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Zusammenfassung
Alphatrap ist ein Penningfallen-Experiment zur Messung des g-Faktors des in einem
hochgeladenen Ion gebundenen Elektrons. Die hohe Kernladungszahl Z in wasser-
stoffähnlichen Ionen wie etwa 208Pb81+ erlaubt eine Überprüfung der Quantenelek-
trodynamik gebundener Zustände unter höchsten Feldstärken. Kalte Ionen sind für
diese hochpräzisen Messungen notwendig, die den kleinen zusätzlichen Einfluss der
Quantenelektrodynamik sichtbar machen.
Als neue Entwicklung soll eine Laserkühlung von Beryllium-Ionen zur sympathe-

tischen Kühlung der hochgeladenen Ionen zum Einsatz kommen. Die niedrigeren
erreichbaren Temperaturen sollen die Messgenauigkeit weiter erhöhen. Gleichzeitig
werden neue Messprozesse wie etwa die gleichzeitige Messung von g-Faktoren an
Ionenpaaren, die einen Coulomb-Kristall bilden, möglich.

Im Rahmen dieser Arbeit wurde ein System zur Laserkühlung mit 313 nm Licht am
Alphatrap-Experiment konzeptioniert. Die Experiment-spezifischen Anforderungen
an eine Laserkühlung in einer Penningfalle sowie sympathetisches Kühlen werden
diskutiert und die Ergebnisse der Inbetriebnahme des Lasersystems gezeigt.

Abstract
Alphatrap is a Penning-trap experiment aiming for the test of bound-state quantum
electrodynamics (QED) by measuring the g-factor of electrons bound in highly charged
ions up to hydrogen-like 208Pb81+. The high atomic number Z allows a test of bound-
state QED under highest field strengths. Cold ions are necessary for high-precision
measurements revealing the small additional effect of QED.

As a novel development, laser cooling of beryllium ions will be used to sympathetically
cool highly charged ions. The lower achievable temperatures are expected to further
increase the precision of the measurement. Additionally, new measurement schemes
such as simultaneous g-factor measurements on Coulomb crystallized ion pairs become
feasible.
In the context of this thesis, a concept for implementation of laser cooling at the

Alphatrap experiment using 313 nm light was developed. The experiment specific
requirements on laser cooling in a Penning trap and sympathetic cooling are discussed
and the results of the commissioning of the laser system are presented.
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1 Introduction

Quantum Electrodynamics (QED) is among the most stringently tested theories in physics.
Being a quantum field theory, it has been mainly developed in the 1940s by Richard Feyn-
man, Shin’ichiro Tomonaga and Julian Schwinger. QED describes the interaction
between the electromagnetic field and charged elementary particles extending quantum
mechanics and unifying it with special relativity in a common theoretical framework. The
first success of QED was the calculation of the energy shift between the 2s and 2p levels in
hydrogen, which Eugene Lamb and Robert Retherford had found experimentally in
1947 [1, 2]. To date, many measurements have tested the predictions of QED, culminating
in the agreement between the calculated free electron g-factor and its measured counterpart
[3, 4].
The behavior of an electron bound to a nucleus forming an atom or ion is described

by Bound-State QED (BS-QED). This theoretical framework allows amongst others to
calculate magnetic moments of bound electrons to extremely high precision. A number
of high-precision experiments using highly charged ions (HCI) stored in Penning traps
have not found any deviation from the BS-QED predictions so far [5–9]. As a result of the
excellent performance of this framework even in relatively strong field strengths, it was
used to determine the electron’s mass, one of nature’s fundamental constants [10].

A g-factor determination for BS-QED tests in a Penning trap reduces to the measurement
of the cyclotron and the Larmor frequency by inducing transitions between Zeeman
sub-levels of the trapped ion. The measurement precision is ultimately limited by the
stability of the electromagnetic trapping field and the energy of the ion. Improvement
of the experimental techniques over the past two decades allowed a striking increase in
measurement precision, competing with the decreasing uncertainty of theoretical predictions.
Milestones have been the introduction of the double-trap technique and a phase-sensitive
cyclotron frequency measurement scheme.
A single electron bound to a heavy nucleus, such as hydrogen-like lead, experiences

field strengths close to values where the electric field is predicted to become unstable [11].
The Alphatrap experiment was designed to measure the g-factor of electrons bound
in highly charged heavy ions using a Penning trap. However, new challenges arise with
the high charge state of the ion under investigation. For instance, the non-destructive
spin orientation determination becomes more challenging as the measurement fidelity is
expected to decrease. Reducing the energy of the ion helps to increase the reliability of
the spin state detection and is at the same time expected to increase the measurement
precision.

In order to cool the ion motion beyond the limits of established techniques, laser cooling
is currently being implemented at Alphatrap. Direct laser cooling of highly charged ions
is however not feasible, as no suitable optical transition is present. A cold singly charged
beryllium ion will sympathetically cool the HCI. Beryllium features a suitable transition in
the ultraviolet region of the light spectrum at 313 nm. Its laser cooling capability has been
shown in a number of experiments in Paul and Penning traps [12, 13]. Laser cooling in
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general has however never been applied in g-factor experiments and is expected to increase
the accuracy of upcoming next-generation experiments as Alphatrap.
While laser cooling is an established technique in many areas of atomic physics, it

is challenging to combine it with the stringent requirements on electromagnetic field
shape necessary for high-precision g-factor measurements. This thesis focuses on the
implementation of laser cooling at the Alphatrap experiment. It discusses a concept of
axial Doppler cooling of singly charged beryllium ions and addresses the requirements on
a suitable laser system. Additionally, it provides the results of the commissioning of the
available system.
In the second chapter, a short overview over g-factors and their role in precision tests

of QED is given. The necessary experimental techniques for g-factor measurements in
Penning traps are presented and the impact of temperature on measurement precision
is discussed. It is complemented by a short discussion of laser cooling in Penning traps
and sympathetic cooling techniques. The third chapter introduces the Alphatrap setup,
highlighting its peculiarities with regard to laser cooling and their implications. Laser
cooling using beryllium is addressed and the laser system available at Alphatrap is
presented. The fourth chapter discusses the experimental results of the commissioning of
the laser system. The thesis is completed by a conclusion and a short outlook in the fifth
chapter.
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2 Theory

The g-factor denotes a dimensionless proportionality constant that relates the magnetic
moment of a charged particle to its external or internal degree of angular momentum. The
magnetic moment µ created by this particle is given by

µ = g
~qion
2mion

S

~
, (2.1)

where S is the angular momentum, qion the particle’s charge and mion its mass. ~
denominates the reduced Planck constant. This magnetic moment couples to a magnetic
field B and increases classically the systems potential energy by the amount

∆E = −µ ·B. (2.2)

For an electron with angular momentum S, the factor µB = ~e/(2me) is the so-called Bohr
magneton where e is the elementary charge and me the electron’s mass. The influence of
the electron’s magnetic moment emerges from a relativistic treatment and appears e.g. in
the fine structure splitting in atomic or ionic systems. If the nucleus carries furthermore a
nonzero nuclear spin, its magnetic moment creates an additional energy shift giving rise to
the hyperfine structure splitting. For the nuclear spin, the nuclear magneton µN = e/2mp

is introduced, where the mass of the electron is replaced by the proton’s mass mp.

2.1 The Electron g-factor
The g-factor was first introduced in 1921 by Alfred Landé, who introduced this factor
in his work in order to explain heuristically the observed spectroscopic line splitting as a
result of the anomalous Zeeman-effect [14]. For the g-factor of the electron, the term Landé
g-factor has been coined. At that time, it was not yet known that the electron carries an
additional angular momentum. It took until 1925 before Samuel Goudsmit and George
Uhlenbeck introduced the concept of the spin [15]. Two years later, Wolfgang Pauli
first used spinors to describe the electron in a still non-relativistic treatment [16]. In
1928 Paul Dirac wrote down his relativistic wave equation for fermionic particles, where
the spin, being a relativistic phenomenon, emerged naturally [17]. As a result of this
treatment, the electron’s g-factor could be derived and its calculated value was found to be
in agreement with the findings of previous experiments of Alfred Landé. It turned out
that the spin contributes twice as strong to the magnetic moment as the orbital angular
momentum.

In 1947 Willis Lamb and Robert Retherford found an energy difference of around
1 GHz between the 2s and 2p levels in hydrogen using microwave spectroscopy, a phe-
nomenon these days known as Lamb shift, that could not be explained using the Dirac
treatment of the atom. One year later, the anomalous magnetic moment of the electron was
found experimentally by Polykarp Kusch and Henry Foley [18]. These discoveries
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triggered the development of renormalization in QED. Julian Schwinger derived the
first order radiative correction of the electron g-factor, giving an explanation for the earlier
observations [1]. Within the framework of QED, the additional, so-called “anomalous”
contributions to the g-factor derived from Dirac theory can be calculated. Nowadays, these
QED contributions to the g-factor of the free electron can be evaluated using perturbation
theory up to tenth order [4]. Together with the successful development of high-precision
experiments, these make the free electron g-factor an ideal observable for testing QED to
highest precision [3].

In the following sections role of the g-factor in Dirac theory is explained, QED corrections
to the obtained value are outlined and other contributions to the measured value and their
implications on the experimental approach are briefly discussed.

2.1.1 Dirac Theory

The electron’s spin is a purely relativistic phenomenon. The Dirac equation is a wave
equation for fermionic particles and fulfills the requirements of special relativity. Starting
with this treatment, the spin magnetic moment emerges naturally. The derivation of the
corresponding g-factor constitutes one of its early successes. For the free unbound electron,
a Landé g-factor of

gfree = 2 (2.3)

is obtained [17]. For an electron bound in a central potential of an infinitely heavy and
point-like nucleus its g-factor depends on the motional angular momentum quantum number.
This was first derived by Gregory Breit in 1928 [19]. The g-factor of an electron in a
hydrogen-like system with nuclear charge Z in the ground state is given by [20, 21]:

gbound,1s = 2
3

(
1 + 2

√
1− (Zα)2

)
. (2.4)

This g-factor accounts for the presence of the nuclear potential. Being a quantum theory,
the description of a particle with the Dirac equation has undergone first quantization. The
particle can thus only be in allowed discrete states found as eigenvalues of the Hamilton
operator. For the electric field however, a classical description is used. The electric field is
quantized in the framework of QED (second quantization) leading to new effects altering
the g-factor. Additional effects result from the properties of the nucleus. The observable
deviations from Dirac theory constitute the main quantity of interest in all modern g-factor
experiments.

2.1.2 QED Contributions

QED is a quantum field theory, describing the interaction of charged particles with a field
of photons, quanta of the electromagnetic field. The wave function of the electron is a
superposition of all processes including charged particles and photons that are allowed
by the rules of quantum mechanics. The solutions for the free electron g-factor can be
found perturbatively, classified by the order of perturbation theory used. Contributions
can intuitively be thought of as particles involved in processes represented by Feynman
diagrams such as in figure 2.1. Virtual particles with lifetimes permitted by Heisenberg’s
uncertainty principle can be emitted and reabsorbed altering the state of the particle
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(a) (b) (c)

Figure 2.1: Feynman-diagrams of the tree level and 1-loop QED contributions to the free
electron g-factor. The electron is depicted as a solid line propagating in time
from the left to the right, a photon is drawn as a wavy line, the triangle
represents the external electromagnetic field. The tree level process in (a) gives
a g-factor as in equation (2.3). Diagrams (b) and (c) represent the first order
corrections. The vertex correction in diagram (b) creates the second term in
equation (2.5). (c) is the vacuum polarization correction.

during interaction. Momentum loops, occurring in Feynman diagrams with a closed circle
of vertices, give rise to divergences during calculation and make renormalization necessary.
The one-loop self energy correction has been calculated by Julian Schwinger in 1948
and yields [1]

gfree = 2 + α

π
. (2.5)

Here, α is the dimensionless coupling constant of the electromagnetic field. This process
is depicted in figure 2.1 (b). This represents the largest QED contribution, which has a
relative size on the order of 10−3 compared to the absolute value of the g-factor.

Nowadays higher number of loops are included into the calculation in order to give more
accurate results. This makes higher orders of perturbation theory necessary. These results
can be expanded in a series of α, where the contributions of different diagrams are merged
into the coefficients Cn:

gfree =
∞∑
n=0

Cn

(
α

π

)n
. (2.6)

Here, C0 = 2 is given by the result of Dirac theory (equation (2.3)), while C1 = 1
contains the first order radiative correction in equation (2.5). C2 and C3 can be calculated
analytically, while for C4 onwards a numerical evaluation is used. The current most precise
value for the g-factor calculated using QED is gfree = 2.00231930436(154). This value
incorporates an experimental value of the fine structure constant and the electron to muon
mass ratio [4].
The g-factor of the free electron has been measured experimentally among other tech-

niques using Penning traps and the continuous Stern-Gerlach effect (c.f. sections 2.2.1
and 2.2.4). This technique was developed by Hans Dehmelt and co-workers, leading
to a precise measurement of the anomalous effect [22]. The currently most precise value
was measured in the group of Gerald Gabrielse and yields an experimental value of
2.00231930436146(56) [3]. If QED is assumed to describe nature with sufficient accuracy
to be able to fully explain the experimental result, a value of the fine structure constant α
can be obtained from the data.
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(a) (b) (c) (d) (e)

Figure 2.2: Feynman-diagrams of the tree level and 1-loop QED contributions to the bound
electron g-factor. The electron bound to the nucleus with a wave function
obtained using the Dirac equation is depicted by a double line. The tree level
process in (a) gives a g-factor as in equation (2.4). Diagram (b) represents the
vertex correction, diagrams (c) and (d) the self-energy corrections. (e) is the
vacuum polarization contribution.

In the case of an electron bound in an atomic or ionic system, the interaction with
the nucleus and the other electrons has to be taken into account. To the weak external
magnetic field the very strong electromagnetic potential of the nucleus is superimposed.
The theoretical framework that is used to describe this situation is called Bound State QED
(BS-QED). It incorporates already the relativistic Dirac solution of the electron in the field
of the nucleus and constitutes a non-perturbative approach [20]. Feynman-diagrams of the
relevant processes to first order are shown in figure 2.2.

A suitable expansion for hydrogen-like systems is again given by [23]

gbound =
∞∑
n=0

C̃n

(
α

π

)n
. (2.7)

Until present, BS-QED calculations for hydrogen-like systems including two-loop corrections
are available [24]. Several measurements using Penning traps on hydrogen and lithium-
like systems, such as 12C5+, 16O7+, 28Si13+, 28Si11+, 40Ca17+ and 48Ca17+ have found a
good agreement between theory and experiment and constitute the most stringent test
of BS-QED in the regime of low atomic number Z [5–9]. This led to the most precise
determination of the electron mass, assuming again a well understood theory [10].

High Z systems however offer laboratory systems with the strongest available fields on
earth, which can be orders of magnitude higher than what can be achieved in the most
intense laser fields. The mean field strength of a hydrogen-like system is given in figure
2.3. For high Z systems, it can come close to the Schwinger-limit at Es = m2

ec
3/e~ ≈

1.3× 1018 V m−1. At this field strength, the electromagnetic field is expected to become
nonlinear [11, 25]. For heavy nuclei αZ becomes a value close to one, e.g. for hydrogen-like
lead αZ ≈ 0.59. The Alphatrap experiment aims for the measurement of g-factors in
high Z systems such as hydrogen-like 54Xe or 208Pb to test BS-QED under these extreme
field conditions.
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Figure 2.3: Mean nuclear electric field strength 〈1s|Ê|1s〉 as a function of the nuclear
charge Z in a hydrogen-like system in the ground state. The electric field
E = Z(4πε0)−1〈r−2〉 is calculated using the relativistic matrix element from
[26]. Diamonds show previous g-factor measurements while triangles represent
candidates for Alphatrap.

2.1.3 Other Contributions

QED can describe the interaction between photons and leptons. The Standard Model
of physics however distinguishes between four different fundamental interactions and
four groups of elementary particles. Quantum chromodynamics (QCD) is a field theory
describing the interaction of the gluon mediating the strong force and quarks. QCD
processes can also be part of the different contributions which describe the dynamics of the
electron on a quantum field level. Therefore a small QCD correction has to be added to the
g-factor. QCD contributions can be classified into hadronic vacuum polarization processes
and hadronic light-by-light scattering processes. Additionally a small contribution due to
the electroweak interaction has to be added. However, this contribution is currently below
experimental precision [27]. The free electron g-factor can thus be written as

gfree = gDirac + ∆gQED + ∆ghadronic + ∆gweak. (2.8)

gDirac is given by equation (2.3). ∆gQED is given by equation (2.6) when C0 is set to 0.
∆ghadronic is on the order of 2 · 10−12, while ∆gweak is on the order of 3 · 10−14 [27].

In the case of the bound electron g-factor, a number of contributions due to the interaction
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with the nucleus have to be considered:

• nuclear size effect: The Dirac equation assumes a point-like nucleus. The nucleus has
however a finite charge distribution characterized by the root mean square radius
rRMS and leading to a small correction of the g-factor. It scales in the non-relativistic
limit in the ground state of hydrogen-like systems as ∆gsize ∝ (αZ)4 r2

RMS [28]. Higher
moments, such as nuclear quadrupole moment also can influence the g-factor, but
are highly suppressed for nuclei with spin zero due to random orientation [20].

• nuclear recoil effect: In the classical treatment of the hydrogen-like atom with the
Dirac equation one assumes an infinitely heavy nucleus to obtain analytical solutions.
This reduces the system to an one-body problem and neglects the recoil motion of the
nucleus. The recoil contribution to the g-factor for the ground state of a hydrogen-like
system with a nucleus with mass mnuc becomes ∆grecoil = me/mnuc (αZ)2 [29].

• nuclear polarization effect: Nuclear models describe the nucleon-nucleon interaction
and predict discrete energy levels to which the nucleus can be excited from its ground
state. The electron can couple to these excited nuclear states, altering its g-factor. The
effect for 208Pb81+ has been calculated and contributes with ∆gpolarization ≈ 2 · 10−7

[30].

The complete g-factor for a bound electron taking into account the different QED and
nuclear corrections thus becomes

gbound = gBreit + ∆gQED + ∆gsize + ∆grecoil + ∆gpolarization. (2.9)

The main contribution for the ground state is given by equation (2.4), while the QED
contributions are given by equation (2.7) with C̃0 set to zero. Hadronic and weak corrections
are below the uncertainty of the other contributions and are therefore neglected.
For highly charged ions, the uncertainties of nuclear contributions start to obscure

higher order QED contributions. For g-factor differences of two ions with the same nucleus
and different electronic configurations however, e.g. a hydrogen-like and a lithium-like
system, the nuclear contributions cancel out each other. Laser cooling allows for Coulomb
crystallization in the trap strongly coupling both ions. This opens up the opportunity for
new measurement schemes aspiring to measure g-factor differences [31]. The leading order
contribution of QED corrections given by equation (2.5) is a factor of α/(2π) ≈ 0.0012
smaller than the absolute value of the g-factor. Without increasing the measurement
precision, such a difference value would be almost three orders of magnitude more precise.
Additionally, weighted g-factor differences aiming for the fine structure constant α have
been proposed [32, 33].

2.2 g-factor Measurements in Penning Traps

The most precise measurements of g-factors are performed in Penning traps using a
technique developed by Hans Dehmelt [34]. This technique uses transitions between
Zeeman levels of the electron for the measurement of the g-factor-resonance.
The coupling of the electron spin to an external magnetic field leads according to

equation (2.2) to a splitting into two states distinguished by the spin orientation. The
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system precesses around its quantization axis with a fixed frequency called Larmor frequency.
The Larmor frequency is given by

νL = 1
2πg

e

2me
B. (2.10)

An externally applied magnetic dipole field with a frequency matching the Larmor frequency
induces Rabi oscillations between the two energy levels. Applying a resonant π-pulse
changes the orientation of the spin. The g-factor measurement technique discussed in the
context of this thesis uses a microwave source to alter the spin orientation. The continuous
Stern-Gerlach effect is employed to detect the spin state of the electron non-destructively
[34].
The motion of a charged particle in a homogeneous magnetic field is characterized by

the angular cyclotron frequency
νc = 1

2π
qion
mion

B. (2.11)

The ion is stored in a Penning trap, which can also be used to determine the cyclotron
frequency to the very high precision. Combining equations (2.10) and (2.11), the condition
for the g-factor resonance can be written as

g = 2qion
e

me
mion

νL
νc
. (2.12)

The measurement scheme at Alphatrap reduces thus to a determination of a ratio of
frequencies, which can be done with very high precision. The shape of the resonance
curve as function of the Larmor frequency is dominated by the cyclotron frequency
fluctuations, which are predominantly normally distributed [35]. Modern experiments,
such as Alphatrap, use an arrangement of several traps optimized for different tasks
and transport the ion forth and back without altering its motional or spin state [36]. The
measurement precision is ultimately limited by frequency shifts discussed in the last part
of this section.

2.2.1 Ion Confinement

Samuel Earnshaw proved in 1942 that no static configuration of either magnetic or
electrostatic fields with a potential minimum can be created in order to store a charged
particle permanently [37]. However, it is possible to use a superposition of a static magnetic
field and an electrostatic potential. This configuration was developed by Hans Dehmelt,
who coined the name Penning trap after Frans Michel Penning and its idea to use
magnetic fields to increase the storage time of electrons in vacuum gauges [38].
In an ideal Penning trap, a quadrupolar potential of the form

U = U0
C2
2
(
2z2 − x2 − y2

)
(2.13)

is superimposed to an homogeneous magnetic field B = (0, 0, B0)′ along the symmetry axis
of the trap. U0 is the applied voltage and C2 characterizes the strength of the potential
depending on the exact geometry of the electrode configuration. The trajectory of the par-
ticle in the trap is governed by the equations of motion mionẍ = qion (−∇U + ẋ×B). The
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movement along the z-direction consists of harmonic motion with the axial eigenfrequency

νz = 1
2π

√
2qionU0C2
mion

. (2.14)

Its trajectory is given by z(t) = <(rzexp(−i2πνzt)). In this complex notation, rz con-
tains phase and amplitude information. Motion in the x-y-plane consists of two coupled
eigenmotions with eigenfrequencies

ν+ = 1
2

(
νc +

√
ν2
c − 2ν2

z

)
(2.15)

ν− = 1
2

(
νc −

√
ν2
c − 2ν2

z

)
. (2.16)

The electrostatic potential alters the cyclotron frequency of a charged particle given by
equation (2.11) resulting in the so-called modified cyclotron eigenfrequency ν+. The
superposition of an electric and a magnetic field results in a E×B-drift, creating the
magnetron motion, which is characterized by the magnetron eigenfrequency ν−. The
motion in the radial plane can be written in complex notation u(t) = x(t) + iy(t) as
u(t) = r+exp(−i2πν+t) + r−exp(−i2πν−t). Here, r+ and r− contain amplitude and phase
information. An example of such a particle trajectory resulting from the three eigenmotions
is sketched in figure 2.4 (b).

Closely related to the amplitudes |rz|, |r+| and |r−| in the conservative potential of the
ideal trap are the eigenenergies of the three modes, which can be defined as [39]

Ez = 1
2mion (2π)2 ν2

z |rz|
2 (2.17)

E+ = 1
2mion (2π)2

(
ν2

+ −
ν2
z

2

)
|r+|2 ≈

1
2mion (2π)2 ν2

+ |r+|2 (2.18)

E− = 1
2mion (2π)2

(
ν2
− −

ν2
z

2

)
|r−|2 ≈ −

1
4mion (2π)2 ν2

z |r−|
2 . (2.19)

The energy of the magnetron motion is negative1. Note that the quadrupolar potential
results in eigenfrequencies that are independent of the ion’s energy.
Most modern experiments use cylindrically shaped electrodes to create an electrostatic

quadrupolar potential at the trap center, while the first Penning traps had electrodes of
hyperbolical shape [40]. The cylindrical geometry facilitates bringing ions or electromagnetic
waves from outside through the end caps into the trap. Cylindrical traps consist of a ring
electrode surrounded by typically one or two sets of correction electrodes and a pair of
end cap electrodes. A typical setup for a cylindrical Penning trap is sketched in figure
2.4 (a). This type of trap exhibits cylindrical symmetry around the trap axis orientated
along the magnetic field lines and has a symmetric electrode configuration with respect
to the central ring electrode. The potential can thus be expanded in a series of Legendre
polynomials Pk(x) [41]:

U(ρ, z) = U0

∞∑
k=0

Ckρ
kPk(

z

ρ
) (2.20)

1Reducing the radius |r−| by laser cooling of the magnetron mode thus leads to an increase in energy E−.
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The coordinate ρ =
√
x2 + y2 + z2 is the distance to the trap center and z designates the

component along the trap axis. The coefficients Ck used hereafter describe the geometry of
the trap configuration and have a different meaning than the coefficients Cn and C̃n in the
g-factor expansions in equations (2.6) and (2.7). For symmetry reasons, uneven coefficients
Ck are vanishing in most situations and are set to zero hereafter. The coefficient C0 sets a
potential offset and is usually chosen such that the end cap potential corresponds to 0 V
and the ring electrode is supplied by U0.
A quadrupolar potential shape corresponds to vanishing coefficients Ck with k > 2

and is realized in real traps only close to the trap center. Higher order contributions are
called trap anharmonicities and lead to undesirable energy dependent frequency shifts.
Correction electrodes help to enlarge the region where the ion motion can be treated as
harmonic. As electrodynamics is a linear theory, the geometric coefficients Ck which create
the harmonic potential can be separated into a contribution by the end cap electrodes
Cendc
k and a contribution by the i-th correction electrode set Ccor,i

k [42]:

Ck = Cendc
k +

∑
i

Ccor,i
k

U iC
U0

. (2.21)

Here, U iC is the voltage supplied to the i-th correction electrode. By choosing the correct
geometrical dimensions and an appropriate correction voltage, the leading contributions of
trap anharmonicities can cancel out. Choosing the ratio between the correction voltage
UC and the end cap voltage U0 in a five electrode trap such that Cendc

4 = −Ccor4 UC/U0,
the shift due to a non vanishing C4 can be avoided. This voltage ratio is called tuning
ratio. By choosing additionally the correct geometrical dimensions (compensated trap) or
by using an additional set of correction electrodes (seven electrode trap with two sets of
correction electrodes), the tuning ratios can be set such that the C6 shift cancels out as
well [40]. Dimensions and properties of the Alphatrap traps can be found in table 3.1.

2.2.2 Interaction with the Resonator

The oscillating ion creates induced charges on the electrodes and, if they are electrically
connected by a finite impedance, an image current. The induced charge is given by
qind(t) = −qionD−1

eff ż(t) and the induced image current is its time derivative I(t) = q̇ind(t).
Deff is the effective distance between two infinitely extended capacitor plates which create
the same electric potential as the given trap geometry. The image current induces a voltage
drop across the, in general complex, impedance Z(ν). The real part of the impedance
creates a counteracting electric potential in the end caps giving rise to a damping force
Fz = qUD−1

eff = −mionτ
−1ż(t). This energy dissipation is characterized by the cooling time

constant τ , which can be calculated yielding [35, 43]

τ = mionD
2
eff

<(Z(ν))q2
ion
. (2.22)

In practice, the parasitic capacitance of the trap Cp has to be taken into account. To
counterbalance the effect of a finite capacitance, a superconducting tank circuit with a
inductance L used as a resonator is attached to the trap (see figure 2.5). The ion is cooled
until the heating due to Johnson-Nyquist noise of the attached circuit becomes dominant.
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magnetron

cyclotron

axial

U0 UC

B0

(a) (b)

Figure 2.4: (a) Cylindrical five-pole configuration for a Penning trap. The central ring
electrode in the center is surrounded by a pair of correction electrodes supplied
with UC and outer endcap electrodes supplied with U0. (b) Typical classical
trajectory of an ion in the trap with modified cyclotron, axial and magnetron
motion.

At this point, the noise keeps the ion at the temperature of the electron plasma in the
resonator circuit, implementing a thermal equilibrium with the ion. The potential depth is
chosen such that the eigenfrequency of the ion lies close to the maximum of the resonator
spectrum.

Ion detection and frequency measurements can be achieved via image current detection.
One can show that the ion behaves in the given situation like a series resonance circuit
with an effective capacitance Cion = q2

ionm
−1
ionD

−2
eff (2πνz)−2 and an effective inductance

Lion = q−2
ionmionD

2
eff, as shown in figure 2.5 (a) [44, 45]. The ion acts as a sharp filter around

the frequency given by the Penning trap. The linewidth of the dip is determined by the
Fourier limit of the cooling time constant (2.22) with ∆ν = τ−1 and is proportional to the
square of the charge and inversely proportional to the mass of the ion. This linewidth sets
a minimum measurement time for a single Fourier spectrum. The field fluctuations on this
timescale eventually limit measurement precision. Using a fit of the corresponding line
shape, the axial and modified cyclotron frequencies can be determined.
If the ion’s motional frequency is tuned sufficiently away from the resonance frequency

of the resonator, in an ideal Penning trap no heating occurs and the ion preserves its
energy forever. In a real Penning trap, so-called anomalous heating occurs, increasing the
amplitudes |rz|, |r+| and |r−|.

2.2.3 Phase Space Distribution and Thermal Energy Fluctuations

The axial motion in the presence of normally distributed noise experiences energy fluctua-
tions. This noise can either originate from anomalous heating or from the electron plasma in
the resonator when it is in resonance with the ion. In the latter case, an additional damping
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Figure 2.5: Detection system for the image current induced by the axial motion of the ion
(a). The parasitic capacitance Cp is created by the trap electrodes and the
tank circuit. The ohmic resistance is mainly an effect of the wires connecting
the trap with the resonator, which itself is superconducting. Unoise is the
Johnson-Nyquist-noise of the tank circuits’ ohmic resistance. A typical noise
spectrum of a resonator with a 12C5+ ion in the trap is shown in (b). The
dip in the center is created by the ion in thermal equilibrium to the resonator.
From a fit with the corresponding line shape, the frequency of the ion can be
deduced [36].

through the image current has to be considered, omitted below. The energy fluctuations
can be treated in a phase space picture of the ion. The amplitude is described by the
magnitude of the phase space vector r̃. The classical undisturbed oscillatory motion at
angular frequency ω of the particle is then described by r̃(t) = r̃ exp (iωt), where the phase
space vector r̃ can be any complex number. The trajectory and momentum can be obtained
from this description by using the relations z(t) = <(r̃(t)) and p(t) = mionω=( ˜r(t)). This
situation is depicted in figure 2.6.

When the ion interacts with the white noise on the electrodes, its position in phase
space is smeared out as consequence of the stochastic fluctuations of its phase space vector
r̃. The voltage fluctuations on the electrodes can be modeled as a resonant dipole drive
ṗ = qUD−1

eff , yielding an absolute value of the radius fluctuations due to voltage fluctuations
given by

|δr̃| = qU

2iωmionDeff
δt. (2.23)

The direction of the fluctuation vector δr̃ in phase space is always pointing along the
complex axis. However, the fluctuations occur at points in time isotropically distributed
over a motional period. This situation corresponds to a fixed space radius r̃ and a radius
fluctuation δr̃ with a randomly distributed angle ϕ between r̃ and δr̃. For the energy
change during a radius fluctuation r̃ → r̃ + δr̃ one obtains

δE = 1
2mionω

2
(
2cos(ϕ)r̃δr̃ + δr̃2

)
(2.24)
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z

p
mionω

ϕ

Figure 2.6: Phase space representation of the axial motion. Noise on the electrodes transfers
energy to the ion, which performs a random 2d walk in the gray shaded area.
The time evolution of the ensemble is represented by the dotted line.

Calculating the first statistical moment of the energy fluctuations induced due to anomalous
heating assuming a normally distributed ϕ and a normally distributed δr̃ with variance σ2

r

yields2

〈δE2〉 =
(1

2mionω
2
)2 (

2r̃2〈δr̃2〉+ 〈δr̃4〉
)
. (2.25)

The magnitude of thermal energy fluctuations increases thus with the radius of the
eigenmotion. This general treatment can be applied to the different modes of a Penning
trap, in particular also to the cyclotron mode. The contribution δr4

+ in real traps becomes
very small for δt→ 0 and its contribution can be neglected. Under this assumption, the
energy fluctuations in the cyclotron mode become

〈δE2
+〉 ≈

1
2mion(2π)2ν2

+r
2
+〈δr2

+〉. (2.26)

A low energy jitter is important for axial spin detection, especially for highly charged ions
as explained in the next section. Laser cooling and mode coupling reduce the amplitudes
|r+| and |rz|, and thereby help to decrease the thermal energy fluctuations.

2.2.4 Continuous Stern-Gerlach Effect

The principle of the continuous Stern-Gerlach Effect is a coupling of the spin orientation
to the axial frequency. This can only be done using the magnetic moment as the electron
is expected by the Standard Model to have a negligible electric dipole moment [46].

In order to realize this coupling with a sufficient strength, a magnetic bottle is introduced
around the trap center, weakly altering the motion of the ion. This magnetic bottle
is usually created by a ring electrode made out of ferromagnetic material as shown in
figure 2.7 (a). The axial magnetic field component can be developed in analogy to the
expansion of the electric potential in (2.20) in a series of Legendre polynomials such that

2Here, it is assumed that the voltage noise U on the electrodes is Gaussian white noise.
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the z-component becomes

Bz(z, ρ) =
∞∑
k=0

Bkρ
kPk(

z

ρ
). (2.27)

The radial component of the magnetic field is usually very small and the effect on the ion
can be neglected. In the region of ion motion near the trap center, the magnetic bottle is
approximated as a harmonic potential. Due to symmetry reasons, uneven coefficients Bk
are vanishing. The magnetic bottle as seen by the ion thus becomes

Bz(z, ρ) = B0 + B2
2
(
3z2 − ρ2

)
. (2.28)

The magnetron and the modified cyclotron motion create a current I± = qionν± causing
together with the electron’s spin Sz the magnetic moment [35]

µSzz = −I+π |r+|2 − I−π |r−|2 − gµB
Sz
~

= − qionE+
mion2πν+

+ qionE−ν−
mionπν2

z

− gµB
Sz
~
. (2.29)

The relation of the radii |r+| and |r−| to the energies E+ and E− are given by equations
(2.18) and (2.19). The z-dependent field creates together with the magnetic moment an
additional potential adding to the axial potential. Transforming this expression to a force
allows to rewrite the axial equation of motion as

z̈ = −(2πνz)2z + 1
mion

d
dz (µz ·Bz) =

−
(

(2πνz)2 + qionB2E+
m2

ionπν+
− 2qionB2E−ν−

m2
ionπν

2
z

± gµBB2
mion

)
z.

(2.30)

For a cooled magnetron and modified cyclotron motion, the frequency shift due to the
finite magnetron energy is in most situations negligible compared to the shift due to the
cyclotron motion, as ν− � νz. The measured shift due to finite cyclotron energy can serve
to determine the temperature of this mode. A fit of a Boltzmann curve to the obtained
distribution of axial frequency fluctuations due to thermal energy fluctuations can be used
to determine the temperature of the cyclotron mode. At the same time, this frequency
shift can be used to detect the spin state: The frequency shift due to the coupling of the
spin to the magnetic bottle to the first order neglecting the influence of the magnetron
motion is given by

∆νz ≈
1

4π2
B2

mionνz

(
qionE+

2πmionν+
∓ gµB

2

)
≈ 1

4π2
B2

mionνz

(
E+
B0
± gµB

2

)
. (2.31)

The last approximation assumes ν+ ≈ νc. Thus, a strong magnetic field in combination
with weak axial confinement eases the discrimination of spin states. The frequency jump
when a spin flip has occurred between two consecutive measurements

∆ν↑z −∆ν↓z ≈
1

4π2
gµBB2
mionνz

(2.32)

can be detected by observing the axial frequency of the ion in a trap with a magnetic
bottle. For a reliable spin state detection it is necessary that the random thermal noise of
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a b c

Figure 2.7: Spin state detection system: (a) shows a model of the Analysis Trap with a
magnetic bottle created by an ferromagnetic ring electrode with a simulation of
the magnetic field lines drawn in red. In (b) the simulated magnetic field along
the trap axis is plotted in blue. An approximated potential with coefficients
only up to B2 is printed in red. (c) shows the measured frequency shift of
consecutive measurements on a 28Si13+-ion. The two spin states are separated
by 240 mHz indicated by the two red dashed lines. Figure adapted from [35].

the finite cyclotron energy shift is significantly smaller than the frequency jump given by
(2.32). Equation (2.26) shows that the frequency jitter scales with the overall radius of the
mode. Strong cooling of the modified cyclotron mode therefore improves the signal-to-noise
ratio of the spin state readout. This can be achieved by laser cooling of the axial mode
and coupling between the axial and cyclotron motion, as explained below.

2.2.5 Measurement Scheme

The measurement of the spin orientation via the continuous Stern-Gerlach effect needs a
strong magnetic inhomogeneity. The accurate measurement of the frequency ratio to find
the g-factor resonance however requires a very good magnetic field homogeneity. These
two contradictory factors limited the achievable precision of experiments reading out the
Larmor and cyclotron frequency in the same region where the spin state is measured.
The introduction of the so-called “double-trap technique” allowed to circumvent this
contradiction [36]. The setup consists of two separate traps. The spin orientation is
determined in a trap called “analysis trap” (AT) with a strong magnetic bottle and
connected to an axial resonator. The spin flip is induced in another trap called “precision
trap” (PT), where also the measurement of the cyclotron frequency takes place. This trap
is characterized by the highest achievable magnetic field homogeneity and connected to an
axial resonator. A resonator for the cyclotron mode, connected to split electrodes can be
present as well. The ion is transported adiabatically3 back and forth between these traps
without altering the spin state.

The cyclotron frequency νc is determined from the measured three eigenfrequencies ν+,

3Here adiabatically refers to a timescale longer than the inverse of the lowest motional frequency ν−
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Figure 2.8: Typical spectra of a 12C5+ ion on the axial resonator when a coupling of the
axial mode to the modified cyclotron (left) and magnetron mode (right) is
applied. In the left spectrum, additional environmental noise is visible.

νz and ν− using the invariance theorem [43]

ν2
c = ν2

+ + ν2
z + ν2

−. (2.33)

This method is generally favored over the summation of modified cyclotron and magnetron
frequency ν+ + ν− = νc as some frequency shifts due to apparatus imperfections cancel out
in (2.33), as will be discussed below.
The eigenfrequencies are measured with a resonator attached to one end cap. When a

harmonically modulated quadrupolar field is added to the static end cap potential at a
specific drive frequency, the modes are coupled and action is transferred between them.
This situation can be treated in analogy to an avoided crossing, where usually two electronic
eigenmodes are coupled with a resonant light field [47]. The coupling of modified cyclotron
and axial mode takes place at a drive frequency νa,+dd = ν+ − νz, coupling between the
axial and the magnetron mode is driven by νa,−dd = ν− + νz. Applying π-pulses can swap
action between the coupled modes. This technique is useful for transferring energy between
modes, as outlined below.
It is further used for frequency determination of the magnetron and modified cyclotron

mode. In the presence of a resonant coupling field, sidebands appear in place of the axial
frequency dip. The distance of these sideband depends on the coupling strength, which
can be chosen such that both dips are visible on the resonator. If νu denotes the frequency
of the upper sideband and νl the frequency of the lower sideband, it can be shown that the
relations

ν+ = νa,+dd + νl + νu − νz (2.34)
ν− = νa,−dd + νl + νu − νz (2.35)

hold. Consecutive measurements of the axial frequency and the lower and upper sideband
frequencies reveal the magnetron or modified cyclotron frequency [35]. Typical resonator
spectra with a coupling of the modified cyclotron and magnetron to the axial mode are
shown in figure 2.8. Another method, based on the ideas of Ramsey interferometry, called
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“Pulse ’n Amplify” (PnA) can be used to further increase the precision of the measurement
of the motional eigenfrequencies compared to the double-dip method [48].

A complete typical measurement cycle consists of different steps in both traps including
the adiabatic transport of the ion between the traps:

• The ion is stored in the AT. Microwaves near the resonance frequency are irradiated
until a spin flip can be observed and the spin state is well defined.

• The ion is transported to the PT.

• Cooling of all three modes by means of the resonator damping and coupling of modes
is applied.

• The motional eigenfrequencies ν+, νz and ν− are determined using the double-dip or
PnA method.

• Simultaneously, microwaves at a given frequency νmw are irradiated into the trap.

• The ion is transported to the AT.

• The spin state of the electron is determined.

This process is repeated many times, such that a spin flip probability for a given frequency
ratio can be determined. The irradiated microwave frequency νmw is swept through a
range around the expected resonance and the frequency ratio νmw/νc as a function of νmw
is calculated. Combined with the knowledge of the complete line shape of the resonance
given in equation (2.12), the g-factor can be determined from a maximum likelihood fit[35].

2.2.6 Frequency Shifts

So far, the Penning-trap system has been described as an ideal system. Finite energies
of the eigenstates together with the deviation of the real apparatus from the idealized
case and the classical non-relativistic treatment of the particle motion shift the measured
eigenfrequencies of the system. These shifts have to be taken into account and they
eventually limit the measurement accuracy. The different shifts can be categorized into
apparatus shifts, effects induced by the deviation of the real setup from the idealized
description, and method inherent effects.
The idealized apparatus assumes a quadrupolar potential as well as a homogeneous

magnetic field along the trap axis and for the continuous Stern-Gerlach effect a harmonic
magnetic field component along the z-axis. It is further postulated that all fields are
constant over time constituting as well an approximation. The relative effect of temporal
fluctuations of the electric and magnetic fields over time can be reduced by either increasing
their stability or by reducing the measurement time.

The spatial deviation of the electric field from the idealized case leads to non-vanishing
coefficients Ck>2. If an electrostatic (or magnetic) potential is described by higher order
coefficients than of second order, the frequency becomes amplitude dependent. The first
order frequency shift for the motional eigenfrequencies and the Larmor frequency are given
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by the matrix equation [35, 49]
∆ν+/ν+
∆νz/νz
∆ν−/ν−
∆νL/νL

 = 6C4
C2

2


(νz/ν+)4/4 −(νz/ν+)2/2 −(νz/ν+)2

−(νz/ν+)2/2 1/4 1
−(νz/ν+)2 1 1

0 0 0

 ·
E+
Ez
E−

 . (2.36)

All contribution scale linearly with the size of C4, which can be reduced by choosing an
appropriate trap geometry and the correct tuning ratio as described in equation (2.21).

The real magnetic field also deviates from the ideal homogeneous field. The weak
components of the radial field compared to the strong axial component make shifts due to
a radial field in typical magnetic fields negligible. The z-component can be described by
the expansion (2.27) used to describe the effect of the magnetic bottle. A linear magnetic
field gradient created by a B1 term creates a spatially uniform force along the trap axis,
shifting the center of motion. This force is independent of the axial energy Ez, but depends
via the magnetic moment of the modified cyclotron and magnetron motion on the energies
E+ and E−. The B2 term creates a harmonic potential, that gives the largest contribution
to the shift of the eigenfrequencies due to magnetic field inhomogeneities [35]:

∆ν+/ν+
∆νz/νz
∆ν−/ν−
∆νL/νL

 = B2
mion(2πνz)2B0


−(νz/ν+)2 1 2

1 0 −1
2 −1 −2

−(νz/ν+)2 1 2

 ·
E+
Ez
E−

 . (2.37)

Note, that the spin precession frequency νL, being a purely magnetic phenomenon, is
shifted by the magnetic field inhomogeneities while electric field inhomogeneities do not
influence it in the non-relativistic approximation.

An ion coupled to an axial or modified cyclotron resonator is in thermal equilibrium
with the thermal bath of the charge carriers. The energy therefore undergoes thermal
fluctuations inducing frequency jitter. As a result of the stochastic nature of this jitter, it
is impossible to correct for induced shifts limiting the measurement precision. Additionally,
the energy fluctuations create thermal noise on the axial signal during the spin orientation
measurement with the continuous Stern-Gerlach effect as can be seen from equations (2.31)
and (2.37). Reducing the temperature of each mode with an additional cooling mechanism
reduces these fluctuations and improves the signal-to-noise ratio of the spin state detection,
making a spin orientation measurement in some cases at all possible.

So far, electrodes are assumed to be perfectly cylindrical and the magnetic field to be
aligned with the trap axis and thus with the symmetry axis of the electric field. The
lowest order deviation from roundness can be characterized by an ellipticity ε. If this
ellipticity is non-zero and the tilting angle between the magnetic and the electric field θ
is non-vanishing, Brown and Gabrielse showed that using the invariance theorem (c.f.
equation (2.33)) to calculate the free cyclotron frequency νc, the first order shifts cancel
out each other. The relative uncertainty of the free cyclotron frequency yields

∆νc
νc

=

√√√√(ν2
+
ν2
c

∆ν+
ν+

)2

+
(
ν2
z

ν2
c

∆νz
νz

)2
+
(
ν2
−
ν2
c

∆ν−
ν−

)2

. (2.38)
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Considering the scaling of the eigenfrequencies for weak axial confinement ν+ � νz >� ν−
it becomes apparent that the relative modified cyclotron error constitutes the largest
contribution to the uncertainty of the free cyclotron frequency.

The minimization of the apparatus shifts is, in principle, only limited by the machining
and aligning precision. Method inherent effects however constitute a natural lower limit,
which cannot be changed by technical means.

One inherent contribution is the image charge effect, which increases with the charge
state of the ion. The ion produces image charges on the electrodes, creating an electric
field altering the trap frequencies. The influence on the radial motional degrees has been
calculated to be approximately ∆ν± ≈ ∓qion/(8π2ε0B0d

3νpm), where d is the typical
electrode radius [36]. The shift of the free cyclotron frequency using the invariance theorem
(2.33) becomes

∆ωc
ωc
≈
(
ω−
ωc
− ω+
ωc

)
qion

4πε0B0ωcd3 (2.39)

for split electrodes in a typical mean distance d. This shift decreases with an increasing
trap radius and magnetic field B0. The z-component is negligible if no closed end caps
are present, as it is the case in most cylindrical trap geometries. The dominant part due
to the image charge effect on the modified cyclotron frequency scales approximately with
the mass of the ion. In the Alphatrap experiment, this shift for a 208Pb81+ ion with the
trap parameter d and for ωz → 0 would become ∆ωc/ωc ≈ −6 · 10−9 in the AT while for
the PT with its larger diameter, the shift would be ∆ωc/ωc ≈ −2 · 10−10.

Another important method inherent shift is the relativistic shift, which is due to the
relativistic mass increase mrel = γmion for a fast moving ion with Lorentz factor γ =
(1−v2/c2)−1/2 with velocity v and speed of light c. The shift of the free cyclotron frequency
is given by

∆νc
νc

= νc,rel
νc
− 1 = mion

γmion
− 1 ≈ − v2

2c2 = − E+
mionc2 . (2.40)

Here, only the contribution of the modified cyclotron motion was taken into account. A
typical energy for the cyclotron mode of a 12C5+ ion in a 4 T magnetic field coupled to the
axial mode at νz = 660 kHz, which is in thermal equilibrium with a cryogenic tank circuit
at Tres = 4.2 K is given by E+ = ν+/νzkBTres ≈ 14 meV with the Boltzmann constant kB.
The relative relativistic shift for this ion is then 8 · 10−12. A more detailed calculation
reveals the different contributions including also shifts of the Larmor-frequency [43]:

∆ν+/ν+
∆νz/νz
∆ν−/ν−
∆νL/νL

 = 1
mionc2


1 1/2 −(νz/ν+)2

1/2 3/8 −(νz/ν+)2/4
−(νz/ν+)2 −(νz/ν+)2/4 −(νz/ν+)4/4

2/9 1/2 −(νz/ν+)2

 ·
E+
Ez
E−

 . (2.41)

This shift depends on the energy of the ion and can be reduced by cooling of the motional
modes. The relativistic mass shift to lowest order scales linear with the energy of the ion,
such that cooling can efficiently increase the measurement precision. Note that the axial
and the modified cyclotron energy both strongly contribute to the shift of the axial and
the modified cyclotron mode.
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2.3 Laser Cooling

As showed in the previous section of this chapter, energy dependent frequency shifts
constitute a limit for the measurement precision. With increasing loop order however, the
effects of BS-QED become smaller and smaller. For this reason, cooling of the ion motion
plays an important role in modern Penning-trap g-factor experiments. Additionally, for
experiments on HCI using the continuous Stern-Gerlach effect for spin state detection, the
spin jump frequency decreases inversely to the mass of the ion in accordance with equation
(2.32). Noise due to temperature induced shifts limits the signal-to-noise ratio of the spin
detection. Equation 2.26 shows, that decreasing the radius of motion also decreases the
noise in the spin state detection.

Established techniques for cooling of the trapped ion are resistive cooling with a resonator
as described in section 2.2.1 and electronic feedback cooling [35, 45, 50]. Resistive cooling of
the ion’s axial mode results in an equilibrium temperature equal to the one of the electron
plasma in the resonator, which at Alphatrap will be near the boiling temperature of
helium. Electronic feedback cooling allows to further decrease the temperature of the mode
in thermal contact with the resonator. It has been shown in the g-factor experiment in
Mainz that temperatures as low as 250 mK can be achieved [35]. At Alphatrap laser
cooling should be implemented in order to further reduce the ion’s temperature.
Laser cooling was pioneered in the groups around Theodor Hänsch and Arthur

Schawlow and independently by David Wineland and Hans Dehmelt for trapped
ions [51–53]. For neutral atoms it was later mainly influenced by the development of the
Zeeman slower in the group of William Phillips and the optical molasses technique
pioneered by the group of Steven Chu [54, 55]. Laser cooling of neutral atoms and ions
has by now become a standard technique in atomic physics. To date, it has however not
been used for g-factor experiments in Penning traps.

2.3.1 Doppler Cooling

The principle of laser cooling is based upon the resonant absorption of photons in a closed
two-level system and its spontaneous emission. During Doppler cooling, absorption of light
leads to a transfer of momentum from the photon to the atom directed along the axis
of laser beam propagation. The momentum carried by a single photon is p = ~k where
k = 2π/λ is the wavelength-dependent wave vector. The change in velocity, the so-called
recoil velocity, of a 9Be1+ ion upon the absorption of a single photon with wavelength
313.13 nm can be calculated, yielding approximately 0.14 m s−1. While the absorption
process is directed, the distribution of the direction of spontaneously emitted photon is
spread over the whole solid angle. This leads to a net momentum transfer along the beam
axis. At the same time stimulated emission can occur, where the momentum transfer by
absorption and emission cancels out. In this section, the fundamental ideas of laser cooling
using a classical treatment of the particle’s motion is given.
The momentum transfer leads to a light pressure force on the particle. The absolute

value of this light pressure force can be written as [56]

Fscatt = ~k
1
2τ

I/Isat
1 + I/Isat + 4δ2τ2 (2.42)

and is composed of the momentum transfer of a single photon ~k and a scattering rate of
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the atomic transition of the two-level system. The scattering rate depends on its strength
on resonance (2τ)−1 and the detuning from the resonance frequency δ. τ is the lifetime of
the upper state under the assumption that the lower state does not decay. Note that this
result can be derived from the steady state solution of the optical Bloch equations and has
the shape of a Lorentzian. Power broadening of the transition is included and enters in
the form of the fraction of the saturation intensity I/Isat, where I is the power density of
the laser light. The saturation intensity of a transition in a two-level system describes the
intensity at which the upper and lower state are equally populated and is given by [56]

Isat = π

3
hc

λ3
0τ
. (2.43)

λ0 is the resonance wavelength of the transition and h denominates the Planck constant.
For an electronic transition with wavelength 313.13 nm and a lifetime of 8.1(4) ns as it can
be found in 9Be1+ the saturation intensity is hit at 836(42) W m−2 [57].
The net force on an atom or ion depends on the detuning δ of the photon frequency in

the rest frame of the atom with respect to the resonant transition frequency ν0 = c/λ0
between the two states of the two level system. The frequency of the cooling laser beam
in the laboratory frame is given by νB. The first order Doppler shift modifies the laser
frequency seen by the particle in its rest frame and depends on the projection of the
particle’s velocity v to the direction of propagation of the laser beam eB. The detuning of
the laser frequency as seen in the rest frame of the atom is given by

δ(v) = νB

(
1− v · eB

c

)
− ν0. (2.44)

The Doppler shift makes the light pressure velocity dependent, allowing to address only a
certain class of velocities. Lasers used for cooling are usually narrow in linewidth such that
they can be assumed to be perfectly monochromatic.

The interaction of the laser beam with the particle has to fulfill energy and momentum
conservation. If the laser is detuned to the red side of the resonance frequency by δB < 0,
energy from the motional state is necessary for the transition, which is only fulfilled for
particles moving in the opposite direction of the laser beam. The resonance is driven for
those particles where δ(v) = δB. If the laser is detuned to the blue side of the resonance
frequency, such that δB > 0, the excess energy of the photon is transferred to the motion
of the particle (c.f. figure 2.9). For cooling particles, the laser has thus to be red detuned.
The description above assumed a very long lifetime of the upper state and therefore a

narrow natural linewidth. With smaller temperatures and smaller velocities, the detuning
of the laser must become smaller as can be seen from equation (2.44). The finite natural
linewidth leads to an increasing number of absorbed blue detuned photons as the detuning
approaches zero. A fundamental lower limit of Doppler cooling is hit, when the heating due
to photons on the blue detuned side balances the cooling effect of the red shifted photons.
This steady state is called Doppler limit and is usually expressed in terms of a temperature
TD. It was derived to be [56]

TD = h

2kBτ
. (2.45)

This minimum temperature can be reached with a detuning set to δB = −(2τ)−1.
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Figure 2.9: Energy diagram of the Two-level system used for laser cooling for red detuning
(left) and blue detuning (right) of the laser frequency using a semi-classical
description. With red detuning motional energy hνBv·eB/c is absorbed slowing
the motion, in the blue detuned case this energy is emitted, accelerating the
motion, during a photon-particle interaction. For details, see text.

2.3.2 Laser Cooling in Penning Traps

Compared to the case of neutral atoms, where not only the cooling but also the trapping
has to be achieved by means of light pressure, Penning traps offer already a mechanism
for storing the ion using the Lorentz force, keeping it on a well defined trajectory [58,
59]. Therefore, a single laser beam in combination with mode coupling is sufficient. At
Alphatrap the laser beam will be oriented along the symmetry axis of the trap. Assuming
a perfectly oriented beam, only a cooling impact on the axial motion is expected. A tilted
laser beam with respect to the trap axis introduces a small effect on the cyclotron and
magnetron motion. For the magnetron motion, this leads to a heating of the temperature
and eventually to ion loss [60].
These difficulties can be resolved by coupling to another eigenmotion by means of an

externally applied quadrupolar field (c.f. section 2.2.5). This coupling also allows to cool
only a single eigenmotion. With resonant coupling, action is transferred between the
eigenmodes. The temperatures of the different modes in thermal equilibrium with an
suitable quadrupolar drive applied are related by the trap frequencies with

T+ = ω+
ωz
Tz (2.46)

T− = −ω−
ωz
Tz. (2.47)

If the axial mode is cooled and coupled to the cyclotron mode, energy is removed from
both modes.

Additional difficulties compared to Paul traps arise from the presence of a strong magnetic
field, coupling to the spin of the electron and shifting the energy levels. Laser cooling
allows to reduce the temperature of ions with a suitable closed optical transition. Typical
candidates are 24Mg1+ and 9Be1+, but laser cooling has also been demonstrated on 40Ca1+

[61–63]. For cooling of other ions, an indirect technique has to be used, as discussed below.
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2.4 Sympathetic Cooling

Highly charged ions with their tightly bound electrons have dipole transitions with very
large energy spacing. Hydrogen-like xenon has a transition wavelength of 0.040 192 nm for
the 1s1/2 ↔ 2p1/2 transition, a wavelength range which lies in the regime of soft X-rays [64].
These ions do not have suitable optical transitions for laser cooling, making sympathetic
cooling, thus cooling by interaction with other cooled ion species, necessary. Since all
particles in the trap are charged, sympathetic cooling is based on the Coulomb interaction
between the ions in the trap which can either be direct or via induced image charges on
the trap electrodes. There are two fundamentally different methods, common electrode
coupling and the direct Coulomb coupling. For the common electrode coupling the laser
cooled ion (LCI) and the HCI are stored in two different potential wells, coupled by the
induced image charges on a shared electrode. For direct Coulomb coupling, both ions are
stored in the same well resulting in a relative small distance and thus strong interaction
between the ions. To date, these techniques have not been used for g-factor measurements
in Penning traps. Both methods and their advantages will be sketched and discussed in
this section.

2.4.1 Coulomb Crystallization

Sympathetic cooling of a second ion species via a laser coolable species was first experimen-
tally observed in 1980 [61] in a two species non neutral plasma. Since then, several studies
in Penning traps have been performed using a large number of ions in the trap. [65–68].
For high-precision g-factor measurements at Alphatrap, the number of ions stored in the
same trap as the HCI has to be decreased in order to reduce the induced shifts by the
ion-ion interaction, called space charge shift [69].

At very low energies, ions undergo a phase transition from chaotic motion to an ordered
structure called Coulomb crystals [70]. For a non-neutral plasma of ions of a single species
in the trap, the behaviour can be characterized by the Coulomb coupling parameter

Γ = q2
ion

4πε0a0kBT
, (2.48)

describing the relative size of the Coulomb potential energy to the thermal energy of
the plasma. Here, a0 denotes the average distance between the ions and T the plasma
temperature. It has been shown, that for Γ > 2, the plasma shows a liquid-like behavior,
while around Γ ≈ 175 it experiences a phase transition forming Coulomb crystals [71].

In order to get a rough estimate on the behavior of the ions in such a crystal once
cooled to very low temperatures, one can simplify the three-dimensional situation in the
Penning trap by limiting the motion of both ions to the symmetry axis of the trap. The
trap should by filled with a two-ionic crystal with a laser coolable ion (denominated with
index 1) and a highly charged ion (denominated with index 2) with charge qi, mass mi

and oscillation frequencies ωi. An external potential U0 is applied, resulting in motional
angular frequencies ωi =

√
2qionU0/mion. The potential energy of this system becomes

Epot = 1
2m1ω

2
1x

2
1 + 1

2m2ω
2
2x

2
2 + q1q2

4πε0
1

|x1 − x2|
(2.49)
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where xi are the positions of the ions. The equilibrium distance d0 for two ions at rest can
be calculated, yielding

d0 =
(
q1 + q2
8πε0U0

) 1
3
. (2.50)

Assuming a 9Be1+ ion as LCI and a 208Pb81+ ion as HCI in the trap with a U0 chosen
such that ω1 = 2π · 300 kHz, the equilibrium distance d0 is approximately 25 µm. However,
the laser cooled ion can not be removed adiabatically4. This makes a new measurement
scheme necessary.
Coulomb crystals could be used to measure g-factor differences in a Ramsey type

measurement [31]. Spins are initialized in a well-defined state, e.g. both spins oriented
along the magnetic field. Using a microwave π/2 pulse, the system is brought into a
coherent state and each spin evolves with a frequency given by its Larmor frequency. The
phase difference of both states with g-factors g1 and g2 is given by

∆ϕ(t) = ϕ1(t)− ϕ2(t) =
∫ t

0

g1µB
~

B1(t)dt−
∫ t

0

g2µB
~

B2(t)dt. (2.51)

This equation assumes that the Zeeman shift is linear in B. After an evolution time, a
second microwave pulse prepares the system for the readout of the spin orientation. Varying
the evolution time allows to observe Ramsey fringes, from which the phase difference as
a function of evolution time can be deduced under the assumption, that B1(t) = B2(t).
Coulomb crystallization keeps both ions at a stable, very small distance, decreasing the
effect of spatial magnetic field variations. Coulomb crystallization is therefore an essential
prerequisite for g-factor difference measurements.

For absolute g-factor measurements, LCI and HCI have to be stored in separate potential
wells, making them adiabatically separable [31]. In this case the coupling strength via
Coulomb interaction dramatically decreases for traditional cylindrical Penning traps. Micro-
fabricated surface traps with typical equilibrium distances of 40 µm have been used [72]
and allow to circumvent the problem of the weak coupling strength. On the other hand,
these traps are not suitable for high-precision measurements requiring a good harmonicity
of the potential over a large region in the trap. Common Electrode Coupling can be used
to store ions in potential wells separated by a large distance.

2.4.2 Common Endcap Coupling

Common endcap coupling stores the LCI and the HCI in two different potential wells,
rendering an adiabatic separation possible. The motion of one ion periodically induces
image charges on a common grounded electrode, often but not necessarily an end cap.
These image charges create an additional electric potential on the electrode and exert force
on the other ion and vice versa. One can simplify the treatment by only allowing the
motion on the symmetry axis and thereby reducing again the dimensionality of the system.
The highly charged ion induces a voltage on the common electrode. This voltage can be

4When the LCI is removed from the trap by changing the shape of the electric potential, the HCI is heated
[31]. Therefore high-precision g-factor measurements are only feasible on an ensemble of a laser cooled
and highly charged ion, making the introduction of new measurement schemes necessary.
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expanded as a power series of the position along the axis, yielding

Uind(x1, x2) = q1

∞∑
k=1

C
(1)
k xk1q1

∞∑
k=1

C
(2)
k xk2 ≈ q1C

(1)
1 x1 + q2C

(2)
1 x2. (2.52)

Coefficients C(i)
k describe the capacity of the electrode and have dimensions V m−k. The

force on the laser cooled ion using the effective electrode distance D(i)
eff introduced in section

2.2.2 can be linearized for small motions with the force given by

F1(x1, x2) = q1

D
(1)
eff
Uind(x1, x2) = q2

1C
(1)
1

D
(1)
eff

x1 + q1q2C
(2)
1

D
(1)
eff

x2. (2.53)

A similar equation can be written down for the HCI. The term proportional to x1 causes a
frequency shift, being one contribution to the image charge frequency shift, as discussed in
section 2.2.6. The x2-dependent term gives the interaction between the ions to first order.
Using Newton’s third principle, one receives a system of coupled equations of motion of
the form

ẍ1 + ω̃2
1x1 = −q1q2C

(2)
1

m1D
(1)
eff

x2 (2.54)

ẍ2 + ω̃2
2x2 = −q1q2C

(1)
1

m2D
(2)
eff

x1. (2.55)

Here, the eigenfrequencies of a system without image charge contributions have been
replaced by the perturbed eigenfrequencies ω̃i accounting for the presence of the interaction
between the ions. The coupling strength of this system under the condition ω̃ = ω̃1 = ω̃2
using the rotating wave approximation is given by

Ω = q1q2
2ω̃

√
C

(1)
1 C

(2)
1

√
m1m2

√
D

(1)
eff D

(2)
eff

. (2.56)

By changing the well depths, the motional frequencies can be adjusted. The coupling
between the ions shifts again their eigenfrequencies. Before a measurement, the HCI is
cooled by common electrode coupling to a laser cooled ion. The coupling between the
ions is removed by emptying the potential well used to store the LCI, such that a g-factor
measurement on a cold HCI can be performed.
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3 Laser Cooling at Alphatrap

3.1 The Alphatrap Setup

The Alphatrap setup consists of three main parts grouped by their functionality: At the
heart of the experiment is the trap tower with the detection electronics attached. The
trap is housed in a cryostat that is installed in the bore of a superconducting magnet.
While the cryostat provides the cryogenic environment for trap tower and electronics, the
superconducting magnet creates a magnetic field of roughly 4 T for trapping. The setup
is completed by the offline beamline with its large variety of ion sources and allowing for
injection of externally produced ions. An overview over the complete Alphatrap setup
is shown in figure 3.1. The offline beamline and the trap system are described below,
emphasizing the particularities affecting laser cooling.

3.1.1 Ion Production and Cryosystem

Alphatrap will in the future have a number of different sources for ion production. These
sources are attached to the offline beamline, described in detail elsewhere [73]. A compact
electron beam ion trap (EBIT), called table top EBIT (tt-EBIT), serves as ion source for
low charge states. It is characterized by a magnetic field of 0.74 T, an electron current
of up to 5 mA and a acceleration voltage of 1.5 kV. A segmented einzel lens with beam
steering functionality and a Wien-type velocity filter serve for a rough beam purification.
A pair of 90◦ electrostatic benders deflect the ions from the horizontal to the vertical part
of the beamline. In the future the online beamline connecting the Heidelberg-EBIT will be
attached at this point. The Heidelberg-EBIT will deliver the HCI for the measurement
of g-factors in the high Z regime [74]. Additionally, a Laser Ion Source (LIS), currently
under development, will be connected to the bender as well [75]. It delivers singly charged
beryllium ions necessary for laser cooling by ablation from solid material using non-resonant
laser ablation.

The vertical part consists of two different ion optics assemblies. The first set of electrodes
can focus and steer the beam. A deceleration drift tube slows down ions extracted from
the ion sources at energies of 2− 5 kV/qion, as the capture section of the trap can be used
only with voltages of up to 1 kV. The second ion optics assembly is used to focus the ions
into the trap chamber. The whole beam line is at room temperature and is operated in the
regime of ultra high vacuum. The detection units with a micro-channel plate detector and
Faraday cup can be used for temporal and spatial beam monitoring. A cryogenic valve
separates the beamline operated at room temperature from the cryogenic trap chamber
improving the vacuum in the trap region [76].
The superconducting magnet (Oxford Instruments, Type 200 / 130) is charged to a

magnetic field strength of approximately 4 T. Its bore has a diameter of 130 mm, is
evacuated and houses the temperature shields of the nitrogen and helium cryostat. The
nitrogen cryostat is cooled with liquid N2 lowering the temperature of the temperature
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Figure 3.1: Overview over the Alphatrap setup. The offline beamline is formed by the
tt-EBIT (a), a steering lens (b), a velocity filter (c), two electrostatic benders
(d), diagnostic units (h,j), the first ion optics section (i), the second ion optics
section (k) and a cryogenic valve (l). The laser ion source will be attached at
(e) and the Heidelberg-EBIT will be connected to (g). In the inset, the magnet
with the cryostat cooled with liquid N2 (in green) and He (in purple) is shown.
The electronics section housing the cryogenic part of the detection system (m,
parts not shown), the trap chamber (n) and the mechanical adjustment for the
microwave/laser system (q) can be seen. Optical access is guaranteed by the
upper viewport(f), trap chamber viewport (o) and lower viewport (p).
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shield connected to it to a value slightly above the nitrogen boiling temperature, isolating
the trap chamber from the room temperature black body radiation. A second cryostat
vessel filled with liquid helium is connected to the electronics section and the trap chamber,
cooling them to a temperature slightly above 4.2 K. Ultra high vacuum in the trap chamber
leading to very long storage times is guaranteed by the cryogenic conditions.
Access for ions, microwaves and laser light is given by the top and bottom end of the

bore. Ions will be guided from the offline beamline via the top end of the bore into the
trap chamber. During loading, the cryogenic valve is opened and stays closed otherwise
to maintain good vacuum conditions in the trap chamber. In order to be able to keep
the valve closed during laser cooling, the laser is intended to be coupled into the trap
chamber together with the microwaves from the bottom through the lower viewport and
the trap chamber viewport. A further point to consider is the length of the vertical
beamline. It stretches from the benders to the upper end of the trap chamber over a
length of approximately 4.03 m. This upper end is formed by a diaphragm (c.f. with figure
3.2) which is used as a Faraday cup for ion detection and has an inner diameter of 3 mm.
Adding another 0.17 m for the distance between the bender and the upper viewport on top
of the vertical beamline, the angle of a laser beam coupled in from above the magnet has
to be stable better than ±arctan (1.5 mm/4200.8 mm) ≈ ±0.02◦. A laser beam coupled in
from the bottom has to pass a diaphragm with a 0.95 mm diameter formed by the mode
cleaner of the microwave system, which is installed 0.27 m away from the lower viewport.
The angle for this solution has to stay within the range of ±0.10◦, a five times larger
allowance than for the incoupling from the top.

3.1.2 The Trap and the Detection System

The heart of the experiments is the trap tower consisting of the Precision Trap and Analysis
Trap1 shown in figure 3.2. The upper entrance to the trap tower is formed by a Faraday
cup with a hole of 3 mm diameter. This diaphragm serves as pumping barrier between
the trap chamber and the ion transport tube. It is electrically connected to a cryogenic
charge amplifier in order to detect ions impinging on its surface. The lower end is used
to couple laser light and microwaves into the trap. It is connected to a waveguide with a
small diameter of 0.95 mm serving as mode cleaner. The microwaves are guided from the
outside through the lower viewport, a waveguide section installed to the shield of the liquid
nitrogen cryostat and the trap chamber viewport into the trap. Simulations have shown
that the microwaves passing this guiding setup are not single-mode any more, making
a mode cleaner in front of the trap necessary2. The laser beam with its much shorter
wavelength is assumed to behave as in free space and its diameter has to be small enough
to allow its spatial description be approximated by a Gaussian mode (c.f section 4.1.3).
The ions are extracted in bunches from the ion source, guided through the beamline

to the drift tubes, decelerated and finally captured in the capture section of the trap
tower. In order to minimize the transport losses due to angular spread of the ion beam,
the transport energy between the drift tubes and the trap section should be chosen as
high as possible, limited by the maximum operation voltage of the trap electrodes. The
capture electrodes are designed to withstand up to 1 kV. The ions are subsequently cooled
by means of evaporative cooling. A large number of thin electrodes allows to transport

1PhD thesis by Ioanna Arapoglou, in preparation
2Master thesis by Timo Steinsberger, in preparation
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Figure 3.2: The trap tower. The Faraday Cup (a) is situated at the upper end. Capture
electrodes (b) allow to capture and store ions with high voltages. The Precision
Trap is formed of 7 electrodes: end caps (c,i), outer correction electrodes (d,h),
inner correction electrodes (e,g) and ring electrode (f). The Analysis Trap
consists of 5 electrodes: end caps (j,n), correction electrodes (k,m) and ring
electrode (l) made out of ferromagnetic material. The microwaves and the laser
light is guided into the trap by a waveguide with mode cleaner (o).

ions adiabatically between the capture section, the Precision Trap and the Analysis Trap.
Currently the trap setup is in the commissioning stage. The microwave system is not
installed and capturing ions from sources at the beamline is not yet implemented. An
in-trap Electron Beam Ion Source is used to create carbon ions for trap commissioning [73].

The Analysis Trap consists of five electrodes, a pair of end caps and a pair of correction
electrodes surround the ring electrode with an inner diameter of 6 mm. Important trap
properties are given in table 3.1. The ring electrode is made out of a ferromagnetic cobalt
iron alloy, which creates a magnetic bottle at the center of the trap. The magnetic field
created by this configuration is shown in figure 2.7 (a), the z-component of the field strength
along the trap axis is shown in 2.7 (b). The strong magnetic bottle is necessary for a
reliable detection of the spin state even for highly charged ions. Considering equation (2.32),
the frequency jump decreases for heavy ions. For a 208Pb81+ ion at an axial frequency of
350 kHz it becomes 151 mHz. The shift induced by the standard deviation of the energy
fluctuations should be at least a factor of 5 smaller than the shift of a spin jump in order
to allow a reliable spin state detection. To meet this requirement, the standard deviation
of the energy fluctuations of the cyclotron mode in accordance to equation (2.31) has to
be smaller than 78 µeV, corresponding to a temperature of 0.90 K. This value could in
principle be reached with direct electronic feedback cooling of the modified cyclotron mode.
In the AT however, no cyclotron resonator is present, which is necessary for electronic
feedback cooling of the cyclotron mode. Its cooling is realized by coupling to the axial
mode. The temperatures of both modes are related by equation (2.47). Thus, a small
temperature well beyond 14 µK is necessary in the axial mode for a reliable spin state
detection, a value lying beyond the limits of electronic feedback cooling. The lower end
cap is connected to a resonator, serving for axial cooling and frequency measurement. The
electrode above the upper end cap is split into two halves, such that a quadrupolar drive
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property Analysis Trap Precision Trap

electrodes 5 7

trap radius r0 3 mm ∗ 9 mm ∗

electrostatic field coefficient C2 −0.041 63 mm−2 ∗ −3.525× 10−3 mm−2 ∗

typical tuning ratio UC/U0 0.8804 0.9642 ∗ (inner)

0.8156 ∗ (outer)

magnetic field B0 3.868 169 4(50) T 4 T ∗

magnetic bottle strength B2 45 T mm−2∗ ≈ 0 T mm−2 −0.041 63 mm−2 ∗

axial resonator center frequency 350 kHz∗ 660 kHz∗

Table 3.1: Summary of the properties of the Analysis Trap (AT) and Precision Trap (PT)
used in the Alphatrap experiment. Values marked with an asterisk (*) are
design values.

for coupling of the magnetron or modified cyclotron motion to the axial mode can be
achieved.

The precision trap is formed of seven electrodes with a diameter of 18 mm. In this trap,
the cyclotron frequency is measured and the spin flip is induced. The image charge shift
scaling inversely to the third power of the trap diameter (c.f equation (2.39)) is reduced by
the large dimensions. The seven electrode design with two sets of correction electrodes
creates a potential with very small deviation from the ideal quadrupolar potential in the
range of typical ion radii and amplitudes. A larger diameter also improves the harmonicity
of the potential compared to smaller traps such as the AT. Two resonators are attached to
the trap, configured for the measurement of the axial and the modified cyclotron motion.
The ring electrode as well as the upper and lower correction electrodes are split into
two halves. To the ring electrode, a dipolar drive can be applied acting on the radial
eigenmotions. To the upper first correction electrode a quadrupolar drive can be applied
to couple one of the radial modes to the axial mode. The lower first correction electrode is
connected to the modified cyclotron resonator. The upper second correction electrode is
split with a ratio of 1:3 such that a quadrupolar drive coupling magnetron and modified
cyclotron motion can be applied. Lastly, the lower end cap electrode connects to the PT
axial resonator for the axial frequency measurement and cooling. Both resonators allow for
electronic feedback cooling of the corresponding mode. Important properties of the trap
can be found in table 3.1.
The detection system3 includes in its cryogenic part the resonators, amplifiers, filter

stages and switches for the drive signals. It is complemented by amplifiers, downmixer,
FFT analyzer and voltage sources exposed to room temperature. The resonators are
superconducting in order to reach a high quality factor. While the axial resonators together
with the trap attached are fixed at a center frequency of 660 kHz, the center frequency of

3PhD thesis by Andreas Weigel, in preparation
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Ion Transition Wavelength Charge-to-mass Ratio Repumper Reference
9Be1+ 2S1/2 ↔ 2P3/2 313 nm ≈ 0.111 e u−1 no [62]
24Mg1+ 2S1/2 ↔ 2P3/2 280 nm ≈ 0.042 e u−1 no [61]
40Ca1+ 2S1/2 ↔ 2P1/2 397 nm ≈ 0.025 e u−1 yes [63]

Table 3.2: Overview over ion species where laser cooling in Penning traps has been shown.
The charge-to-mass ratio is given in units of the elementary charge over the
atomic mass unit.

the modified cyclotron resonator can be tuned. The axial frequency can be chosen by the
potential, bringing the ions motion into resonance with the tank circuit. The modified
cyclotron frequency however is mainly determined by the strength of the magnetic field and
essentially fixed. Using a varactor diode, the frequency of the modified cyclotron resonator
can be tuned away from resonance. This additionally allows to observe ions of different
masses without changes in the setup. Further details can be found in [77]. A separate
cryogenic amplifier for each resonator picks up the signal and amplifies it. The signal is
amplified a second time with a room temperature amplifier and mixed down using a single
sideband mixer to analyze it on an FFT audio analyzer. The electrodes of the trap tower
are supplied with filtered voltage. The end cap electrodes are grounded by the voltage
source during normal operation.
Most Penning trap setups with laser cooling use fluorescence detection to find and

stabilize the wavelength on the resonance of the electronic transition. Photodiodes are
installed perpendicular to the cooling laser to collect light emitted by the fluorescent ions.
At Alphatrap however, it is hard to include photodiodes into the trap setup. On one
hand the efficiency of the light collection increases with the solid angle covered by them.
On the other hand, electric field distortions created by the necessary holes in the electrodes
are at odds with the aim of a high-precision measurement. The effect of laser cooling can
be observed via the measurable temperature of the different modes. This measurement
however requires a couple of minutes. For effective cooling, the laser system therefore
has to be stabilized with an external system to the resonance wavelength. The lack of
fluorescence feedback puts stringent requirements on the absolute accuracy and the stability.
Below laser cooling with beryllium at the Alphatrap-experiment and its implications
and requirements on the laser system and the wavelength stabilization are discussed.

3.2 Laser Cooling with Beryllium

For laser cooling, an ion with a closed electronic dipole transition in the optical range is
necessary. If ions can decay to any other state, additional laser beams, so-called repumpers,
are necessary to depopulate these states. Additionally, the lifetime of the upper state should
be as short as possible such that scattering events happen frequently and the cooling effect
is strong. Only for a few ions, laser cooling has been shown (c.f table 3.2). Magnesium and
beryllium have the most suitable term structure, as, in contrast to calcium, no 2D state
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below the excited level exists, to which the electron can decay4.
The Alphatrap experiment is aiming to sympathetically cool highly charged ions by

trapping the LCI in a Penning trap. The handling of two different ion species in the trap
becomes easier, the closer their charge-to-mass ratio is. This is especially important if both
ions are stored in the same potential well. For 208Pb81 this value becomes approximately
0.39 e u−1 for 132Xe53+ a value of 0.40 eu−1 is found. The most suitable candidate for
Alphatrap is therefore beryllium, as it has the largest charge-to-mass ratio, does not use a
repumper as explained below and requires a wavelength that is accessible with narrowband
laser systems.

3.2.1 Laser Cooling Transition

The magnetic field of the Penning trap shifts the different fine and hyperfine structure
levels thereby complicating the situation compared to other trap types. Beryllium shows
a fine structure splitting of the 2P state with transition frequencies to the ground state
given by 957.199 65(12) THz (313.197 416(39) nm in vacuum) for the 2S1/2 ↔ 2P1/2 and
957.396 80(14) THz (313.132 922(45) nm in vacuum) for the 2S1/2 ↔ 2P3/2 transition. The
fine structure splitting of the excited state is 197.15(064) GHz [62]. A transition between
the 2S1/2 and the 2P3/2 manifolds is used for laser cooling.
The lifetime of the excited states has been measured, yielding τ = 8.1(4) ns [57]. The

natural linewidth Γ is given by the Fourier limit, the corresponding line shape is a Lorentzian
with full width half maximum (FWHM) Γ [56]:

Γ = 1
τ
. (3.1)

It has a value of 2π · 19.6(10) MHz for the natural linewidth of the laser cooling transition.
The 9Be isotope carries a nuclear spin with quantum number I = 3/2 [78].

The energy level shifts ∆E of the ground state in the magnetic field compared to the
zero-field case are described by the Breit-Rabi formula. This analytic expression for the
Zeeman effect in a state with electron spin quantum number j = 1/2 of an atom or ion
with one valence electron including fine structure and hyperfine structure was derived by
Gregory Breit and Isodor Rabi [79]:

∆E = A

2(2I + 1) + gImFµnB + A

2

√
1− 4mF

(gJµb − gIµn)B
A(2I + 1) +

((gJµb − gIµn)B
A

)2
.

(3.2)
Here, I is the absolute value of the nuclear spin I in units of ~, gJ and gI are the g-factors
of the electron and the nucleus respectively, A is the hyperfine structure constant and
B is the applied external magnetic field strength. mF is the z-component of the total
angular momentum of the system with F = J + I. The hyperfine structure constant was
measured including a diamagnetic correction [80]. For a magnetic field of 4 T, a value
of 1.250 017 674(44) GHz is obtained. The g-factors of the electron and the nucleus have
been measured yielding values of gS = 2.002 262 06(42) and gI = −1.177 432(3)µN [12, 81].

4In beryllium (magnesium), no level between the 1s22s (2p63s) at 0 eV and 1s22p (2p63p) at 3.9 eV (4.4 eV)
manifolds exist. The next energetically close state is the 1s23s (2p64s) state at 10.9 eV (8.7 eV). In
calcium, the 3p63d state at 1.7 eV lies between the 3p64s and the 3p64p manifold at 3.2 eV used for
cooling [64].
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Figure 3.3: Term structure of the beryllium 2S1/2 ground state with an external magnetic
field applied. The inset shows the behaviour in the transition range between
the anomalous Zeeman effect and the Paschen-Back regime of the hyperfine
structure.

Being a state with orbital angular momentum zero, gJ = gS holds. The energy levels of
the different hyperfine levels as a function of the external magnetic field are plotted in
figure 3.3. A critical field strength estimate, where the anomalous Zeeman effect turns over
into the hyperfine Paschen-Back effect can be defined as

Bcrit = A

µBgJ
. (3.3)

At this field strength, nuclear spin I and electron spin J start to decouple and F is not a
good quantum number for the description of the system any more. For the ground state, it
is 45 mT, such that for the ion in the magnetic field of 4 T a Paschen-Back effect of the
hyperfine structure is observed. The transition regime is plotted in the inset of figure 3.3.

The upper level used for laser cooling is the 2P3/2 manifold. The hyperfine splitting is
significantly smaller than the natural linewidth of the laser cooling transition. Theoretical
calculations have found a value of A = 2.030(6) MHz [82]. The nuclear g-factor gI is
assumed to be identical for all electronic states.

For this level, no general analytic solution exists. By diagonalizing the Hamiltonian,
one obtains the eigenenergies as a function of the magnetic field. The system is described
in a basis of wave function characterized by quantum numbers J , mJ , I and mI . The
Hamiltonian of the coupling of nuclear and electron magnetic moment to the external

34



magnetic field describing the normal Zeeman shift is given by [56]

HZ =
(
gJµBĴz + gIµNÎz

)
B. (3.4)

The Landé g-factor for a state with non-zero angular momentum can be found by first
order perturbation theory, yielding [83]

gJ = gL
J(J + 1) + L(L+ 1)− S(S + 1)

2J(J + 1) + gS
J(J + 1)− L(L+ 1) + S(S + 1)

2J(J + 1) . (3.5)

For beryllium with its single valence electron, gL = 1 is useful. The resulting matrix for a
specific basis contains only diagonal elements. The Hamiltonian of the hyperfine structure,
describing the interaction between the nuclear magnetic moment and the electron magnetic
moment, can be written as [56]

HHFS = A Î · Ĵ = A

(1
2 Î+Ĵ− + 1

2 Î−Ĵ+ + ÎzĴz

)
. (3.6)

Here, the angular momentum vector operators Î and Ĵ have been rewritten in terms of the
angular momentum raising and lowering operators Ĵ+ and Ĵ−. These operators have an
eigenvalue equation [83]

Ĵ± |J mJ〉 =
√
J(J + 1)−mJ(mJ ± 1) |J mJ ± 1〉. (3.7)

The matrix thus has off-diagonal elements. In matrix notation, it becomes

〈 J mJ I mI |HZ +HHFS|J ′ m′J I ′ m′I〉 =(
(gJµBmJ + gIµNmI)B +AmJm

′
J

)
δmJm′J δmIm

′
I

+1
2

√
J ′(J ′ + 1)−m′J(m′J − 1)

√
I ′(I ′ + 1)−m′I(m′I + 1)δmJm′J−1δmIm′I+1

+1
2

√
J ′(J ′ + 1)−m′J(m′J + 1)

√
I ′(I ′ + 1)−m′I(m′I − 1)δmJm′J+1δmIm′I−1.

(3.8)

From this matrix, the magnetic field dependent eigenenergies can be determined for each
state by solving the eigenvalue problem. The resulting term structure of the 2P3/2 state is
shown in figure 3.4.
The 2P1/2 state can again be described using the Breit-Rabi formula in equation (3.2).

The fine structure constant is given by A = 237.2(72) MHz [62]. The Landé g-factor can be
calculated using equation (3.5). The critical field strength is 25 mT. The levels are shown
in figure 3.4.

From the solution, estimates of the transition wavelengths in a magnetic field of 4 T and
3.86 T as it can be found in the AT and PT of the Alphatrap experiment can be obtained.
Numerical values for the shift of different states relevant for laser cooling are summarized
in table 3.3. Error estimates for the ground and the 2P1/2 state can be calculated from
the uncertainties of the constants used in equation (3.2). For the 2P3/2 state however, the
system has been solved using numerical evaluation of the eigenvalue problem. For this
reason, no uncertainty is specified. The values given should be understood as an estimate
and serve as a starting point for finding the resonance. Additionally, the g-factor gJ in
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Figure 3.4: Term structure of the beryllium 2P excited state in a strong magnetic field
(a) and in the transition regime between F coupling and I-J coupling for the
2P3/2 state (b) and for the 2P1/2 state (c).

equation (3.5) used for the 2P1/2 and 2P3/2 states is obtained using first order perturbation
theory.

The cooling transition should form a closed cycle where the electron in the excited state
could only fall back to one Zeeman level of the 2S1/2 ground state via an allowed (i.e. dipole)
transition. This requirement is fulfilled by the 2P3/2 mJ = −3/2 and 2S1/2 mJ = −1/2
hyperfine multiplets, forming a σ− transition. To drive this transition with a change in j
quantum number of ∆mj = −1, laser light with circular polarization along the quantization
axis given by the magnetic field is necessary. Equivalently, a closed cycle is also formed
with the 2S1/2 mJ = +1/2 level as ground state and the 2P3/2 mJ = 3/2 level as excited
state, forming a σ+-transition driven by laser light with opposite circular polarization.
With polarized laser light along the quantization axis, the electron is additionally pumped
optically into a specific hyperfine level. All states with exception of the states with I = 3/2
and I = −3/2 contain admixtures of other states. For laser light with circular polarization
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spontaneous emission
σ+-driven transition
σ−-driven transition

Figure 3.5: Laser cooling transitions in 9Be1+. The Zeeman levels of the 2S1/2 ground state
are to the left and right of the levels of the 2P excited state. Frequency spacing
between the levels (at 4 T) and spontaneous emission decay probabilities as
well as photon polarization are indicated.

driving σ+ transitions optical pumping to the I = 3/2 states can be observed, for light
driving σ− transitions optical pumping to the I = −3/2 state occurs. A discussion for
24Mg1+ with a similar term structure is given in [84]. Optical pumping of the fine structure
states is discussed below.
Knowledge of absolute frequencies of the laser cooling transition is necessary to narrow

down the range where the resonance is expected. This is particularly important at
Alphatrap, as no fluorescent detection facilitates the search of the resonance. By adding
the normal and anomalous Zeeman effect of the ground state and excited state to the
relevant fine structure zero-field transition frequency, estimates of the frequency value in
the PT and AT at Alphatrap can be calculated. Numerical values are given in table 3.3.
The given error includes the error of the ground state, the excited state 2P1/2 state and
the zero-field transition frequency. With an error on the order of 100 MHz, the latter is
the dominant contribution. For the Zeeman shift of the 2P3/2 state, no uncertainties are
available and do not contribute to the error budget. These transition values should be
considered an estimate.

3.2.2 Darkstates

As discussed in the previous section, two transitions are suitable for laser cooling, driven
by light along the quantization axis of circular polarization σ±. Therefore, only transitions
with quantum numbers ∆mJ = ±1/2 can be driven. Hyperfine substructure is neglected
as with polarized light optical pumping occurs. In the following discussion, the lower
state of the two-level system is referred to as bright ground state while the other Zeeman
level of 2S1/2 is designated as dark ground state. Once the electron is in the dark ground
state, the cooling effect stops. However, additional transitions can be off-resonantly driven
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depopulating the dark ground state. In the case of a σ+ cooling transition, an electron
in the dark ground state 2S1/2 mJ = −1/2 is excited to the 2P1/2 mJ = +1/2 and the
2P3/2 mJ = +1/2 states. For a σ− cooling transition, excitation to the 2P1/2 mJ = −1/2
and the 2P3/2 mJ = −1/2 states can occur. The electron decays from these two excited
states to either Zeeman level of the ground state. The 2P3/2 mJ = 1/2 state for instance can
decay emitting π and σ− radiation. The transition probability AmJ,e,mJ,g from a state with
angular momentum z-component mJ,e to a state with mJ,g is proportional to the square
of the corresponding Clebsch-Gordan coefficients 〈Jg, mJ,g, Lphoton, mL,photon|Je, mJ,e 〉
[85]:

A 1
2 ,−

1
2
∝ |〈3/2, 1/2, 1, −1|1/2, −1/2〉|2 = 2

3 (σ−-polarization) (3.9)

A 1
2 ,

1
2
∝ |〈3/2, 1/2, 1, 0|1/2, 1/2〉|2 = 1

3 (π-polarization). (3.10)

The slightly higher probability to decay to the bright ground state is a specific feature
of beryllium and constitutes an intrinsic repumping mechanism. The same treatment
applies to the 2P3/2 mJ = −1/2, 2P3/2 mJ = +1/2 and the 2P3/2 mJ = −1/2 states
with different resulting probabilities. Laser driven transition for σ+ and σ− light and
spontaneous emission decay channels with their corresponding probabilities are shown in
figure 3.5.

For both circular polarizations of the cooling light, the nearby off-resonant transitions
are driven depopulating the dark ground state, followed with a probability > 0.5 by a
decay to the bright ground state. To estimate the time scale on which this process takes
place, one considers the off-resonant scattering rate Rscatt(δ) given by the scattering force
(c.f. equation (2.42)) divided by ~k:

Rscatt(δ) = 1
2τ

I/Isat
1 + I/Isat + 4δ2τ2 . (3.11)

For cooling using a σ+-transition at saturation intensity, the 2S1/2 mJ = −1/2 ↔
2P3/2 mJ = 1/2 transition off-resonant by 35.18(20) GHz depopulates the dark ground
state at a rate of 0.77 Hz. In the case of σ−-polarized light, the 2S1/2 mJ = +1/2 ↔
2P3/2 mJ = −1/2 transition off-resonant by 37.04(20) GHz is useful, resulting in a scat-
tering rate of 0.69 Hz. σ+ has a slightly higher transition rate, making it the prefereed
candidate transition. As a result, the electron is transferred back to the bright ground state
with a 66 % probability after 1.3 s and with a 96 % probability after 4 s. The transitions
to the 2P1/2 states are further off-resonant with ≈ 180 GHz (σ+) and ≈ 216 GHz (σ−)
resulting in scattering rates of 29 mHz and 20 mHz. They do not optically pump the dark
ground state, but their contribution can be neglected. Depopulation occurs for instance, if
a small amount of light of the opposite handness is present in the cooling laser beam.

Thus, laser cooling of singly charged beryllium ions in a Penning trap with a magnetic
field of 4 T has an inherent re-pumping mechanism working on a seconds time scale. Typical
heating rates expected for the cyclotron mode are on the order of phonons per second [31].
During this time, the electron is in the dark ground state and anomalous heating increases
the radius of the cyclotron mode.
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3.2.3 Dip Detection in Presence of Laser Cooling

The axial motion of an ion on resonance with the resonator tank circuit is driven by the
electric field fluctuations induced by the temperature dependent Johnson-Nyquist noise.
At the same time, the ion is damped via the energy dissipation of the image charge current
through the resonator. In the absence of laser cooling, the ion creates a sharp dip on the
resonator, as long as it is in thermal equilibrium with the electron gas in the tank circuit,
as explained in section 2.2.2. If however laser cooling is present, an additional independent
damping force acts on the ion, cooling it below the equilibrium temperature and thereby
affecting its spectral filtering effect. The dip is expected to disappear for an ion cooled
below the temperature of the electron gas in the resonator.
This effect has been simulated under conditions similar to the ones in the PT of the

Alphatrap experiment. The simulation was simplified by replacing the tank circuit by
a simple ohmic resistor at Tres = 4.2 K with a resistance of Rres = 75 GΩ and by only
considering the axial motion. The resistance value has been chosen higher than the real
value of 370 MΩ of the Alphatrap PT. A 9Be1+ ion is simulated at axial frequency of
νz = 300 kHz in a trap with trap parameter Deff = 18.32× 10−3 m, corresponding to the
trap diameter of the PT. The laser light was detuned by δ̃ = −2.5τ−1, where τ is the 8.1 ns
lifetime of the upper state of the laser cooling transition with wave vector k = 2π/313 nm.

The simulation has been performed for different laser light intensities using the numerical
software package MATLAB. Random numbers nR have been created using the built-
in function giving random samples of a normal distribution with unity variance. The
Johnson-Nyquist noise used for simulation has been calculated using the relation

Unoise(t) =
√

4kBTresRres∆f · nR. (3.12)

The bandwidth was chosen such that ∆f = 2 ·#samples/T , where #samples denotes the
number of discrete time steps and T the overall integration time. The equation of motion
to be integrated becomes

z̈(t) = −(2πνz)2z(t)− Unoise(t)qion
mionDeff

− Rresq
2
ion

mionD2
eff
ż(t)− ~k

1
2τ

I/Isat

1 + I/Isat + 4(ż(t)k + δ̃)2τ2 .

(3.13)
The first term on the right hand side describes the action of the harmonic potential, the
second gives the excitation due to noise on the electrodes and the third represents the
damping due to the image current in the resonator. The fourth term describes the effect of
laser cooling on the axial motion of the ion and compares to equation (2.42).

Results for three different saturation intensities are shown in figure 3.6. One can observe
that the peak starts to vanish with increasing intensity. For the situation in the PT, a
much stronger effect is expected. Here, a coupling to the resonator approximately 200
times stronger compared to the situation in the real trap was simulated, as can be seen
from the cooling time constant in equation (2.22). As a consequence, the disappearance of
the dip is expected at much smaller intensities of the laser light in the real trap.
This effect can be used to find the resonant wavelength for laser cooling, as it is much

less time consuming compared to a full temperature measurement. While for a reasonable
temperature measurement, many dip spectra have to be taken, each single one requiring a
measurement time of approximately 1 min, this method requires only the measurement
of one spectrum. Additionally it can be used in the PT without modification of the trap
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Figure 3.6: Simulation of the dip detection in presence of laser cooling. The ion motion
was simulated for three different saturation intensities and with a bin width of
0.1 Hz in the obtained spectrum. For details, see text.

potential. However, this method cannot deliver quantitative information on the achieved
temperature of the ion. For a full temperature measurement in the PT in absence of a
magnetic bottle with energy dependent frequency shift, the trap potential can be made
on purpose anharmonic such that the C4 shift in equation (2.36) introduces an energy
dependent shift.

3.3 The Cooling Laser System

The laser system has to fulfill certain requirements in terms of wavelength and its temporal
stability. The strong magnetic field in the magnet shifts the energy level as a function
of the magnetic field. A broad tuning range of the laser is therefore advantageous to be
able to cover all fine and hyperfine transitions. Compared to other experiments using laser
cooled beryllium, Alphatrap will not have a fluorescent detection making it necessary to
measure the wavelength with high accuracy. Based on the measurement result, a regulation
loop locks the laser to the desired frequency. However, if the laser drifts on timescales
below the regulation loop interval, heating of the ion can occur, eventually limiting the
lowest achievable temperature. For cooling to the Doppler limit, a detuning of δB = Γ/2
is necessary. For a detuning δB < Γ/2 however, more blue detuned than red detuned
photons are absorbed, leading to a net heating effect. Drifts of the laser frequency below
the regulation interval can be characterized by a linewidth measured with an integration
time comparable to this regulation time scale. In practice, a detuning slightly above the
ideal value δB > Γ/2 is chosen. From these experiment specific constraints, requirements
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on the laser system can be identified. The following specifications have been set to evaluate
different proposals for light generation at 313 nm:

• The wavelength should be tunable in the range 313 nm ± 1 nm. This covers all
transitions between the S and P states in the magnetic field of Alphatrap.

• The spectral linewidth should be lower than 100 kHz measured with an integration
time of 5 µs and lower than 2 MHz measured with an integration time of 100 ms. Both
values ar significantly lower than the natural linewidth of 9Be+, such that heating of
the ion due to drifts in laser frequency even for a detuning close to the Doppler limit
is avoided.

• The wavelength should be stabilized to a fixed value with an absolute accuracy of
better than 4 MHz. The accurate knowledge of the laser frequency compensates the
lack of fluorescence detection during normal operation.

The system used at Alphatrap is a fully commercial “TA FHG pro” laser system
manufactured by Toptica Photonics AG [86]. It consists of a External Cavity Diode laser
(ECDL) emitting in the infrared at 1252 nm and a Tapered Amplifier (TA). Subsequently
the light is fed into a series of two cavities with a non-linear medium, each doubling
the frequency of the input light. The cavities are called Second Harmonic Generation
(SHG) and Fourth Harmonic Generation (FHG), corresponding to the multiples of the
fundamental wavelength emitted by the diode. The system is completed by a wavelength
meter with regulation loop for wavelength stabilization and a wavelength reference. The
system is shown in figure 3.7. The details of the individual constituents are discussed in
the sections below.

3.3.1 The Cooling Laser

The fundamental light is emitted by an External Cavity Diode Laser. An optical resonator
is formed by the amplifying semiconductor laser diode with an high reflectivity surface
forming a mirror and an external grating which can by adjusted in angle for wavelength
selection. The other end of the semiconductor material is anti-reflection coated to avoid
undesired resonances. A lens in between adjusts the numerical aperture of the light coming
out of the semiconductor laser diode. This is the so-called Littrow configuration of an
ECDL. The extended length of the resonator compared to solitary semiconductor diodes
as well as the small bandwidth of the resonator imposed by the grating help to reduce the
linewidth [87]. The linewidth of the 313 nm light originates from frequency fluctuations in
the laser diode. The intrinsic noise of an ECDL is estimated to be on the order of a few tens
of kilohertz [88]. To this intrinsic noise due to quantum processes as stimulated emission
and optical losses in the cavity, technical noise adds. This technical noise is induced by
fluctuations in the diode current and diode temperature as well as by mechanical vibrations
[89]. A piezo is used to adjust the resonator length, which is useful when stabilizing the
wavelength.

This specific laser diode has a typical output power of 85 mW. For the conversion in a
non-linear crystal, higher intensities are necessary. The light passes an optical isolator to
protect the ECDL and is fed into a Tapered Amplifier. The TA consists of an anti-reflection
coated semiconductor material acting as gain medium. The light is amplified by stimulated
emission during its transit, conserving its time-spectral characteristics. With a current of
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Figure 3.7: Overview over the laser system. The laser diode (a) with the external grating
(b), the Tapered Amplifier (d), the SHG cavity (i) and FHG cavity (j) are
shown. Optical isolators (c) prevent damage from reflected light. A polarizing
beam splitter (f) in conjunction with an adjustable (e) and fixed (g) λ/2-plate
allows outcoupling of light at 626 nm. Cavities contain a non-linear crystal (l)
and piezos for length adjustment (h). For the cavity lock, external photodiodes
(m) are used. The signal is modulated by the diode (a) and an electro optical
modulator (k). Adapted from [86].

5.2 A applied to the semiconductor, a typical output power of 1.8 W is observed at typical
ECDL power.
Frequency conversion to 626 nm and then subsequently to 313 nm takes place in two

second harmonic generating cavities. A non-linear crystal in the beam waist of the cavity
doubles the frequency. This light is coupled out via a dichroic cavity mirror. The crystal
is temperature-stabilized, a stack of piezo elements behind one of the mirrors allows to
adjust the cavity length. To obtain the highest possible intra cavity power, making the
conversion process more efficient, the cavity has to be on resonance with the wavelength
of the in-coupled light. A Pound-Drever-Hall lock is used to electronically stabilize the
effective cavity length on resonance [90]. For this technique, the laser light of the ECDL
is modulated such that at the entrance of the cavity, sidebands can be observed. The
modulated light is partially reflected at the incoupling mirror onto a photodiode (c.f
figure 3.7 (m)) and brought into interference with the light leaking from the cavity. The
envelope of the beat note as a function of the cavity length is measured. This signal
is an antisymmetric function with a zero crossing at the cavity length that matches a
multiple of the wavelength. A regulation loop locked to this zero crossing is used to
stabilize the length on resonance. The modulation at the input of the FHG cavity is
obtained using an electro-optical modulator. Energy conservation of the non-linear process
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is fulfilled by the relation of the frequencies of the incoming and outgoing photons given by
2 · νin = νout. To guarantee momentum conservation, phase matching of the linear crystal
is necessary. The nonlinear crystal is birefringent, its refractive index n(ν, ϕ) depends on
the frequency and the angle ϕ of incidence with respect to the fast axis. The condition
for the second harmonic generating process to take place written in terms of wave vectors
becomes kout = n(2νin, ϕ)êout/c = 2 · kin = 2 · n(νin, ϕ)êin/c. It is achieved by adjusting
the temperature and the angle of the crystal. The SHG cavity typically creates 800 mW
of output power. This light is converted to typical values of 300 mW in the FHG cavity.
The efficiency of the conversion process decreases with smaller input power from typically
≈ 44 % in the SHG to ≈ 38 % in the FHG.
For future extensions, outcoupling of 626 nm-light is available. A rotatable half-wave

plate is used to couple out an adjustable amount of light through a polarizing beam splitter.
A second fixed half-wave plate turns the polarization back. The light can be shifted in
frequency and then frequency doubled in another cavity. This could be used for instance
for a probe laser beam for spectroscopy on the LCI, a repumper or for a second cooling
beam for Raman cooling.

3.3.2 Wavelength Stabilization

For wavelength stabilization, a wavelength meter WSU-2 manufactured by HighFinesse is
used. The necessary absolute calibration of this device is provided by a helium-neon laser
system LJSC-3-11 manufactured by Lasertex and stabilized to an iodine transition.
The wavelength meter uses a set of Fizeau-type interferometers and a CCD array to

record the interference patterns. It is specified to have an accuracy of better than 2 MHz
and a resolution of 500 kHz. The measurement sampling rate depends on the exposure
time of the CCD and has an upper limit of 150 Hz. A software based Proportional-Integral-
Derivative controller (PID) with adjustable parameters is included into the wavelength
meter. The output signal is converted to an analog voltage and used to adjust the laser
frequency via the ECDL piezo.
Environmental variables slightly change the interferometric behavior and, without cor-

rection, limit the achievable accuracy. Although the wavelength meter is equipped with
temperature and pressure sensors correcting for shifts, it is necessary to recalibrate the
wavelength meter regularly to ensure accuracy. The 2 MHz accuracy requires in conformity
with the manufacturer’s specifications a recalibration at least every 2 min. The reference
frequency is delivered by the helium-neon laser system. It features a relative frequency
stability of δν/ν = 1 · 10−11 over an averaging period of 1 s and a frequency uncertainty
smaller than 12 kHz. The absolute accuracy is achieved by an intra-cavity iodine spec-
troscopy. The wavelength is locked to a hyperfine component of the R(127) 11-5 transition,
accepted as a frequency standard 5.

3.3.3 Optical Fibers

The laser system will be installed in a dedicated room next to the Alphatrap laboratory
where the magnet with the trap system is installed. The laser light has to be guided from
the table in the laser room to the support frame of the magnet over a distance of roughly

5The hyperfine component “f” of the R(127) 11-5 transition is recognised as a realization of the meter by
the Bureau International des Poids et Mesures [91].
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4 m. To avoid instability of the laser beam due to relative vibrations and motion between
the laser table and the magnet support frame, an optical fiber should be used to transport
the 313 nm light to the incoupling mechanism installed under the magnet (c.f. figure 3.1
(q)).

Difficulties with the fiber transport arise from the short wavelength. Fibers are typically
manufactured from doped fused silica glass, which tends to form chemical defects absorbing
and scattering radiation, so-called color centers, when exposed to ultraviolet radiation [92].
Two approaches help to circumvent this problem: The degrading of the fiber due to the
formation of color centers is proportional to the intensity of the radiation. Enlarging the
mode field area reduces the intensity. Increasing the concentration of hydrogen in the glass
and subsequent irradiation with ultraviolet light alters the defects in the material and
prevents future formation of further color centers.

Classical step-index fibers are characterized by the dimensionless fiber parameter V with

V = 2π a
λ

√
n2
core − n2

cladding, (3.14)

where λ is the wavelength, a the radius of the fiber core and n the refractive indices
of the core and the cladding. The numerical aperture of the fiber is given by NA =
(n2

core − n2
cladding)1/2. [93]. Depending on the core diameter, the guidance can either be

single or multi mode. Single-mode operation is given under the condition V < 2.405.
Fibers with a larger V allow more than one mode to propagate. The number of modes M
supported by the fiber under the assumption V � 1 can be approximated as [93]

M ≈ 4V 2

π2 . (3.15)

Typical multimode fibers supporting ultraviolet light have a core diameter larger than
50 µm and a numerical aperture larger than 0.22. Using equation (3.15), fibers with
these characteristics support more than 1× 104 different modes. Coupling between these
modes and thereby guidance efficiency of the fundamental mode is highly sensitive to
environmental conditions, especially to strain. Single-mode guidance of the fiber is for a
reliable operation desirable. This requirement conflicts with the necessity of a large mode
field radius in step index fibers reducing the degrading of the fiber due to solarization.

To circumvent this difficulty, Photonic Crystal Fibers (PCF) are used. The fiber consists
of a structure of small air holes forming a regular crystal-like pattern. An effective index
created by this structure replaces the change in refractive index in step-index fibers. The
material and structure is chosen in a way that the numerical aperture becomes proportional
to the wavelength NA = (n2

core,eff − n2
cladding,eff)1/2 ∝ λ. As a consequence the fiber

parameter V is independent of λ. With appropriately chosen parameters, the fiber can be
used in single-mode operation over a broad range of wavelengths, a property called endless
single-mode guidance.
PCFs have been shown to withstand continuous-wave radiation at 313 nm over a long

time [92, 94]. However, these fibers have been chemically modified before to prevent an
excessive formation of color-centers. This was achieved by putting them for several days
into an H2 environment at a pressure of around 100 bar. Subsequently, the fiber is exposed
to ultraviolet light, a process denominated as curing. The color-centers formed during this
process react with the hydrogen in the fiber to form structures that are either optically
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inactive or interact at different wavelengths [94]. Successful operation of a PCF with a
different type of structure without prior hydrogen loading at 218 nm over several days has
been reported [95].

Tests of hydrogen loaded photonic crystal fiber are currently in progress 6. A LMA-10-PM
PCF manufactured by NKT Photonics A/S is used. If the attenuation of 0.13(4) dB m−1

and incoupling efficiency of 70 % from reference [94] are assumed, a total transmission
efficiency of 66.4 % is obtained for a 4 m fiber. However, reported results have only been
measured with fiber lengths of up to 2 m.

3.3.4 Integration in the Setup

Without fluorescence detection, only minimal modifications to the current Alphatrap
setup are necessary to implement laser cooling. The laser light is coupled into the trap from
the bottom of the setup together with the microwaves. The window of the viewport in the
trap chamber and the outer isolation vacuum have to be transparent for microwaves around
100 GHz and for ultraviolet light at 957 THz corresponding in vacuum to a wavelength
of 313 nm. This viewport is slightly tilted with respect to the laser beam to prevent
the built-up of resonances. The light will exit the fiber through a fiber collimator with
integrated lens and pass a telescope to adjust the beam size. A microwave directional
coupler will be used to align the microwaves with the laser light in the same waveguide.
An adjustable mount allows to align laser and microwaves with the trap axis7.

6PhD thesis by Alexander Egl and PhD thesis by Matthew Bohman, both in preparation
7PhD thesis by Alexander Egl, Master thesis by Timo Steinsberger, both in preparation
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Table 3.3: Summary of Zeeman shifts and transition frequencies in 9Be+ driven during
laser cooling. For details, see text.
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4 Characterization of the Cooling Laser
System

The purpose of the measurements presented in this chapter is twofold: Firstly, the temporal
and frequency characteristics of the laser beam and its stabilization have been investigated.
The obtained quantities allow to make a prediction whether efficient laser cooling with the
chosen laser system will be possible at all. Secondly, the spatial characteristics of the beam
have been measured. These parameters allow to optimize the integration of the cooling
laser into the Alphatrap setup.

4.1 Cooling Laser

The laser light can be characterized by its frequency, peak field amplitude and spatial
distribution. Those parameters are subjected to changes over time. On short timescales,
power and spatial characteristics are assumed to be constant. The frequency fluctuations,
determining the frequency stability on a certain timescale, are characterized by a linewidth.
Results for this quantity are presented in section 4.1.1. On long timescales, from seconds
to hours, the frequency is assumed to be stable as an active regulation of the wavelength is
used. Power however varies with external environmental parameters, such as temperature
and pressure. Measurement of this influence are presented in section 4.1.2. The spatial
characteristics are assumed to be constant even on long timescales. The results of the
beam profile measurements are discussed in section 4.1.3.

4.1.1 Linewidth

Linewidth measurements have been performed on two different timescales, with an in-
tegration time of roughly 3.2 µs and on a longer timescale with an integration time of
100 ms. These measurements require two different techniques. For the short integration
time, a self-heterodyne setup was used, necessitating only one source of light. A heterodyne
measurement scheme using the light from two spectral-wise similar laser systems provides
an upper limit estimate of the linewidth for a long integration time. The linewidth shape is
determined by the spectrum of the frequency noise-creating underlying process. A linewidth
includes all fluctuations on timescales smaller than the integration time, with which the
measurement was performed. All changes on timescales longer than the integration time
become visible as drifts.
Spontaneous emission in the gain medium creates random phase fluctuations modeled

by a Gaussian process and thus creating a Lorentzian line shape. The width of this line
shape can be estimated using the well-known formula by Schawlow and Townes [96].
The intrinsic line shape of diode lasers however is dominated by relaxation oscillation of
carrier density, influencing the refractive index of the gain medium [97]. Electronic noise
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Figure 4.1: Self-heterodyne measurement of the laser linewidth. The data is shown in black
on a logarithmic scale with arbitrary units. A fit to the data is drawn in red.
For details, see text.

and change in environmental parameters as well as intensity fluctuations influence the
noise spectrum of laser diodes [98].
Two main types of phase noise can be observed. White noise with spectral density

S(ν) ∝ 1 is dominant for high frequencies, while flicker noise S(ν) ∝ ν−1 becomes
dominant for frequencies below 100 kHz [99]. White noise creates a Lorentzian line shape
if the measurement bandwidth is not limited [100]. For flicker noise, a Gaussian line shape
with a strong dependence on the integration time can be observed [98]. To account for
both types of noise, it has been proposed to use a Voigt spectrum given by the convolution
of a Lorentzian with a Gaussian line shape [101, 102]. Thus, on short timescales around
1 µs, the frequency noise spectrum can be modeled as constant in frequency. The analysis
of the self-heterodyne measurement described below assumes a white noise spectrum. For
a long 100 ms integration time, the frequency flicker noise contributions have to be taken
into account. The expected line shape is therefore a Voigt profile.
The self-heterodyne technique [103] uses a Mach-Zehnder type interferometer with a

long delaying fiber in one arm and an acousto-optical modulator (AOM) in the other arm.
The length of the fiber determines the delay between the two light components brought
into interference. They have left the laser resonator at different points in time and the
temporal distance between them defines the integration time of the measurement. A fast
photodiode is used to capture the beat note of the two interfering light pathways. The
AOM is used to shift the beat note signal away from DC to a higher frequency, where the
noise gives a smaller contribution facilitating the detection with a spectrum analyzer.

The integration timescale for this measurement is around 3 µs, corresponding to approxi-
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Figure 4.2: Heterodyne measurement of the superimposed signal of two similar laser systems.
The data is shown in black with a Lorentzian fit in red. For details, see text.

mately 1 km of delaying fiber. Under the assumption that the noise contribution on this
timescale can be modelled as white noise, the spectral distribution of the signal has been
shown to become [104]:

S(ω) ∝ τc

1 + (ω − Ω)2 τ2
c

(
1− e−

|τ |
τc

(
cos ((ω − Ω) |τ |) + sin ((ω − Ω) |τ |)

(ω − Ω) τc

))
+πe−

|τ |
τc δ (ω − Ω)

. (4.1)

Here, τ is the delay time of the fiber and Ω the modulation frequency of the AOM. δ(ν)
represents in this formula the Dirac delta function. The coherence time τc characterizes the
length of coherent emission from the laser and is closely related to the FWHM linewidth by

∆νlaser = 1
τc
. (4.2)

The coherence time can be obtained by a fit to the beat note spectrum. The last term in
equation (4.1) containing the Dirac delta function is omitted.

The measurement has been performed by the manufacturer of the laser system, Toptica
Photonics AG, with light of 626 nm wavelength. The fiber has an optical path length of
980(10) m and the AOM was set to a frequency of 80 MHz/(2π). Between the laser system
and the interferometer, an optical isolator was installed. The obtained frequency spectrum
on the photodiode around the modulation frequency is plotted in figure 4.1.
Accounting for the noise and the overall amplification of the detection system, a fit of

the form f(ν)[dB] = 10 · log10(
√
A2
signalS(ν)2 +A2

noise) to the logarithmic data in arbitrary
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units was used, where Asignal and Anoise represent the corresponding amplitudes. The
central Dirac delta peak was omitted in the fit. With a fixed modulation frequency
Ω = 80 rad s−1, the fit gives for the time delay of the interferometer arm with the fiber a
value of τ = 3.2719 µs ± 0.0072 µs. The obtained coherence time is τc = 74.9 µs ± 7.2 µs.
Signal and noise amplitudes are given by Anoise = 104± 11 and Anoise = (3.20± 0.18) · 10−9.
The fit describes well the minima in the data, revealing the underlying Lorentzian with a
width given by the coherence time. On the other hand, the fit does not describe well the
strength of the side lobes. This behavior was observed elsewhere [102].
The linewidth has been measured at 626 nm, for the 313 nm light relevant for laser

cooling, it is larger by a factor of 2. Thus the linewidth with a 3 µs integration time
becomes

∆ν313 nm = (26.7 kHz± 2.6 kHz) . (4.3)

This value is well below the natural linewidth of the laser cooling transition and justifies
the assumption, that the laser linewidth can be neglected with regard to the resonance
linewidth of the ion.

The heterodyne measurement setup uses two lasers, where equal characteristics of both
light sources are assumed. The light is brought into interference on a fast photodiode. One
light source is detuned with respect to the other, shifting the beat note to a frequency
typically on the order of 100 MHz. The signal is analyzed with a spectrum analyzer and
exhibits a convolution of the linewidths of both lasers.

For this measurement, the TA FHG pro laser described and characterized in the context
of this work was used in conjunction with a laser system of the same type owned by
the proton g-factor experiment at University of Mainz1 [105] . For the detection, an Osi
Optoelectronics FCI-125G-006HR fast photodiode was used in photoconductive mode with
a reverse bias voltage of 15 V. The supply voltage was filtered by a simple RC low-pass filter
with 15 kHz cut-off frequency to remove electronic noise. The signal was amplified using a
Mini Circuits ZFL-500LN amplifier and analysed with a Rohde & Schwarz ZVL spectrum
analyser. Both lasers were freely drifting with a frequency detuning of roughly 85 MHz.
The spectrum analyser was scanning a frequency span from 72.05 MHz to 87.05 MHz while
using a real bandwidth of 30 kHz and a sweep time of 100 ms without averaging.
The drift of the two lasers in between consecutive steps with respect to each other

was removed from the obtained spectra by fitting a symmetric Gaussian to the data
and thereby determining the center wavelength. The adjusted spectra were summed up
with the result depicted in figure 4.2. A fit of f(ν) = Anoise + Asignal · L(ν,∆ν̃) with a
Lorentzian line shape L(ν,∆ν̃) = (2/π) · (∆ν̃/(4ν2 + ∆ν̃2)) reveals a FWHM linewidth of
∆ν̃626 nm = 191.3(32) kHz. A Voigt profile, being the expected line shape, has been fitted
as well, converging to the shown Lorentzian line shape with a Gaussian width compatible
with 0. Although a Lorentzian and a Voigt profile do not describe the observed line shape
perfectly in the wings, this behavior is a hint that the noise spectrum on the chosen
timescale is dominated by white noise.
It can be shown that the convolution of two Lorentzian linewidths of the same finite

FWHM width ∆ν results in a Lorentzian line shape with twice the linewidth ∆ν̃ such that
L(ν,∆ν) ∗ L(ν,∆ν) = L(ν,∆ν̃) with ∆ν̃ = 2∆ν. The obtained linewidth for both laser at

1The optical parts of this system, with exception of the additional out coupling option of 626 nm-light at
the Alphatrap laser, are the same. The proton g-factor experiment laser uses a different analogue
control system, it is however assumed that the diode drivers are comparable in noise performance.
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Figure 4.3: Long-term power measurement. The noisy data of the power meter (blue) was
averaged over full minutes (orange).

626 nm has therefore to be multiplied by a factor of 1/2. Relevant for laser cooling is the
light at 313 nm, where the linewidth of the laser is doubled during the non-linear process,
yielding another factor of 2. The measured linewidth for an integration time of 100 ms
thus becomes

∆ν313 nm = 191.3 kHz± 3.2 kHz. (4.4)

This linewidth assumes two lasers with equal linewidth. A more conservative approach
would treat the result of the measurement as an upper limit estimate for the laser linewidth
of a single laser. This would result in ∆ν313 nm < 382.6(64) kHz. Even the more conservative
estimate of the linewidth is well below the natural linewidth of the laser cooling transition.
At a 10 Hz regulation interval of the wavelength stabilization, no significant heating due to
frequency fluctuations of the laser system should occur.

4.1.2 Power

With variations in environmental parameters such as temperature and pressure, the laser
power drifts slowly over time. It has been measured over 24 h to estimate the magnitude
of these drifts. The measurement was performed using a PM100D power meter with a
S120VC photo diode sensor, both manufactured by Thorlabs. The power as function of
daytime is shown in figure 4.3.
On the eve of the measurement, the built-in power optimization using an algorithm

driven alignment of the motorized in coupling mirrors to the TA, SHG and FHG has been
performed. The data has been averaged over 1 min steps and 1 h steps and the maximal
relative change has been calculated. A maximum drift of 0.16 % min−1 for 1 min averaging
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time and a drift of 2.9 % h−1 for an averaging time of 1 h have been observed. Considering
the fact, that a g-factor measurement campaign takes many days, the laser power drifts
significantly on these timescales and under lab conditions in an air conditioned room.

The laser has however a built-in power stabilization regulation loop measuring the power
coupled out from the cavities and regulating the current in the TA. This power regulation
will thus be useful to keep the power constant. This mechanism can however not correct for
changing efficiencies of the fiber transport to the trap. An additional power stabilization
measuring the power arriving behind the fiber might be necessary.

4.1.3 Beam Profile

Laser beams of a finite extent will weakly but significantly diverge in compliance with
Heisenberg’s uncertainty principle applied to the photon. A mathematical description of
an ideal beam with minimal angular spread is given by the Gaussian Beam. This beam
shape owes its name to the intensity distribution of Gaussian shape in radial direction. The
Gaussian beam constitutes the fundamental mode of Hermite-Gaussian Beams, which can
serve as a basis for the description of an arbitrary shape. Many laser beams can however
be approximated by only the fundamental mode, i.e. by a Gaussian beam.
An ideal Gaussian Beam is fully characterized by two parameters. A convenient way is

to choose the beam waist radius W0 and the Rayleigh range z0 for description. The beam
waist describes the diameter of the beam in the focus, while the Rayleigh range is the
distance at which the beam has broadened by a factor of

√
2, describing the depth of focus.

The propagation of a Gaussian Beam is sketched in figure 4.4. For an ideal Gaussian Beam,
the Rayleigh range and the beam waist radius are related by z0λ = πW 2

0 [106]. For real
laser beams, the relation between the divergence and the focusability has to be modified,
introducing a beam quality factor M2. The relation between beam waist and Rayleigh
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range becomes

M2 = π

λ

W 2
0
z0

. (4.5)

For a Gaussian beam, this value is one. Typical values for diode lasers lie within the range
between 1.1 to 1.7. Helium-neon lasers typically exhibit M2 values between 1 and 1.1 [93].
The intensity distribution of a Gaussian Beam propagating along the z-axis is given by

I(x, y, z) = I0

(
W0
W (z)

)2
exp

(
−2(x2 + y2)

W (z)2

)
, (4.6)

where the beam width is given by [93]

W (z) = W0

√
1 + (z/z0)2. (4.7)

In the far field for z � z0, the beam broadens linearly with the distance from the focal
point, described by the divergence angle θ = W0/z0. Measurement of the beam width
around the focal point and around a Rayleigh range apart allows to determine the two
fundamental parameters by a fit to the obtained beam width.
The profile of the 313 nm beam in a distance of 25 cm behind the laser aperture is

depicted in figure 4.5. This data was taken using a beam profiler with CCD camera (Ophir
Optronics Solutions SP620U). The pixel size is 4.4 µm× 4.4 µm. Several neutral density
filters tilted with respect to the beam axis were used to attenuate the beam. The neutral
density filters protecting the sensor are opaque for the UV light and had to be removed.
Dust on the sensor and the filters cause interference leading to the rough appearance of
the Gaussian shape. The beam has a pronounced excentricity roughly oriented along the
preferred directions of the laser system given by the horizontal and the vertical of the
laboratory system. Beam profiles are therefore measured for these two directions.
For the measurement of the beam quality factor, an aspheric lens (Thorlabs Inc.

ASL10142) with a focal length of f = 79 mm was used. The beam profiler, mounted
on a translation stage with a scale unit of 10 µm, was used to measure intensity distri-
butions. Data was taken in a randomized order at 313.13 nm ± 0.01 nm. The obtained
intensity distributions were summed over the x- and y-direction and a Gaussian line shape
fitted to the sum data. Within the framework of Gaussian beams, the beam width W (z) is
defined as the half width where the intensity has dropped to 1/e2 of its maximum. The
obtained data is plotted in figure 4.6 for both directions. The error bars account for the
uncertainty of the fit.

The beam width as described by equation (4.7) is fitted to the obtained data. The results
are summarized in table 4.1. The data shows clearly the astigmatism of the beam, probably
due to the set of two cylindrical lenses used for beam shaping behind the FHG. The beam
quality factor M2 is approximately 1.3, in good agreement with the expected value for a
diode laser. Values for both directions agree with each other within the uncertainty. Note
that these values give only an upper limit for the beam quality factor. The beam quality
factor is however not only influenced by the laser beam itself but also by the quality of the
focusing lens. The lens used to perform the measurement under discussion is specified to
be diffraction limited for wavelengths in the range 350 nm to 1620 nm and therefore the
given M2 constitute only an upper limit.
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Figure 4.5: Beam profile in the radial plane of the 313 nm beam 25 cm after the beam
aperture.

4.2 Wavelength Stabilization

The helium-neon laser provides a frequency standard for the calibration of the wavelength
meter. Not only the linewidth of the laser on timescales of the regulation loop interval
is crucial, but the wavelength meter also has to deliver accurate wavelength information.
The helium-neon reference laser is assumed to provide light of a known wavelength with
an accuracy of σν < 2.5 · 10−11, a negligible uncertainty compared to the precision of
the wavelength meter. Under this assumption, the wavelength meter without frequent
recalibration can be characterized against the light from the reference laser. The reference
laser delivers 100 µW of light, which is coupled into a single mode fiber. Using the
internal power measurement of the wavelength meter, around 3.5 µW are available for the
wavelength determination after transport through a single mode fiber. This limits the
minimum exposure time to a value of roughly 100 ms.

To estimate the uncertainty of the frequency measurement, the standard deviation of the

property horizontal data vertical data
beam waist W0 14.69 µm± 0.12 µm 9.85 µm± 0.16 µm
Rayleigh range z0 1705 µm± 30 µm 753 µm± 20 µm
beam quality factor M2 1.270± 0.031 1.293± 0.055

Table 4.1: Summary of Gaussian beam parameters obtained by a fit to the measured beam
width data in figure 4.6.
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Figure 4.6: Beam width of a Gaussian Beam measured with a diffraction limited lens. The
vertical data is shown in black, the horizontal data in red. The width is defined
with respect to a drop of 1/e2 of the maximal intensity.

measured frequencies has been calculated. Samples with different exposure times between
the minimum and the maximum exposure time of 10 s have been taken. The results are
plotted in figure 4.7. The frequency uncertainty at an exposure time of 100 ms is 181.6 kHz.
A slight trend to higher standard deviation at longer exposure times can be observed. This
is due to drifts of the wavelength meter on long time scales.

To characterize the time stability of the frequency measurement, again as function of
exposure time, the Allan variances of the measured frequencies of the reference laser have
been calculated. If the samples of a series of measured frequencies are given by νi and the
expectation value is denoted by 〈·〉, the Allan deviation is defined as

σν(τ) =
√

1
2〈(νn+1 − νn)2〉. (4.8)

The data was taken at corresponding exposure times, each sample represented by a value
νn. The obtained values are plotted in figure 4.7.

The data shows a clear trend of decreasing Allan deviation towards longer exposure time.
A turnaround is observed around 3 s, where the drift of the wavelength meter becomes
dominant over the noise. The best performance of the device is thus at exposure times
around this timescale. The minimal measured Allan deviation is 3.2× 10−10 at an exposure
time of 3.2 s. With this value at hand, one could make a worst case estimate of the drift of
the wavelength meter between two consecutive recalibration processes with the helium-neon
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Figure 4.7: Noise and stability of the wavelength meter measured against the helium-neon
laser. The standard deviations of a set of individual subsequent samples as
a function of exposure time are plotted as diamonds. Additionally the Allan
deviation of this sample is calculated, represented by the triangles. The overall
measurement time for each data point was 10.14 min.

reference laser, repeated every 2 min:((
3.2 · 10−10 + 1

) 120 s
3.2 s − 1

)
· 957 THz = 11.48 MHz. (4.9)

This value is still below the natural linewidth of the cooling transition.
To obtain an estimate of the optimal regulation time interval, the Allan deviation of light

of the cooling laser in a freely drifting wavelength meter has been determined additionally.
The result is shown in figure 4.8. A minimum can be observed around 100 ms. This
constitutes the optimal regulation interval. From comparison of the observed minima in
figures 4.7 and 4.8, it becomes apparent that the drifts of the laser limit the stability at
lower exposure times than the drifts of the wavelength meter. Active regulation of the
laser frequency will increase the wavelength stability.

4.3 Conclusion

For efficient cooling, the laser linewidth should be significantly below the natural transition
wavelength. This requirement has to hold on all timescales below the time interval on
which the laser frequency is actively regulated. Measurements of the linewidth with a
3 µs integration time reveal a frequency of 26.7(26) kHz. This linewidth is in agreement
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with typical linewidths of External Cavity Laser Diodes, as reported in references. The
measurement of the linewidth with an integration time of 100 ms is of particular interest
to ensure frequency stability between two regulation intervals. The measured value of
191.3(32) kHz is two orders of magnitude below the natural linewidth of the cooling
transition. Frequency drifts with characteristic timescales above 100 ms will be avoided by
the wavelength stabilization.

For this purpose, an accurate measurement of the frequency is necessary. The frequency
measurement has been shown to have a frequency uncertainty of 181.6 kHz for an 100 ms
interval. The accuracy is ensured by frequent calibration with the helium-neon reference
laser with stabilization to a I2 transition. The optimal time scale for the wavelength
regulation interval has been found to be around 100 ms.

The beam quality factor has been measured and is with an upper limit of M2 ≈ 1.3 within
the expectations for a diode laser. The necessity for power stabilization is emphasized by
the results of a long-term power measurement, as data taken should be independent of
environmental parameters and the shifts depend via the achievable ion temperature on the
laser power.
In combination with a successful test of the achievable wavelengths, it has been shown

that the requirements on the wavelength stability specified in section 3.3 are fulfilled.
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5 Outlook

In the context of this thesis, the laser system for laser cooling of 9Be1+ ions has been
commissioned. A suitable mechanism for laser cooling with beryllium has been evaluated
in the third chapter. The interaction of the external magnetic field of the Penning trap
with the nuclear and electronic spin alters the energy of the electronic energy levels of
the ion. Shifts for the magnetic field in the Alphatrap precision and analysis trap are
summarized in table 3.3. The intrinsic repumping mechanism has been evaluated under the
given circumstances at Alphatrap, revealing that a sufficiently fast repumping process
should take place. As a result, specifications of a suitable laser system have been discussed.
Key requirements are a wavelength at an integration time of 100 ms significantly below the
natural linewidth of the chosen cooling transition and a frequency stabilization with an
accuracy better than 2 MHz.

The linewidth has been measured in the context of this thesis with the results presented
in the fourth chapter. It has been found that the Laser systems meets the requirements.
The stability and precision of the wavelength meter has been characterized. Only the
absolute accuracy of the frequency measurement could not be verified in the context of
this thesis, as no suitable independent frequency standard was available. Additionally, the
spatial characteristics of the laser beam have been investigated. These parameters play an
important role in the design of the light transport to the trap, including coupling to an
optical photonic crystal fiber.
Implementation and testing of the light transport into the trap constitute the next

important step towards laser cooling of beryllium ions at Alphatrap. This does not only
include the mechanical adjustment of the laser beam, but necessitates also suitable vacuum
viewports, transparent at the same time to microwaves and ultraviolet laser light. For the
transport of the ultraviolet light, a hydrogen loaded fiber is necessary. Tests of suitable
single-mode photonic crystal fiber are currently in progress.
After the successful completion of the assembly and commissioning, Alphatrap is

expected to measure the g-factor of highly charged ions. As a successor of the g-factor
experiment at University of Mainz, delivering data on many light ions with a low to medium
atomic number Z, Alphatrap will focus on heavy HCI and their extreme electromagnetic
field strengths, extending the validated range of BS-QED. A first candidate would be
131Xe53+, where laser cooling will help to make the spin state detection more reliable.
Laser access to the trap also extends the experimental capabilities, making Alphatrap
additionally an versatile laser spectroscopy experiment. With an independent spin state
detection at hand, spectroscopy can be significantly simplified in special cases. The main
advantage of laser cooling is however the expected formation of Coulomb crystals in a trap
suitable for high precision measurement of g-factors. This prospect builds a base for the
direct phase-sensitive measurement of g-factor differences. These new techniques allows
for instance, among other interesting experiments, the measurement of the fine structure
constant, such that Alphatrap will live up to its name.
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