Supplementary Data for

Analysis of network motifs in cellular regulation: structural similarities, input-output relations and signal integration

Ronny Straube

Cross-talk in two-component systems

The phosphorylation of two response regulators (RRs) by a single sensor kinase (HK), as depicted in Fig. 15C, is described by the reaction mechanism

$$HK^* + RR_i \overset{k_{t,i}^+}{\rightleftharpoons} HK^* - RR_i \overset{k_{t,i}}{\Rightarrow} HK + RR_i^*, \quad i = 1, 2$$

$$HK + RR_i^* \overset{k_{p,i}^+}{\rightleftharpoons} HK - RR_i^* \overset{k_{p,i}}{\Rightarrow} HK + RR_i, \quad i = 1, 2$$

$$HK \overset{k_K^+}{\rightleftharpoons} HK^*$$

$$K_K^+ HK^*$$

$$K_K^+ HK^*$$

where HK^* and RR_i^* denote the phosphorylated forms of the sensor kinase and the response regulator, respectively. The corresponding ODE system reads

$$\frac{d[RR_i^*]}{dt} = k_{t,i}[HK^*-RR_i] - k_{p,i}^+[RR_i^*][HK] + k_{p,i}^-[HK-RR_i^*]$$
 (S1)

$$\frac{d[HK]}{dt} = -k_K^+[HK] + k_K^-[HK^*] + \sum_{i=1}^2 k_{t,i}[HK^* - RR_i]$$
 (S2)

$$-\sum_{i=1}^{2} \left(k_{p,i}^{+} \left[RR_{i}^{*}\right] \left[HK\right] - \left(k_{p,i}^{-} + k_{p,i}\right) \left[HK - RR_{i}^{*}\right]\right)$$

$$\frac{d[HK^*-RR_i]}{dt} = k_{t,i}^+[RR_i][HK^*] - (k_{t,1}^- + k_{t,i})[HK^*-RR_i]$$
 (S3)

$$\frac{d[HK-RR_{i}^{*}]}{dt} = k_{p,i}^{+}[RR_{i}^{*}][HK] - (k_{p,i}^{-} + k_{p,i})[HK-RR_{i}^{*}]$$
(S4)

where $[RR_1]$, $[RR_2]$ and $[HK^P]$ have to be replaced according to the conservation relations

$$[RR_1] + [RR_1^*] + [HK^* - RR_1] + [HK - RR_1^*] = RR_{1T}$$
 (S5)

$$[RR_2] + [RR_2^*] + [HK^* - RR_2] + [HK - RR_2^*] = RR_{2T}$$
 (S6)

$$[HK] + [HK^*] + \sum_{i=1}^{2} [HK^* - RR_i] + \sum_{i=1}^{2} [HK - RR_i^*] = HK_T.$$
 (S7)

We assume that both RRs are in excess so that

$$[RR_1] \approx RR_{1T} - [RR_1^*]$$

$$[RR_2] \approx RR_{2T} - [RR_2^*].$$
(S8)

Under steady state conditions the enzyme-substrate complexes are given by

$$[HK^*-RR_i] = \frac{[RR_i][HK^*]}{K_{t,i}} \approx \frac{(RR_{iT} - [RR_i^*])[HK^*]}{K_{t,i}}$$

$$[HK-RR_i^*] = \frac{[RR_i^*][HK]}{K_{n,i}}$$
(S9)

where the Michaelis-Menten constants are defined by

$$K_{t,i} = \frac{k_{t,i} + k_{t,i}^{-}}{k_{t,i}^{+}}$$
 and $K_{p,i} = \frac{k_{p,i} + k_{p,i}^{-}}{k_{p,i}^{+}}$, $i = 1, 2$.

Addition of Eqs. (S2) and (S4) yields at steady state

$$[HK] = \frac{k_K^-}{k_K^+} [HK^*] + \frac{k_{t,1}}{k_K^+} [HK^* - RR_1] + \frac{k_{t,2}}{k_K^+} [HK^* - RR_2]$$

$$= \frac{k_K^-}{k_K^+} \left(1 + \frac{k_{t,1}}{k_K^-} \frac{[RR_1]}{K_{t,1}} + \frac{k_{t,2}}{k_K^-} \frac{[RR_2]}{K_{t,2}} \right) [HK^*]$$

$$\approx \frac{k_K^-}{k_K^+} \left(1 + \frac{k_{t,1}}{k_K^-} \frac{RR_{1T} - [RR_1^*]}{K_{t,1}} + \frac{k_{t,2}}{k_K^-} \frac{RR_{2T} - [RR_2^*]}{K_{t,2}} \right) [HK^*]$$
(S10)

where we have used the conservation relations Eqs. (S8) in the last line. Similarly, addition of Eqs. (S1) and (S4) yields the steady state relations

$$k_{t,1} [HK^* - RR_1] = k_{p,1} [HK - RR_1^*]$$

 $k_{t,2} [HK^* - RR_2] = k_{p,2} [HK - RR_2^*]$.

Replacing the enzyme-substrate complexes by the relations in Eqs. (S9) and the conservation relations Eqs. (S8) yields

$$k_{t,1} \frac{(RR_{1T} - [RR_1^*]) [HK^*]}{K_{t,1}} \approx k_{p,1} \frac{[RR_1^*] [HK]}{K_{p,1}}$$

$$k_{t,2} \frac{(RR_{2T} - [RR_2^*]) [HK^*]}{K_{t,2}} \approx k_{p,2} \frac{[RR_2^*] [HK]}{K_{p,2}}.$$

Finally, replacing [HK] on the right-hand sides by the expression in Eq. (S10) the factor $[HK^*]$ cancels on both sides of the equation resulting in the steady state equations

$$k_{t,1} \frac{(RR_{1T} - [RR_1^*])}{K_{t,1}} \approx k_{p,1} \frac{[RR_1^*]}{K_{p,1}} \frac{k_K^-}{k_K^+} \left(1 + \frac{k_{t,1}}{k_K^-} \frac{RR_{1T} - [RR_1^*]}{K_{t,1}} + \frac{k_{t,2}}{k_K^-} \frac{RR_{2T} - [RR_2^*]}{K_{t,2}} \right)$$
(S11)
$$k_{t,2} \frac{(RR_{2T} - [RR_2^*])}{K_{t,2}} \approx k_{p,2} \frac{[RR_2^*]}{K_{p,2}} \frac{k_K^-}{k_K^+} \left(1 + \frac{k_{t,1}}{k_K^-} \frac{RR_{1T} - [RR_1^*]}{K_{t,1}} + \frac{k_{t,2}}{k_K^-} \frac{RR_{2T} - [RR_2^*]}{K_{t,2}} \right).$$

By defining the rescaled Michaelis-Menten constants $C_{p,i}$ and $C_{t,i}$ through

$$C_{p,i} = \frac{k_K^+}{k_{p,i}} K_{p,i}$$
 and $C_{t,i} = \frac{k_K^-}{k_{t,i}} K_{t,i}$, $i = 1, 2$

Eqs. (S11) can be written in the form

$$\frac{(RR_{1T} - [RR_1^*])}{C_{t,1}} \approx \frac{[RR_1^*]}{C_{p,1}} \left(1 + \frac{RR_{1T} - [RR_1^*]}{C_{t,1}} + \frac{RR_{2T} - [RR_2^*]}{C_{t,2}} \right)$$
(S12)

$$\frac{(RR_{2T} - [RR_2^*])}{C_{t,2}} \approx \frac{[RR_2^*]}{C_{p,2}} \left(1 + \frac{RR_{1T} - [RR_1^*]}{C_{t,1}} + \frac{RR_{2T} - [RR_2^*]}{C_{t,2}} \right).$$
 (S13)

Taking the ratio of both equations yields

$$\frac{C_{p,1}}{C_{t,1}}\frac{(RR_{1T}-[RR_1^*])}{[RR_1^*]} = \frac{C_{p,2}}{C_{t,2}}\frac{(RR_{2T}-[RR_2^*])}{[RR_2^*]}$$

or

$$[RR_2^*] = \frac{R_{2T} [RR_1^*]}{\frac{\varepsilon_p}{\varepsilon_t} (R_{1T} - [RR_1^*]) + [RR_1^*]}$$
(S14)

where

$$\varepsilon_p \equiv \frac{C_{p,1}}{C_{p,2}} = \frac{k_{p,2}/K_{p,2}}{k_{p,1}/K_{p,1}}$$
 and $\varepsilon_t \equiv \frac{C_{t,1}}{C_{t,2}} = \frac{k_{t,2}/K_{t,2}}{k_{t,1}/K_{t,1}}$

denote the ratios of the kinetic preferences of the HK's phosphatase activity (ε_p) and the HK's phosphotransferase activity (ε_t) with respect to the two RRs.

Substituting the relation

$$R_{2T} - [RR_2^*] = \frac{R_{2T} \frac{\varepsilon_p}{\varepsilon_t} \left(R_{1T} - [RR_1^*] \right)}{\frac{\varepsilon_p}{\varepsilon_t} \left(R_{1T} - [RR_1^*] \right) + [RR_1^*]}$$

into Eq. (S12) yields a cubic equation for $[RR_1^*]$ which can be written as

$$\left(1 - \frac{\varepsilon_p}{\varepsilon_t}\right) \left[RR_1^*\right]^3 - \left(RR_{1T} + C_{p,1} - \varepsilon_p RR_{2T} + C_{t,1} - \frac{\varepsilon_p}{\varepsilon_t} \left(2 \cdot RR_{1T} + C_{p,1} + C_{t,1}\right)\right) \left[RR_1^*\right]^2 \quad (S15)$$

$$+ RR_{1T} \left(C_{p,1} - \varepsilon_p RR_{2T} - \frac{\varepsilon_p}{\varepsilon_t} \left(RR_{1T} + 2C_{p,1} + C_{t,1}\right)\right) \left[RR_1^*\right] + \frac{\varepsilon_p}{\varepsilon_t} C_{p,1} RR_{1T}^2 = 0.$$

By symmetry the steady state equation for $[RR_2^*]$ is given by

$$\left(1 - \frac{\varepsilon_t}{\varepsilon_p}\right) \left[RR_2^*\right]^3 - \left(RR_{2T} + C_{p,2} - \frac{1}{\varepsilon_p}RR_{1T} + C_{t,2} - \frac{\varepsilon_t}{\varepsilon_p} \left(2 \cdot RR_{2T} + C_{p,2} + C_{t,2}\right)\right) \left[RR_2^*\right]^2 \quad (S16)$$

$$+RR_{2T} \left(C_{p,2} - \frac{1}{\varepsilon_p}RR_{1T} - \frac{\varepsilon_t}{\varepsilon_p} \left(RR_{2T} + 2C_{p,2} + C_{t,2}\right)\right) \left[RR_2^*\right] + \frac{\varepsilon_t}{\varepsilon_p} C_{p,2}RR_{2T}^2 = 0.$$

Note that these equations are structurally identical with that for the receptor-ligand complex arising in the competition of two ligands for a receptor binding site in Eq. (35) if one makes the substitutions (cf. Table 1)

$$[RR_1^*] \leftrightarrow [L1.R], \quad RR_{1T} \leftrightarrow L1_T, \quad \frac{\varepsilon_p}{\varepsilon_t} \leftrightarrow \varepsilon,$$

$$C_{p,1} \leftrightarrow R_T, \quad \varepsilon_p RR_{2T} \leftrightarrow L2_T, \quad C_{t,1} \leftrightarrow K_{d1}$$
(S17)

in the case of Eq. (S15) and

$$[RR_2^*] \leftrightarrow [L1.R], \quad RR_{2T} \leftrightarrow L1_T, \quad \frac{\varepsilon_t}{\varepsilon_p} \leftrightarrow \varepsilon$$

$$C_{p,2} \leftrightarrow R_T, \quad \frac{1}{\varepsilon_p} RR_{1T} \leftrightarrow L2_T, \quad C_{t,2} \leftrightarrow K_{d1}$$

in the case of Eq. (S16).

In the limit $\varepsilon_p \to \infty$ (with ε_t constant) the dominant terms in Eqs. (S15) are

$$-\frac{\varepsilon_p}{\varepsilon_t} \left[RR_1^* \right]^3 + \left(\varepsilon_p RR_{2T} + \frac{\varepsilon_p}{\varepsilon_t} \left(2 \cdot RR_{1T} + C_{p,1} + C_{t,1} \right) \right) \left[RR_1^* \right]^2$$

$$+ RR_{1T} \left(\varepsilon_p RR_{2T} + \frac{\varepsilon_p}{\varepsilon_t} \left(2C_{p,1} + RR_{1T} + C_{t,1} \right) \right) \left[RR_1^* \right] + \frac{\varepsilon_p}{\varepsilon_t} C_{p,1} RR_{1T}^2 \approx 0$$

which can be factorized as

$$([RR_1^*] - RR_{1T}) \left([RR_1^*]^2 - (RR_{1T} + C_{p,1} + C_{t,1} + \varepsilon_t RR_{2T}) [RR_1^*] + C_{p,1} RR_{1T} \right) \approx 0.$$

Hence, $[RR_1^*] \approx R_{1T}$ or $[RR_1^*]$ is a solution of the **LR**-type equation

$$[RR_1^*]^2 - (RR_{1T} + C_{p,1} + C_{t,1} + \varepsilon_t RR_{2T})[RR_1^*] + C_{p,1}RR_{1T} \approx 0.$$

In contrast, in the limit $\varepsilon_t \to \infty$ the dominant terms of Eq. (S15) are given by

$$\left(\left[RR_{1}^{*}\right]^{2} - \left(C_{t,1} + RR_{1T} + C_{p,1} - \varepsilon_{p}RR_{2T}\right)\left[RR_{1}^{*}\right] + RR_{1T}\left(C_{p,1} - \varepsilon_{p}RR_{2T}\right)\right)\left[RR_{1}^{*}\right] \approx 0.$$

Hence, $[RR_1^*] \approx 0$ or $[RR_1^*]$ is a solution of the **LR**-type equation

$$[RR_1^*]^2 - (RR_{1T} + C_{p,1} - \varepsilon_p RR_{2T} + C_{t,1})[RR_1^*] + (C_{p,1} - \varepsilon_p RR_{2T})RR_{1T} \approx 0.$$
 (S18)

Note that similar as for Eq. (38) the solution of Eq. (S18) is only defined for $C_{p,1} > \varepsilon_p R R_{2T}$ or $k_K^+ > (k_{p,2}/K_{p,2}) R R_{2T}$. In the opposite case $(k_K^+ < (k_{p,2}/K_{p,2}) R R_{2T})$ the approximation can be obtained by substituting the corresponding quantities (S17) into Eq. (37) which yields

$$[RR_1^*] \approx \frac{1}{\varepsilon_t} \frac{RR_{1T}C_{p,1}}{RR_{2T} - C_{p,2}}, \quad k_K^+ < \frac{k_{p,2}}{K_{p,2}}RR_{2T}.$$

For $[RR_2^*]$ as described by Eq. (S16) the dominant terms are can be factorized as

$$[RR_2^*] ([RR_2^*]^2 - (RR_{2T} + C_{p,2} + C_{t,2}) [RR_2^*] + RR_{2T}C_{p,2}) \approx 0$$

if $\varepsilon_t \to \infty$ and

$$(RR_{2T} - [RR_2^*]) \left([RR_2^*]^2 - [RR_2^*] \left(RR_{2T} + C_{p,2} + C_{t,2} \right) + RR_{2T}C_{p,2} \right) \approx 0.$$

if $\varepsilon_p \to \infty$. Hence, in either limit the steady state of $[RR_2^*]$ is determined by the same quadratic equation which is identical with that of the Batchelor-Goulian model for a single RR (cf. Eq. 61).