
Reins to the Cloud:
Compromising Cloud Systems via the Data Plane

Kashyap Thimmaraju∗†, Bhargava Shastry∗†

Tobias Fiebig∗, Felicitas Hetzelt∗†

Jean-Pierre Seifert∗†, Anja Feldmann∗ and Stefan Schmid∗‡

∗TU Berlin
kashyap.thimmaraju@sec.t-labs.tu-berlin.de, bshastry@sec.t-labs.tu-berlin.de, tobias@inet.tu-berlin.de

file@sec.t-labs.tu-berlin.de, anja@inet.tu-berlin.de

†Telekom Innovation Laboratories
jean-pierre.seifert@telekom.de

‡Aalborg University
schmiste@cs.aau.dk

Abstract—Virtual switches have become popular among cloud
operating systems to interconnect virtual machines in a more
flexible manner. However, this paper demonstrates that virtual
switches introduce new attack surfaces in cloud setups, whose
effects can be disastrous. Our analysis shows that these vulner-
abilities are caused by: (1) inappropriate security assumptions
(privileged virtual switch execution in kernel and user space), (2)
the logical centralization of such networks (e.g., OpenStack or
SDN), (3) the presence of bi-directional communication channels
between data plane systems and the centralized controller, and
(4) non-standard protocol parsers.

Our work highlights the need to accommodate the data
plane(s) in our threat models. In particular, it forces us to revisit
today’s assumption that the data plane can only be compromised
by a sophisticated attacker: we show that compromising the data
plane of modern computer networks can actually be performed
by a very simple attacker with limited resources only and at
low cost (i.e., at the cost of renting a virtual machine in the
Cloud). As a case study, we fuzzed only 2% of the code-base of
a production quality virtual switch’s packet processor (namely
OvS), identifying serious vulnerabilities leading to unauthenti-
cated remote code execution. In particular, we present the “rein
worm” which allows us to fully compromise test-setups in less
than 100 seconds. We also evaluate the performance overhead
of existing mitigations such as ASLR, PIEs, and unconditional
stack canaries on OvS. We find that while applying these
countermeasures in kernel-space incurs a significant overhead,
in user-space the performance overhead is negligible.

I. INTRODUCTION

Computer networks are becoming increasingly pro-
grammable and virtualized: software switches and virtualized
network functions run on commodity hardware. The virtu-
alization of such packet processing functions facilitates a
flexible and faster definition and deployment of new network
functions, essentially using a simple software update. This is
also attractive from a costs perspective [69]: Today’s computer

networks host a large number of expensive, complex, and
inflexible hardware routers, middleboxes and appliances (e.g.,
firewalls, proxies, NATs, WAN optimizers, etc.). The latter
can be in the order of the number of routers [28], [42],
[60]–[62]. Moreover, technological advances as well as the
quickly increasing core density per host processor render
it possible to perform even resource intensive data plane
functions at line rate on commodity servers, i.e., at hundreds
of Gbps [13]. The performance of software switching can be
further improved using hardware-offloading which is gaining
traction. Accordingly, so-called virtual switches are becoming
popular, especially in datacenters [41], [68].

Hand-in-hand with the increasing virtualization and pro-
grammability of networked systems comes an increasing
centralization: the control over network elements is out-
sourced and consolidated to a logically centralized control
plane (e.g., the controller of cloud operating systems such
as OpenStack [1]).Hence the logically centralized perspective
can significantly simplify reasoning about orchestrating and
operating distributed systems.

The canonical example which combines these two trends is
Software-Defined Networks (SDNs): in SDN, the control over
the data plane elements (typically the OpenFlow switches)
is outsourced to a logically centralized software (the so-
called controller) running on a server platform. The controller
interacts with the OpenFlow switches via the OpenFlow API
using a bidirectional communication channel. Especially in
datacenters, virtual switches (such as Open vSwitch, Cisco
Nexus 1000V, VMware’s vSwitch) are popular for the flex-
ibilities they provide in terms of network virtualization [68]
(e.g., to control, police, and dynamically handle virtual ma-
chine traffic), as well for their simple edge-based deployment
model [10], [29].

ar
X

iv
:1

61
0.

08
71

7v
2

 [
cs

.N
I]

 1
0

Fe
b

20
17

V
ir

tu
al

iz
at

io
n

L
ay

er User

Kernel

Attacker VM

Controller

VM VM

Virtual
Switch

1
2

3 4

Virtual
Switch

Virtual
Switch

Controller

Fig. 1: Overview: This paper explores the effect of vulnerabil-
ities introduced by virtual switches in the cloud. We consider
a datacenter consisting of multiple virtualized (commodity)
servers hosting different virtual machines, interconnected by
virtual switches. The control over network elements is out-
sourced to a logically centralized controller (e.g., OpenStack
or SDN), interacting with the data plane via bidirectional
communication channels. The virtual switch is situated in both
user- and kernel-space. We show that an attacker VM (on the
left), can exploit a vulnerable switch to compromise the server.
From there, the attacker can compromise the controller (server)
and then manipulate the virtual switch (on the right).

A. Our Contributions

This paper shows that the virtualization and centralization of
modern computer networks introduce new attack surfaces and
exploitation opportunities with the data plane. In particular, we
present a security analysis of virtual switches. We show that
even a simple, low-resource attacker can exploit data plane
elements, and thereby compromise critical cloud software
services, obtain direct access to the SDN southbound interface,
or violate network security policies (cf. Figure 1).

This differs from prior research on SDN security, which has
primarily focussed on the control plane [51], [63]. Further-
more, attacks from the data plane have often been assumed to
require significant resources [59] or state-level compromise
(by controlling the vendor and/or its supply-chain) [6]. In
contrast, we in this paper show that attacks on and from
the data plane of modern computer networks can actually be
performed by a simple attacker. Thus forcing us to revise
today’s threat models.

Hence, our key conceptual contributions are:

1) We point out and analyze novel vulnerabilities and attack
opportunities arising in the context of virtual switches
running on commodity server systems. In particular,
we show that, via the data plane and by inappropriate
privileges (running as root in user-space), compared to
(non-virtualized, non-centralized) traditional networks,
an attacker can cause significant harm and compromise
essential cloud services.

2) We show that it is cheap to launch such attacks in the
context of virtualized networks: an unsophisticated at-
tacker simply needs access to a Virtual Machine (VM) in
the datacenter to perform our exploit. There is no need,
e.g., to install (hardware) backdoors to compromise a
switch.

To highlight the severity of the problem, we fuzzed the
packet processor of the state-of-the-art production quality
virtual switch, namely Open vSwitch (OvS). OvS is the default
virtual switch in OpenStack, Xen, Pica8, among others and is
shipped as a kernel module in many Linux distributions such
as Ubuntu, RedHat, OpenSuse, etc. Fuzzing a small fraction
of the code-base (less than 2%) was sufficient to uncover
exploitable software vulnerabilities in the packet processing
engine of OvS. The vulnerabilities can be exploited for remote
code execution. In particular, we demonstrate how the Rein
worm which, starting from a VM within an OpenStack cloud,
can first compromise the entire host operating system of the
underlying server. From there, the rein worm propagates to
the controller and subsequently compromises the controller’s
operating system. Once at the controller, the rein worm spreads
to all the other servers that are connected to the controller
(see Figure 1). At each stage, the rein worm compromises con-
fidentialy, integrity, and availability of the respective servers.
We experimentally demonstrate that the rein worm can com-
promise an OpenStack deployment of 100 servers in less than
100 seconds.

We complement our vulnerability analysis by studying
possible countermeasures. Our empirical performance study
shows that software-based countermeasures such as stack
canaries and position independent executables do not affect the
forwarding performance (throughput and latency) of the slow
path of OvS by much. However, the use of grsecurity kernel
patches [44] does entail a non-trivial performance overhead.
We suggest using such countermeasures, especially for user-
land applications in production environments. Moreover, we
believe that our measurement study constitutes an independent
contribution of this paper: we are unaware of studies targeted
at measuring the performance overhead of different software-
based security protection mechanisms for virtual switches such
as OvS.

B. Ethical Considerations and Impact

To avoid disrupting the normal operation of businesses, we
verified our findings on our own infrastructure. However, we
have disclosed our findings in a secure manner to the OvS team
who have propagated the fixes downstream. Ubuntu, Redhat,
Debian, Suse, Mirantis, and other stakeholders have applied
the patch(es). Some of the bugs have also been published under
CVE-2016-2074.

Indeed, we believe that the specific remote code exe-
cution vulnerability identified in this paper is of practical
relevance. Virtual switches such as OvS are quite popular
among cloud operating systems (virtual management systems)
such as OpenStack, oVirt, OpenNebula, etc. According to the
OpenStack Survey 2016 [69], over 60% OvS deployments are
in production use and over one third of 1000+ core clouds
use OvS (directional data only). The identified vulnerability
is also relevant because it can be leveraged to harm essen-
tial services of the cloud operating system, including, e.g.:
managed compute resources (hypervisors and guest VMs),
image management (the images VMs use for boot-up), block

2

storage (data storage), network management (virtual networks
between hypervisors and guest VMs), for the dashboard and
web UI (in order to manage the various resources from a
centralized location), identity managment (of the adminstrators
and tenants), etc.

While our case study focuses on SDN, the relevance of
our threat model is more general. The importance of our
threat model is also likely to increase with the advent of
5G networks [22] and increasing deployment of Network
Function Virtualization (NFV) [42] or protocol independent
packet processing systems like P4 [7], [14].

C. Organization

The remainder of this paper is organized as follows. We
provide background information required to comprehend the
rest of this paper in Section II. Section III introduces, dis-
cusses, and analyses the vulnerabilities identified in this paper,
and derives our threat model accordingly. Section IV presents
a proof-of-concept and case study of our threat model and
attacks with OvS in OpenStack. Subsequently, in Section V,
we describe our empirical findings on the forwarding perfor-
mance of OvS with software countermeasures. In Section VI
we discuss security concepts and packet processing in a broad
context. After reviewing related work in Section VII, we
conclude our contribution in Section VIII.

II. BACKGROUND

This section provides the necessary background and termi-
nology required to understand the remainder of this paper.

A. Centralized Cloud and Network Control

Modern cloud operating systems such as OpenStack, Open-
Nebula, etc. are designed for (logically) centralized network
control and global visibility. Data plane isolation is typically
ensured using separate physical/logical networks (guest, man-
agement and external) and tunneling technologies such as
VLAN, GRE, VXLAN, MPLS, etc. A cloud network gener-
ally comprises of a physical network consisting of physical
switches interconnecting virtualized servers and an overlay
(virtual) network interconnecting the VMs and their servers.
The centralized control is attractive as it reduces the opera-
tional cost and complexity of managing the cloud network.
It also provides flexibilities for managing and using cloud
services, including VM migration.

Centralized network control in the cloud can be offered in
different ways, using the controller of the cloud solution itself
or using a dedicated SDN controller. In the former scenario,
the controller can use its own data plane to communicate with
the data plane of the servers. In the latter scenario, the SDN
controller directly communicates with the data plane of the
server(s). Additionally, the SDN controller can also be used
to manage the physical switches of the cloud network.

OpenFlow is the de facto standard SDN protocol today. Via
the OpenFlow API, the controller can add, remove, update and
monitor flow tables and their flows.

B. Virtual Switches

The network data plane(s) can either be distributed across
the virtualized servers or across physical (hardware) switches.
OvS, VMware vSwitch and Cisco Nexus 1000V are examples
of the former and are commonly called virtual switches,
while Cisco VN-Link [3] and Virtual Ethernet Port Aggregator
(VEPA) [33] are examples of the latter.

Virtual switches have the advantage that inter-VM traffic
within a server does not have to leave the server. The main
purpose of the physical switches is to offer line rate com-
munication. The downside, however is that the hypervisor
or host OS increases its attack surface, thereby reducing the
security of the server. The performance overhead of software-
only switching (e.g., OvS) can be alleviated by hardware-
offloading features: While such features were previously only
available in expensive proprietary networking equipment, they
are currently gaining traction. Pettit et al. [47] showed that
the performance of OvS and VEPA are comparable when
executing on a remote bare-metal server. OvS performs better
in case of large transfers at high rates when executing on the
same server.

The requirements and operating environment of virtual
switches differ signifcantly from those of traditional network
appliances in terms of resource sharing and deployment. In
contrast to traditional network appliances, virtual switches
need to be general enough to perform well on different
platforms, without the luxury of specialization [49]. Moreover,
virtual switches are typically deployed at the edge of the
network, sharing fate, resources, and workloads with the
hypervisor and VMs.

The virtual switch broadly comprises of two main compo-
nents: management/configuration and forwarding. These com-
ponents may be spread across the system. That is, they may
exist as separate processes and/or reside in user-space and/or
kernel-space. The mangement and configuration component
deals with administering the virtual switch (e.g., configuring
ports, policies, etc.). The forwarding component is usually
based on a sequential (and circular) packet processing pipeline.
The pipeline begins with processing a packet’s header infor-
mation to extract relevant information that is used to perform
a (flow) table lookup which is generally the second stage in
the pipeline. The result of the lookup determines the fate of
the packet which is the last stage in the pipeline. Note that
the final stage may result in sending the packet back to the
first stage. We argue that the first stage in the pipeline is
the most vulnerable to an attack for the following reasons:
it accepts arbitrary packet formats, it is directly influenced by
the attacker, and it typically exists in kernel- and user-space.

C. Open vSwitch

Open vSwitch (OvS) [17], [48], [49], [68] is a popular open
source and multi-platform virtual switch, meeting the high
performance requirements of production environments as well
as the programmability demanded by network virtualization.
OvS is the default virtual switch for OpenStack, Xen, Pica8
and an array of other software, and primarily seen as an SDN

3

switch. OvS’s database can be managed by the controller via
a TCP connection using the ovsdb protocol.

At the heart of the OvS design are two forwarding paths: the
slow path which is a userspace daemon (ovs-vswitchd) and the
fast path which is a datapath kernel module (openvswitch.ko).
OvS also has the capability to use a hardware switch for
the fast path (e.g., Pica8). Only ovs-vswitchd can install rules
and associated actions on how to handle packets in the fast
path, e.g., forward packets to ports or tunnels, modify packet
headers, sample packets, drop packets, etc. When a packet
does not match a rule in the fast path, the packet is delivered
to ovs-vswitchd, which can then determine, in userspace, how
to handle the packet, and then pass it back to the datapath
kernel module specifying the desired handling.

To improve performance for similar future packets, flow
caching is used. OvS supports two main cache flavors: mi-
croflow cache and megaflow cache. Oversimplifying things
slightly, the former supports individual connections, while the
latter relies on aggregation: by automatically determining the
most general rule matching a set of microflows to be handled
in the same manner. The latter can reduce the number of
required rules significantly in the fast path and the packets
through the slow path.

A high-level overview of the architecture of OvS is show in
Fig. 2. OvS comprises of an ovsdb database that stores relevant
switch configuration information such as switch/bridge name,
associated ports, match/action rules, port speeds, etc. Neces-
sary bridges/switches, ports, etc. are instantiated using the con-
figuration from the database by ovs-vswitchd. The database can
be modified by the controller using the ovsdb protocol. ovs-
vswitchd also manages the datapath kernel module. The three
stage packet processing pipeline is depicted by the extract,
match, and action. The datapath kernel module interfaces with
user-space using a modular datapath interface. ovs-vswitchd is
managed by the controller using OpenFlow.

III. COMPROMISING CLOUD SYSTEMS
VIA THE DATA PLANE

This section presents a first security analysis of virtual
switches. In particular, we identify and characterize proper-
ties of virtual switches which may be exploited for attacks.
Accordingly, we also compile and present a threat model.

A. Characterizing Virtual Switch Vulnerabilities

We identify the following properties which are fundamental
for virtual switches. As we will demonstrate, in combination,
they introduce serious vulnerabilities which are cheap to
exploit, i.e., by an attacker with low resources:

1) Security Assumptions: Virtual switches often run with
elevated (root) privileges by design.

2) Virtualized Data Plane: Virtual switches reside in vir-
tualized servers (Dom0), and are hence co-located with
other, possibly critical, cloud software, including con-
troller software.

ovs-vswitchd

Virtual Switch-1
 Ovsdb
(Database)

extract match action

netdev/dpif

Virtual Switch-2

netdev/dpif

...

...

Datapath kernel module

NIC NIC NIC

User-
space

Kernel-
space

Controller

OpenFlow ovsdb

extract match action

Fig. 2: High-level architecture of Open vSwitch. Multiple
virtual switches interact with the datapath kernel module
for packet processing and networking. The slow path is in
user-space and the fast path is in kernel-space. The virtual
switches are instantiated by the ovs-vswitchd deamon which
obtains configuration information from the ovsdb-server. The
controller manages and configures ovs-vswitchd and ovsdb
using OpenFlow and resp. ovsdb protocols over the network.

3) Logical Centralization and Bidirectional Communica-
tion: The control over programmable data plane ele-
ments is often outsourced and consolidated to a logi-
cally centralized software. For communication between
controller(s) and data plane elements, bidirectional com-
munication channels are used.

4) Support for extended protocol parsers: It is tempting to
exploit the flexibilities of programmable virtual switches
to realise functionality which goes beyond the basic
protocol locations of normal switches, e.g., trying to
parse the transport protocols (e.g., TCP) in switched
packets or handling protocols such as MPLS in a non-
standard manner.

In combination, these properties can render data plane
attacks harmful: a software vulnerability in the packet process-
ing logic of a virtual swich running with root privileges can be
exploited to not only compromise the virtual switch, but also
the underlying host operating system. Hence co-located ap-
plications and tenants are also compromised (e.g., an attacker
can extract private keys, monitor network traffic, etc.). From
there, the controller(s) can be compromised. The attacker can
leverage the logically centralized view to manipulate the flow
rules, possibly violating essential network security policies, or
to gain access to other resources in the cloud: For example,
the attacker may modify the identity management service (e.g.,
Keystone) or the images (e.g., to install backdoors) which are
used to boot tenant VMs.

4

B. Threat Model: Virtual Switch

The vulnerabilities characterized above suggest that the
data plane should not be considered trustworthy and may not
be treated as a black box. It also highlights that even an
unsophisticated attacker with very limited resources can cause
significant harm, far beyond compromising a single vulnerable
switch.

Accordingly, we now introduce our threat model. The
attacker’s target environment in this model is a cloud infras-
tructure that utilizes virtual switches for network virtualization.
The cloud is hosted in a physically secured facility i.e., access
to the facility is restricted. Its services are either public, private
or a hybrid. If the cloud is not public, we assume that the
attacker is a malicious insider. We assumme that the cloud
provider may follow a security best-practises guide [8]: It
may therefore create three or more isolated networks (physi-
cal/virtual) dedicated towards management, tenants/guests and
external traffic. Furthermore, we assume that the same virtual
switches such as OvS are used across all the servers in the
cloud.

The attacker is financially limited and initially has access
to limited resources in the cloud (i.e the resources of a VM).
Additionally, the attacker controls a computer that is reachable
from the cloud under attack. After compromising the cloud,
the attacker can have control over the cloud resources: it can
perform arbitrary computation, create/store arbitrary data, and
lastly transmit arbitrary data to the network.

IV. PROOF-OF-CONCEPT: A CASE STUDY
OF OVS AND OPENSTACK

To demonstrate the severity of virtual switch attacks, we
present proof-of-concept attacks with OvS in OpenStack. OvS
is a popular and widely-deployed state-of-the-art virtual switch
(default virtual switch in OpenStack), supporting logically
centralized control and OpenFlow. Moreover, the OvS daemon
(ovs-vswitch) executes with root privileges (recall the virtual
switches properties in Section III).

A. Bug Hunting Methodology

We use a simple coverage-guided fuzz testing to elicit
crashes in the packet parsing subsystem of OvS. The reason
we chose this subsystem is due to the fact that it directly
accepts input (packets) from the attacker. In fact, to find the
vulnerabilities presented in this paper, it was sufficient to fuzz
only a small fraction (less than 2%) of the total executions
paths of ovs-vswitchd.

In our methodology, all crashes reported by the fuzzer
were triaged to ascertain their root cause. The test harness
(test − flows) accepts two user inputs, namely, the flow
configuration file (flows), and an incoming network packet
(pkt) to be processed by the switch. The configuration takes
the form of flow rules: the list of match/action rule statements
that fully determine the switch’s state machine. During the
switch’s operation, an incoming packet is parsed and matched
against flow rules. A majority of our effort was focussed on
fuzzing the flow extraction code—the OvS subsystem that

parses incoming packets. For our tests, we used the American
Fuzzy Lop (AFL) open-source fuzzer version 2.03b and OvS
source code (v2.3.2, v2.4.0 and v2.5.0) recompiled with AFL
instrumentation.

B. Identified Vulnerabilities

We discovered three unique vulnerabilities:
• Two stack buffer overflows in MPLS parsing code in OvS

(2.3.2, 2.4.0): The stack buffer overflows occur when a
large MPLS label stack packet exceeding a pre-defined
threshold is parsed (2.3.2), when an early terminating
MPLS label packet is parsed (2.4.0).

• An integer underflow which leads to a heap buffer over-
read in the IP packet parsing code in OvS (2.5.0): The
underflow and subsequent overread occurs when parsing
an IP packet with zero total length or a total length lesser
than the IP header length field.

The fact that two vulnerabilities are related to MPLS should
not be too surprising: they relate to the fundamental properties
of virtual switches discussed in our security analysis in the
previous section. Before delving into the details however, in
order to understand these attacks, we quickly review the MPLS
label stack encoding (RFC 3032) [57]. In Ethernet and IP
based networks, MPLS labels are typically placed between the
Ethernet header (L2) and the IP header (L3), in a so-called
shim header. Multiple labels can be stacked: push and pop
operations are used to add resp. remove labels from the stack.
Fig. 3 shows the position of the shim header/MPLS label and
the structure as per RFC 3032. The MPLS label is 20 bits long
used to make forwarding decisions instead of the IP address.
The Exp field is 3 bits of reserved space. If set to 1, the S
field indicates that the label is the bottom of the label stack.
It is a critical piece of “control” information that determines
how an MPLS node parses a packet. The TTL field indicates
the Time-To-Live of the label.

With the MPLS label stack encoding in mind, we now
explain the buffer overflow vulnerabilities. In the OvS 2.3.2
buffer overflow, the S bit was not set for the entire label stack
of 375 labels. (375 labels for a 1500 Max. Transmission Unit
size). In the OvS 2.5.0 buffer overflow, the label itself was
malformed i.e., it was less than 4 bytes.

C. Weaponzing the Vulnerabilities

To illustrate the potential damage and consequences of
these vulnerabilities, we developed real-world exploits that
leverage the discovered vulnerabilities. Our exploits, at their
core, consist of simply sending a malformed packet to a virtual
switch. They achieve one of the following: gain arbitrary code
execution on, bypass an access control list of, or deny service
to the virtual switch. Our attacks demonstrate that even a weak
attacker can inflict huge damage in the cloud, compromising
the confidentiality, integrity, and availability of the servers in
the cloud as well as its tenants. In the following, we formulate
our attacks on OvS in an OpenStack cloud setting, validate the
attacks and estimate the impact of the attacks in our setup.

5

Ethernet Shim IP ...

MPLS Label
20

Exp
3

S
1

TTL
8

Fig. 3: The Shim header is placed between the Ethernet and
IP headers. The shim header (MPLS label) is a 32 bit value
that includes a label used to make forwarding decisions. The
Exp field is 3 reserved bits. If set to 1, the S field indicates
that the label is the bottom (end) of the label stack. The 8 bit
TTL field indicates the Time-To-Live.

1) Rein Worm Attack: We provide an overview of the Rein
worm attack before describing the exploitation process in
more detail. The Rein worm exploits the stack buffer overflow
vulnerability in OvS (2.3.2). Mounting a Return-Orienting
Programming (ROP) [56] attack on the server running ovs-
vswitchd from the VM, provides the capability to spawn a shell
on that server. The shell can be redirected over the network
to the remote attacker. The attacker controlled server can then
propagate the same attack to the controller and from there
on to all the other servers. The centralized architecture of
OpenStack and SDN requires the controller to be reachable
from all servers and resp. data planes in the network. This in-
herent property provides the necessary connectivity for worm
propagation. Furthermore, the network isolation using VLANs
and/or tunnels (GRE, VXLAN, etc.) do not affect the worm
once the server is compromised.

Fig 4 visualizes the steps of the Rein worm. In step 1, the
Rein worm originates from an attacker-controlled (guest) VM
within the cloud. It can compromise the host operating system
(OS) of the server due to the exploitable virtual switch. With
the server under the control of the remote attacker, in step
2, the worm then propagates to the controller’s server and
compromises it. With the controller’s server also under the
control of the remote attacker, the worm moves toward the
remaining uncompromised server(s). Finally, in step 4, all the
servers are under the control of the remote attacker.
Exploit. A ROP attack places addresses of reused code snippets
(gadgets) from the vulnerable program on the stack. A gadget
typically consists of one or more operations followed by a
return. After executing each gadget, the return will pop the
address of the next gadget into the instruction pointer. Figure 5
shows an example of writing the value ’/bin/sh’ into memory
location ’0x7677c0’ using ROP.

A constraint for the ROP payload is that the gadget
addresses have to have their 16th bit unset, i.e., the S bit in
the MPLS label is zero. We modified an existing ROP payload
generation tool called Ropgadget [2] to meet this constraint.
To give the attacker a shell prompt at an IP address of choice,
the following command was encoded into the ROP payload:
bash -c "bash -i >& /dev/tcp/<IP>/8080 0>&1"

Worm. There are multiple steps involed in propagating the
worm. All steps are deterministic and hence scriptable. To
propagate the Rein worm in our test environment, we wrote a
shell script. The main steps that are:

1) Install a patched ovs-vswitchd on the compromised host.
This is required to have OvS forward the attack payload
from the compromised server.

2) Obtain the exploit payload from an external location
(public HTTP) if necessary.

3) Identify the correct network interface to the controller.
2) Long Shim Attack and Short Shim Attack: The Long

Shim Attack and the Short Shim Attack are Denial of Service
(DoS) attacks targeted at ovs-vswitchd (2.3.2 and 2.4.0). They
leverage stack buffer overflows to crash the daemon, thereby
denying network service to the host and guest on the server.
Figure 6 visualizes the attack. To launch a DoS attack, an
attacker simply needs to send the malformed packet out its
VM(s). The attack causes a temporary network outage: for
all guest VMs that connect to the virtual switch, for the host
to connect to the controller and also for other servers in the
cloud. Repeated attacks increase the longevity of the outage.
Figure 7 shows the attack packet for the Long Shim Attack
and the Short Shim Attack. The only difference in the structure
of the packets used in the two attacks is that one contains an
oversized Shim header (MPLS label stack) while the other
contains an undersized (less than four bytes) Shim header.

3) Access Control List Bypass: The Access Control List
(ACL) bypass leverages a 2-byte heap buffer overread in the
IP packet parsing code of ovs-vswitchd. The heap overread
vulnerability is caused by the unsanitized use of the total
length field present in the IP header. The vulnerability results
in the IP payload (e.g., TCP, UDP) being parsed for packets
with an invalid IP header, ultimately resulting in an ACL
bypass. In other words, packets that should have been dropped
at the switch are instead forwarded to the next hop in the
network. In addition, if the malformed IP packets were to reach
a router from OvS, it may elicit ICMP error messages from
the router as per RFC 1812 [12] causing unnecessary control
plane traffic at the router and OvS. However, end hosts are
not affected by this vulnerability since most OS kernels are
expected to drop such packets.

D. Attack(s) Validation and Impact

We used Mirantis 8.0 distribution of OpenStack to create our
test setup and validated the attacks. The test setup consists of a
server (the fuel master node) that configures and deploys other
OpenStack nodes (servers) such as the controller, compute,
storage, network, etc. Due to our limited resources, we created
one controller and one compute node in addition to the fuel
master node using the default configuration Mirantis 8.0 offers.

Using our setup, we deployed the Rein worm and measured
the time it takes for an attacker to obtain root shells on the
compute and controller nodes originating from a guest VM on
the compute node. We started the clock from the time the Rein
worm was sent from the VM and stopped the clock when a root
shell was obtained on the controller node. We found that in

6

Attacker VM Controller

VM VM

Virtual
Switch

Virtual
Switch

Virtual
Switch

Controller

Attacker
User

Kernel

V
ir

tu
al

iz
at

io
n

L
ay

er

(a) Step 1.

Attacker VM Controller

VM VM

Virtual
Switch

Virtual
Switch

Virtual
Switch

Controller

Attacker

(b) Step 2.

Attacker VM Controller

VM VM

Virtual
Switch

Virtual
Switch

Virtual
Switch

Controller

Attacker

(c) Step 3.

Attacker VM Controller

VM VM

Virtual
Switch

Virtual
Switch

Virtual
Switch

Controller

Attacker

(d) Step 4.

Fig. 4: The steps that are involved in the Rein worm. In step 1, the attacker VM sends a malicious packet that compromises its
server, giving the remote attacker control of the server. In step 2, the attacker controlled server compromises the controllers’
server, giving the remote attacker control of the controllers’ server. In step 3, the compromised controllers’ server propagates
the worm to the remaining uncompromised server. Finally in step 4, all the servers are controlled by the remote attacker.

stack code
...
0x406e6c
0x7677c0
0x44dafb
/bin/sh
0x449b9e
...

...
pop rbx
ret
...

...
pop rax
ret
...
...
mov (rbx), rax
ret
...

Fig. 5: ROP chain that writes ’/bin/sh’ into memory location
’0x7677c0’.

our environment it took 21s which involved 12s of sleep time
(for restarting ovs-vswitchd and neutron-agent on the compute
node) and 3s of download time (for the patched ovs-vswitchd,

V
ir

tu
al

iz
at

io
n

L
ay

er User

Kernel

Attacker VM

Controller

VM VM

Virtual
Switch

Virtual
Switch

Virtual
Switch

Controller

Fig. 6: An attacker-controlled VM attacks the virtual switch of
its server using the Short Shim Attack or Long Shim Attack
packet, disrupting network connectivity for the server.

shell script, and exploit payload). To restore network services
on the controller node, a sleep time of 60s was required. From
this we can extrapolate that compromising 100 compute nodes
and 1 controller node, would take less than 100s, assuming that
from the controller node, the Rein worm can reach all other
nodes at the same time. Deploying the Short Shim Attack
and Short Shim Attack attacks in our setup, we can create an
outage time, in the order of 4-5s. Obviously, depending on

7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Destination MAC

Source MAC

Ethertype

375 MPLS Headers

(a) Long Shim Attack packet format.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Destination MAC

Source MAC

Ethertype MPLS Header

(b) Short Shim Attack packet format.

Fig. 7: The Layer 2 Ethernet frame starts with the Destination MAC address, followed by the Source MAC address and then
the Ethertype. The Ethertype value for MPLS unicast packets is 0x8847. The Long Shim Attack packet is malformed since
1500 bytes of data are filled with MPLS headers. The MPLS headers encapsulate the ROP payload in the Rein worm. The
Short Shim Attack packet is malformed as the label is only 16 bits long. Note that the Preamble, Frame Delimiter and Frame
Check Sequence fields from the Ethernet frame are not shown for the sake of simplicity.

the configuration of the virtual switch and computing power
of the node, the outage time may vary.

E. Summary

The OvS and OpenStack case study provides a concrete
instance of the theoretical threat model derived in Section III.
Indeed, we have demonstrated that the NIC, the fast-path, and
the slow-path of OvS are all facing the attacker. In particular,
the attack can leverage (1) existing security assumptions (OvS
executes with root privileges), (2) virtualization (collocation
with other critical cloud applications), (3) logical centralization
(bidirectional channels to the controller), as well as non-
standard MPLS parsing, to launch a potentially very harmful
attack. This is worrisome, and raises the question of possible
countermeasures: the subject of the next section.

V. COUNTERMEASURE EVALUATION

Mitigations against attacks such as the ones we were able
to perform against OvS, have been investigated intensively
in the past. Proposals such as MemGuard [24], control flow
integrity [9] and position independent executables (PIEs) [45]
could have prevented our attacks. Newer approaches, like
Safe (shadow) Stack [39] can even prevent ROP attacks. By
separating the safe stack (return addresses, code pointers) from
the unsafe stack (arrays, variables, etc.), control flow integrity
can be preserved, while data-only attacks may remain possi-
ble [20]. The downside of these mitigations is their potential
performance overhead. MemGuard imposes a performance
overhead of 3.5–10% [24], while PIEs have a performance
impact of 3–26% [45].

Performance evaluation of these mitigations in prior
work [24], [39], [45] naturally focused on the overall system
performance and binary size with applied mitigations. As
Table I shows, the available mitigations do indeed increase
the size of the ovs-vswitchd and openvswitch.ko binaries
significantly. However, OvS performance mainly depends on
two metrics: forwarding latency and forwarding throughput.
To determine the practical impact of available and applicable

Fig. 8: Setup of the performance evaluation.

Binary type Binary size(MB) % of Baseline

ovs-vswitchd baseline 1.84
ovs-vswitchd with stack protector and pie 2.09 +13.59%

openvswitch.ko baseline 0.16
openvswitch.ko with grsecurity 0.21 +31.25%

TABLE I: Size comparison of ovs-vswitchd and open-
vswitch.ko binaries using gcc countermeasures and grsecurity
patch respectively.

mitigation, we hence designed a set of experiments that
evaluate the relevant performance impact for OvS forwarding
latency and performance.
Evaluation Parameters: We evaluate forwading latency and
throughput in eight different common cases. We compare a
vanilla Linux kernel (v4.6.5) with the same kernel integrated
with grsecurity patches (v3.1), which, e.g., protects kernel
stack overflows, address space layout randomization, ROP
defense, etc. For both kernels, we evaluate OvS-2.3.2, once
compiled with -fstack-protector-all for uncondi-
tional stack canaries and -fPIE for position independent
executables, and once compiled without these two features.

8

As gcc, the default compiler for the Linux kernel, does not
support the feature of two seperate stacks (safe and unsafe)
we did not evaluate this feature, even though it would be
available with clang starting with version 3.8. In addition, to
compile-time security options we also evaluate the impact of
traffic flowing either exclusively through the fast or slow path.
For the slow path exclusive experiments we disabled a default
configuration option megaflows cache. This disables generic
fast path matching rules (Sec. II-C), following current best
practices for benchmarking OvS, see Pfaff et al. [49].

Evaluation Setup: For our measurements, we utilized four
systems, all running Linux kernel (v4.6.5) compiled with gcc
(v4.8). The systems have 16GB RAM, two dual-core AMD
x86/64 2.5GHz and four Intel Gigabit NICs. The systems are
interconnected as illustrated in Figure 8. One system serves
as the Load Generator (LG) connected to the Device Under
Test (DUT), configured according to the different evaluation
parameters. The data is then forwarded by OvS on the DUT
to a third system, the Load Receiver (LR). The connections
between LG and DUT and LR and DUT respectively are run
through a passive taping device. Both taps are connected to the
fourth system. Data collection prior and post the DUT is done
on one system to reduce the possible impact of clock-scew.
Given the small values we intend to measure, we acknowledge
that some timing noise may occur. To counteract that, we
selected appropriately large sample sizes.

Throughput Evaluation: For the throughput evaluation we
created files containing a constant stream of 60 byte UDP
packets. We opted for 60 byte packets in order to focus on the
packets per second (pps) throughput instead of the bytes per
second throughput, as pps throughput indicates performance
bottlenecks earlier [32]. These were then replayed from the
LG via the DUT to the LR using tcpreplay. Each experimental
run consists of 120 seconds where we replay at rates between
10k and 100k packets per second, incremented in steps of 10k
pps. For the all-slow-path experiments, each of the generated
packets used a random source MAC address, as well as
source and destination IPv4 address and random source and
destination port. For the all-fast-path experiments we re-sent
packets with the same characteristics (source, destination, etc.)
that match a pre-installed flow rule.

An overview of the results for the slow path throughput
measurements are depicted in Figure 9. Packet loss for the
vanilla kernel first lies above 50k pps, while the experiments
on the grsecurity enabled kernel already exhibit packet loss
at 30k pps. Apart from the grsecurity kernel patches, we do
not observe a significant impact of userland security features
on the forwarding performance of OvS. The results for the
fast path measurements are not illustrated, as we observed an
almost linear increase with no impact of the chosen evaluation

10k 20k 30k 40k 50k 60k 70k 80k 90k 100k
Packets/s Sent

10k

20k

30k

40k

50k

60k

70k

80k

90k

100k

P
a
ck

e
ts

/s
 F

o
rw

a
rd

e
d

vanilla default vanilla all grsec default grsec all

10k 20k 30k 40k 50k 60k 70k 80k 90k 100k
Packets/s Sent

10k

20k

30k

40k

50k

60k

70k

80k

90k

100k

P
a
ck

e
ts

/s
 F

o
rw

a
rd

e
d

vanilla default vanilla all grsec default grsec all

Fig. 9: Slow path throughput measurements for OvS compiled
with gcc with and without countermeasures on a vanilla kernel
and a grsecurity enabled kernel.

parameters at all1. An impact of the parameters may exist with
higher pps counts. However, our load generation systems were
unable to provide sufficiently stable input rates beyond 100k
pps.
Latency Evaluation: For the latency evaluation, we stud-
ied the impact of packet size on OvS forwarding. From
the possible packet sizes we select 44b (minimum packet
size), 512b (average packet), and 1500b (Maximum Maximum
Transmission Unit (MTU)) packets from the legacy MTU
range; in addition, we also select 2048b packets as small
jumbo frame packets, as well as 9000b as maximum jumbo
frame sized packets. For each experimental run, i.e., packet
size for one of the parameter sets, we continuously send
10,500 packets from LG to LR via the DUT with a 100ms
interval. The packet characteristics correspond to those from
the throughput evaluation, i.e., random packets for the slow
path and repetitive packets matching a rule for the fast path.
To eliminate possible build-up or pre-caching effects, we only
evaluate the later 10,000 packets for each run.

The results for the latency evaluation are depcited in Fig-
ure 10a for the slow path and Figure 10b for the fast path
experiments respectively. For the slow path, we see that grse-
curity (grsec default and grsec all) imposes an overall increase
in latency of approximately 25–50%, depending on the packet
size. This increase is even higher for jumbo frames. At the
same time, also the variance of values is increased by the use
of grsecurity. Still, we cannot observe any significant impact
of the userland protection mechanisms for slow path latency
for neither a vanilla nor a grsecurity enabled kernel. These
observations also support the findings from the throughput
measurements depicted in Figure 9, where we also observe
consistently lower performance of approximately 25% for

1We do note that this is different if the megaflows feature is disabled
for fast path measurements. In that case we observe a similar curve as in
Figure 9, with packet loss first occuring around 10k later and a higher
difference around 20k between the asymptotic development of the values
between grsecurity and vanilla. However, to remain compatible with the best
current practices in existing literature and as this work’s main focus is not the
fullscale performance evaluation of OvS, we adhere to the approach by Pfaff
et al. [49]

9

4
4
b

5
1
2
b

1
5
0
0
b

2
0
4
8
b

9
0
0
0
b

4
4
b

5
1
2
b

1
5
0
0
b

2
0
4
8
b

9
0
0
0
b

4
4
b

5
1
2
b

1
5
0
0
b

2
0
4
8
b

9
0
0
0
b

4
4
b

5
1
2
b

1
5
0
0
b

2
0
4
8
b

9
0
0
0
b

Packet Size

0.0

0.2

0.4

0.6

0.8

1.0
La

te
n
cy

 i
n
 m

s

vanilla default vanilla all grsec default grsec all

(a) 0% fast path, 100% slow path

4
4
b

5
1
2
b

1
5
0
0
b

2
0
4
8
b

9
0
0
0
b

4
4
b

5
1
2
b

1
5
0
0
b

2
0
4
8
b

9
0
0
0
b

4
4
b

5
1
2
b

1
5
0
0
b

2
0
4
8
b

9
0
0
0
b

4
4
b

5
1
2
b

1
5
0
0
b

2
0
4
8
b

9
0
0
0
b

Packet Size

0.0

0.2

0.4

0.6

0.8

1.0

La
te

n
cy

 i
n
 m

s

vanilla default vanilla all grsec default grsec all

(b) 100% fast path, 0% slow path

Fig. 10: Latency measurements for OvS compiled with gcc with and without countermeasures on a vanilla kernel and a
grsecurity enabled kernel.

grsecurity enabled systems on the slow path, regardless of the
selected userland mitigations.

Comparing the slow path measurements to the fast path
measurements, we observe that the fast path measurements
exhibit a reduced latency in comparison to the slow path. Also,
variance is significantly lower for the fast path measurements.
However, these effects were to be expected. Again, we do not
see significant impact of userland security features. Supris-
ingly, grsecurity does not have a significant impact on fast path
latency either. Only in conjunction with additional userland
mitigations we see an increase in measurement result variance.
This suggests an interdependence of performance bottlenecks
in userland code that only surface if the binary is run on a
grsecurity enabled kernel.
Summary: Our measurements demonstrate that especially
userland mitigations do not have a significant impact on OvS
forwarding performance. The use of grsecurity kernel patches
however does entail a notable performance overhead. However,
due to OvS being regularly present on computation nodes and
hypervisor systems, the overall system impact of grsecurity
makes its use outside of dedicated network systems highly
unlikely. On the other hand this also means that the kernel and
fast path components of OvS can certainly not be assumed to
be protected by the various measures offered by grsecurity.

VI. DISCUSSION

While analyzing existing paradigms for SDN-, virtual
switch-, data plane- and control plane security, we have identi-
fied a new attack vector: on the virtualized data plane. Indeed,
so far, the data plane has been of limited interest with research
focussing on the control plane [26], [31], [43] or forwarding
issues in the data plane [34], [40]. We however, demonstrate
that the way virtual switches are run—namely privileged and
physically co-located with other critical components—they
are suspectible to attackers with limited time and money
as well. This specifically regards cloud tenants. Given these
insights, we were able to draft a new, weaker threat model for
infrastructures incorporating virtual switches. Following this,

we were able to quickly identify an issue that allowed us to
fully compromise a cloud setup from within a single tenant
machine. To identify this vulnerability, limited time and effort
was required: we simply used standard vulnerability scanning
techniques, i.e., fuzzing. Thus, the identified attack is not only
cheap to execute by a non-sophisticated attacker, but was
also easy to find. We only had to fuzz less than 2% of the
ovs-vswitchd execution paths in order to find an exploitable
vulnerability for remote code execution.

Hence, with this paper, we question existing assumptions
and threat models for (virtual) SDN switches as well as for
the trade-off between data plane and control plane. Our threat
model is worrisome, given that virtual switches such as OvS
are quite popular among cloud operating systems.IT, telecom-
munications, academia and research, and finance organizations
are the majority adopters of cloud operating systems such as
OpenStack [69].

The identified vulnerabilities can be leveraged to harm
essential services of the cloud operating system OpenStack,
including managed compute resources (Hypervisors and Guest
VMs), image management (the images VMs use to boot-
up), block storage (data storage), network management (vir-
tual networks between Hypervisors and Guest VMs), for
the dashboard and web UI (in order to manage the various
resources from a centralized location), identity managment (of
the adminstrators and tenants), etc.

However, we have also observed that existing software-
based countermeasures such as stack canaries and PIE effec-
tively reduce the attack surface on the virtual switch. They
deter the attacker from exploiting stack buffer overflows for
remote code execution. While in case of kernel based counter-
measures (using grsecurity), this may come at a performance
cost (especially in terms of latency), our measurement results
demonstrate that the performance overheads of user-space
countermeasures are negligible.

10

A. Security Assumptions vs Performance

As outlined above, our contributions should have a direct
impact on how we approach security for virtual switches and
SDN platforms. So far, a recurring theme for virtual switches
has been design and performance [49], [52], [55]. We argue
that the missing privilege separation and trust placed in virtual
switches are key-issues that needs to be addressed in order to
achieve security in SDN.

So far, one promising approach exists that eliminates the
hypervisor attack surface in the context of a cloud environment
by Szefer et al. [67]. The hypervisor disengages itself from
the guest VM, thereby, giving the VM direct access to the
hardware (e.g., NIC). While such an approach protects the host
running the virtual switch from full compromise, the issue we
raised on south-bound security remains open.

Due to the bi-directional nature of communication in SDN
and virtual switching environments, an attacker obtains direct
access to control plane communication, as soon as a switch
is compromised. The consequences of this may be more dire
and complex in the context of 5G networks, where SDN is
envisioned to control programmable base stations and packet
gateways [22]. The base stations are attacker facing entities
in cellular networks. Therefore, appropriate measures must be
taken to ensure that compromising the base station (data plane)
does not lead to the compromise of the cellular network’s
control plane.

In terms of software security, we find that existing security
features, like stack canaries, may not be present for critical
functions due to compiler optimizations. Countermeasures
such as PIE are not compiled for all packages shipped by
the operating system or vendor. This is important because a
major fraction of cloud operating systems’ users simply use
the default packages [69].

Our preliminary performance measurements indicate that
the overhead of unconditional stack canaries and PIE together
is acceptable for OvS. Hence, given the ease with which we
found opportunities for exploiting a virtual switch, adopting
those measures should be urgently done by maintainers and
developers alike.

Note that the user-space mitigations would already have
been sufficient to mitigate the issues we found. In fact, the OvS
user-space has, due to the prelevance of packet parsing [65]
there, a much larger attack surface. While the evaluated
userland mitigations did not introduce significant overhead,
applying grsecurity in our evaluation led to significant impact.
This, again, highlights that clean coding and slim and well
audited design are crucial for the kernel-space parts (fast path)
of virtual switches, as existing mitigation techniques can not
be easily applied there. While, e.g., clang supports safe stack,
it is not the officially supported compiler for the Linux kernel.
Hence, large distributions do not compile the Linux kernel
with clang.

B. Packet Processors Facing the Attacker

A key feature of packet processing and forwarding systems
in an SDN context is their ability to make forwarding decisions

based on stateful information about a packet collected from
all the network layers. This naturally also means that such
a system—of which virtual switches are an instance—has to
parse the protocols in unintended ways or on protocols from
layers usually far beyond its actual layer of operation blurring
the functionality between switching and routing.

In this paper, the root-cause of one of the issues stems
from handling the MPLS label in an unintended manner. This
parsing is done to derive additional information to perform
more efficient packet forwarding. MPLS, as described in
RFC 3031 [58] and RFC 3032 [57] does not specify how
to parse the whole label stack. Instead, it specifies that when
a labelled packet arrives, only the top label must be used to
make a forwarding decision. However, in the case of OvS, all
the labels in the packet were parsed (beyond the supported
limit) leading to a buffer overflow. Security techniques such
as explicitly indicating the size of the label stack in the Shim
header may not be acceptable as from a networking perspective
that is not required.

Similarly, it makes sense to parse higher layer protocol
information in data plane systems to request more efficient
forwarding decisions from a controller. Yet, the same problem
arises if a data plane system attempts to parse higher layer
information in a single stream of packets. As soon as a
data plane system implements a parser for a protocol it is
immediately susceptible to the same attack surface as any
daemon for that protocol. Instead, the attack surface for the
data plane system rises indefinitely with each new protocol
being parsed.

A possible method to mitigate these conceptual issues can
be found in a secure packet processor architecture as suggested
by Chasaki et al. [18]: monitor the control-flow of the packet
processor in hardware and if any deviation from the known
norm occurs, to restore the processor to the correct state.
However, the specific approach outlined by Chasaki et al. is
limited by the requirement to be implemented in hardware.
Furthermore, with protocol independent programmable packet
processors gaining momentum [7], [14], our findings highlight
the consequences of vulnerable packet processors.

VII. RELATED WORK

Attacks in the cloud have been demonstrated by a few
researchers. Ristenpart et al. [53] demonstrated how an at-
tacker can co-locate its VM with a target VM and then steal
the target’s information. We note this work is orthogonal to
ours in that their objective was co-locating their VM with the
target VM and then stealing that VMs information, while our
work focusses on compromising the server itself and extending
that to all the other servers in the cloud. Costin et al. [23]
examined the security of the web-based interfaces offered by
cloud providers. Multiple vulnerabilities were exposed as a
contribution as well as possible attacks. Wu et al. [70] assess
the network security of VMs in cloud computing. The authors
address the sniffing and spoofing attacks a VM can carry out
in a virtual network and recommend placing a firewall in the
virtual network that prevents such attacks.

11

Ristov et al. [54] investigated the security of a default
OpenStack deployment. They show that it is vulnerable from
the inside rather than the outside. In the OpenStack security
guide [8], it is mentioned that OpenStack is inherently vul-
nerable due to the bridged domains (Public and Management
APIs, Data and Management for a server, etc.). Grobauer et
al. [30] take a general approach in classifying the possible
vulnerabilities in cloud computing, and in doing so, address the
fact that the communication network is vulnerable. However,
there is no mention that the infrastructure that enables the
virtual networks can be vulnerable. Porez-Botero et al. [46]
characterize the possible hypervisor vulnerabilities and state
Network/IO as one. However, they did not find any known
network based vulnerabilities at the time.

At the heart of the software-defined networking
paradigm,lies its support for formal policy specification
and verification: it is generally believed that SDN has the
potential to render computer networking more verifiable [35],
[36] and even secure [50], [64]. However, researchers have
recently also started to discover security threats in SDN.
For example, Kloti et al. [37] report on a STRIDE threat
analysis of OpenFlow, and Kreutz et al. [38] survey several
threat vectors that may enable the exploitation of SDN
vulnerabilities.

While much research went into designing more robust and
secure SDN control planes [15], [16], [51], less published
work exists on the issue of malicious switches (and data
planes) [64], [66]. However, the threat model introduced by an
unreliable south-bound interface, in which switches or routers
do not behave as expected, but rather are malicious, is not
new [11], [21], [26], [31]. In particular, national security agen-
cies are reported to have bugged networking equipment [6]
and networking vendors have left backdoors open [4], [5],
[19]. However, in this paper we demonstrate that a weak
(resource constrained and unsophisticated) attacker can impose
serious damage: compromise services far beyond the buggy
virtual switch, and beyond simple denial-of-service attacks
(but affecting also, e.g., confidentiality and logical isolations).

A closely related work on software switches is by Chasaki
et al. [18], [25] who uncover buffer overflow vulnerabilities
and propose a secure packet processor to preserve the control
flow of the packet processor of the Click software switch.
Additionally, Dobrescu et al. [27] developed a data plane
verification tool to prove a crash-free property of the Click
software switch’s data plane.

To the best of our knowledge, however, our work is the
first to point out, characterize and demonstrate, in a system-
atic manner, the severe vulnerabilities introduced in virtual
switches used in cloud SDN deployments.

VIII. CONCLUSION

In this paper, we presented an analysis on how virtualization
and centralization of modern computer networks introduce
new attack surfaces and exploitation opportunities in and
from the data plane. We demonstrated how even a simple,

low-resource attacker can inflict serious harm to distributed
network systems.

Our key contribution is the realization that software de-
fined networks in general and virtual switches in particular
suffer from conceptional challenges that have not yet been
sufficiently addressed:

1) Insufficient privilege seperation in virtual switches.
2) A virtualized and hardware co-located dataplane.
3) Logical centralization and bi-directional communication

in SDN.
4) Support for extended protocol parsers.
Following our analysis we derived a simplified attacker

model for data plane systems, which should be adapted. Fur-
thermore, we applied this threat model by performing attacks
following its assumptions and capabilities. Subsequently, we
were able to easily find and exploit a vulnerability in a virtual
switch, OvS, applying well known fuzzing techniques to its
code-base. With the exploit, we were able to fully take over a
cloud setup (OpenStack) within a couple of minutes.

Our empirical experiments on the performance impact of
various software countermeasures on a virtual switch de-
bunks the myth that hardened software is necessarily slow.
Instead they should be frequently adopted, as they effectively
reduce the attack surface on the virtual switch while their
performance overhead in user-space is negligible. As our
computer networks evolve and networking concepts are shared
across domains, e.g., SDN being envisioned in 5G networks,
extensive work should be directed towards privilege separation
for virtual switches, securing the data plane from attacks and
designing secure packet processors.

ACKNOWLEDGEMENTS

The authors would like to express their gratitude towards the
German Bundesamt für Sicherheit in der Informationstechnik,
for sparking the authors’ interest in SDN security. This work
was partially supported by the Danish Villum Foundation
project “ReNet”, by BMBF (Bundesministerium für Bildung
und Forschung) Grant KIS1DSD032 (Project Enzevalos) and
by Leibniz Price project funds of DFG/German Research
Foundation (FKZ FE 570/4-1). Furthermore, we would like
to thank Jan Nordholz, Julian Vetter, and Robert Buhren for
their helpful discussions on the software countermeasures. We
would also like to thank the security team at Open vSwitch for
acknowledging our work in a timely and responsible manner.

REFERENCES

[1] “Openstack networking-guide deployment scenarios,” http://docs.
openstack.org/liberty/networking-guide/deploy.html, accessed: 02-06-
2016.

[2] “Ropgadget tool,” https://github.com/JonathanSalwan/ROPgadget/tree/
master, accessed: 02-06-2016.

[3] “Cisco VN-Link: Virtualization-aware networking,” White paper, 2009.
[4] “Huawei hg8245 backdoor and remote access,” http://websec.ca/

advisories/view/Huawei-web-backdoor-and-remote-access, 2013, ac-
cessed: 27-01-2017.

[5] “Netis routers leave wide open backdoor,” http:
//blog.trendmicro.com/trendlabs-security-intelligence/
netis-routers-leave-wide-open-backdoor/, 2014, accessed: 27-01-2017.

12

http://docs.openstack.org/liberty/networking-guide/deploy.html
http://docs.openstack.org/liberty/networking-guide/deploy.html
https://github.com/JonathanSalwan/ROPgadget/tree/master
https://github.com/JonathanSalwan/ROPgadget/tree/master
http://websec.ca/advisories/view/Huawei-web-backdoor-and-remote-access
http://websec.ca/advisories/view/Huawei-web-backdoor-and-remote-access
http://blog.trendmicro.com/trendlabs-security-intelligence/netis-routers-leave-wide-open-backdoor/
http://blog.trendmicro.com/trendlabs-security-intelligence/netis-routers-leave-wide-open-backdoor/
http://blog.trendmicro.com/trendlabs-security-intelligence/netis-routers-leave-wide-open-backdoor/

[6] “Snowden: The NSA planted backdoors in cisco products,”
http://www.infoworld.com/article/2608141/internet-privacy/
snowden--the-nsa-planted\-backdoors-in-cisco-products.html, 2014,
accessed: 27-01-2017.

[7] “Barefoot Networks,” https://www.barefootnetwork.com/, 2016.
[8] “OpenStack Security Guide,” http://docs.openstack.org/security-guide,

2016, accessed: 27-01-2017.
[9] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow

integrity,” in Proc. ACM Conference on Computer and Communications
Security (CCS), 2005, pp. 340–353.

[10] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in Proc. ACM SIGCOMM, 2008, pp. 63–
74.

[11] M. Antikainen, T. Aura, and M. Särelä, “Spook in your network:
Attacking an sdn with a compromised openflow switch,” in Secure
IT Systems: 19th Nordic Conference, NordSec 2014, Tromsø, Norway,
October 15-17, 2014, Proceedings. Springer International Publishing,
2014, pp. 229–244.

[12] F. Baker, “Requirements for IP Version 4 Routers,” RFC 1812 (Proposed
Standard), Internet Engineering Task Force, June 1995, updated by RFCs
2644, 6633. [Online]. Available: http://www.ietf.org/rfc/rfc1812.txt

[13] G. Blake, R. G. Dreslinski, and T. Mudge, “A survey of multicore
processors,” IEEE Signal Processing Magazine, vol. 26, no. 6, pp. 26–
37, November 2009.

[14] P. Bosshart, D. Daly, and G. e. a. Gibb, “P4: Programming protocol-
independent packet processors,” ACM Computer Communication Review
(CCR), vol. 44, no. 3, pp. 87–95, July 2014.

[15] M. Canini, P. Kuznetsov, D. Levin, and S. Schmid, “A distributed and
robust sdn control plane for transactional network updates,” in Proc.
IEEE INFOCOM, April 2015, pp. 190–198.

[16] M. Canini, D. Venzano, P. Perešı́ni, D. Kostić, and J. Rexford, “A
nice way to test openflow applications,” in Proc. Usenix Symposium
on Networked Systems Design and Implementation (NSDI), 2012, pp.
127–140.

[17] M. Casado, T. Koponen, R. Ramanathan, and S. Shenker, “Virtualizing
the network forwarding plane,” in Proc. ACM CoNEXT Workshop on
Programmable Routers for Extensible Services of Tomorrow, 2010, pp.
8:1–8:6.

[18] D. Chasaki and T. Wolf, “Design of a secure packet processor,” in Proc.
ACM/IEEE Architectures for Networking and Communication Systems
(ANCS), Oct 2010, pp. 1–10.

[19] S. Checkoway et al., “A systematic analysis of the juniper dual ec
incident,” Cryptology ePrint Archive, Report 2016/376, 2016.

[20] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, “Non-control-
data attacks are realistic threats.” in Proc. Usenix Security Symp., vol. 5,
2005.

[21] P.-W. Chi, C.-T. Kuo, J.-W. Guo, and C.-L. Lei, “How to detect a
compromised sdn switch,” in Network Softwarization (NetSoft), 2015
1st IEEE Conference on, April 2015, pp. 1–6.

[22] W. H. Chin, Z. Fan, and R. Haines, “Emerging technologies and research
challenges for 5g wireless networks,” IEEE Wireless Communications,
vol. 21, no. 2, pp. 106–112, April 2014.

[23] A. Costin, “All your cluster-grids are belong to us: Monitoring the
(in)security of infrastructure monitoring systems,” in Proc. IEEE Com-
munications and Network Security (CNS), Sept 2015, pp. 550–558.

[24] C. Cowan et al., “Stackguard: Automatic adaptive detection and preven-
tion of buffer-overflow attacks,” in Proc. Usenix Security Symp., 1998,
pp. 5–5.

[25] D. Chasaki and T. Wolf, “Attacks and defenses in the data plane of
networks,” Proc. IEEE/IFIP Transactions on Dependable and Secure
Computing (DSN), vol. 9, no. 6, pp. 798–810, Nov 2012.

[26] M. Dhawan, R. Poddar, K. Mahajan, and V. Mann, “Sphinx: Detecting
security attacks in software-defined networks.” in Proc. Internet Society
Symposium on Network and Distributed System Security (NDSS), 2015.

[27] M. Dobrescu and K. Argyraki, “Software dataplane verification,” in
Proc. Usenix Symposium on Networked Systems Design and Implemen-
tation (NSDI), April 2014, pp. 101–114.

[28] A. Gember-Jacobson et al., “Opennf: Enabling innovation in network
function control,” in Proc. ACM SIGCOMM, 2014, pp. 163–174.

[29] A. Greenberg, “Sdn for the cloud,” in Keynote in the 2015 ACM
SIGCOMM, 2015.

[30] B. Grobauer, T. Walloschek, and E. Stocker, “Understanding cloud
computing vulnerabilities,” Proc. IEEE Security & Privacy (S&P),
vol. 9, no. 2, pp. 50–57, March 2011.

[31] S. Hong, L. Xu, H. Wang, and G. Gu, “Poisoning network visibility in
software-defined networks: New attacks and countermeasures.” in Proc.
Internet Society Symposium on Network and Distributed System Security
(NDSS), 2015.

[32] V. Jacobson, “Congestion avoidance and control,” in ACM Computer
Communication Review (CCR), vol. 18, no. 4, 1988, pp. 314–329.

[33] D. Kamath et al., “Edge virtual bridge proposal, version 0. rev. 0.1,”
Apr, vol. 23, pp. 1–72, 2010.

[34] A. Kamisiński and C. Fung, “Flowmon: Detecting malicious switches
in software-defined networks,” in Proc. ACM Workshop on Automated
Decision making for Active Cyber Defense, 2015, pp. 39–45.

[35] P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis:
Static checking for networks,” in Proc. Usenix Symposium on Networked
Systems Design and Implementation (NSDI), 2012, pp. 113–126.

[36] A. Khurshid et al., “Veriflow: Verifying network-wide invariants in real
time,” in Proc. Usenix Symposium on Networked Systems Design and
Implementation (NSDI), 2013, pp. 15–27.

[37] R. Klöti, V. Kotronis, and P. Smith, “Openflow: A security analysis,”
in Proc. IEEE International Conference on Network Protocols (ICNP),
Oct 2013, pp. 1–6.

[38] D. Kreutz, F. M. Ramos, and P. Verissimo, “Towards secure and
dependable software-defined networks,” in Proc. ACM Workshop on Hot
Topics in Software Defined Networking (HotSDN), 2013, pp. 55–60.

[39] V. Kuznetsov et al., “Code-pointer integrity,” in Proc. Usenix Symposium
on Operating Systems Design and Implementation (OSDI), October
2014, pp. 147–163.

[40] S. Lee, T. Wong, and H. S. Kim, “Secure split assignment trajectory
sampling: A malicious router detection system,” in Proc. IEEE/IFIP
Transactions on Dependable and Secure Computing (DSN), 2006, pp.
333–342.

[41] Light Reading, “Alcatel-lucent joins virtual router race,”
http://www.lightreading.com/nfv/nfv-elements/alcatel-lucent-joins-
virtual-router-race/d/d-id/712004, 2014.

[42] J. Martins et al., “Clickos and the art of network function virtualiza-
tion,” in Proc. Usenix Symposium on Networked Systems Design and
Implementation (NSDI), 2014, pp. 459–473.

[43] S. Matsumoto, S. Hitz, and A. Perrig, “Fleet: Defending sdns from
malicious administrators,” in Proc. ACM Workshop on Hot Topics in
Software Defined Networking (HotSDN), 2014, pp. 103–108.

[44] PaX, “The Guaranteed End of Arbitrary Code Execution,” https://
grsecurity.net/PaX-presentation.ppt.

[45] M. Payer, “Too much PIE is bad for performance,” http://e-collection.
library.ethz.ch/eserv/eth:5699/eth-5699-01.pdf, 2012, accessed: 27-01-
2017.

[46] D. Perez-Botero, J. Szefer, and R. B. Lee, “Characterizing hypervisor
vulnerabilities in cloud computing servers,” in Proc. ACM Workshop on
Security in Cloud Computing, 2013, pp. 3–10.

[47] J. Pettit, J. Gross, B. Pfaff, M. Casado, and S. Crosby, “Virtual switching
in an era of advanced edges,” Technical Report.

[48] B. Pfaff, J. Pettit, K. Amidon, M. Casado, T. Koponen, and S. Shenker,
“Extending networking into the virtualization layer.” in Proc. ACM
Workshop on Hot Topics in Networks (HotNETs), 2009.

[49] B. Pfaff, J. Pettit, T. Koponen et al., “The design and implementation
of Open vSwitch,” in Proc. Usenix Symposium on Networked Systems
Design and Implementation (NSDI), May 2015, pp. 117–130.

[50] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu,
“A security enforcement kernel for OpenFlow networks,” in Proc. ACM
Workshop on Hot Topics in Software Defined Networking (HotSDN),
2012, pp. 121–126.

[51] P. Porras, S. Cheung, M. Fong, K. Skinner, and V. Yegneswaran,
“Securing the software-defined network control layer,” in Proc. Internet
Society Symposium on Network and Distributed System Security (NDSS),
2015.

[52] K. K. Ram et al., “Hyper-switch: A scalable software virtual switching
architecture,” in Usenix Annual Technical Conference (ATC), 2013, pp.
13–24.

[53] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get
off of my cloud: Exploring information leakage in third-party compute
clouds,” in Proc. ACM Conference on Computer and Communications
Security (CCS), 2009, pp. 199–212.

[54] S. Ristov, M. Gusev, and A. Donevski, “Openstack cloud security
vulnerabilities from inside and outside,” Technical Report, pp. 101–107,
2013.

[55] L. Rizzo and G. Lettieri, “VALE, a switched ethernet for virtual
machines,” in Proc. ACM CoNEXT, 2012, pp. 61–72.

13

http://www.infoworld.com/article/2608141/internet-privacy/snowden--the-nsa-planted\-backdoors-in-cisco-products.html
http://www.infoworld.com/article/2608141/internet-privacy/snowden--the-nsa-planted\-backdoors-in-cisco-products.html
https://www.barefootnetwork.com/
http://docs.openstack.org/security-guide
http://www.ietf.org/rfc/rfc1812.txt
https://grsecurity.net/PaX-presentation.ppt
https://grsecurity.net/PaX-presentation.ppt
http://e-collection.library.ethz.ch/eserv/eth:5699/eth-5699-01.pdf
http://e-collection.library.ethz.ch/eserv/eth:5699/eth-5699-01.pdf

[56] R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “Return-oriented
programming: Systems, languages, and applications,” ACM Trans. on
Information and System Security (TISSEC), vol. 15, no. 1, pp. 2:1–2:34,
March 2012.

[57] E. Rosen, D. Tappan, G. Fedorkow, Y. Rekhter, D. Farinacci, T. Li,
and A. Conta, “MPLS Label Stack Encoding,” RFC 3032 (Proposed
Standard), Internet Engineering Task Force, January 2001, updated by
RFCs 3443, 4182, 5332, 3270, 5129, 5462, 5586, 7274. [Online].
Available: http://www.ietf.org/rfc/rfc3032.txt

[58] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol Label
Switching Architecture,” RFC 3031 (Proposed Standard), Internet
Engineering Task Force, January 2001, updated by RFCs 6178, 6790.
[Online]. Available: http://www.ietf.org/rfc/rfc3031.txt

[59] M. Schuchard et al., “Losing control of the internet: using the data plane
to attack the control plane,” in Proc. ACM Conference on Computer and
Communications Security (CCS), 2010, pp. 726–728.

[60] J. Schulz-Zander, C. Mayer, B. Ciobotaru, S. Schmid, and A. Feldmann,
“Opensdwn: Programmatic control over home and enterprise wifi,”
in Proc. ACM Symposium on Software Defined Networking Research
(SOSR), 2015, pp. 16:1–16:12.

[61] V. Sekar et al., “The middlebox manifesto: Enabling innovation in
middlebox deployment,” in Proc. ACM Workshop on Hot Topics in
Networks (HotNETs), 2011, pp. 21:1–21:6.

[62] J. Sherry et al., “Making middleboxes someone else’s problem: Network
processing as a cloud service,” vol. 42, no. 4. ACM, August 2012, pp.
13–24.

[63] S. Shin, P. Porras, V. Yegneswaran, M. Fong, G. Gu, and M. Tyson,

“Fresco: Modular composable security services for software-defined net-
works,” in Proc. Internet Society Symposium on Network and Distributed
System Security (NDSS), 2013.

[64] S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “AVANT-GUARD:
Scalable and vigilant switch flow management in software-defined
networks,” in Proc. ACM Conference on Computer and Communications
Security (CCS), 2013, pp. 413–424.

[65] L. Singaravelu, C. Pu, H. Härtig, and C. Helmuth, “Reducing tcb
complexity for security-sensitive applications: Three case studies,” in
ACM SIGOPS Operating System Review, vol. 40, no. 4. ACM, 2006,
pp. 161–174.

[66] J. Sonchack, A. J. Aviv, E. Keller, and J. M. Smith, “Enabling practical
software-defined networking security applications with OFX,” in Proc.
Internet Society Symposium on Network and Distributed System Security
(NDSS), 2016.

[67] J. Szefer et al., “Eliminating the hypervisor attack surface for a more
secure cloud,” in Proc. ACM Conference on Computer and Communi-
cations Security (CCS), 2011, pp. 401–412.

[68] T. Koponen et al., “Network virtualization in multi-tenant datacenters,”
in 11th USENIX Symposium on Networked Systems Design and Imple-
mentation, 2014.

[69] H. J. Tretheway et al., “A snapshot of openstack users’ attitudes and
deployments.” Openstack User Survey, Apr 2016.

[70] H. Wu et al., “Network security for virtual machine in cloud computing,”
in Proc. IEEE Conference on Computer Sciences and Convergence
Information Technology, Nov 2010, pp. 18–21.

14

http://www.ietf.org/rfc/rfc3032.txt
http://www.ietf.org/rfc/rfc3031.txt

	I Introduction
	I-A Our Contributions
	I-B Ethical Considerations and Impact
	I-C Organization

	II Background
	II-A Centralized Cloud and Network Control
	II-B Virtual Switches
	II-C Open vSwitch

	III Compromising Cloud Systemsvia the Data Plane
	III-A Characterizing Virtual Switch Vulnerabilities
	III-B Threat Model: Virtual Switch

	IV Proof-of-Concept: A Case Studyof OvS and OpenStack
	IV-A Bug Hunting Methodology
	IV-B Identified Vulnerabilities
	IV-C Weaponzing the Vulnerabilities
	IV-C1 Rein Worm Attack
	IV-C2 Long Shim Attack and Short Shim Attack
	IV-C3 Access Control List Bypass

	IV-D Attack(s) Validation and Impact
	IV-E Summary

	V Countermeasure Evaluation
	VI Discussion
	VI-A Security Assumptions vs Performance
	VI-B Packet Processors Facing the Attacker

	VII Related Work
	VIII Conclusion
	References

