English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Mean temperature profiles in turbulent thermal convection

MPS-Authors
/persons/resource/persons173662

Shishkina,  Olga
Laboratory for Fluid Dynamics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons212451

Emran,  Mohammad Shah
Laboratory for Fluid Dynamics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Shishkina, O., Horn, S., Emran, M. S., & Ching, E. S. C. (2017). Mean temperature profiles in turbulent thermal convection. Physical Review Fluids, 2(11): 113502. doi:10.1103/PhysRevFluids.2.113502.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002E-56E4-3
Abstract
To predict the mean temperature profiles in turbulent thermal convection, the thermal boundary layer (BL) equation including the effects of fluctuations has to be solved. In Shishkina et al. [Phys. Rev. Lett. 114, 114302 (2015)], the thermal BL equation with the fluctuations taken into account as an eddy thermal diffusivity has been solved for large Prandtl-number fluids for which the eddy thermal diffusivity and the velocity field can be approximated, respectively, as a cubic and a linear function of the distance from the plate. In the present work, we make use of the idea of Prandtl's mixing length model and relate the eddy thermal diffusivity to the stream function. With this proposed relation, we can solve the thermal BL equation and obtain a closed-form expression for the dimensionless mean temperature profile in terms of two independent parameters for fluids with a general Prandtl number. With a proper choice of the parameters, our predictions of the temperature profiles are in excellent agreement with the results of our direct numerical simulations for a wide range of Prandtl numbers from 0.01 to 2547.9 and Rayleigh numbers from 10(7) to 10(9).