 1}}{C_{t, 2}}=\frac{k_{t, 2} / K_{t, 2}}{k_{t, 1} / K_{t, 1}}
$$

denote the ratios of the kinetic preferences of the HK's phosphatase activity $\left(\varepsilon_{p}\right)$ and the HK's phosphotransferase activity $\left(\varepsilon_{t}\right)$ with respect to the two RRs.

Substituting the relation

$$
R_{2 T}-\left[R R_{2}^{*}\right]=\frac{R_{2 T} \frac{\varepsilon_{p}}{\varepsilon_{t}}\left(R_{1 T}-\left[R R_{1}^{*}\right]\right)}{\frac{\varepsilon_{p}}{\varepsilon_{t}}\left(R_{1 T}-\left[R R_{1}^{*}\right]\right)+\left[R R_{1}^{*}\right]}
$$

into Eq. (S12) yields a cubic equation for $\left[R R_{1}^{*}\right]$ which can be written as

$$
\begin{align*}
&\left(1-\frac{\varepsilon_{p}}{\varepsilon_{t}}\right)\left[R R_{1}^{*}\right]^{3}-\left(R R_{1 T}+C_{p, 1}-\varepsilon_{p} R R_{2 T}+C_{t, 1}-\frac{\varepsilon_{p}}{\varepsilon_{t}}\left(2 \cdot R R_{1 T}+C_{p, 1}+C_{t, 1}\right)\right)\left[R R_{1}^{*}\right]^{2} \tag{S15}\\
& \quad(\mathrm{~S} 15) \\
& R R_{1 T}\left(C_{p, 1}-\varepsilon_{p} R R_{2 T}-\frac{\varepsilon_{p}}{\varepsilon_{t}}\left(R R_{1 T}+2 C_{p, 1}+C_{t, 1}\right)\right)\left[R R_{1}^{*}\right]+\frac{\varepsilon_{p}}{\varepsilon_{t}} C_{p, 1} R R_{1 T}^{2}=0 .
\end{align*}
$$

By symmetry the steady state equation for $\left[R R_{2}^{*}\right]$ is given by

$$
\begin{align*}
&\left(1-\frac{\varepsilon_{t}}{\varepsilon_{p}}\right)\left[R R_{2}^{*}\right]^{3}-\left(R R_{2 T}+C_{p, 2}-\frac{1}{\varepsilon_{p}} R R_{1 T}+C_{t, 2}-\frac{\varepsilon_{t}}{\varepsilon_{p}}\left(2 \cdot R R_{2 T}+C_{p, 2}+C_{t, 2}\right)\right)\left[R R_{2}^{*}\right]^{2} \tag{S16}\\
&+ \text { (S16) } \\
&+ R R_{2 T}\left(C_{p, 2}-\frac{1}{\varepsilon_{p}} R R_{1 T}-\frac{\varepsilon_{t}}{\varepsilon_{p}}\left(R R_{2 T}+2 C_{p, 2}+C_{t, 2}\right)\right)\left[R R_{2}^{*}\right]+\frac{\varepsilon_{t}}{\varepsilon_{p}} C_{p, 2} R R_{2 T}^{2}=0 .
\end{align*}
$$

Note that these equations are structurally identical with that for the receptor-ligand complex arising in the competition of two ligands for a receptor binding site in Eq. (35) if one makes the substitutions (cf. Table 1)

$$
\begin{align*}
{\left[R R_{1}^{*}\right] } & \leftrightarrow[L 1 . R], \quad R R_{1 T} \leftrightarrow L 1_{T}, \quad \frac{\varepsilon_{p}}{\varepsilon_{t}} \tag{S17}
\end{align*} \leftrightarrow \varepsilon, ~ 子 C_{t, 1} \leftrightarrow R_{T}, \quad \varepsilon_{p} R R_{2 T} \leftrightarrow L 2_{T}, \quad C_{t, 1} \leftrightarrow K_{d 1}
$$

in the case of Eq. (S15) and

$$
\begin{aligned}
{\left[R R_{2}^{*}\right] } & \leftrightarrow[L 1 . R], \quad R R_{2 T} \leftrightarrow L 1_{T}, \quad \frac{\varepsilon_{t}}{\varepsilon_{p}} \leftrightarrow \varepsilon \\
C_{p, 2} & \leftrightarrow R_{T}, \quad \frac{1}{\varepsilon_{p}} R R_{1 T} \leftrightarrow L 2_{T}, \quad C_{t, 2} \leftrightarrow K_{d 1}
\end{aligned}
$$

in the case of Eq. (S16).
In the limit $\varepsilon_{p} \rightarrow \infty$ (with ε_{t} constant) the dominant terms in Eqs. (S15) are

$$
\begin{gathered}
-\frac{\varepsilon_{p}}{\varepsilon_{t}}\left[R R_{1}^{*}\right]^{3}+\left(\varepsilon_{p} R R_{2 T}+\frac{\varepsilon_{p}}{\varepsilon_{t}}\left(2 \cdot R R_{1 T}+C_{p, 1}+C_{t, 1}\right)\right)\left[R R_{1}^{*}\right]^{2} \\
+R R_{1 T}\left(\varepsilon_{p} R R_{2 T}+\frac{\varepsilon_{p}}{\varepsilon_{t}}\left(2 C_{p, 1}+R R_{1 T}+C_{t, 1}\right)\right)\left[R R_{1}^{*}\right]+\frac{\varepsilon_{p}}{\varepsilon_{t}} C_{p, 1} R R_{1 T}^{2} \approx 0
\end{gathered}
$$

which can be factorized as

$$
\left(\left[R R_{1}^{*}\right]-R R_{1 T}\right)\left(\left[R R_{1}^{*}\right]^{2}-\left(R R_{1 T}+C_{p, 1}+C_{t, 1}+\varepsilon_{t} R R_{2 T}\right)\left[R R_{1}^{*}\right]+C_{p, 1} R R_{1 T}\right) \approx 0
$$

Hence, $\left[R R_{1}^{*}\right] \approx R_{1 T}$ or $\left[R R_{1}^{*}\right]$ is a solution of the LR-type equation

$$
\left[R R_{1}^{*}\right]^{2}-\left(R R_{1 T}+C_{p, 1}+C_{t, 1}+\varepsilon_{t} R R_{2 T}\right)\left[R R_{1}^{*}\right]+C_{p, 1} R R_{1 T} \approx 0
$$

In contrast, in the limit $\varepsilon_{t} \rightarrow \infty$ the dominant terms of Eq. (S15) are given by

$$
\left(\left[R R_{1}^{*}\right]^{2}-\left(C_{t, 1}+R R_{1 T}+C_{p, 1}-\varepsilon_{p} R R_{2 T}\right)\left[R R_{1}^{*}\right]+R R_{1 T}\left(C_{p, 1}-\varepsilon_{p} R R_{2 T}\right)\right)\left[R R_{1}^{*}\right] \approx 0
$$

Hence, $\left[R R_{1}^{*}\right] \approx 0$ or $\left[R R_{1}^{*}\right]$ is a solution of the LR-type equation

$$
\begin{equation*}
\left[R R_{1}^{*}\right]^{2}-\left(R R_{1 T}+C_{p, 1}-\varepsilon_{p} R R_{2 T}+C_{t, 1}\right)\left[R R_{1}^{*}\right]+\left(C_{p, 1}-\varepsilon_{p} R R_{2 T}\right) R R_{1 T} \approx 0 \tag{S18}
\end{equation*}
$$

Note that similar as for Eq. (38) the solution of Eq. (S18) is only defined for $C_{p, 1}>\varepsilon_{p} R R_{2 T}$ or $k_{K}^{+}>\left(k_{p, 2} / K_{p, 2}\right) R R_{2 T}$. In the opposite case $\left(k_{K}^{+}<\left(k_{p, 2} / K_{p, 2}\right) R R_{2 T}\right)$ the approximation can be obtained by substituting the corresponding quantities (S17) into Eq. (37) which yields

$$
\left[R R_{1}^{*}\right] \approx \frac{1}{\varepsilon_{t}} \frac{R R_{1 T} C_{p, 1}}{R R_{2 T}-C_{p, 2}}, \quad k_{K}^{+}<\frac{k_{p, 2}}{K_{p, 2}} R R_{2 T}
$$

For $\left[R R_{2}^{*}\right]$ as described by Eq. (S16) the dominant terms are can be factorized as

$$
\left[R R_{2}^{*}\right]\left(\left[R R_{2}^{*}\right]^{2}-\left(R R_{2 T}+C_{p, 2}+C_{t, 2}\right)\left[R R_{2}^{*}\right]+R R_{2 T} C_{p, 2}\right) \approx 0
$$

if $\varepsilon_{t} \rightarrow \infty$ and

$$
\left(R R_{2 T}-\left[R R_{2}^{*}\right]\right)\left(\left[R R_{2}^{*}\right]^{2}-\left[R R_{2}^{*}\right]\left(R R_{2 T}+C_{p, 2}+C_{t, 2}\right)+R R_{2 T} C_{p, 2}\right) \approx 0
$$

if $\varepsilon_{p} \rightarrow \infty$. Hence, in either limit the steady state of $\left[R R_{2}^{*}\right]$ is determined by the same quadratic equation which is identical with that of the Batchelor-Goulian model for a single RR (cf. Eq. 61).

