
SoK: An Analysis of Protocol Design:
Avoiding Traps for Implementation and Deployment

Tobias Fiebig∗, Franziska Lichtblau∗, Florian Streibelt∗,
Thorben Krüger∗, Pieter Lexis†,
Randy Bush‡, Anja Feldmann∗

∗TU Berlin
{tobias, franziska, florian, thorben, anja}@inet.tu-berlin.de

†PowerDNS.COM BV
pieter.lexis@powerdns.com
‡Internet Initiative Japan

randy@psg.com

Abstract

Today’s Internet utilizes a multitude of different
protocols. While some of these protocols were first
implemented and used and later documented, other
were first specified and then implemented. Regardless
of how protocols came to be, their definitions can
contain traps that lead to insecure implementations or
deployments. A classical example is insufficiently strict
authentication requirements in a protocol specifica-
tion. The resulting Misconfigurations, i.e., not enabling
strong authentication, are common root causes for
Internet security incidents. Indeed, Internet protocols
have been commonly designed without security in
mind which leads to a multitude of misconfiguration
traps. While this is slowly changing, to strict security
considerations can have a similarly bad effect. Due
to complex implementations and insufficient documen-
tation, security features may remain unused, leaving
deployments vulnerable.

In this paper we provide a systematization of the
security traps found in common Internet protocols.
By separating protocols in four classes we identify
major factors that lead to common security traps.
These insights together with observations about end-
user centric usability and security by default are then
used to derive recommendations for improving existing
and designing new protocols—without such security
sensitive traps for operators, implementors and users.

1. Introduction

Security incidents involving Internet services have
become regular events. Examples include: (a) dis-
closures of information, e.g., petabytes of personal
data stored in unprotected key-value stores - NoSQL
databases [119], [18]. (b) Unauthorized access via the
Internet to systems, e.g., supervisory control and data
acquisition systems (SCADA) [116] which are used to
control systems which range from light installations to
oil platforms. (c) Undesired publication of information,
e.g., health data from the United Kingdom on an HTTP
root [159], or an UEFI signing key on an internal FTP
server which was available via the Internet [41].

While programming vulnerabilities are well-studied,
e.g., see [114], [113], insufficient attention has been
paid to poorly designed and hard to configure pro-
tocols. We focus on protocol security practices with
their varying naı̈vete, complexity, and weaknesses. In
the context of this paper, we use the term protocol to
refer to transport and application layer communication
protocols. We use the term service to refer to a
deployed instance that is offering the service associated
with the protocol.

Indeed, among the root causes of the above se-
vere incidents are misconfigurations. While this is, in
principle, well known, e.g., [53], [177], to date, the
main and only explanation has been human error. We
claim that there are more fundamental reasons for
such misconfigurations which stem from the design
of the Internet’s protocols themselves, the security
assumptions or configuration choices offered by pro-
tocols. These lead to services which are prone to

ar
X

iv
:1

61
0.

05
53

1v
1 

 [
cs

.C
R

] 
 1

8 
O

ct
 2

01
6



misconfiguration.
Our study complements the multitude of individual

incidents documented in the scientific literature and
the anecdotes in systems lore with a macroscopic
systematic survey of Internet protocols and their cor-
responding services. More precisely, we investigate
which of the underlying assumptions during protocol
design lead to misconfigurations during service de-
ployment. We refer to this as misconfiguration prone
protocols/services.

In the context of this paper we consider the fol-
lowing security relevant misconfigurations. A service
is subject to misconfiguration if it is deployed on
the Internet in such a way that any of the three
main security properties - confidentiality, integrity, or
availability (CIA) - can be tainted.

There are many reasons for misconfigurations: (a)
the operator does not follow best practices regarding
network settings by which the service is deployed, (b)
the operator does not use the default configuration
settings leading to tainted CIA, or (c) the operator
uses the default configuration settings and they lead
to tainted CIA.

Given the newest Internet trends, services in the
cloud, Internet of Things including Industry 4.0, au-
tonomous systems, e.g., self-driving cars, and mobile
applications, we expect even more diversity and com-
plexity and, thus, more security incidents. Consider-
ing the link between mismanagement and malicious-
ness [183], [107], many of these incidents will involve
misconfigurations. Thus, we claim that a systematic
review of why misconfiguration occurs is needed.

Contributions: We review the assumptions under
which protocols have been designed along two di-
mensions, (a) the assumed strength of the attacker -
weak vs. strong - and (b) the defense paradigm - good
enough vs. perfect security. By using these dimensions
to group protocols we find four major clusters, one in
each quadrant. We name these clusters Early Internet
for weak attacker/good enough, Emerging Threats for
weak attacker/perfect security, Complex Security for
strong attacker/perfect security, and A new Simplicity
for strong attacker/good enough. The names capture
the design essentials as well as the mindset of the
protocols in each of the classes. Furthermore, the
names express how the security mindset of protocol
design evolved over time. From this systematization
of misconfiguration prone protocols we derive a set
of specific action items. To keep protocols secure and
misconfiguration resilient these must be consider when
introducing new or updating old protocol specifica-
tions.

Structure: This paper is structured as follows: We

introduce our systematization methods in Section 2.
Next, we dedicate a chapter to each of the four classes,
Sections 3 to 6, examining how and why protocols and
services in the specific class are prone to misconfig-
uration. For each class we show its properties based
on a few examples which we discuss in detail. Each
of these chapters concludes with a discussion which
summarizes our observations about the misconfigura-
tions within the class. Finally, in Section 7, we provide
design recommendations for future protocols as well as
deployed services, and end with concluding remarks.

2. Systematization Method

Thousands of Internet protocols have been proposed,
developed, and deployed on the Internet; therefore an
exhaustive analysis is beyond the scope of this paper.
Rather we extract essential features from a subset
of misconfiguration prone protocols and use these to
derive our systematization.

2.1. Example protocol selection

Our choice of protocols is driven by the following
considerations. First, we choose protocols that are
commonly used and/or are new and upcoming. Next,
we choose some were misconfigurations can poten-
tially have a large impact or those where system lore
states that they are easily misconfigured. We augment
this list by protocols that capture corner cases. From
these we selected a set of protocols that are most iconic
vor the relevant class. Due to the size limitations of the
work at hand, only a subset can be introduced in detail
and displayed in Table 2. We focus on the server, not
client side. Thus, pure end-user focused protocols as
well as client misconfigurations are beyond the scope
of this paper.

2.2. Security relevant misconfigurations

If a service is deployed in such a way that its
CIA is tainted because of a misconfiguration we call
the misconfiguration security relevant. There are three
main reasons for such misconfigurations. The first
is when the operator of the service does not follow
best common practice (BCP). The second is when the
operator uses their own configuration which taints the
CIA of the service. The third is when the operator uses
the default configuration, but the CIA is still tainted,
likely due to incorrect defaults.

We refer to misconfiguration prone protocols and
services. But in the end it is the service that is
misconfigured, often facilitated by design choices in

2



the protocol. Examples for common misconfigurations
are that the service is deployed in a network setting
which deviates from the one for which it, or its default
configuration, was designed.

2.3. Security guidelines for protocol design

Request For Comments (RFCs) document Inter-
net protocols and services. Since 1992, each RFC
must address the topic of security, according to,
IETF processes, (RFC1311 [135], RFC1543 [136],
RFC2223 [137], RFC7322 [69]), which document
what an RFC must contain. Indeed, RFC1311 [135]
states: “All STD RFCs must contain a section that
discusses the security considerations of the procedures
that are the main topic of the RFC.”

Over time, the community has realized that this
statement by itself is not sufficient and the specification
of the security requirements have gotten stricter, see
RFC3552 [144] from 2003, the Best Current Practices
for “Writing RFC Text on Security Considerations”.
The goal of this requirement is to make all protocol
designers and implementers aware of possible security
implications. Given that this basic requirement existed
in 1992, we conclude that the importance of security
has been recognized for at least 23 years.

2.4. Review of security threats for protocols
and services

One of the motivations for including a security
section in each RFC is to make the protocol designer
consider the following two questions: (a) against whom
to defend and (b) how to defend.

We find that protocol designers consider different
kinds of attackers, ranging from very weak to very
strong. The weak attacker is either unskilled or is
resource limited. The strong attacker is very skilled
and has all necessary resources in their hands.

Defining how to defend is more difficult as it de-
pends on the eyes of the beholder. Some argue that
the cost of breaking security should be larger than the
value of the protected asset. This goes back to Pfleeger
and Pfleeger [132] and specifies that one should put up
a wall against threats at least high enough that most
attacks will not break the wall. Moreover, the wall
should not cost more than the protected asset. We call
this the “good enough” approach to security. Others,
especially the field of cryptography [102], follow the
approach of “perfect security”. Perfect security refers
to using every possible mean to achieve security. We
refer to these two approaches as the defense paradigm.

2.5. Classification of protocols and services

Thus, we have two-dimensions, namely, the ca-
pabilities of the attacker and the defense paradigm.
Using these dimensions we classify our selected set
of protocols and identify four major clusters. These
clusters correspond to the four quadrants of the two
dimensional space. We refer to them as: Early In-
ternet, Emerging Threats, Complex Security, A new
Simplicity.

Weak attacker - good enough
This class contains those protocols that are
designed for a friendly, collaborative envi-
ronment - the Internet when security was not
yet a major concern. This class, in particular,
contains those protocols that initially were
designed under the assumptions that there is
no attacker, or still carry artifacts from that
idyllic time. Such an attacker is the weakest
one possible. We refer to this class as Early
Internet.

Weak attacker - perfect security
This class no longer assumes that the environ-
ment is entirely friendly. Rather it recognizes
that there are threats, but not yet by sophis-
ticated attackers. However, since significant
assets can be at stake, even attacks that are
only theoretically possible are considered.
We refer to this class as Emerging Threats.

Strong attacker - perfect security
This class captures the protocols that consider
security a necessity at all costs. As a result,
the protocols in this class are designed to han-
dle strong attackers and be safe against all,
even theoretically conceived, attack vectors.
However, as a result, they are often complex
and hard to deploy, maintain, and difficult
to use. We refer to this class as Complex
Security.

Strong attacker - good enough
This class contains those protocols who’s
designers recognize that strong attackers exist
but also value protocols that “just work” out
of the box. Therefore, the designer does not
try to defend the asset against every possible
attack by reducing the attack surface. In this
class we see a conscious choice between
security and operational ease, favoring the
latter. We refer to this class as A new Sim-
plicity.

Interestingly, when one considers when most proto-
cols in each of the above classes were designed, we
find that Internet protocol designers have started with

3



protocols in the Early Internet category, and moved to
ones from Emerging Threats when they realized that
the Internet was no longer nice. However, while the
core ideas did not change, the protocols were hidden
behind fences such as DMZs. Since this did not suffice,
they moved to Complex Security. As these were hard
to maintain or difficult to use, we see a new trend
towards A new Simplicity.

2.6. Systematization

In Sections 3–6 we take a closer look at each of
the above classes. For each class, we identify a set of
representative protocols which we analyze according
to five sets of features.
Security Features: Among the essential security fea-
tures that protocols should support are authentication,
authorization, and use of encryption (TLS for transport
layer encryption). We mark for each protocol/service
which of these features is (a) in common use (•),
(b) implemented but not commonly used (◦), (c) not
implemented (-). If the protocol does not support a
security feature we leave the space blank.
Misconfiguration traps: We consider the possible
misconfiguration traps which a protocol/service may
have. Under NoAuth we capture if (a) authentication
is not offered by the protocol, (b) typically not imple-
mented, or (c) typically not configured in the deployed
service. Under Credentials we note if the service
is commonly deployed with weak default credentials.
Under Artifacts we note if protocol features common
at design time lead to misconfigurations when used
today. With Fencing we note those cases that depend
on firewalling, etc. to ensure that they are not reachable
from the Internet. We mark those protocols NoUse that
are hardly deployed even though they replace earlier
protocols, e.g., prior versions, with major misconfigu-
ration traps.
Support: As misconfigurations often occur due to poor
technical support for operators, we look closely at
that for each of our representative protocols. More
precisely, we look at the documentation for securely
deploying the service and check if it is mostly (◦)
or always (•) misleading, lacking, too complex, or
otherwise insufficient. Another common aspect that
leads to misconfigurations are bad defaults. But rather
than looking at what can go wrong we check if the
defaults are always (•) or sometimes not “sane” (◦).
Sane in the sense that they enable or enforce enabling
the supported security features of the protocol/service
to ensure confidentially, integrity, and availability by
default.

Publications: Here we capture if problems that can
lead to misconfigurations discussed under misconfigu-
ration traps or support are already well known either
in the academic world or the security community. If
it is known in the academic world, we refer to a
representative paper. If it is known in the community
we note approximately when it became part of the
system engineering lore.
Visible Instances: Next we try to estimate the number
of systems, or rather IP addresses, that offer the
service/protocol under discussion. We rely on different
data sources, among them (a) publicly available data
sets or representative papers, (b) zMap [60] scans by
the authors, and (c) search results from Shodan [25],
[155]. Shodan is “the world’s first search engine for
Internet-connected devices”. While Shodan does pro-
vide an estimate of the possible number of IPs offering
a service it is neither complete, covers all available
ports [25], nor are all instances per se vulnerable.

3. The Early Internet

This class includes those protocols that were de-
signed in the context of the early Internet, roughly
from 1960 – 1988, where attacks had yet to be con-
sidered and therefore protocols were designed without
security considerations. The paper by David Clark
about “The Design Philosophy of the DARPA Internet
Protocols” [48] does not even contain the term security
even though availability in the sense of survivability is
a major goal. After all, the main goal of the Internet
was to interconnect existing networks with the implicit
assumption that all participants worked towards the
common goal of communication.

As a result attacks were not yet common. So, the
need for security either did not exist or was extremely
limited. Towards the end of the era, attacks against
operating systems became more prominent and the first
major Internet worm, namely the Morris worm, was let
loose [127], [160].

Most popular protocols from that era have been
updated to remain usable in today’s hostile Internet.
However, this does not remove all misconfiguration
traps. Today many still have artifacts of their design
for a friendly Internet.

Thus, the threat model of this class is: “weak at-
tacker” with “good enough”. The representative proto-
cols we examine are: SMTP and DNS. Other protocols
in this class include: TFTP, FTP, Finger, rexec, Char-
gen, NIS, RIP, NTP, WHOIS, Ident, XDMCP/X11,
Syslog, rsync and IRC.

4



3.1. Example Protocols

FTP: The file transfer protocol (FTP) is an application
layer protocol for Internet file transfer between hosts.
FTP is one of the earliest Internet protocols and was
first documented by RFC 114 [16] in 1971. It provides
authentication within the protocol and authorization via
the operating system’s file system access controls. It
does not offer encryption. However, it can be used over
a TLS tunnel, see RFC4217 [70] from 2005.

The major misconfiguration pitfalls for FTP servers
are related to either missing authentication or insuf-
ficient authorization and directory limits. These are:
(a) Enable anonymous logins to share files publicly,
see RFC1635 [55]. Hence, files uploaded to a server
that allows anonymous access become public. Recent
examples show that, e.g., private keys [41] can be
exposed this way. (b) If, in addition, write access is
enabled files can be deleted and/or overwritten. The
FTP servers can also be abused to share malicious
content. This issue has been discussed as common
example by Uppuluri and Skar [169]. (c) Faulty con-
figuration of the root-directory of an FTP server may
expose system files. If, e.g., a UNIX machine exposes
its global root directory, FTP users can access all
files that are accessible to the user operating the FTP
server. (d) FTP’s dedicated data-channel enables an
attacker to send files containing service commands to a
remote server, e.g., SMTP. This attack can be used for
amplification and firewall evasion [88]. RFC2577 [4]
recommends disallowing data-channel connections to
low-ports as mitigation.

To counteract some of the above threats, some
modern FTP implementations, such as vsFTPd, ship
a systematically locked down default configuration. It
requires extensive user action to enable anonymous,
write, and, non-directory-restricted access. The doc-
umentation of vsFTPd is short and precise. Other
widespread FTP implementations, e.g., the versatile
solution ProFTPd have a more complex documentation
due to their larger feature set.
TFTP: The Trivial File Transfer Protocol (TFTP) is
a “very simple protocol used to transfer files” and is
documented in RFC783 [158] dated 1981. TFTP only
supports reading and writing files and lacks most of
the advanced features of FTP. It uses UDP as transport
layer protocol. TFTP is often used for bootstrapping by
providing access to files needed for system boot such
as boot images, firmware updates, or network device
configurations files. Revision-2, RFC1350 [157], fixed
the “Sorcerer’s Apprentice” protocol bug - a major
data retransmission problem which leads to packet
amplification.

TFTP itself does not provide authentication or au-
thorization. It does offer limited protection by means
of the operating system’s file system access controls.
Modifying files on an TFTP server can be restricted by
most implementations. TFTP does not support encryp-
tion. TFTP is by design insecure which has also led to
its most common use case, to allow bootstrapping of
unprovisioned systems that therefore have no security
credentials.

TFTP is also among the first protocols to suffer from
unintended amplification attacks, see RFC1350 [157].
This is one of the earliest amplification attacks of
stateless protocols. TFTP servers, unless shielded from
general access, are subject to disclosure attacks [82].
Indeed, they often enable transitive attacks, in which
an attacker first retrieves the confidential configuration
files, including encryption, authentication, and autho-
rization secrets. Then the attacker uses this information
to access the systems newly configured over TFTP.

If the TFTP server allows write access, attackers
can, in principle, overwrite any of the configuration
files with their own, resetting passwords or configuring
additional known credentials for super users. Similarly,
the attacker can alter the available system images - boot
as well as full system images - to include backdoors.
Once provisioned they enable the attacker to take over
the corresponding systems.

The documentation of the most common TFTP
server implementations is short and precise and in-
cludes a sensible discussion of the security issues.
Moreover, the suggested configurations are appropri-
ate.

To counteract most of the above threats, almost all
TFTP servers must be isolated from public access and
subject to strict access rules or firewalls. Thus, the
main misconfiguration trap is missing fences. Indeed,
in 2014, MacFarlane et al. [109] found more than
600,000 publicly accessible TFTP servers. However,
fencing is insufficient against inside attackers.
DNS: Since the early 1980’s the Domain Name System
(DNS), RFC882 and RFC883 [117], [118], is used to
map hostnames to IP addresses and vice versa.

DNS is a hierarchical distributed database orga-
nized in independently administered DNS zones. These
zones are implemented as subtrees in the hierarchy of
the DNS. Each zone has at least one “authoritative”
DNS server while one server can be authoritative for
multiple zones. In addition, a nameserver can also be
queried by client hosts and provide name resolution
for arbitrary domains for which it is not necessarily
authoritative. Most non-authoritative DNS servers only
serve clients within their administrative domain, e.g.,
an Internet Service Provider (ISP) providing name

5



resolution for its customers. However, services like
OpenDNS and the Google public DNS provide public
available name servers.

While some services are intentionally open to the
public there is a large mass of misconfigured servers
unintentionally providing public name resolution. DNS
by default uses connectionless UDP and usually the
responses are larger than the queries as the query is
contained in the response. Thus, DNS, by design, can
be abused for amplification attacks, in particular both
with open resolvers [148] and resolvers that return
large answers.

Mitigation strategies against amplification attacks
exist and are usually deployed by the large providers of
open DNS servers. Nevertheless, this kind of abuse can
not be completely prevented due to inherent protocol
limitations [148]. While DNSSEC is currently being
discussed as mitigation for various other problems in
the DNS protocol suite it exacerbates this abuse as it
often produces very large answers [171].

Another attack vector is information disclosure in
reverse DNS lookups. Using these an attacker may
infer which hosts offer which services, even inside
a firewalled network, or disclose the organizational
structure. Some misconfigured systems may still allow
zone transfers of full DNS Zones [97], which was
historically the default [14].

Currently, we find more than 10,000,000 DNS
servers on the Internet. A substantial fraction, more
than 5,000 [165], of these are open DNS servers of
which it is unclear to what extent they deploy even
the available limited amplification mitigation.
SMTP: The objective of the Simple Mail Transfer Pro-
tocol (SMTP) as documented in 1982 in RFC821 [134]
and updated by RFC5231 [154] is to reliably and ef-
ficiently transfer email. Among the important features
of SMTP is the ability to relay email across multiple
networks.

The base architecture of SMTP used open relays for
forwarding messages between Mail Transfer Agents
(MTAs) without authentication or authorization, see
RFC822 [52]. Authentication was suggested by an In-
ternet draft in 1995 and added with RFC2554 [122] in
1999. TLS was also added in 1999 with RFC2487 [90].

Attackers realized early on, that open relays are great
for amplifying the effects of worms, viruses, and in
particular SPAM [100]. Even with the CIA features
SPAM is a major daily annoyance.

These problems are usually mitigated by providing
strict and well documented default configurations [96].
In today’s deployments almost all SMTP servers only
accept emails for their configured domains. Thus, the
possibility of amplification has been reduced. If MTA

to MTA relay is allowed it is only with credentials and
TLS.

Another problem with SMTP is that an attacker may
take over an SMTP server and send rogue data which is
not easily mitigated. The defense here is blacklisting,
whitelisting, sender verification, etc. see, e.g., [49].

However, it is still possible - in an attempt to “Make
Things Work” - to misconfigure SMTP servers. After
all, problematic configurations do still have applicable
use-cases on the Internet, e.g., an outbound email relay
for a large network which every machine should use.
In the wild, open SMTP relays are still observed from
time to time. But most are quickly found and closed
down.
NIS: NIS has been initially developed by SUN [] to
have a method that ensures user identities, authenti-
cation and authorization information is present on all
machines under one authorative domain. The service
is, by design, client side unauthenticated, exposes all
user passwords in maximum 3DES encryption to the
world and does not support transport layer encryption.

Attacks: The attacks utilizing NIS are obvious. If it
is exposed on the Internet a remote attacker can dump
the full user database, including the DES encrypted
passwords. Reversing these is not an issue for todays
hardware []. Furthermore, the attacker obtains full
information on all present users.

This issue can only be addressed by appropriate
firewalling — or replacing NIS with a more steady
method, e.g., Kerberos. The presented issues are also
not reduced by documentation indicating, that running
NIS on another port is an important security feature.
Still, it can be held for these howtos, that they addi-
tionally recommend iptables rules.

3.2. Discussion—Early Internet

A common misconfiguration trap in this class is the
assumption that neither client authentication nor en-
cryption is needed as the services are in a trustworthy
environment. Indeed, access without authentication is
considered a feature (FTP, SMTP, and DNS). Other
abuses of misconfiguration are stateless amplifications
attacks (TFTP, DNS) where the root cause is that the
server sends data without checking if the client wants
it.

Based on these observations one would presume that
protocols in this class have seen the end of their live
cycle. However, almost all of the above protocols are
still very popular. The reason is (a) the Internet relies
on the services (DNS, SMTP) (b) their convenience
(FTP), (c) the fact that there is no good alternative
(TFTP), and (d) the service happens to be running

6



and is a legacy service. Worse, the implementation
of, e.g., TFTP requires a small code base which
makes it common in millions of customer premise
equipment (CPE). Indeed, these protocols are unlikely
to disappear as they are the foundation of the Internet.

The reason why such services are still in operation
is twofold: Either it is presumed possible to hide the
services behind firewalls (TFTP, NIS, RIP) or work on
alternative protocols has started, but these protocols
are not yet in Internet-wide use (DNS, SMTP). But,
misconfigurations occur if either the firewall fails or
the protocols are not used as originally designed.

The first major security incident which exploited
a misconfiguration was an email amplification attack
- namely the Morris worm in 1988 [160]. At about
the same time, the community started to realize that
major misconfigurations can occur, see RFC1222 [31]
and RFC1223 [80] that “provide guidance for vendors,
implementors, and users of Internet communication
software”.

4. Emerging Threats

Security incidents such as the Morris worm changed
the way that Internet protocols are perceived. Instead
of designing them for the Internet at large, they be-
came explicitly designed with firewalls in mind. Thus,
network firewalls, more precisely packet filters [42],
became the typical way of fencing off network ser-
vices.

Bellovin and Cheswick [13] state that the motivation
for Network Firewalls is: “Computer security is a
hard problem. Security on networked computers is
much harder. Firewalls (barriers between two net-
works), when used properly, can provide a significant
increase in computer security.” In addition, the ap-
proach from 1988 onwards is, according to Bellovin
and Cheswick [13]: “Everything is guilty until proven
innocent. Thus, we configure our firewalls to reject
everything, unless we have explicitly made the choice
- and accepted the risk - to permit it”.

Protocol designers find network firewalls to be a
convenient way to handle security. In their minds, fire-
walls enable them to basically ignore security threats as
they presume that the firewall rejects everything that is
“untrusted”. The design assumption of most protocols
is that since the attacker is not strong enough to get
past the firewall the protocol itself can be designed for
a trusted environment.

However, as stated by Wool [175]: “The protection
that firewalls provide is only as good as the policy
they are configured to implement. Analysis of real
configuration data shows that corporate firewalls are

often enforcing rule sets that violate well established
security guidelines.” His conclusion is to keep firewall
configurations simple but efficient to avoid misconfig-
uration.

Thus, the threat model for this class is: “weak
attacker” with perfect security. The representative pro-
tocols we take a closer look at are: NetFlow, DHCP,
and, iSCSI. Other protocols in this class include: SN-
MPv2, Munin, NFSv3, Wake on Lan, Remote DMA,
NBD, rsyslog, SCADA, early versions of CIFS/SMB,
and Mapping of Airline Traffic over Internet Protocol
(MATIP).

4.1. Example Protocols

NetFlow: Cisco Systems NetFlow service allows net-
work administrators to collect IP flow information from
their network. A flow is a summary of a set of packets
that pass through a device that have some common
property. NetFlow uses UDP as its transport protocol.
NetFlow is widely used in many ISP and enterprise
networks. Indeed, many resource accounting as well as
security incident systems are built on this data source.
Early versions are documented as Cisco white papers.
Version 9 is documented in RFC3954 [46].

NetFlow itself does not provide authentication, au-
thorization, or encryption support. This was a con-
scious choice by the protocol designers, to cite
RFC3954 [46]: “The designers of NetFlow Version
9 did not impose any confidentiality, integrity or au-
thentication requirements on the protocol because this
reduced the efficiency of the implementation and it was
believed at the time that the majority of deployments
would confine the Flow Records to private networks,
with the Collector(s) and Exporter(s) in close proxim-
ity.” Indeed, RFC3954 specifically redirects the issue
of security to the subsequent IPFix security require-
ments in RFC3917 [141].

RFC3954 outlines possible attacks including disclo-
sure of flow information data, forgery of flow records
or template records, and DoS attacks on NetFlow
collectors. The latter enables an attacker to exceed
the collector’s storage or computational capacity and,
thus, can disable the monitoring of the network. Using
forgery, an attacker can inject flow information that
(a) may redirect network-forensic investigations by
incriminates another party or (b) lead to wrongful
charges if NetFlow is the basis of accounting.

These attacks can, in principle, be mitigated by, e.g.,
moving to TCP and enforcing TLS/DTLS and mutual
authentication. An example of such a mitigation strat-
egy is the proposal in the IPFIX security requirements
RFC3917 [141], see Section5.

7



The documentation of NetFlow is given mainly by
Cisco White papers and Cisco device configuration
examples. We observe that the documentation does
not even mention how to secure NetFlow or that it
is necessary. It does, however, point out that NetFlow
data can be used as security enhancement to investigate
network anomalies.

In summary, NetFlows main misconfiguration trap
is insufficient fencing. Since NetFlow is a stateless
write only protocol it is infeasible to estimate the
misconfigured number of NetFlow collectors by active
scans.
DHCPv4: The Dynamic Host Configuration Protocol
(DHCP) is a stateful client-server protocol that can be
used to provide configuration parameters to hosts - the
clients - connected to the Internet. In practice, it is
often used by clients to retrieve their IP address con-
figuration as well as additional parameters including
nameservers, domainnames, or local TFTP servers for
diskless clients.

DHCP is based on the Bootstrap Protocol (BOOTP)
and is documented in RFC1531 [57] in 1993. DHCPv6,
standardized in RFC3316 [59] in 2003, tackles many
of the security issues of DHCPv4. Since DHCPv4 is
still commonly used for configuring IPv4 networks
we discuss it in this section. In the following when
we refer to DHCP we mean DHCP for IPv4 address
configuration.

Regarding security RFC1531 [57] claims that “
DHCP is built directly on UDP and IP which are
as yet inherently insecure”. Since DHCP does not
add any security features itself this means that the
protocol lacks all basic security features. It has been
designed without client authentication, server authenti-
cation, or encryption. Client Authentication was added
in 2001 [58], but is not widely implemented, especially
in the common embedded DHCP servers for CPEs.

As a result, any attacker can exploit the possibility
for a single client to request all leases held by a DHCP
server. This effectively blocks all other clients from
obtaining an address. This attack is critical as it can
be executed locally as well as remotely if the DHCP
server is accessible from the Internet.

The next problem is that servers do not have to
authenticate themself towards the clients. Therefore,
any host can pretend to be the authoritative DHCP
server for its network segment. This allows an attacker
to impersonate a DHCP server and send malicious
information to the clients, e.g., to use (a) a different
gateway which is hijacked by a monkey in the middle
or (b) a different DNS server to spoof internal websites
and access credentials.

Among the common DHCP servers are ISC-DHCP

and dnsmasq. Their documentation is reasonable but
ignores the topic of security. The main misconfigu-
ration trap is yet again insufficient fencing. Indeed,
during the 28th Chaos Communication Congress in
December 2011 the network operations team observed
a DoS against their publicly reachable DHCP server.
A virtual machine hosted in Amazon EC2 performed
a lease starvation attack on that system [142].

Since DHCP is the common protocol for assigning
dynamic IP addresses it is in common use almost
everywhere. Indeed, even many home users use DHCP
due to the large scale introduction of Network Address
Translation (NAT) enabled home routers.

SNMPv2: The Simple Network Management Protocol
(SNMP) dates back to RFC1067 [40] from 1988 and is
the standard protocol for managing IP network devices,
including routers, switches, workstations. It is typically
shipped on the device. Small command extensions
led to Community-based SNMPv2 [38] the version
supported by most vendors, e.g., Cisco and Juniper.
While other versions of SNMPv2 already support ex-
tensive security features most became prominent with
SNMPv3 [174], [39], which we discuss in Section 5.
The only authentication mechanism of SNMPv2c is
the so called community string. Moreover, SNMPv2c
does not support transport layer security.

Common misconfigurations are the use of weak (de-
fault) credentials, e.g., the community string public
for read access and string private for the read/write
access [120]. While SNMP enabled devices should be
shielded by proper firewall configurations they often
are not. Moreover, SNMP proxies which are designed
to handle ACLs can easily be misconfigured as well.
Note, weak credentials can lead to disclosure of infor-
mation. With the private community it is possible to
take over the device. Moreover, open SNMPv2 servers
have been used for amplifications attacks [148].

By default, a lot of devices come with communities
preconfigured, e.g., public or/and private. Even
if the operator configures their own communities they
often forget to remove the preconfigured ones - leaving
the door open to attackers. Moreover, with a network
sniffer it is possible to extract community strings. De-
pending on the class of the device, the documentation
differs significantly from good for high-end devices
to almost none for low-end customer premise devices.
This is, in particular, problematic as the customer
premise devices are often directly connected to the
Internet. The potential number of devices that may be
subject to this class of misconfiguration is, according
to Shodan scans, more than 3,800,000 devices with the
public community string.

8



Munin: Munin [121] is an open source networked re-
source monitoring tool. It is a simple service allowing
retrieval of server statistics for monitoring purposes.
The monitored server listens on an open port for
inbound connections. The Munin monitor polls each of
the targets by connecting to the port and requesting the
status data. Other similar services use the same basic
schema, e.g., NCSA, Ganglia, Collectd etc. Authen-
tication is implemented by whitelisting IP addresses
or address ranges of Munin servers. Authorization and
transport security are not available.

Common misconfigurations are weak firewalls to-
gether with too liberal ACLs. This allows attackers
to obtain detailed information about the infrastructure
as well as fine-grained usage information. This, in
turn, can enable a whole range of security critical
side channel attacks on the cryptography of other
protocols [184]. Moreover, given recent side-channel
attacks that use acoustic signals from the CPU [76],
it is not unlikely that attackers can use such data to
extract, e.g., secret keys from the monitored servers.

While the documentation states that ACLs have to be
clearly limited to authorized hosts, we still find more
than 6,000 systems in the Shodan data.

NFSv3: The Network File System (NFSv3) offers
transparent access to remote files. It has become one
of the common UNIX network file systems. It is
documented in RFC1813 [33] from 1995. NFSv4 or
more general NFS with Kerberos support is discussed
in Section 5.

NFSv3 offers host-based authentication on network-
wide names but not per principal authentication. More-
over, NFSv3 relies on the client OS for authorization.
On the wire encryption is not supported [33]. While
NFSv3 in principle supports Kerberos secret keys it
does not mandate them and most deployments do not
use them. System lore warns to use NFS without
Kerberos, see Section 6, if strong security is needed,
e.g., “Kerberos is key for secure data access and not
NFSv4” [167].

Common misconfigurations for NFSv3 involve the
Access Control Lists: They can be too liberal, e.g.,
network wide, or incorrectly specified, e.g., wrong
subtree of the file system. In either case, an attacker
can mount an NFS share and read or modify arbitrary
files. While the available documentation stresses the
importance of ACLs, misconfigured servers can be
found in the wild. These problems are widely known
both in systems lore [62] as well as academia [166].

iSCSI: The Internet Small Computer System Interface
(iSCSI) is a protocol for remotely accessing block
devices over the Internet using SCSI commands first

documented 2004 in RFC3720 [150]. Since iSCSI was
designed for a hostile Internet, a dedicated RFC [1]
exists, that spells out the security requirements for
iSCSI and similar network accessible block storage
protocols. This RFC has been updated most recently
in April 2014 by RFC7146 [21].

These RFCs require iSCSI to include authentication
and authorization but delegate encryption and integrity
to IPSec. Moreover, RFC3723 [1] acknowledges com-
mon threats for iSCSI deployments under the assump-
tion that authentication and authorization are working,
i.e., that the attacker is not able to initiate a valid
connection. Moreover, the base security assumption is
that there is no monkey in the middle either due to
IPSec or an isolated network segment.

However, if due to a misconfiguration the iSCSI
target is reachable via the Internet without authentifi-
cation iSCSI becomes a severe security liability. An
attacker with access to an iSCSI volume can tamper
with all data thereon and can take over all machines
with root file systems on those volumes.

Indeed, it is easily possible - and many large en-
terprise applications and howtos for setting up UNIX
based targets recommend - to configure iSCSI without
any authentication, neither for the whole target set nor
the individual targets. Usually, this is done to cater to
operational needs, especially in the cases where iSCSI
volumes are used as boot devices or if a dynamic set
of virtual machines has to have access to a volume.
In contrast to the above common malpractice, the
Payment Card Industry Data Security Standards (PCI-
DSS) [131] explicitly requires client authentication, in
particular, it requires it for each volume individually.
Nevertheless, the common misconfiguration trap for
iSCSI is missing authentication coupled with reliance
on fencing.

So far, these security issues have been recognized
in the industry [61] but not necessarily in academic
references. With a quick zMap scan, we find roughly
9,000 iSCSI targets reachable via the Internet of which
1,000 do not require authentication. Among these
are various major organizations as well as academic
institutions.

4.2. Discussion—Emerging Threats

The base assumption of all protocols/services in this
class is that the local LAN is safe. Thus, a common
misconception is that they can be used with “con-
venient” security settings. This often leads to major
security incidents when the fencing mechanisms fail.
This is the major misconfiguration trap for all protocols
in this class.

9



NetFlow is a blatant example of the low security
considerations within this class. Its security concept
relies entirely on fencing. DHCP goes even further:
first anyone can run a rogue DHCP server and second
engineers think about DHCP as a link layer protocol.
SNMPv2 is one of the protocols in this class that first
added security but then reduced it. NFSv3 does do
authorization using OS ACLs, but without authentica-
tion. This means that anyone can impersonate anyone.
While iSCSI, in principle, supports authorization and
authentication some deployments do not enable it as
iSCSI should be restricted to the storage network
and, if used as boot device, is difficult to supply the
clients with secured credentials for the iSCSI volume.
However, if fencing breaks down this is a major
misconfiguration as large amounts of sensible data are
leaked.

However, the assumption that everything can be
fenced in does not necessarily hold as specifying
security policies is difficult and realizing them in a
firewall is rather difficult and prone to errors [112],
[2], [53], [181], [75]. Among the complications are that
the designer of the security policies are not necessarily
the ones that configure the firewalls and those are not
necessarily the ones that deploy the network services.
Moreover, updating and maintaining such rules is quite
error prone. This opens up the network service for all
kinds of attacks that bypass firewalls or access services
that are thought to not be reachable from the Internet.

Other means of fencing include: (a) not connecting
the service to the Internet at all (air gap) (b) VLANs
and sub-networks (c) Virtual routing and forward-
ing (VRF). But, there are known attacks to all of
them. Examples of how firewalls are circumvented
via VPNs, hidden dialups/UMTS and other covert
channels are described in the Maroochy water breach
discussion [156]. Stuxnet [64] is the prime example for
bypassing an air gap. One example for broken VRF is
accidentally announcing a BGP full table into the VRF
engine. Overall, the industrial lore states, from the Se-
curity Issues and Best Practices for Water/Wastewater
Facilities [86]: “Industrial networks are often shared
with the business side of the operation. VLANs, sub-
networks, firewalls all help to create a layer defense,
but are not impervious.”.

This is particularly the case for services that were
first envisioned for enterprises and then commonly
used in Small Office/Home Office (SoHos) and home
networks. In these settings security by default con-
figurations are essential as the users often lack the
knowledge and means to properly address security and
network challenges.

5. Complex Security Solutions

At the end of the 20th century the awareness that
firewalls were not “the” security solution became
prominent. For example, RFC3365 [151] dated 2002
states: “History has shown that applications that op-
erate using the TCP/IP Protocol Suite wind up being
used over the Internet. This is true even when the
original application was not envisioned to be used in
a “wide area” Internet environment. If an application
isn’t designed to provide security, users of the appli-
cation discover that they are vulnerable to attack.”

As a result, protocol designers realized that (a) there
was a need for improved protection architectures, e.g.,
the work on SANE [37] or DoS-limiting network
architecture [178], and (b) that security had to be
an essential feature of future protocols and services.
Moreover, just adding another component to ensure
security to existing protocols, e.g., firewalls, did not
suffice. This fits the increased need for security in the
society due to the increasing economic relevance of
the Internet [110].

At the same time the diversity of the scenarios
also increased with home users, SoHos, enterprises,
infrastructure providers, company mergers and splits,
etc. Indeed, road worriers started to appear. As a result,
more assets were at stake which had to be accessible in
many different ways. Thus, versatile security solutions
to model complex organizational structures, e.g., via
role-based access control (RBAC), were needed.

Indeed, the Danvers Doctrine [151] stated that the
“IETF should standardize on the use of the best
security available”. Thus, the threat model for this
class is: “strong attacker” with “perfect security”. The
representative protocols we take a closer look at are:
IPP, SNMPv3, and IPFIX. Other protocols in this
class include: LDAP-ACL, NFSv4, AFS, Postgresq,
FTPs, RADIUS/WPA2Enterprise, s/MIME encryption,
SSL/TLS, PGP, and seLinux, as an example from
system security.

5.1. Example Protocols—Complex Security

IPSec: IPSec, first introduced in RFC1825–1829 [8]
and updated by RFC4301–4309 [98], is a suite
of protocols that promise to seamlessly extend IP
with authentication, data integrity, confidentiality, non-
repudiation, and protection against replay attacks.

To cite Ferguson and Schneier [66]: “Our main
criticism of IPsec is its complexity. IPsec contains too
many options and too much flexibility; there are often
several ways of doing the same or similar things. This
is a typical committee effect.” Thus, this is a prime

10



example of this class. However, IPSec is often used
as an argument why it is possible to leave out certain
security features in other protocols [1], [147].

IPSec is in use for corner cases such as LTE
backend network security [17]. Indeed, as Ferguson
and Schneier state [66]: “Even with all the serious
criticisms that we have on IPsec, it is probably the
best IP security protocol available at the moment.”
Still, IPSec has not yet seen widespread deployment,
e.g., [146]. One possible reason is usability. Here we
cite Gutmann [78] “If we consider security usability
at all, we place it firmly in second place, and anyone
wishing to dispute this claim is invited to try setting up
an IPsec tunnel via a firewall or securing their email
with S/MIME.”
LDAP: LDAP, the Lightweight Directory Access Pro-
tocol, is a protocol for accessing and maintaining
distributed directory information. It builds upon the
ideas of X.500 but differs, in particular, with regards to
security features [85] and simplicity. LDAP is designed
to be extensible and flexible, see the many LDAP re-
lated RFCs, including RFC2251 [172] dated 1997, and
RFC4510 [182] to RFC4519 [153]. LDAP organizes
its data in a tree like ASN.1 [95]. It is often used
to organize organizational information, groups, and,
in particular, user data, including account information,
personal information, and authentication data.

LDAP offers transport security. It also provides
various forms of authentication, including SASL and
Kerberos, see RFC4513 [84]. The authorization con-
cept of LDAP is probably one of the most complex,
yet, also most powerful systems currently available.
In LDAP, the ACL roughly follows role-based access
control [84]. It distinguishes between anonymous, au-
thenticated, and specific connections. Specific connec-
tions are defined by properties on the object that holds
the connection. This may be, but is not limited to,
group membership, subtree membership, tree position,
attributes in the object, etc.

The main misconfiguration opportunities for LDAP
are (a) that operators use LDAP over the Internet with-
out transport layer encryption and (b) that operators
make mistakes while setting up access control [177],
[68].

Especially when used for authentication, the boot-
strap process is hard. Clients have to be configured
and authenticated correctly, as well as authorized to
access the information in the LDAP tree, and use it to
perform authentication and authorization within their
own applications. Furthermore, no reasonable default
values can be created for ACLs, as these depend on
the root nodes of the LDAP tree, which is organiza-
tion dependent. To cite RFC4513 [84]: “ Operational

experience shows that clients can (and frequently do)
misuse the unauthenticated authentication mechanism
of the simple Bind method see (Unauthenticated Au-
thentication Mechanism of Simple Bind)“

Commercial distributions come with reasonable pre-
configured ACLs. The non-commercial ones usually
come with one rule, no write access for users that are
not system administrators.

IPP: The Internet Printing Protocol (IPP) is docu-
mented in RFC2565 [89] dated 1999 and its companion
RFCs. IPP is an application level protocol suite for
distributed printing using Internet tools and technology.
It uses HTTP, namely 1.0 or 1.1 as its transport
protocol.

IPP itself implements the relevant mechanisms to
perform strong authentication - by default against
members of a local UNIX group via PAM (Plug-
gable Authentication Module) and supports the use of
transport encryption. For IPP [89] authentication and
authorization are critical due to an unrelated security
topic, accounting. Printing, or rather, use of paper and
ink, must be accounted for in most companies as well
as universities. Thus, it is not surprising that the most
prominent UNIX based IPP server, CUPS, currently
uses TLS for all connections containing credentials.
Moreover, authentication is required by default for all
administrative actions.

The main misconfiguration trap with IPP is that
printing on a device is - by default - allowed for
unauthenticated clients [94]. Thus, a remote attacker
can print on all printers they learn about. While this is
usually not a major security problem, it may become
an interesting basis for social engineering attacks. In
addition, it enables DoS attacks, e.g., if an attacker
prints endless numbers of fully black pages. Lastly, it
is a nasty way of large scale resource waste. Keep in
mind that the IPP service is offered by most major
network attached printers by default as well as apple
devices if they share their home printer.

NFSv4 with Kerberos: NFSv4 is another distributed
file system protocol. Unlike its predecessor NFSv3,
see Section 4, NFSv4 has support for strong security
and its negotiation built in. NFSv4 uses a principal-
based authentication model rather than machine-based
as prior versions of NFS did.

The NFS standard [87] mandates strong security
using Kerberos [185]. Kerberos, according to Neuman
et al. [124], is a distributed authentication service that
allows processes of a principle to prove their identity to
an application server without sending data across the
network that might allow an attacker to impersonate
the principal. Kerberos also provides integrity and

11



confidentiality.
This sounds great. However, while the Storage Net-

working Industry Association (SNIA) states [63] that
“With careful planning, migration to NFSv4.1 and
NFSv4.2 from prior versions can be accomplished
without modification to applications or the support-
ing operational infrastructure, for a wide range of
applications; home directories, HPC storage servers,
backup jobs and so on.” system lore says that NFSv4
deployment is lacking.

Indeed, NFSv4 may come with a performance
penalty [44] and, as McDonald points out “One area
of great confusion is that many believe that NFSv4
requires the use of strong security. The NFSv4 spec-
ification simply states that implementation of strong
RPC security by servers and clients is mandatory, not
the use of strong RPC security. This misunderstanding
may explain the reluctance of users to migrate to
NFSv4, due to the additional work in implementing
or modifying their existing Kerberos security.”

Thus, we conclude that even though strong security
options exist, often system administrators choose to not
deploy them. One reason is the inherent complexity of
Kerberos. Indeed, Bouillon in his Black Hat EU 2009
talk stated [30] “However, lots of system administra-
tors still make dramatic mistakes while configuring
it (those mistakes are made more likely by buggy
GUIs and their poor documentation)...”. Indeed, from
discussions with several operators we learned that they
often hesitate to deploy Kerberos due to its complexity,
lack of documentation, and difficulty debugging its
deployment.

As a consequence it is not surprising that the Shodan
scans find many NFSv3 deployments (100,000) but no
NFSv4 deployments. Even though NFSv4 should be
easier to detect as it uses the IANA port 2049 and
does not rely on portmap.
SNMPv3: SNMPv3 [163], [39] is the successor to
the Simple Network Management Protocol v2, see
Section 4. The motivation for SNMPv3, RFC3410 [39]
was to fix: “The unmet goals included provision
of security and administration delivering so-called
“commercial grade” security with: authentication . . . ,
privacy . . . ; authorization and access control; and
suitable remote configuration and administration capa-
bilities for these features.” Thus, SNMPv3 makes few
changes to the protocol aside from adding the option of
on-the-wire encryption. Rather, it focuses on two main
aspects, security and administration [50]. SNMPv3
supports the notion of users and authorization.

The main misconfiguration trap with SNMPv3 is
using SNMPv2 instead or in parallel. Indeed, SN-
MPv2 and SNMPv3 are not exclusive. A host offering

Table 1. Adaption of SNMPv3 over time
following [27].

protocol customer devices change from
version 2012 – 2013

SNMPv2 98.5% 88.2% up 9%
SNMPv3 34.6% 10.4% up 4%

SNMPv2 can also offer SNMPv3 even on the same
port. Today many hosts indeed offer SNMPv2 and
SNMPv3 simultaneously [72], [73]. Since SNMPv2 is
often enabled by default the hosts remain vulnerable
even though they support SNMPv3. Therefore, it is
not surprising that we still see more than 3,800,000
hosts with SNMPv2 enabled. Indeed, this is supported
by data from Cisco Advanced Services from May
2013 [27] which reports on the SNMP configuration
status of 1,724,827 device configurations in 2013, see
Table 1. Even though the adoption of SNMPv3 has
increased it has been at a lower rate than SNMPv2.
Part of the reason is the complexity of SNMPv3 as
outlined, e.g., by Cisco training material [27].

However, even if SNMPv3 is correctly deployed,
the corresponding RFCs come with another miscon-
figuration trap. The original RFCs, RFC2264 [23] to
RFC3414 [24], only specify DES as a cipher. AES was
added significantly later, RFC3826 [22]. Similarly, the
only supported digest algorithms are MD5 and SHA1.
This leads to implementations with weak crypto and,
thus, are susceptible to advanced attacks [106]. SSHv1
suffers from similar problems as CRC32 is fixed in the
protocol specification [11].

IPFix: The purpose of the IP Flow Information Export
(IPFIX) protocol, see RFC5101 [47] from 2008, is to
transfer IP Traffic Flow information from an exporter
to a collector. IPFIX is the vendor-independent suc-
cessor of NetFlow version 9, see Section 4. IPFIX
supports flexible definitions of network flows via a
template based extensible information model. The de-
sign goal was to make the protocol future proof as well
as applicable to all network protocols.

Given the inherent insecurity of NetFlow the goal of
IPFIX was to incorporate strong security in its design,
see RFC3917 [141]. This resulted in RFC5101 [47]
which states that IPFIX must ensure confidentiality and
integrity of the transferred IPFIX data and authentica-
tion for the exporter and collector.

However, none of the major vendors, including
Alcatel, Cisco, and Juniper implement any of the
CIA mechanisms of the IPFIX RFC. Thus, the same
exploits and misconfigurations that apply to NetFlow
also apply to IPFIX, see Section 4. Hence, the major
misconfiguration trap is insufficient fencing.

12



5.2. Discussion—Complex Security

The common design of all protocols within this class
is that they are designed according to the Danvers Doc-
trine [151]. Therefore, they all offer full CIA support.
Unfortunately, when looking at the deployment base,
we either find few indications of actual use of the
protocol or that the deployed instances do not utilize
or implement the full CIA support.

Among the reasons are difficult setup (LDAP,
NFSv4) or limited perceived benefit of latest version of
the protocol (NFSv4, SNMPv3). Also, they are often
used within the SoHo, rather than the enterprise, where
there is a lack of required security infrastructure (IPP
without Kerberos). Furthermore, implementations do
not support required protocol security features (IPFIX).
Furthermore, third party documentation may recom-
mend simpler solutions, e.g., Postgres.

Another aspect is that the system administrator and
the IT security professionals are typically not the
same person, e.g., [29], [74]. Moreover, these systems
come with substantial complexity which leads to many
misconfiguration traps. For example, Xu et al. [177],
[176] in their papers “Do Not Blame Users for Mis-
configurations” and “Hey, You Have Given Me Too
Many Knobs! Understanding and Dealing with Over-
Designed Configuration in System Software” point
out that major causes of todays system failures are
misconfigurations due to complexity. However, it is
not necessarily the user or the system administrator
who is to blame, but rather the inherent complexity
and mismatch of the tools [79], [12] as well as poor
usability for system operators [177], [176].

Given the above complexity, let’s review what might
or might not motivate a system operator to deploy the
latest secure protocol suites, see, e.g., the discussion
of West as well as Scheier in their papers on “The
psychology of security” [173], [152]: (a) No or little
reward for secure behavior. Indeed, there are hardly
any monetary incentives for deploying the secure ver-
sions. Some claim that such incentives might change
this [77]. (b) The misconception of operators that there
is a low risk of being attacked. (c) The “laziness” of
the operator that wants to get the main service working
first and then worry about security if there is time left.
(d) The time pressure by management that forces the
operator to get a service working in no time. (e) The
presumption that no one is likely to get caught for not
deploying the secure version of the service. (f) The
maintainability of the complex security infrastructure.

6. A new Simplicity

The inherent complexity of protocol suites of the
previous class provided the motivation for trade-off
based security. This class is about “strong attack-
ers” and “good enough” security. As noted by Bruce
Schneier [152]: Security is a trade-off. This is some-
thing I have written about extensively, and is a notion
critical to understanding the psychology of security.
There’s no such thing as absolute security, and any
gain in security always involves some sort of trade-
off.

The protocol designs in this class must be seen in
the context that we now have clouds as well as many
start-up companies with various (mobile) applications.
Indeed, the Internet is experiencing yet another growth
explosion in terms of services [5], [130]. In terms
of infrastructure, we are now in a “world of HTTP
everywhere”, virtualization, the cloud, large scale as
well as microservices architecture, and configuration
orchestration.

Let us consider Internet application developers.
Among the easiest ways to develop new applications is
to do it in the cloud using a microservice architecture.
They can rely on “Node.js” or similar programming
languages and reuse existing code. The reuse of ex-
isting code has been made easy by the equivalent of
appstores. As transport protocol they will most likely
use HTTP/HTTPs. Moreover, the application grows as
the feature sets and/or user base increases. A common
observation is that the security review of such services
is often lacking and the assumption is that it is possible
to fence the service in a private cloud as it is just
another Web service.

With “simplicity” we refer to the security concept
rather than the feature sets of the protocols or, rather,
protocol suites. The threat model for this class is:
“strong attacker” with “good enough”. The representa-
tive protocols/protocol suites we examine are: Telnet,
key-value stores, VNC, and the many incarnations
of (HTTP/Socket) APIs. Other protocols in this class
include: PulseAudio’s and Systemd’s internal protocols
as well as control protocols for tools such as Nessus,
Aircrack, etc. Since most of these use HTTP as trans-
port layer protocols the same misconfiguration traps
apply as discussed in the API subsection.

6.1. Example Protocols

Telnet: Back in 1969 the idea of the Telnet protocol,
e.g., RFC15, RFC137, RFC854, RFC5198 [36], [128],
[138], [101], was to make a terminal usable by a
remote host as if it was local. The result was a

13



bi-directional, byte-oriented communication protocol.
Since SSH [179] was designed, in 1995, as a secure
replacement for Telnet, rlogin, etc. [180] Telnet usage
should have declined to almost zero. Therefore, if at
all we should have discussed Telnet in Section 3.

Unfortunately, today for many application and in-
frastructure systems, e.g., Customer Premise Equip-
ment (CPEs), Storage Area Network (SAN) Devices,
and what is now the Internet of Things (IoT) and
Industry 4.0, Telnet is again the default choice for
accessing devices [71] - with attacks skyrocketing in
the past 18 months [129]. After all, Telnet is relatively
simple. Thus, most of these devices already come with
a built-in daemon from the original design/equipment
manufacturer (ODM/OEM) that supports a subset of
the Telnet protocol in their firmware templates [51].
This is the reason we discuss Telnet in this section.

The original versions of Telnet did not offer authen-
tication/authorization or encryption. Telnet authentica-
tion defaulted to the operating system’s login. Various
authentication and authorization mechanisms including
Kerberos and RSA were added to Telnet in 1993, see
RFC1409 [28]. Adding TLS to Telnet was suggested
by an Internet draft in 2000 [26]. A recent publication
on vulnerabilities in telematic systems found that for
all investigated devices authentication was not enabled
for the Telnet interface [71].

CPEs differ from operator equipment in the sense
that they are actually operated by the end users.
They also differ from the typical end-user equipment
in the sense that they are often preconfigured and
directly reachable via the Internet. Given vendors pre-
provisioning their products with known default creden-
tials, these CPE devices can be vulnerable as soon
as they are accessible over the Internet. The extent
to which this can be a problem was demonstrated in
2012 by the Carna botnet [35], [104]. Another major
attack used these devices to change the DNS settings
of the end-users and, thus, did a monkey in the middle
attack [6].

Mitigation is relatively easy. Vendors should rethink
if Telnet access is necessary at all. Even if it is, it
should be possible to physically turn it on/off with
a small dip switch on the device - with default off.
Furthermore, they should not come with no, default,
or guessable credentials. Indeed, the initial credentials
should be unique for each device and should not be
computable from anything that is also related to the de-
vice. Various vendors already use this approach. [108]

The documentation of the Telnet service is usually
very limited as the documentation usually focuses on
the devices themselves and only mentions that Telnet is
supported. In the past most CPE services used default

configurations with weak credentials.
Today, we find more than 10,600,000 devices with

an open Telnet port according to Shodan. Indeed,
the Carna botnet exploited about 1,200,000 of these
devices [35]. Furthermore, a recent study by Pa et
al. [129] finds that the attack volume on Telnet enabled
IoT devices has increased by many orders of magnitude
since 2014.
Key-Value Stores: A useful Internet service is pro-
vided by key-value stores which are widely used by
companies such as Amazon, FaceBook, Digg, and
Twitter [7]. Key-value stores provide a mapping be-
tween keys and their associated data and can, if im-
plemented In-memory, avoid classic I/O bottlenecks.
Thus, they allow quick non-relational data storage.
Examples include Dynamo, MongoDB, Redis, and
memcached. Initial development started around 2004.
A first paper [54] reporting on “Dynamo, Amazon’s
highly available key-value store” appeared in 2007.
While not a protocol in themselves key-value stores
are an almost universal network service and often rely
on HTTP/HTTPs or JSON for their communication.

Initially, most of the key-value services did not sup-
port authentication, authorization, and/or encryption.
However, over time most were augmented with support
for authentication, authorization, and encryption.

To highlight the underlying assumption of the de-
sign of all of key-value stores we cite the Dynamo
paper [54]: “Other Assumptions: Dynamo is used only
by Amazons internal services. Its operation environ-
ment is assumed to be non-hostile and there are no
security related requirements such as authentication
and authorization.”

Most key-value stores allow for transitive attacks.
When an attacker can access a central web session stor-
age they can impersonate users and or administrators.
When using key-value stores for caching, e.g., of SQL
requests or of pre-compiled Just-In-Time bytecode,
access to the cache can result in information disclosure
or even attack code execution.

Next we give a few examples, using memcached,
of the defaults when deploying key-value stores. For
memcached strong authentication on the basis of SASL
was introduced in 2009. Moreover, memcached now
supports transport layer encryption. However, this sup-
port is lacking by default in most Unix-derivatives
as the implementation of SASL was flaky in mem-
cached and led to bugs. We surveyed the follow-
ing distributions for SASL support: Gentoo, Debian
Wheezy, Ubuntu 14.04.1 LTS, Arch Linux, Centos 6,
OpenBSD 5.6, FreeBSD 10. We found that only since
2014 Debian Wheezy and Ubuntu 14.04.1 LTS started
to link against SASL by default.

14



There are two options regarding the configuration
of the listen socket, restrictive or global. Restrictive,
means a specific IP, e.g., the localhost IP. 127.0.0.1,
or non restrictive using 0.0.0.0. We find that for
memcached only Debian Wheezy and Ubuntu 14.04.1
LTS use the restrictive default.

We find, not surprisingly that the documentation is
large given the feature set of the services. Instructions
for enabling the optional security features are hidden
in Dynamo, misleading in memcached, and clear and
simple in redis. It seems that initially the security
documentation of MongoDB was also hidden. On the
10th of February 2015 more than 40.000 MongoDB
databases were unprotected on the Internet. Since then
a major update to the documentation took place [119].

Indeed, the weaknesses in the security models of
NoSQL databases are known. While Srinivas and
Nair [162] conclude that they are on a good path
forward with regard to providing CIA, Okman et
al. [126] point out that “Clearly the future generations
of such DBMSs need considerable development and
hardening in order to provide secure environment for
sensitive data which is being stored by applications
(such as social networks) using them.”.

Binaryedge [18] finds that there are still more
than 175K unprotected Redis/MongoDB/Memcache
instances in the Internet that can be contacted from
any host.
VNC and the Remote Frame Buffer Protocol:
Virtual Network Computing (VNC) describes the pro-
grams and application providing the Remote Frame
Buffer (RFB) Protocol, RFC6143 [145] dated 2011.
RFB allows a networked computer to use a graphi-
cal user interface on a remote machine. It has two
common use cases (a) remote support for end-user
systems by support staff and (b) remote administration
of physically inaccessible servers. The latter is, in
particular, used in Linux based virtualization solutions
that provide access to the VGA output of the VMs via
VNC [81]. The latter is the reason why we consider
VNC in this Section.

To cite from the RFB RFC6143 [145]: “The RFB
protocol as defined here provides no security beyond
the optional and cryptographically weak password
check described in Section 7.2.2. In particular, it
provides no protection against observation of or tam-
pering with the data stream. It has typically been used
on secure physical or virtual networks.” However, it
can be enhanced with IPsec or SSH for encryption
and some implementations support plain and certificate
based authentication.

Since VNC is used for remote administration, it
offers many opportunities for misconfiguration. An

obvious end-user system misconfiguration, weak or no
passwords, opens the end-systems to easy attack. Of
course, since these are usually company provided, they
“should not” be unprotected in the Internet. For remote
administration of SCADA systems this is worse, as
access to them implies access to industrial control
system [19], [164].

VNC for remote access to virtual machine consoles
is often used by Linux based virtualization solutions,
e.g., libvirt and Xen. These enable VNC without
authentication by default. Moreover, while VNC is
typically bound to localhost libvirt offers the “conve-
nience” option of using 0.0.0.0 by uncommenting
a more restrictive binding to localhost. If an attacker
gets control of a VNC port they can use keyboard com-
mands to reboot the system [145] and boot into single
user mode where the credentials for the administrative
account may be changed.

To mitigate this, strong, ideally key-based, authen-
tication and built-in encryption is needed. Therefore,
the protocol must be adjusted. Furthermore, the imple-
mentations should provide these security mechanisms
in an easy to use manner. Shodan lists roughly 600,000
publicly available IPs running VNC. Indeed, roughly
2,000 unprotected VNC instances have been used as
the basis of a “security” roulette, see the report by
Stevenson [164].

APIs and Microservices: Remote procedure calls
(RPCs) are a fundamental concept introduced before
1981, with the goal to make execution of code on
a remote machine as simple and straightforward as
on the local machine [123], [20]. Today RPCs are
everywhere, but often hidden behind a different name,
examples include JSON-RPC, XML-RPC, Java-RMI,
SOAP, REST. Indeed, one often refers to them as
application programming interfaces (APIs).

APIs are commonly used in, e.g, (a) microservices,
(b) configuration interfaces, (c) mobile application ser-
vices, and (d) Web applications. Microservices [125],
[139], [170] reuse the traditional Unix philosophy
of combining “small, sharp tools” [93]. The com-
munication is delegated to APIs. An example of a
configuration interface is the Docker API which allows
operators to orchestrate applications built in docker
containers via Web services [56]. Examples of mobile
applications are the various APIs used in a multitude
of Android and iOS apps [67], [133], [111]. Web
applications often rely on client-based javascript code
that calls back to APIs on the server-side [43], [34].
While APIs often use RPCs they do not have to.
Some use HTTP as a transport protocol and are either
RESTfull or use JSON or XML as basis. Others use

15



plain JSON or plain XMLRPC. Yet another group
defines their own protocol often using binary encoding.

Some APIs provide some form of authentication,
authorization, and encryption. However, APIs are often
used in what the application designer thinks is a fenced
environment. Hence, the typical use case has most
security elements disabled [170], [3]. This is the reason
that APIs are in this class as they basically repeat
the misconceptions of Early Internet, namely to trust
every client.

Most attacks against APIs are ones that “just” use
the service. This can result in non-intended side-
effects due to missing authentication and authorization,
e.g., abusing the docker API, or information leakage,
e.g., in mobile application APIs [67], [133], or using
the back-end API rather than the client interface to
overcome rate limits against brute force attacks on
the original service [65]. These attacks are enabled by
misconfigurations such as APIs that are Internet-wide
accessible due to (a) holes in the firewall, (b) mis-
configured bouncer, and (c) inside attacks via another
compromised microservice [32].

We again find that, as with almost all new cool ideas,
security aspects are the ones that are considered last.
Thus, many APIs come with unclear documentation
and/or global binds for their management APIs, e.g.,
docker, tomcat, JBoss [32]. Even though the meta-
documentation tells reasonably well that APIs have to
be secured, the practice does not adhere to this goal.
Indeed, the problems are known for microservices
since 2003 [139]. Moreover, good practices are known
but hardly followed [125].

6.2. Discussion—A new Simplicity

In this class, we often do not have a single protocol
but concepts that are realized by different protocols
that all suffer from the same misconfigurations, e.g.,
key-value stores and APIs. Overall, we observe a clear
trend towards using HTTP as application layer pro-
tocol, likely because HTTP allows middlebox traver-
sal [140]. In theory, this opens up the possibility of
”just securing HTTP” rather than having to secure
a large number of Internet protocols [146]. Still, the
problems of misconfiguration remain. Even if an API
uses SSL for encryption, it can still be abused by an
attacker [32] to disclose information. The origin of
this trend is the need for complex, yet easy to deploy
services.

Apart from delegating security issues to HTTP these
modern services again rely on fencing. During software
and system development, the main focus is on getting
the service ready and not necessarily on security.

Hence, “[...] Its operation environment is assumed to
be non-hostile [...]” as stated in the Amazon Dynamo
paper [54].

The underlying misconception is that services can
be securely fenced off as they are only used within
“internal systems”. That this can lead to misconfigura-
tions has already been shown in previous discussions.
Nevertheless, many recent security incidents have lead
to prominent examples of data leakage (key-value
stores, APIs) [18].

The motivation for delegating security to a fenced
environment is the notion that security without fencing
is a complex and time consuming task, impossible to
achieve, and making the (backend) services unusable.
Hence, the spirit during development follows the start-
up culture, which includes reusing available protocols
as they are (Telnet/VNC).

Fencing techniques have advanced as well, and
since 2013 include the concept of containers [99]. A
common misconfiguration is captured by the following
idea: “If we put a service in its own container in its
own dedicated VM in its own VLAN behind a firewall
nothing can happen”. However, since services have to
be reachable they have to allow some access. This
access often turns out to be the entry point for attacks.

Containers, e.g., Docker, are a deployment and
testing mechanism. The motivation is that traditional
means of software distribution do not scale to the
cloud as traditional testing/release procedures do not
fit the rapid development cycle. This often leads to
monolithic deployment of formerly modular software
components. This is unmanageable if some component
has to be updated, e.g., to patch a security hole.
Furthermore, containers usually come preconfigured
which adds additional misconfiguration traps.

Due to their experience with Complex Security
several developers state that one should not be too
strict about security and that security is “in the way”
of innovation. This goes as far as e.g. Ren et al. [143]
claiming that: “Security and privacy is one fundamen-
tal obstacle to cloud computing’s success.”.

Old mistakes are redone as the default assumption
of the software developer is again “this is an esoteric
scenario and not the intended use case”. APIs may
release more information than intended [67], [133].
Moreover, the cloud adds the complexities of multi-
party trust and the need for mutual auditability [45].
Additionally, developer guidelines with a focus on
security are hard to find even if they exist.

Overall, we note that, after having had too complex
security and unusable systems, we are now in a world
with easily deployable solutions. However, security is
often outsourced. This results in many misconfigura-

16



tion traps.

7. Summary

Our systematization of misconfiguration prone In-
ternet protocols and services is based on assump-
tions about the attackers—weak vs. strong attacker—as
well as security trade-offs—good enough vs. perfect
security—in the protocols. We find that misconfigu-
ration prone Internet protocols and their services fall
into one of our four classes: Early Internet, Emerging
Threats, Complex Security, and A new Simplicity.

We observe that protocol design and service devel-
opment have come full circle with regard to security.
In the sense that initially the Internet was a cooperative
environment, see Early Internet. Once it was realized
that the Internet was hostile it was presumed that
it was possible to fence of services, see Emerging
Threats. However, attackers are getting stronger and
assets more valuable and, thus, there is the attempt
to get security “right”, see Complex Security. The
drawback is complexity and, thus, we complete the
circle back to a simple security model in a presumed
friendly environment guaranteed by enhanced fencing
mechanisms, see A new Simplicity. Overall, we find
many misconfiguration traps in all of the above classes.

Fencing is seen as a major security solution and
often used as only barrier protecting major assets.
However, fencing is a major misconfiguration trap in
itself. After all, with regards to fencing there is the
statement from RFC3365 [151]: “History has shown
that applications that operate using the TCP/IP Pro-
tocol Suite wind up being used over the Internet.
This is true even when the original application was
not envisioned to be used in a wide area Internet
environment.”

We observe that protocol/service designers are
clearly forced from one extreme—full but too complex
security—to the other extreme—hardly any security
but easily deployable software that works “out of the
box”. Indeed, our observation is that operators get
frustrated if the software does not behave as it should
or prevents them from doing what they want to do.
Moreover, for many decision makers, security is not an
end in itself but it is a cost factor that they “also have
to take care of”—if it cannot be avoided. Yet, most
often a security incident proves to be more costly than
proactive security considerations would have been.

7.1. Lessons Learned
Besides these observations, we compile a set of ac-

tion points and requirements protocol designers MUST
consider when they create new or update old protocols.

Early Internet: The major lesson from this class is
that security requirements and environments change.
However, this class also demonstrates that such issues
can be tackled. Hence, when updating a protocol,
one MUST purge problematic use-cases and design
choices. Only then can appeals for fixing bad config-
urations combined with sanctioning of insecure prac-
tices lead to improved overall security (see, e.g., [96]
and [105]). While the community succeeded with
SMTP, the Internet still suffers from, e.g., DNS and
NTP amplification attacks. In addition, other protocols
from this era still linger and urgently require revisiting.
Emerging Threats: Given that the non-hostile Internet
is gone, a new paradigm emerged. Instead of adjusting
the protocols to the new insecure environment, the en-
vironment is re-defined to be fenced. Thus, the assump-
tion is that the service is behind a firewall or that lower
layers offer security guarantees. Yet, it is common
knowledge that firewalls tend to fail eventually and
lower layers do not hold up to their promises. Thus,
when designing a protocol, one MUST not assume
that it will only be used in the environment it was
designed for. Moreover, when designing a protocol,
one MUST include authentication, authorization and
confidentiality preserving methods.
Complex Security: Here the community tried to ad-
dress some of the above recommendations. However,
the resulting protocols come with other complications.
Security features designed for an enterprise setup may
not be appropriate in SoHo scenarios, e.g., recall IPP.
IPSec is so complex that it is not in widespread use.
Moreover, implementations do not necessarily inter-
operate. In an attempt to ensure good cryptographic
algorithms, SNMPv3 and SSHv1 specified algorithms
that were good then but not necessarily now. Hence
this class provides us with the following three lessons.
First, when designing a protocol, one MUST ensure
that the security is scalable. Scalable in the sense
that it is applicable to large as well as small setups.
Even the simplest setup should provide confidentiality,
integrity, and availability by default. Second, when
designing a protocol, one MUST keep it simple and
concise, to allow multiple parties to implement inter-
operable solutions. Third, when designing a protocol,
one MUST not mandate the use of specific ciphers
but one MUST exclude plain and weak algorithms
since cryptographic algorithms become obsolete over
time.
A new Simplicity: Overwhelmed by the complexity of
the previous protocol generation a new protocol design
trend emerged. Protocols become simple again, and de-
signer focus on getting things done. New technologies,
such as “Cloud” and “SDN” also bring new paradigms.

17



Table 2. Summary of all selected representative protocols.

Example Security Features Misconfiguration traps Support Publications Visible Instances

In
tr

od
uc

ed

A
ut

he
nt

ic
at

io
n

A
ut

ho
ri

za
tio

n

T
L

S

N
oA

ut
h

C
re

de
nt

ia
ls

A
rt

ifa
ct

s

Fe
nc

in
g

N
oU

se

B
ad

D
ef

au
lts

B
ad

D
oc

um
en

ta
tio

n

A
ca

de
m

ia

L
or

e

To
ta

l

A
ff

ec
te

d

Early
Internet

FTP 1971 • ◦ • • ◦ ◦ 1999 3,000,000c
TFTP 1981 • 2015 [109] 2006 600,000a [109]
SMTP 1982 ◦ ◦ • • 2004 [96] 1995 5,600,000c
DNS 1984 - - • • ◦ 2004 [161] ˜2000 10,000,000c >5,000a [165]

Emerging
Threats

NetFlow ˜1990 • • 2004
DHCP 1993 - • • • • 1993

SNMPv2 1993 ◦ ◦ • • • • 2014 [148] ˜2012 3,800,000c
NFSv3 1995 ◦ ◦ ◦ • • ◦ ◦ 1999 [83] 2015 100,000c
Munin ˜2000 • 6,000c

iSCSI 2002 ◦ ◦ • • • ◦ 2009 1,000b

Complex
Security

IPSec ˜1995 • • • • ◦ ◦ 2000 [66] 2005
LDAP 1997 ◦ ◦ • • ◦ ◦ 2006 200,000c

IPP 1999 ◦ ◦ ◦ • • • 2003 400,000c
NFSv4+Krb5 2000 • • • • • 2009

SNMPv3 2002 • • • • • ◦ ◦ 2013
IPFix 2008 - - - • ◦ ◦ 2014

A new
Simplicity

Telnet 1969 • ◦ • • • • • 2014 [104] 1993 10,600,000c 400,000a [35]
KV Stores 2006 ◦ ◦ ◦ • ◦ ◦ 2011 [126] 2015 175,000a [18]

APIs 2000 ◦ ◦ • • • • • 2003 [139] 2013 200,000c
VNC 1998 ◦ ◦ • • • ◦ ◦ 2011 [92] 2014 600,000c >2,000a [19]

•: Commonly Used
◦: Uncommon
-: Not Implemented

: Not Specified

•: misconfiguration traps •: Most
◦: Some

Year Published
[example ref.]

a cited data
b zMap
c Shodan

We find that large enterprises develop protocols very
similar to those of the era of emerging threats while
ignoring lessons learned often for the sake of perfor-
mance. It works well for the designed environment,
e.g., large enterprises where the perimeter is secure, but
fails in different settings. The concept of “everything
over HTTP” leads to “protocols” which ignore and/or
misuse basic concepts such as authentication and in
particular authorization. In addition, we find that often
new actors, e.g., the automotive industry, adapt IP
based technologies and re-do old mistakes. Hence,
the most important takeaway from this class is that
when designing a protocol, one MUST take past

lessons into account. While this sounds simple history
tells us it is not. Indeed, almost all misconfigurations
pointed out by this survey are covered in even the most
basic security textbooks. Yet, they remain common
and repeatedly cause major data leaks and/or outages.
Thus, the prime message of this survey is to finally
apply what we have learned.

General Observations: Protocol designers MUST be
strict in requiring all security features from imple-
mentations and this must be reflected in the RFCs or
related standards. To advance the use of TLS, a decent
infrastructure, e.g., DANE [10], [91] is necessary. If
such an infrastructure is unavailable encryption should

18



at least be performed opportunistically [180], [149].
Opportunistic encryption raises the question of us-

ability. Usability has to become a key part of the
protocol design process: The goal has to be to make the
protocol secure while designing the system such that
it is simple to comprehend and use. The correct way
is either the only way or at least the easiest way [9],
[149], [15].

Good examples of such design practices exist in
the context of user centric protocols, e.g., SSH [180]
and the large set of encrypted (mobile) messaging
protocols [168]. The rise of the latter is motivated
by the—emotional—demands of end-users [103] and
professionals [115] for easy but secure communica-
tion. Important security features include strong mutual
authentication and opportunistic encryption. The same
kind of protocol design is needed for all Internet
protocols and, in particular, those used within the
infrastructure.

References

[1] B. Aboba, J. Tseng, J. Walker, V. Rangan, and
F. Travostino, “Securing Block Storage Protocols
over IP,” RFC 3723 (Proposed Standard), Internet
Engineering Task Force, April 2004, updated by
RFC 7146. [Online]. Available: http://www.ietf.org/
rfc/rfc3723.txt

[2] E. S. Al-Shaer and H. H. Hamed, “Firewall policy
advisor for anomaly discovery and rule editing,” in
Proc. IFIP/IEEE Symposium Integrated Network Man-
agement, 2003, pp. 17–30.

[3] R. Alarcón and E. Wilde, “Restler: Crawling restful
services,” in Proc. World Wide Web Conference, 2010,
pp. 1051–1052.

[4] M. Allman and S. Ostermann, “FTP Security
Considerations,” RFC 2577 (Informational), Internet
Engineering Task Force, May 1999. [Online].
Available: http://www.ietf.org/rfc/rfc2577.txt

[5] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph,
R. Katz, A. Konwinski, G. Lee, D. Patterson,
A. Rabkin, I. Stoica et al., “A view of cloud com-
puting,” Communications of the ACM, vol. 53, no. 4,
pp. 50–58, 2010.

[6] F. Assolini, “The Tale of One Thousand and One DSL
Modems,” 2012, Kaspersky Lab.

[7] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny, “Workload analysis of a large-scale
key-value store,” in ACM SIGMETRICS Performance
Evaluation Review, vol. 40, no. 1, 2012, pp. 53–64.

[8] R. Atkinson, “Security Architecture for the Internet
Protocol,” RFC 1825 (Proposed Standard), Internet
Engineering Task Force, August 1995, obsoleted by
RFC 2401. [Online]. Available: http://www.ietf.org/
rfc/rfc1825.txt

[9] D. Balfanz, G. Durfee, R. E. Grinter, and D. K.
Smetters, “In search of usable security: Five lessons
from the field,” Proc. IEEE Security & Privacy, no. 5,
pp. 19–24, 2004.

[10] R. Barnes, “Use Cases and Requirements for DNS-
Based Authentication of Named Entities (DANE),”
RFC 6394 (Informational), Internet Engineering
Task Force, October 2011. [Online]. Available:
http://www.ietf.org/rfc/rfc6394.txt

[11] D. J. Barrett, R. E. Silverman, and R. G. Byrnes, SSH,
The Secure Shell: The Definitive Guide: The Definitive
Guide. O’Reilly Media, Inc., 2005.

[12] R. Barrett, E. Kandogan, P. P. Maglio, E. M. Haber,
L. A. Takayama, and M. Prabaker, “Field studies of
computer system administrators: analysis of system
management tools and practices,” in Proc. ACM Con-
ference on Computer Supported Cooperative Work,
2004, pp. 388–395.

[13] S. M. Bellovin and W. R. Cheswick, “Network fire-
walls,” IEEE Communication Magazine, vol. 32, no. 9,
pp. 50–57, 1994.

[14] D. J. Bernstein. How the AXFR protocol works.
http://cr.yp.to/djbdns/axfr-notes.html.

[15] D. J. Bernstein, T. Lange, and P. Schwabe, “The
security impact of a new cryptographic library,” in
Progress in Cryptology–LATINCRYPT 2012, 2012, pp.
159–176.

[16] A. Bhushan, “File Transfer Protocol,” RFC 114,
Internet Engineering Task Force, April 1971, updated
by RFCs 133, 141, 171, 172. [Online]. Available:
http://www.ietf.org/rfc/rfc114.txt

[17] A. N. Bikos and N. Sklavos, “LTE/SAE security issues
on 4G wireless networks,” Proc. IEEE Security &
Privacy, vol. 11, no. 2, pp. 55–62, 2013.

[18] Binary Edge. (2015, August) Data, technologies and
security - part 1. http://blog.binaryedge.io/2015/08/10/
data-technologies-and-security-part-1/.

[19] ——. (2015, September) VNC, image analysis
and data science. http://blog.binaryedge.io/2015/09/
30/vnc-image-analysis-and-data-science/.

[20] A. D. Birrell and B. J. Nelson, “Implementing re-
mote procedure calls,” ACM Trans. Computer Systems,
vol. 2, no. 1, pp. 39–59, 1984.

[21] D. Black and P. Koning, “Securing Block Storage
Protocols over IP: RFC 3723 Requirements Update for
IPsec v3,” RFC 7146 (Proposed Standard), Internet
Engineering Task Force, April 2014. [Online].
Available: http://www.ietf.org/rfc/rfc7146.txt

19

http://www.ietf.org/rfc/rfc3723.txt
http://www.ietf.org/rfc/rfc3723.txt
http://www.ietf.org/rfc/rfc2577.txt
http://www.ietf.org/rfc/rfc1825.txt
http://www.ietf.org/rfc/rfc1825.txt
http://www.ietf.org/rfc/rfc6394.txt
http://www.ietf.org/rfc/rfc114.txt
http://blog.binaryedge.io/2015/08/10/data-technologies-and-security-part-1/
http://blog.binaryedge.io/2015/08/10/data-technologies-and-security-part-1/
http://blog.binaryedge.io/2015/09/30/vnc-image-analysis-and-data-science/
http://blog.binaryedge.io/2015/09/30/vnc-image-analysis-and-data-science/
http://www.ietf.org/rfc/rfc7146.txt


[22] U. Blumenthal, F. Maino, and K. McCloghrie,
“The Advanced Encryption Standard (AES) Cipher
Algorithm in the SNMP User-based Security Model,”
RFC 3826 (Proposed Standard), Internet Engineering
Task Force, June 2004. [Online]. Available: http:
//www.ietf.org/rfc/rfc3826.txt

[23] U. Blumenthal and B. Wijnen, “User-based Security
Model (USM) for version 3 of the Simple Network
Management Protocol (SNMPv3),” RFC 2264
(Proposed Standard), Internet Engineering Task Force,
January 1998, obsoleted by RFC 2274. [Online].
Available: http://www.ietf.org/rfc/rfc2264.txt

[24] ——, “User-based Security Model (USM) for version
3 of the Simple Network Management Protocol
(SNMPv3),” RFC 3414 (INTERNET STANDARD),
Internet Engineering Task Force, December 2002,
updated by RFC 5590. [Online]. Available: http:
//www.ietf.org/rfc/rfc3414.txt

[25] R. Bodenheim, J. Butts, S. Dunlap, and B. Mullins,
“Evaluation of the ability of the shodan search engine
to identify internet-facing industrial control devices,”
Elsevier Journal of Critical Infrastructure Protection,
vol. 7, no. 2, pp. 114–123, 2014.

[26] M. Boe and J. Altman, “TLS-based Telnet
Security,” INTERNET-DRAFT draft-ietf-tn3270e-
telnet-tls-06, Internet Engineering Task Force, April
2002. [Online]. Available: https://tools.ietf.org/html/
draft-ietf-tn3270e-telnet-tls-06

[27] G. Bollinger, “Securely managing your networks
with SNMPv3,” CiscoLIVE! BRKNMS-2658, 2015.
[Online]. Available: https://clnv.s3.amazonaws.com/
2015/usa/pdf/BRKNMS-2658.pdf

[28] D. Borman, “Telnet Authentication Option,” RFC
1409 (Experimental), Internet Engineering Task Force,
January 1993, obsoleted by RFC 1416. [Online].
Available: http://www.ietf.org/rfc/rfc1409.txt

[29] D. Botta, R. Werlinger, A. Gagné, K. Beznosov,
L. Iverson, S. Fels, and B. Fisher, “Towards under-
standing IT security professionals and their tools,”
in Proc. ACM Symposium on Usable Privacy and
Security, 2007, pp. 100–111.

[30] E. Bouillon, “Taming the beast: Assess kerberos-
protected networks,” Black Hat EU, 2009.

[31] H. Braun and Y. Rekhter, “Advancing the NSFNET
routing architecture,” RFC 1222 (Informational),
Internet Engineering Task Force, May 1991. [Online].
Available: http://www.ietf.org/rfc/rfc1222.txt

[32] S. Breen. (2015, November) What Do WebLogic,
WebSphere, JBoss, Jenkins, OpenNMS, and Your Ap-
plication Have in Common? This Vulnerability. http://
foxglovesecurity.com/2015/11/06/what-do-weblogic.

[33] B. Callaghan, B. Pawlowski, and P. Staubach,
“NFS Version 3 Protocol Specification,” RFC 1813
(Informational), Internet Engineering Task Force,
June 1995. [Online]. Available: http://www.ietf.org/
rfc/rfc1813.txt

[34] M. Cantelon, M. Harter, T. Holowaychuk, and N. Ra-
jlich, Node.js in Action. Manning, 2014.

[35] Carna Botnet, “Internet census 2012: Port scanning/0
using insecure embedded devices,” 2013.

[36] C. Carr, “Network subsystem for time sharing
hosts,” RFC 15, Internet Engineering Task Force,
September 1969. [Online]. Available: http://www.ietf.
org/rfc/rfc15.txt

[37] M. Casado, T. Garfinkel, A. Akella, M. J. Freedman,
D. Boneh, N. McKeown, and S. Shenker, “SANE:
A protection architecture for enterprise networks.” in
Proc. Usenix Security Symp., 2006.

[38] J. Case, K. McCloghrie, M. Rose, and S. Waldbusser,
“Introduction to Community-based SNMPv2,” RFC
1901 (Historic), Internet Engineering Task Force,
January 1996. [Online]. Available: http://www.ietf.
org/rfc/rfc1901.txt

[39] J. Case, R. Mundy, D. Partain, and B. Stewart,
“Introduction and Applicability Statements for
Internet-Standard Management Framework,” RFC
3410 (Informational), Internet Engineering Task
Force, December 2002. [Online]. Available:
http://www.ietf.org/rfc/rfc3410.txt

[40] J. Case, M. Fedor, M. Schoffstall, and J. Davin,
“Simple Network Management Protocol,” RFC 1067,
Internet Engineering Task Force, August 1988,
obsoleted by RFC 1098. [Online]. Available: http:
//www.ietf.org/rfc/rfc1067.txt

[41] A. Caudill. (2013, April) Security done wrong:
Leaky FTP server. http://adamcaudill.com/2013/04/
04/security-done-wrong-leaky-ftp-server/.

[42] D. B. Chapman, “Network (in) security through IP
packet filtering.” in Proc. Usenix, 1992.

[43] A. Charland and B. Leroux, “Mobile application de-
velopment: Web vs. native,” Communications of the
ACM, vol. 54, no. 5, pp. 49–53, 2011.

[44] M. Chen, D. Hildebrand, G. Kuenning, S. Shankara-
narayana, B. Singh, and E. Zadok, “Newer is some-
times better: An evaluation of NFSv4.” Proc. ACM
SIGMETRICS, 2015.

[45] Y. Chen, V. Paxson, and R. H. Katz, “Whats new
about cloud computing security,” University of Cal-
ifornia, Berkeley Report No. UCB/EECS-2010-5 Jan-
uary, 2010.

[46] B. Claise, “Cisco Systems NetFlow Services Export
Version 9,” RFC 3954 (Informational), Internet
Engineering Task Force, October 2004. [Online].
Available: http://www.ietf.org/rfc/rfc3954.txt

20

http://www.ietf.org/rfc/rfc3826.txt
http://www.ietf.org/rfc/rfc3826.txt
http://www.ietf.org/rfc/rfc2264.txt
http://www.ietf.org/rfc/rfc3414.txt
http://www.ietf.org/rfc/rfc3414.txt
https://tools.ietf.org/html/draft-ietf-tn3270e-telnet-tls-06
https://tools.ietf.org/html/draft-ietf-tn3270e-telnet-tls-06
https://clnv.s3.amazonaws.com/2015/usa/pdf/BRKNMS-2658.pdf
https://clnv.s3.amazonaws.com/2015/usa/pdf/BRKNMS-2658.pdf
http://www.ietf.org/rfc/rfc1409.txt
http://www.ietf.org/rfc/rfc1222.txt
http://foxglovesecurity.com/2015/11/06/what-do-weblogic
http://foxglovesecurity.com/2015/11/06/what-do-weblogic
http://www.ietf.org/rfc/rfc1813.txt
http://www.ietf.org/rfc/rfc1813.txt
http://www.ietf.org/rfc/rfc15.txt
http://www.ietf.org/rfc/rfc15.txt
http://www.ietf.org/rfc/rfc1901.txt
http://www.ietf.org/rfc/rfc1901.txt
http://www.ietf.org/rfc/rfc3410.txt
http://www.ietf.org/rfc/rfc1067.txt
http://www.ietf.org/rfc/rfc1067.txt
http://adamcaudill.com/2013/04/04/security-done-wrong-leaky-ftp-server/
http://adamcaudill.com/2013/04/04/security-done-wrong-leaky-ftp-server/
http://www.ietf.org/rfc/rfc3954.txt


[47] ——, “Specification of the IP Flow Information
Export (IPFIX) Protocol for the Exchange of IP
Traffic Flow Information,” RFC 5101 (Proposed
Standard), Internet Engineering Task Force, January
2008, obsoleted by RFC 7011. [Online]. Available:
http://www.ietf.org/rfc/rfc5101.txt

[48] D. Clark, “The design philosophy of the DARPA
Internet protocols,” ACM Computer Communication
Review, vol. 18, no. 4, pp. 106–114, 1988.

[49] G. V. Cormack, “Email spam filtering: A systematic
review,” Foundations and Trends in Information Re-
trieval, vol. 1, no. 4, pp. 335–455, 2007.

[50] A. Corrente and L. Tura, “Security performance
analysis of SNMPv3 with respect to SNMPv2c,” in
Proc. IFIP/IEEE Network Operations and Manage-
ment Symposium (NOMS), vol. 1, 2004, pp. 729–742.

[51] A. Costin, J. Zaddach, A. Francillon, D. Balzarotti,
and S. Antipolis, “A large-scale analysis of the secu-
rity of embedded firmwares,” in Proc. Usenix Security
Symp., 2014.

[52] D. Crocker, “STANDARD FOR THE FORMAT
OF ARPA INTERNET TEXT MESSAGES,” RFC
822 (INTERNET STANDARD), Internet Engineering
Task Force, August 1982, obsoleted by RFC 2822,
updated by RFCs 1123, 2156, 1327, 1138, 1148.
[Online]. Available: http://www.ietf.org/rfc/rfc822.txt

[53] F. Cuppens, N. Cuppens-Boulahia, and J. Garcia-
Alfaro, “Detection and removal of firewall miscon-
figuration,” in Proc. IASTED Conference on Commu-
nication, Network and Information Security, vol. 1,
2005, pp. 154–162.

[54] G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels, “Dynamo: Amazon’s
highly available key-value store,” in ACM SIGOPS
Operating System Review, vol. 41, no. 6, 2007, pp.
205–220.

[55] P. Deutsch, A. Emtage, and A. Marine, “How to
Use Anonymous FTP,” RFC 1635 (Informational),
Internet Engineering Task Force, May 1994. [Online].
Available: http://www.ietf.org/rfc/rfc1635.txt

[56] Docker.com. (2015) http://docker.io.

[57] R. Droms, “Dynamic Host Configuration Protocol,”
RFC 1531 (Proposed Standard), Internet Engineering
Task Force, October 1993, obsoleted by RFC 1541.
[Online]. Available: http://www.ietf.org/rfc/rfc1531.
txt

[58] R. Droms and W. Arbaugh, “Authentication for
DHCP Messages,” RFC 3118 (Proposed Standard),
Internet Engineering Task Force, June 2001. [Online].
Available: http://www.ietf.org/rfc/rfc3118.txt

[59] R. Droms, J. Bound, B. Volz, T. Lemon, C. Perkins,
and M. Carney, “Dynamic Host Configuration
Protocol for IPv6 (DHCPv6),” RFC 3315 (Proposed
Standard), Internet Engineering Task Force, July
2003, updated by RFCs 4361, 5494, 6221, 6422,
6644, 7083, 7227, 7283. [Online]. Available: http:
//www.ietf.org/rfc/rfc3315.txt

[60] Z. Durumeric, E. Wustrow, and J. A. Halderman,
“Zmap: Fast internet-wide scanning and its security
applications.” in Proc. Usenix Security Symp., 2013,
pp. 605–620.

[61] H. Dwivedi, “iSCSI security,” Black Hat, 2005.

[62] M. Eisler, “NFS Version 2 and Version 3 Security
Issues and the NFS Protocol’s Use of RPCSEC GSS
and Kerberos V5,” RFC 2623 (Proposed Standard),
Internet Engineering Task Force, June 1999. [Online].
Available: http://www.ietf.org/rfc/rfc2623.txt

[63] Ethernet Storage Forum, “An updated overview of
NFSv4,” SNIA — Storage Networking Industry As-
sociation, Tech. Rep., 2015.

[64] N. Falliere, L. O. Murchu, and E. Chien, “W32.
stuxnet dossier,” White paper, Symantec Corp., Secu-
rity Response, vol. 5, 2011.

[65] R. Fallon, “Celebgate: Two methodological ap-
proaches to the 2014 celebrity photo hacks,” in In-
ternet Science, 2015, pp. 49–60.

[66] N. Ferguson and B. Schneier, “A cryptographic eval-
uation of IPsec,” 2000.

[67] T. Fiebig, W. Katz, and J. van Beek, “Grindr
application security evaluation report,” 2013. [Online].
Available: https://www.os3.nl/ media/reports/grindr.
pdf

[68] A. Findlay, “Best practices in LDAP security,” 2011.

[69] H. Flanagan and S. Ginoza, “RFC Style Guide,”
RFC 7322 (Informational), Internet Engineering
Task Force, September 2014. [Online]. Available:
http://www.ietf.org/rfc/rfc7322.txt

[70] P. Ford-Hutchinson, “Securing FTP with TLS,”
RFC 4217 (Proposed Standard), Internet Engineering
Task Force, October 2005. [Online]. Available:
http://www.ietf.org/rfc/rfc4217.txt

[71] I. Foster, A. Prudhomme, K. Koscher, and S. Savage,
“Fast and vulnerable: A story of telematic failures,”
in Proc. USENIX Workshop on Offensive Technologies
(WOOT), 2015.

[72] R. Frye, D. Levi, S. Routhier, and B. Wijnen,
“Coexistence between Version 1, Version 2,
and Version 3 of the Internet-standard Network
Management Framework,” RFC 2576 (Proposed
Standard), Internet Engineering Task Force, March
2000, obsoleted by RFC 3584. [Online]. Available:
http://www.ietf.org/rfc/rfc2576.txt

21

http://www.ietf.org/rfc/rfc5101.txt
http://www.ietf.org/rfc/rfc822.txt
http://www.ietf.org/rfc/rfc1635.txt
http://docker.io
http://www.ietf.org/rfc/rfc1531.txt
http://www.ietf.org/rfc/rfc1531.txt
http://www.ietf.org/rfc/rfc3118.txt
http://www.ietf.org/rfc/rfc3315.txt
http://www.ietf.org/rfc/rfc3315.txt
http://www.ietf.org/rfc/rfc2623.txt
https://www.os3.nl/_media/reports/grindr.pdf
https://www.os3.nl/_media/reports/grindr.pdf
http://www.ietf.org/rfc/rfc7322.txt
http://www.ietf.org/rfc/rfc4217.txt
http://www.ietf.org/rfc/rfc2576.txt


[73] ——, “Coexistence between Version 1, Version 2,
and Version 3 of the Internet-standard Network
Management Framework,” RFC 3584 (Best Current
Practice), Internet Engineering Task Force, August
2003. [Online]. Available: http://www.ietf.org/rfc/
rfc3584.txt

[74] S. M. Furnell, N. Clarke, R. Werlinger, K. Hawkey,
and K. Beznosov, “An integrated view of human, orga-
nizational, and technological challenges of it security
management,” Information Management & Computer
Security, vol. 17, no. 1, pp. 4–19, 2009.

[75] J. Garcia-Alfaro, F. Cuppens, N. Cuppens-Boulahia,
S. Martinez, and J. Cabot, “Management of stateful
firewall misconfiguration,” Elsevier Computers & Se-
curity, vol. 39, pp. 64–85, 2013.

[76] D. Genkin, A. Shamir, and E. Tromer, “RSA key
extraction via low-bandwidth acoustic cryptanalysis,”
in Proc. Advances in Cryptology (CRYPTO), 2014, pp.
444–461.

[77] S. J. Greenwald, K. G. Olthoff, V. Raskin, and
W. Ruch, “The user non-acceptance paradigm: IN-
FOSEC’s dirty little secret,” in Proc. ACM Workshop
on New Security Paradigms, 2004, pp. 35–43.

[78] P. Gutmann and I. Grigg, “Security usability,” Proc.
IEEE Security & Privacy, vol. 3, no. 4, pp. 56–58,
2005.

[79] E. M. Haber and J. Bailey, “Design guidelines for
system administration tools developed through ethno-
graphic field studies,” in Proc. ACM Symposium on
Computer Human Interaction for the Management of
Information Technology, 2007, p. 1.

[80] J. Halpern, “OSI CLNS and LLC1 protocols
on Network Systems HYPERchannel,” RFC 1223
(Informational), Internet Engineering Task Force,
May 1991. [Online]. Available: http://www.ietf.org/
rfc/rfc1223.txt

[81] M. J. Hammel, “Managing KVM deployments with
virt-manager,” Linux Journal, vol. 2011, no. 201,
2011.

[82] M. Handley, E. Rescorla, and IAB, “In-
ternet Denial-of-Service Considerations,” RFC
4732 (Informational), Internet Engineering Task
Force, December 2006. [Online]. Available:
http://www.ietf.org/rfc/rfc4732.txt

[83] B. Harris and R. Hunt, “TCP/IP security threats and
attack methods,” Elsevier Computer Communications,
vol. 22, no. 10, pp. 885–897, 1999.

[84] R. Harrison, “Lightweight Directory Access Protocol
(LDAP): Authentication Methods and Security
Mechanisms,” RFC 4513 (Proposed Standard),
Internet Engineering Task Force, June 2006. [Online].
Available: http://www.ietf.org/rfc/rfc4513.txt

[85] V. Hassler, “X.500 and LDAP security: A comparative
overview,” IEEE Network Magazine, vol. 13, no. 6, pp.
54–64, 1999.

[86] J. Hayes, “Security issues and best practices for wa-
ter/wastewater facilities,” Proceedings of the Water
Environment Federation, vol. 2013, no. 8, pp. 6442–
6461, 2013.

[87] T. Haynes and D. Noveck, “Network File System
(NFS) Version 4 Protocol,” RFC 7530 (Proposed
Standard), Internet Engineering Task Force, March
2015. [Online]. Available: http://www.ietf.org/rfc/
rfc7530.txt

[88] G. Helmer, J. Wong, M. Slagell, V. Honavar, L. Miller,
and R. Lutz, “A software fault tree approach to re-
quirements analysis of an intrusion detection system,”
Springer Requirements Engineering, vol. 7, no. 4, pp.
207–220, 2002.

[89] R. Herriot, S. Butler, P. Moore, and R. Turner, “Inter-
net Printing Protocol/1.0: Encoding and Transport,”
RFC 2565 (Experimental), Internet Engineering Task
Force, April 1999, obsoleted by RFC 2910. [Online].
Available: http://www.ietf.org/rfc/rfc2565.txt

[90] P. Hoffman, “SMTP Service Extension for Secure
SMTP over TLS,” RFC 2487 (Proposed Standard),
Internet Engineering Task Force, January 1999,
obsoleted by RFC 3207. [Online]. Available: http:
//www.ietf.org/rfc/rfc2487.txt

[91] P. Hoffman and J. Schlyter, “The DNS-Based
Authentication of Named Entities (DANE) Transport
Layer Security (TLS) Protocol: TLSA,” RFC 6698
(Proposed Standard), Internet Engineering Task Force,
August 2012, updated by RFC 7218. [Online].
Available: http://www.ietf.org/rfc/rfc6698.txt

[92] H. Holm, T. Sommestad, J. Almroth, and M. Pers-
son, “A quantitative evaluation of vulnerability scan-
ning,” Information Management & Computer Security,
vol. 19, no. 4, pp. 231–247, 2011.

[93] A. Hunt and D. Thomas, The pragmatic programmer:
From journeyman to master. Addison-Wesley Pro-
fessional, 2000.

[94] S. Institute. (2003) Printer insecurity: Is it really an is-
sue? https://www.sans.org/reading-room/whitepapers/
threats/printer-insecurity-issue-1149.

[95] “Information technology - Abstract Syntax Notation
One (ASN.1): Specification of basic notation,” ITU-
T Recommendation X.680 (07/02), ISO/IEC 8824-
1:2002, 2002.

[96] J. Jung and E. Sit, “An empirical study of spam traffic
and the use of DNS black lists,” in Proc. ACM Internet
Measurement Conference. ACM, 2004, pp. 370–375.

[97] A. J. Kalafut, C. A. Shue, and M. Gupta, “Under-
standing implications of DNS zone provisioning,” in
Proc. ACM Internet Measurement Conference, 2008,
pp. 211–216.

22

http://www.ietf.org/rfc/rfc3584.txt
http://www.ietf.org/rfc/rfc3584.txt
http://www.ietf.org/rfc/rfc1223.txt
http://www.ietf.org/rfc/rfc1223.txt
http://www.ietf.org/rfc/rfc4732.txt
http://www.ietf.org/rfc/rfc4513.txt
http://www.ietf.org/rfc/rfc7530.txt
http://www.ietf.org/rfc/rfc7530.txt
http://www.ietf.org/rfc/rfc2565.txt
http://www.ietf.org/rfc/rfc2487.txt
http://www.ietf.org/rfc/rfc2487.txt
http://www.ietf.org/rfc/rfc6698.txt
https://www.sans.org/reading-room/whitepapers/threats/printer-insecurity-issue-1149
https://www.sans.org/reading-room/whitepapers/threats/printer-insecurity-issue-1149


[98] S. Kent and K. Seo, “Security Architecture for the
Internet Protocol,” RFC 4301 (Proposed Standard),
Internet Engineering Task Force, December 2005,
updated by RFC 6040. [Online]. Available: http:
//www.ietf.org/rfc/rfc4301.txt

[99] T. Kim and N. Zeldovich, “Practical and effective
sandboxing for non-root users.” in Proc. Usenix, 2013,
pp. 139–144.

[100] J. Klensin, N. Freed, M. Rose, E. Stefferud, and
D. Crocker, “SMTP Service Extensions,” RFC 1869
(INTERNET STANDARD), Internet Engineering
Task Force, November 1995, obsoleted by RFC 2821.
[Online]. Available: http://www.ietf.org/rfc/rfc1869.
txt

[101] J. Klensin and M. Padlipsky, “Unicode Format
for Network Interchange,” RFC 5198 (Proposed
Standard), Internet Engineering Task Force, March
2008. [Online]. Available: http://www.ietf.org/rfc/
rfc5198.txt

[102] J. I. Krämer, “Why cryptography should not rely
on physical attack complexity,” Ph.D. dissertation,
Springer, 2015.

[103] L. Kraus, T. Fiebig, V. Miruchna, S. Möller, and
A. Shabtai, “Analyzing end-users knowledge and feel-
ings surrounding smartphone security and privacy,”
Proc. IEEE Security & Privacy Workshops - Mobile
Security Technologies (MoST), 2015.

[104] T. Krenc, O. Hohlfeld, and A. Feldmann, “An Internet
census taken by an illegal botnet: A qualitative assess-
ment of published measurements,” ACM Computer
Communication Review, vol. 44, no. 3, pp. 103–111,
2014.

[105] M. Kührer, T. Hupperich, C. Rossow, and T. Holz,
“Exit from hell? Reducing the impact of amplification
DDoS attacks,” in Proc. Usenix Security Symp., 2014.

[106] N. Lawrence and P. Traynor, “Under new
management: Practical attacks on SNMPv3,” in
Proc. USENIX Workshop on Offensive Technologies
(WOOT), 2012.

[107] Y. Liu, A. Sarabi, J. Zhang, P. NAGHIZADEH ARD-
ABILI, M. Karir, M. Bailey, and M. Liu, “Cloudy
with a chance of breach: Forecasting cyber security
incidents,” in Proc. Usenix Security Symp., 2015.

[108] E. N. Lorente, C. Meijer, and R. Verdult, “Scrutinizing
WPA2 password generating algorithms in wireless
routers,” in Proc. USENIX Workshop on Offensive
Technologies (WOOT), 2015.

[109] R. Macfarlane and W. J. Buchanan, “Evaluation of
TFTP DDoS amplification attack,” Elsevier Comput-
ers & Security, 2015.

[110] B. Mahadevan, “Business models for Internet-based
e-commerce,” California management review, vol. 42,
no. 4, pp. 55–69, 2000.

[111] M. Masse, REST API design rulebook. O’Reilly
Media, Inc., 2011.

[112] A. Mayer, A. Wool, and E. Ziskind, “Fang: A firewall
analysis engine,” in Proc. IEEE Security & Privacy,
2000, pp. 177–187.

[113] G. McGraw, “Software security,” Proc. IEEE Security
& Privacy, vol. 2, no. 2, pp. 80–83, 2004.

[114] ——, Software security: building security in.
Addison-Wesley Professional, 2006, vol. 1.

[115] S. E. McGregor, P. Charters, T. Holliday, and F. Roes-
ner, “Investigating the computer security practices and
needs of journalists,” in Proc. Usenix Security Symp.,
2015, pp. 399–414.

[116] B. Meixell and E. Forner, “Out of control: Demon-
strating scada exploitation,” Black Hat, 2013.

[117] P. Mockapetris, “Domain names: Concepts and
facilities,” RFC 882, Internet Engineering Task
Force, November 1983, obsoleted by RFCs 1034,
1035, updated by RFC 973. [Online]. Available:
http://www.ietf.org/rfc/rfc882.txt

[118] ——, “Domain names: Implementation specification,”
RFC 883, Internet Engineering Task Force, November
1983, obsoleted by RFCs 1034, 1035, updated by
RFC 973. [Online]. Available: http://www.ietf.org/rfc/
rfc883.txt

[119] MongoDB website. (2015, February)
https://www.mongodb.com/blog/post/
mongodb-security-best-practices.

[120] R. Moonen and C. D. I. BV, “Digitale achterdeuren in
de nederlandse internet infrastructuur,” Itsx bv, 2012.

[121] Munin. (2002) An open source networked resource
monitoring tool. munin-monitoring.org.

[122] J. Myers, “SMTP Service Extension for
Authentication,” RFC 2554 (Proposed Standard),
Internet Engineering Task Force, March 1999,
obsoleted by RFC 4954. [Online]. Available:
http://www.ietf.org/rfc/rfc2554.txt

[123] B. J. Nelson, “Remote procedure call,” 1981.

[124] B. C. Neuman and T. Ts’ O, “Kerberos: An authentica-
tion service for computer networks,” IEEE Computer
Magazine, vol. 32, no. 9, pp. 33–38, 1994.

[125] S. Newman, Building Microservices. O’Reilly Media,
Inc., 2015.

[126] L. Okman, N. Gal-Oz, Y. Gonen, E. Gudes, and
J. Abramov, “Security issues in NoSQL databases,” in
Proc. IEEE Trust, Security and Privacy in Computing
and Communications (TrustCom), 2011, pp. 541–547.

23

http://www.ietf.org/rfc/rfc4301.txt
http://www.ietf.org/rfc/rfc4301.txt
http://www.ietf.org/rfc/rfc1869.txt
http://www.ietf.org/rfc/rfc1869.txt
http://www.ietf.org/rfc/rfc5198.txt
http://www.ietf.org/rfc/rfc5198.txt
http://www.ietf.org/rfc/rfc882.txt
http://www.ietf.org/rfc/rfc883.txt
http://www.ietf.org/rfc/rfc883.txt
https://www.mongodb.com/blog/post/mongodb-security-best-practices
https://www.mongodb.com/blog/post/mongodb-security-best-practices
munin-monitoring.org
http://www.ietf.org/rfc/rfc2554.txt


[127] H. Orman, “The morris worm: A fifteen-year perspec-
tive,” Proc. IEEE Security & Privacy, no. 5, pp. 35–
43, 2003.

[128] T. O’Sullivan, “Telnet Protocol - a proposed
document,” RFC 137, Internet Engineering Task
Force, April 1971, updated by RFC 139. [Online].
Available: http://www.ietf.org/rfc/rfc137.txt

[129] Y. M. P. Pa, S. Suzuki, K. Yoshioka, T. Matsumoto,
T. Kasama, and C. Rossow, “Iotpot: Analysing the rise
of iot compromises,” in Proc. USENIX Workshop on
Offensive Technologies (WOOT), 2015.

[130] G. Pallis, “Cloud computing: the new frontier of
Internet computing,” IEEE Internet Computing, no. 5,
pp. 70–73, 2010.

[131] Payment Card Industry, “Security standards coun-
cil,” Payment Card Industry Data Security Standard:
Requirements and Security Assessment Procedures,
2014.

[132] C. P. Pfleeger and S. L. Pfleeger, Security in comput-
ing. Prentice Hall Professional Technical Reference,
2002.

[133] I. Polakis, G. Argyros, T. Petsios, S. Sivakorn, and
A. D. Keromytis, “Where’s wally?: Precise user dis-
covery attacks in location proximity services,” in Proc.
ACM Conference on Computer and Communications
Security (CCS), 2015, pp. 817–828.

[134] J. Postel, “Simple Mail Transfer Protocol,” RFC
821 (INTERNET STANDARD), Internet Engineering
Task Force, August 1982, obsoleted by RFC 2821.
[Online]. Available: http://www.ietf.org/rfc/rfc821.txt

[135] ——, “Introduction to the STD Notes,” RFC 1311
(Informational), Internet Engineering Task Force,
March 1992. [Online]. Available: http://www.ietf.org/
rfc/rfc1311.txt

[136] ——, “Instructions to RFC Authors,” RFC 1543
(Informational), Internet Engineering Task Force,
October 1993, obsoleted by RFC 2223. [Online].
Available: http://www.ietf.org/rfc/rfc1543.txt

[137] J. Postel and J. Reynolds, “Instructions to
RFC Authors,” RFC 2223 (Informational), Internet
Engineering Task Force, October 1997, obsoleted by
RFC 7322, updated by RFCs 5741, 6949. [Online].
Available: http://www.ietf.org/rfc/rfc2223.txt

[138] ——, “Telnet Protocol Specification,” RFC 854
(INTERNET STANDARD), Internet Engineering
Task Force, May 1983, updated by RFC 5198.
[Online]. Available: http://www.ietf.org/rfc/rfc854.txt

[139] I. M. P. Pratistha, N. Nicoloudis, and S. Cuce,
“A micro-services framework on mobile devices.” in
ICWS, 2003, pp. 320–325.

[140] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar,
and M. Yu, “SIMPLE-fying middlebox policy enforce-
ment using SDN,” in ACM Computer Communication
Review, vol. 43, no. 4, 2013, pp. 27–38.

[141] J. Quittek, T. Zseby, B. Claise, and S. Zander,
“Requirements for IP Flow Information Export
(IPFIX),” RFC 3917 (Informational), Internet
Engineering Task Force, October 2004. [Online].
Available: http://www.ietf.org/rfc/rfc3917.txt

[142] K. Rechthien and W. Hargrave. (2011, December)
28C3 NOC Review. ftp://media.ccc.de/congress/2011/
mp4-h264-HQ/28c3-4927-en-noc review 28c3
camp h264.mp4.

[143] K. Ren, C. Wang, and Q. Wang, “Security challenges
for the public cloud,” IEEE Internet Computing, no. 1,
pp. 69–73, 2012.

[144] E. Rescorla and B. Korver, “Guidelines for Writing
RFC Text on Security Considerations,” RFC 3552
(Best Current Practice), Internet Engineering Task
Force, July 2003. [Online]. Available: http://www.
ietf.org/rfc/rfc3552.txt

[145] T. Richardson and J. Levine, “The Remote Frame-
buffer Protocol,” RFC 6143 (Informational), Internet
Engineering Task Force, March 2011. [Online].
Available: http://www.ietf.org/rfc/rfc6143.txt

[146] P. Richter, N. Chatzis, G. Smaragdakis, A. Feldmann,
and W. Willinger, “Distilling the internets application
mix from packet-sampled traffic,” in Proc. Passive and
Active Measurement (PAM), 2015, pp. 179–192.

[147] A. Romanow, J. Mogul, T. Talpey, and S. Bailey,
“Remote Direct Memory Access (RDMA) over
IP Problem Statement,” RFC 4297 (Informational),
Internet Engineering Task Force, December 2005.
[Online]. Available: http://www.ietf.org/rfc/rfc4297.
txt

[148] C. Rossow, “Amplification hell: Revisiting network
protocols for DDoS abuse,” in Symposium on Network
and Distributed System Security (NDSS), 2014.

[149] V. Roth, T. Straub, and K. Richter, “Security and
usability engineering with particular attention to
electronic mail,” International Journal of Human-
Computer Studies, vol. 63, no. 1, pp. 51–73, 2005.

[150] J. Satran, K. Meth, C. Sapuntzakis, M. Chadalapaka,
and E. Zeidner, “Internet Small Computer Systems
Interface (iSCSI),” RFC 3720 (Proposed Standard),
Internet Engineering Task Force, April 2004,
obsoleted by RFC 7143, updated by RFCs
3980, 4850, 5048, 7146. [Online]. Available:
http://www.ietf.org/rfc/rfc3720.txt

[151] J. Schiller, “Strong Security Requirements for Internet
Engineering Task Force Standard Protocols,” RFC
3365 (Best Current Practice), Internet Engineering
Task Force, August 2002. [Online]. Available:
http://www.ietf.org/rfc/rfc3365.txt

24

http://www.ietf.org/rfc/rfc137.txt
http://www.ietf.org/rfc/rfc821.txt
http://www.ietf.org/rfc/rfc1311.txt
http://www.ietf.org/rfc/rfc1311.txt
http://www.ietf.org/rfc/rfc1543.txt
http://www.ietf.org/rfc/rfc2223.txt
http://www.ietf.org/rfc/rfc854.txt
http://www.ietf.org/rfc/rfc3917.txt
ftp://media.ccc.de/congress/2011/mp4-h264-HQ/28c3-4927-en-noc_review_28c3_camp_h264.mp4
ftp://media.ccc.de/congress/2011/mp4-h264-HQ/28c3-4927-en-noc_review_28c3_camp_h264.mp4
ftp://media.ccc.de/congress/2011/mp4-h264-HQ/28c3-4927-en-noc_review_28c3_camp_h264.mp4
http://www.ietf.org/rfc/rfc3552.txt
http://www.ietf.org/rfc/rfc3552.txt
http://www.ietf.org/rfc/rfc6143.txt
http://www.ietf.org/rfc/rfc4297.txt
http://www.ietf.org/rfc/rfc4297.txt
http://www.ietf.org/rfc/rfc3720.txt
http://www.ietf.org/rfc/rfc3365.txt


[152] B. Schneier, “The psychology of security,” in Progress
in Cryptology–AFRICACRYPT 2008. Springer, 2008,
pp. 50–79.

[153] A. Sciberras, “Lightweight Directory Access Protocol
(LDAP): Schema for User Applications,” RFC
4519 (Proposed Standard), Internet Engineering
Task Force, June 2006. [Online]. Available: http:
//www.ietf.org/rfc/rfc4519.txt

[154] W. Segmuller and B. Leiba, “Sieve Email
Filtering: Relational Extension,” RFC 5231
(Proposed Standard), Internet Engineering Task
Force, January 2008. [Online]. Available: http:
//www.ietf.org/rfc/rfc5231.txt

[155] Shodan. (2015, November) The search engine for the
Internet of Things. https://www.shodan.io/.

[156] J. Slay and M. Miller, Lessons learned from the
maroochy water breach. Springer, 2008.

[157] K. Sollins, “The TFTP Protocol (Revision 2),”
RFC 1350 (INTERNET STANDARD), Internet
Engineering Task Force, July 1992, updated by RFCs
1782, 1783, 1784, 1785, 2347, 2348, 2349. [Online].
Available: http://www.ietf.org/rfc/rfc1350.txt

[158] ——, “TFTP Protocol (revision 2),” RFC 783, Internet
Engineering Task Force, June 1981, obsoleted by
RFC 1350. [Online]. Available: http://www.ietf.org/
rfc/rfc783.txt

[159] O. Solon. (2014, March) Nhs patient data made pub-
licly available online. http://www.wired.co.uk/news/
archive/2014-03/03/care-data-leaks.

[160] E. H. Spafford, “The Internet worm program: An
analysis,” ACM Computer Communication Review,
vol. 19, no. 1, pp. 17–57, 1989.

[161] S. M. Specht and R. B. Lee, “Distributed denial of
service: Taxonomies of attacks, tools, and countermea-
sures.” in ISCA PDCS, 2004, pp. 543–550.

[162] S. Srinivas and A. Nair, “Security maturity in NoSQL
databases-are they secure enough to haul the modern
it applications?” in Proc. IEEE Conference on Ad-
vances in Computing, Communications and Informat-
ics (ICACCI), 2015, pp. 739–744.

[163] W. Stallings, “SNMPv3: A security enhancement for
SNMP,” IEEE Communications Surveys, vol. 1, no. 1,
pp. 2–17, 1998.

[164] K. Stevenson. (2014, December) Open
season on vnc servers around the
world. https://medium.com/@kylestev/
open-season-on-vnc-servers-around-the-world-4b89a0f8d992.

[165] F. Streibelt, J. Böttger, N. Chatzis, G. Smaragdakis,
and A. Feldmann, “Exploring EDNS-client-subnet
adopters in your free time,” in Proc. ACM Internet
Measurement Conference, 2013, pp. 305–312.

[166] A. S. Tanenbaum and M. Van Steen, Distributed
systems. Prentice Hall, 2007.

[167] U. Troppens. (2014) Secure data access with
kerberized nfs. https://www.ibm.com/developerworks/
community/blogs/storageneers/entry/secure data
access with kerberized nfs?lang=en.

[168] N. Unger, S. Dechand, J. Bonneau, S. Fahl, H. Perl,
I. Goldberg, and M. Smith, “Sok: Secure messaging,”
in Proc. IEEE Security & Privacy, 2015, pp. 232–249.

[169] P. Uppuluri and R. Sekar, “Experiences with
specification-based intrusion detection,” in Proc. Re-
cent Advances in Intrusion Detection, 2001, pp. 172–
189.

[170] A. Van Halteren and P. Pawar, “Mobile service plat-
form: A middleware for nomadic mobile service pro-
visioning,” in Proc. IEEE Wireless and Mobile Com-
puting, Networking and Communications (WiMob),
2006, pp. 292–299.

[171] R. van Rijswijk-Deij, A. Sperotto, and A. Pras,
“DNSSEC and its potential for DDoS attacks: A
comprehensive measurement study,” in Proc. ACM
Internet Measurement Conference, 2014.

[172] M. Wahl, T. Howes, and S. Kille, “Lightweight
Directory Access Protocol (v3),” RFC 2251 (Proposed
Standard), Internet Engineering Task Force, December
1997, obsoleted by RFCs 4510, 4511, 4513, 4512,
updated by RFCs 3377, 3771. [Online]. Available:
http://www.ietf.org/rfc/rfc2251.txt

[173] R. West, “The psychology of security,” Communica-
tions of the ACM, vol. 51, no. 4, pp. 34–40, 2008.

[174] B. Wijnen, D. Harrington, and R. Presuhn, “An
Architecture for Describing SNMP Management
Frameworks,” RFC 2571 (Draft Standard), Internet
Engineering Task Force, April 1999, obsoleted by
RFC 3411. [Online]. Available: http://www.ietf.org/
rfc/rfc2571.txt

[175] A. Wool, “A quantitative study of firewall configura-
tion errors,” IEEE Computer, vol. 37, no. 6, pp. 62–67,
2004.

[176] T. Xu, L. Jin, X. Fan, Y. Zhou, S. Pasupathy, and
R. Talwadker, “Hey, you have given me too many
knobs!: Understanding and dealing with over-designed
configuration in system software,” in Proc. ACM
Meeting on Foundations of Software Engineering,
2015, pp. 307–319.

[177] T. Xu, J. Zhang, P. Huang, J. Zheng, T. Sheng,
D. Yuan, Y. Zhou, and S. Pasupathy, “Do not blame
users for misconfigurations,” in Proc. ACM Confer-
ence on Symposium on Operating Systems Principles
(SOSP), 2013, pp. 244–259.

[178] X. Yang, D. Wetherall, and T. Anderson, “A DoS-
limiting network architecture,” in ACM Computer
Communication Review, vol. 35, no. 4, 2005, pp. 241–
252.

25

http://www.ietf.org/rfc/rfc4519.txt
http://www.ietf.org/rfc/rfc4519.txt
http://www.ietf.org/rfc/rfc5231.txt
http://www.ietf.org/rfc/rfc5231.txt
https://www.shodan.io/
http://www.ietf.org/rfc/rfc1350.txt
http://www.ietf.org/rfc/rfc783.txt
http://www.ietf.org/rfc/rfc783.txt
http://www.wired.co.uk/news/archive/2014-03/03/care-data-leaks
http://www.wired.co.uk/news/archive/2014-03/03/care-data-leaks
https://medium.com/@kylestev/open-season-on-vnc-servers-around-the-world-4b89a0f8d992
https://medium.com/@kylestev/open-season-on-vnc-servers-around-the-world-4b89a0f8d992
https://www.ibm.com/developerworks/community/blogs/storageneers/entry/secure_data_access_with_kerberized_nfs?lang=en
https://www.ibm.com/developerworks/community/blogs/storageneers/entry/secure_data_access_with_kerberized_nfs?lang=en
https://www.ibm.com/developerworks/community/blogs/storageneers/entry/secure_data_access_with_kerberized_nfs?lang=en
http://www.ietf.org/rfc/rfc2251.txt
http://www.ietf.org/rfc/rfc2571.txt
http://www.ietf.org/rfc/rfc2571.txt


[179] T. Ylonen and C. Lonvick, “The Secure Shell
(SSH) Protocol Architecture,” RFC 4251 (Proposed
Standard), Internet Engineering Task Force, January
2006. [Online]. Available: http://www.ietf.org/rfc/
rfc4251.txt

[180] T. Ylönen, “SSH: Secure login connections over the
Internet,” in Proc. Usenix Security Symp., 1996.

[181] L. Yuan, H. Chen, J. Mai, C.-N. Chuah, Z. Su,
and P. Mohapatra, “Fireman: A toolkit for firewall
modeling and analysis,” in Proc. IEEE Security &
Privacy, 2006, pp. 15–pp.

[182] K. Zeilenga, “Lightweight Directory Access Protocol
(LDAP): Technical Specification Road Map,” RFC
4510 (Proposed Standard), Internet Engineering
Task Force, June 2006. [Online]. Available: http:
//www.ietf.org/rfc/rfc4510.txt

[183] J. Zhang, Z. Durumeric, M. Bailey, M. Liu, and
M. Karir, “On the mismanagement and maliciousness
of networks,” in Proc. Symposium on Network and
Distributed System Security (NDSS), 2014.

[184] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart,
“Cross-VM side channels and their use to extract
private keys,” in Proc. ACM Conference on Computer
and Communications Security (CCS), 2012, pp. 305–
316.

[185] L. Zhu, K. Jaganathan, and S. Hartman, “The Kerberos
Version 5 Generic Security Service Application
Program Interface (GSS-API) Mechanism: Version 2,”
RFC 4121 (Proposed Standard), Internet Engineering
Task Force, July 2005, updated by RFCs 6112,
6542, 6649. [Online]. Available: http://www.ietf.org/
rfc/rfc4121.txt

26

http://www.ietf.org/rfc/rfc4251.txt
http://www.ietf.org/rfc/rfc4251.txt
http://www.ietf.org/rfc/rfc4510.txt
http://www.ietf.org/rfc/rfc4510.txt
http://www.ietf.org/rfc/rfc4121.txt
http://www.ietf.org/rfc/rfc4121.txt

	1 Introduction
	2 Systematization Method
	2.1 Example protocol selection
	2.2 Security relevant misconfigurations
	2.3 Security guidelines for protocol design
	2.4 Review of security threats for protocols and services
	2.5 Classification of protocols and services
	2.6 Systematization

	3 The Early Internet
	3.1 Example Protocols
	3.2 Discussion—Early Internet

	4 Emerging Threats
	4.1 Example Protocols
	4.2 Discussion—Emerging Threats

	5 Complex Security Solutions
	5.1 Example Protocols—Complex Security
	5.2 Discussion—Complex Security

	6 A new Simplicity
	6.1 Example Protocols
	6.2 Discussion—A new Simplicity

	7 Summary
	7.1 Lessons Learned

	References

