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Figure 1: Our predictive distribution upto t + 15 frames. The heat map encodes the probability of a certain pixel belonging to
the person. The variance of the distribution encodes the uncertainty. Row 1: Low uncertainty. Row 2: High uncertainty.

Abstract

Progress towards advanced systems for assisted and au-
tonomous driving is leveraging recent advances in recog-
nition and segmentation methods. Yet, we are still facing
challenges in bringing reliable driving to inner cities, as
those are composed of highly dynamic scenes observed from
a moving platform at considerable speeds. Anticipation be-
comes a key element in order to react timely and prevent
accidents. In this paper we argue that it is necessary to
predict at least 1 second and we thus propose a new model
that jointly predicts ego motion and people trajectories over
such large time horizons. We pay particular attention to
modeling the uncertainty of our estimates arising from the
non-deterministic nature of natural traffic scenes. Our ex-
perimental results show that it is indeed possible to predict
people trajectories at the desired time horizons and that our
uncertainty estimates are informative of the prediction error.
We also show that both sequence modeling of trajectories as
well as our novel method of long term odometry prediction
are essential for best performance.

1. Introduction

While methods for automatic scene understanding have
progressed rapidly over the past years, it is just one key
ingredient for assisted and autonomous driving. Human
capabilities go beyond inference of scene structure and en-

compass a broader type of scene understanding that also
lends itself to anticipating the future.

Anticipation is key in preventing collisions by predicting
future movements of dynamic agents e.g. people and cars in
inner cities. It is also the key to operating at practical safety
distances. Without anticipation, domain knowledge and ex-
perience, drivers would have to maintain an equally large
safety distance to all objects, which is clearly impractical in
dense and cluttered inner city traffic. Additionally, anticipa-
tion enables decision making, e.g. passing cars and pedes-
trians while respecting the safety of all participants. Even
at conservative and careful driving speeds of 25miles/hour
(∼ 40km/hour) in residential areas, the distance traveled
in 1 second corresponds roughly to the breaking distance.
Anticipation of traffic scenes on a time horizons of at least 1
second would therefore enable safe driving at such speeds.

We propose the first approach to predict people (pedestri-
ans including cyclists) trajectories from on-board cameras
over such long-time horizons with uncertainty estimates.
Due to the particular importance for safety, we are focusing
on the people class. While pedestrian trajectory prediction
has been approached in prior work, we propose the first ap-
proach for on-board prediction. As predictions are made
with respect to the moving vehicle, we formulate a novel
two stream model for long-term person bounding box predic-
tion and vehicle ego motion (odometry). In contrast to prior
work, we model both aleatoric (observation) uncertainty and
epistemic (model) uncertainty [4] in order to arrive at an
estimate of the overall uncertainty.
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Our contributions in detail are: 1. First approach to
long-term prediction of pedestrian bounding box sequences
from a mobile platform; 2. Novel sequence to sequence
model which provides a theoretically grounded approach
to quantify uncertainty associated with each prediction;
3. Detailed experimental evaluation of alternative architec-
tures illustrating the importance and effectiveness of using
a two-stream architecture; 4. Analysis of dependencies be-
tween uncertainty estimates and actual prediction error lead-
ing to an empirical error bound.

2. Related work
Human Trajectory Prediction. Recent works such as
[11, 22] focus on the task of pedestrian trajectory predic-
tion in 3D space. Initial trajectories and obstacle occupancy
maps are obtained by dense stereo matching, assuming a
linear road model of fixed width. However, 3D coordinates
and obstacle maps obtained from stereo matching can be
very noisy especially in unknown environments. Moreover,
evaluation is on sequences with linear or no vehicle ego-
motion. Our method does not depend upon unreliable 3D
coordinates and needs no assumptions about scene geometry
and vehicle ego-motion. Another class of models such as
[9, 28, 23, 1] consider the problem of pedestrian trajectory
prediction in a social context by modelling human-human
interactions. The state of the art model [1] proposes to es-
timate the trajectories of each person in the scene by an
instance of a “Social” LSTM. The instances of the Social
LSTM can communicate with a special pooling layer. This
enables the modelling of interactions and joint estimation of
trajectories of all pedestrians in the scene. In [26] the joint
estimation of robot and human trajectories are considered in
a social context. However, in case of on-board prediction ve-
hicle ego-motion dominates social aspects. Moreover, most
methods are trained/tested on static camera datasets which
are hand annotated with minimum observation noise. Apart
from these, the class of models such as [10, 13, 18, 31, 29]
aim at discovering motion patterns of humans and vehicles.
Such methods cannot be used for trajectory prediction and
do not consider vehicle ego-motion.
Modeling Uncertainty in Deep Learning. Popular deep
learning architectures do not model uncertainty. They as-
sume uniform constant observation noise (aleatoric uncer-
tainty). Heteroscedastic regression methods [20, 15] es-
timate aleatoric uncertanity by predicting the parameters
of a assumed observation noise distribution (also in [1]).
Bayesian neural networks [17, 19] offer a probabilistic view
of deep learning and provide model (epistemic) uncertainty
estimates. However, inference of model posterior in such
networks is difficult. Variational Inference is a popular
method. Gal et. al. in [6] showed that dropout training
in deep neural networks approximates Bayesian inference
in deep Gaussian processes. Extending these results it was

shown in [5] that dropout training can be cast as approximate
Bernoulli variational inference in Bayesian neural networks.
These results were extended to RNNs in [7]. The developed
Bayesian RNNs showed superior performance to standard
RNNs with dropout in various tasks. More recently, [12]
presents a Bayesian deep learning framework jointly estimat-
ing aleatoric uncertainty together with epistemic uncertainty.
The resulting framework gives new state-of-the-art results
on segmentation and depth regression benchmarks.
Assisted and Autonomous driving. One of the earliest
works on vehicle ego-motion (odometry) prediction or pop-
ularly, autonomous driving, was ALVINN by [21]. This
work showed the possibility of directly predicting steering
angles from visual input. This system used a simple fully-
connected network. More recently, [2] uses a convolutional
neural network for this task and achieves a autonomy of 90%
using a relatively small training set. However, the focus is on
highway driving. [27] proposes a FCN-LSTM that predicts
the next vehicle odometry based on the visual input captured
by an on-board camera and previous odometry of the vehicle.
Here, a diverse crowed sourced dataset is used. However,
these methods predict vehicle odometry (e.g. steering an-
gle) only for the next time-step. In contrast, we focus on
inner-city driving and predict multiple time-steps into the
future. [24] proposes a driving simulator that predicts the
future in form of frames but suffers from blurriness problems
in the long-term important details get lost. In [16] future
segmentation masks are predicted, but only mid-term (upto
0.5sec) future is predicted and there is no pedestrian spe-
cific evaluation. We predict the future in terms of bounding
box coordinates which remain well defined by design in the
long-term.

3. On-board Pedestrian Prediction under Un-
certainty

In order to anticipate motion of people in real-world
traffic scenes from on-board cameras, we propose a novel
approach that conditions the prediction of motion (subsec-
tion 3.1) of people on predicted odometry (subsection 3.4).
Moreover, our approach models both aleatoric and epis-
temic uncertainty. Our model (see Figure 2) consists of two
specialized streams for prediction of pedestrian motion and
odometry. The odometry specialist stream predicts the most
likely future vehicle odometry sequence. The bounding box
specialist stream consists of a novel Bayesian RNN encoder-
decoder architecture to predict odomerty conditioned distri-
butions over pedestrian trajectories and to capture epistemic
and aleatoric uncertainty. Bayesian probability theory pro-
vides us with a theoretically grounded approach to dealing
with both types of uncertainties (subsection 3.2).

We start by describing the bounding box prediction
stream of our model and introduce our novel Bayesian RNN
encoder-decoder which provides theoretically grounded un-



Figure 2: Two stream architecture for prediction of future pedestrian bounding boxes.

certainty estimates.

3.1. Prediction of Pedestrian Trajectories

A bounding box corresponding to the ith pedestrian ob-
served on-board a vehicle at time step t can be described
by the top-left and bottom-right pixel coordinates: bti =
{(xtl, ytl), (xbr, ybr)}. We want to predict the distribution
of future bounding box sequences Bf (where |Bp| = m) of
the pedestrian. We condition our predictions on the past
bounding box sequence Bp, the past odometry sequence Op
and the corresponding future odometry sequence Of of the
vehicle. The future odometry sequence Of is predicted condi-
tioned on the past odometry sequence Op and on-board visual
observation. Odometry sequences consists of the speed st

and steering angle dt of the vehicle, that is, ot = (st, dt).

p(Bf = [bt+1
i , ..., bt+n

i ] | Bp,Op,Of)

Bp = [bt−mi , ..., bti],

Op = [ot−m, ..., ot],

Of = [ot+1, ..., ot+n]

The variance of the predictive distribution p(Bf|Bp‘) pro-
vides a measure of the associated uncertainty.

We will describe a basic sequence to sequence RNN first
and then extend it to predict distributions and provide uncer-
tainty estimates. Our sequence to sequence RNN (Figure 2)
consists of two embedding layers, an encoder RNN and a
decoder RNN. The input sequence consists of the concate-
nated past bounding box and odometry sequences Bp,Op.
The input embedding layer embeds the inputs sequence xt
into the representation x̂t. This embedded sequence is read
by the encoder RNN (RNNenc) which produces a summary
vector vbbox. This summary vector is concatenated with pre-
dicted odometry Of and this summary sequence is embedded

using the second embedding layer. This embedded summary
sequence v̂ (containing information about past pedestrian
motion, past and future vehicle odometry) is used by the
decoder RNN (RNNdec) for prediction.

In the following, we extend this model to predict distribu-
tions and estimate uncertainty.

3.2. Bayesian Modelling of Uncertainty

We phrase our novel RNN encoder-decoder model in a
Bayesian framework [12]. We capture epistemic (model)
uncertainty by learning a distribution models p(f |X,Y )
likely to have generated our data {X,Y }. Here, models
are RNN encoder-decoders with varying parameters. We
infer the posterior distribution of RNN encoder-decoders
p(f |X,Y ) , given the prior belief of the distribution of RNN
encoder-decoders p(f). The predictive probability over the
future sequence Bf given the past sequence Bp is obtained
by marginalizing over the posterior distribution of RNN
encoder-decoders,

p(Bf|Bp,Op,Of,X, Y ) =∫
p(Bf|Bf, ,Op,Of, f)p(f |X,Y )df.

(1)

However, the integral in (1) is intractable. But, we can
approximate it in two steps [5, 7, 12]. First, we assume that
our RNN encoder-decoder models can be described by a fi-
nite set of variables ω. Thus, we constrain the set of possible
RNN encoder-decoders to ones that can be described with ω.
Now, (1) can be equivalently written as,

p(Bf|Bp,Op,Of,X, Y ) =∫
p(Bf|Bp,Op,Of, ω)p(ω|X,Y )dω

(2)



Second, we assume an approximating variational distri-
bution q(ω) which allows efficient sampling,

p(Bf|Bp,Op,Of) =

∫
p(Bf|Bp,Op,Of, ω)q(ω)dω (3)

We choose the set of weight matrices {W1, ..,WL} ∈ W
of our RNN enocder-decoder as the set of variables ω. Then
we define an approximating Bernoulli variational distribution
q(ω) over the columns wc

k of the weight matrices Wk ∈ W ,

q(Wk) = Mk · diag([zi,j ]
Ck
j=1)

zi,j = Bernoulli(pi), i = 1, ..., L, j = 1, ...,Ki−1.
(4)

where, Mk are the variational parameters. This distribution
allows for efficient sampling during training and testing
which we discuss in the following subsection.

For an accurate approximation, we minimize the KL di-
vergence between q(ω) and the true posterior p(ω|X,Y ) as
the training step. It can be shown that, (as in [6, 5]),

KL(q(ω) || p(ω|X,Y )) ∝ KL(q(ω) || p(ω))

−
∑
t

∫
q(ω) log p(bt+n

t |bt+n−1
t ,Bp,Op,Of, ω)dω.

(5)

The first part corresponds to the distance to the prior model
distribution and the second to the data fit. During training
and prediction, we use Monte-Carlo integration to approxi-
mate the integrals (3) and (5) (more details about (5) in the
Appendix and the exact objective in subsection 3.5).

Aleatoric uncertainty can be captured along with epis-
temic uncertainty, by assuming a distribution of obser-
vation noise and estimating the sufficient statistics of
the distribution. Here, we assume it to be a 4-d
Gaussian at each time-step, N (bt+n

i ,Σt
i), where, Σ =

diag
(
(σt+n

x )i, (σ
t+n
y )i, (σ

t+n
x )i, (σ

t+n
y )i

)
in x and y direc-

tions in pixel space at time-step t+ n. The predictive distri-
bution of models parametrized by ω, p(Bf|Bp, ,Op,Of, ω) is
Gaussian at every time-step.

Uncertainty is the variance of our predictive distribution
(3) and can be obtained through moment matching [6, 12].
If we have T samples of future pedestrian bounding box
sequences B̂f, the total uncertainty at time-step t is,

1

T

( T∑
i=1

(b̂ti)
ᵀb̂ti −

1

T

( T∑
i=1

(b̂ti)
ᵀ
)( T∑

i=1

b̂ti
))

+
1

T

( T∑
i=1

(σ̂t
i)x +

T∑
i=1

(σ̂t
i)y

)
.

(6)

The first part of the sum correspond to the epistemic uncer-
tainty uei and the second part corresponds to the aleatoric
uncertainty uai . We average the uncertainty across time-steps
to arrive at the complete uncertainty estimate. Next, we
describe how we sample from the Bernoulli distribution of
RNN encoder-decoder weight matrices and the final sam-
pling from the predictive distribution p(Bf|Bp,Op,Of).

3.3. Bayesian RNN Encoder-Decoder

The RNN encoder-decoder model of subsection 3.1 con-
tains four weight matrices. In detail, the two embedding
layers contains two weight matricesWemi,Wems. The other
two weight matrics belong to the encoder and decoder RNNs.
We use an LSTM formulation as RNNs. Following [8] the
weight matrices of an LSTM can be concatenated into a
matrix W and the LSTM can be formulated as in,

i
f
o
ĉ

 =


sigm
sigm
sigm
tanh

(( x̂t
ht−1

)
·W
)

ct = f � ct−1 + i� ĉ , ht = o� tanh(ct)

(7)

where i is the input gate, f is the forget gate, o is the
output gate, ct is the cell state, ĉ is the candidate cell state
and ht is the hidden state.

We define the Bernoulli variational distribution q(ω) (as
in (4)) over the union of all the weight matrices of our model,

ω = {Wemi,Wems,Wenc,Wdec} . (8)

where, Wenc,Wdec are the weight matrices of our RNN
encoder and decoder.

Sampling from q(Wemi), q(Wems) can be done effi-
ciently by sampling random Bernoulli masks zemi, zems

and applying these masks after the linear transformations. In
case of the input embedding,

x̂t = (xt ·Wemi)� zemi (9)

Similarly, it was shown in [7] sampling weight matrices of
a LSTM (here, q(Wenc), q(Wdec)) can be efficiently per-
formed by sampling random Bernoulli masks zx, zh and
applying them at each time-step, while the LSTM encoder
and decoder are unrolled,

i
f
o
ĉ

 =


sigm
sigm
sigm
tanh

(( xt � zx
ht−1 � zh

)
·W
)

(10)

Sampling from our predictive distribution
p(Bf|Bp,Of,Op) is done by first sampling weights
matrices of our Bayesian RNN encoder-decoder. Then the
parameters of the Gaussian observation noise distribution
at each time-step is predicted. For this, we use the hidden
state sequence htdec of the RNNdec and an additional linear
transformation,

ht+n
dec = RNNdec(h

t+n−1
dec , vbbox; zx, zh)

b̂t+n
i , (σ̂i

t+n)x, (σ̂t+n
i )y = Wbbox ∗ ht+n

dec + biasbbox.

We then draw a sample from the predicted Gaussian distribu-
tion.

Next, we describe the second stream of our two-stream
model – our model for long-term odometry prediction.



3.4. Prediction of Odometry

We use a similar RNN encoder-decoder architecture used
for bounding box prediction, but without the embedding lay-
ers. We do not place a distribution over the weights of the
RNN encoder-decoder. We condition the predicted sequence
Of on the past odometry sequence Op and last visual obser-
vation on-board the vehicle. The past odometry Op is input
to an encoder RNN which produces a summary vector vodo.
The past odometry of the vehicle Op gives a strong cue about
the future velocity especially in the short term (∼100ms).
We use the same LSTM formulation described previously
as the RNN encoder; with the final hidden state ht as the
summary. The last visual observation can help in the longer
term prediction of odometry; e.g. visual cues about bends
in the road, obstacles etc. Similar to [27, 2] we employ
a convolutional neural network (CNN-encoder) to embed
the visual information provided by the currently observed
frame; a visual summary vector vvis. Next we describe our
CNN-encoder architecture.
CNN-encoder. Our CNN-encoder should extract visual fea-
tures to improve longer-term (multi-step versus single-step
in [27, 2]) prediction. Therefore, we use a more complex
CNN compared to [2] and during training we learn the pa-
rameters from scratch, unlike [27] which uses a pre-trained
VGG network. Our CNN-encoder has 10 convolutional lay-
ers with ReLU non-linearities. We use a fixed, small filter
size of 3x3 pixels. We use max-pooling after every two
layers. After max-pooling we double the number of convo-
lutional filters; we use {32,64,128,256,512} convolutional
filters. The convolutional layers are followed by three fully
connected layers with 1024, 256 and 128 neurons and ReLU
non-linearities. The output of the last fully connected layer
is the visual summary vvis.

The odometry and visual summary vectors are concate-
nated v = {vodo, vvis} and read by the RNN decoder
(RNNdec). We use the same LSTM formulation described
previously as the RNN-decoder. As before, the hidden state
of the LSTM decoder is used for predicting the future odom-
etry sequence through a linear transformation.

ht+n
dec = RNNdec(h

t+n−1
dec , {vodo, vvis})

ot+n
i = Wodo ∗ ht+n

dec + biasodo.

We next describe our training and inference processes.

3.5. Training and Inference

Training. The two streams are trained separately. As the
odometry prediction stream predicts point estimates, it is
trained first by minimizing the MSE over the training set.
The Bayesian bounding-box prediction stream is trained
by estimating (Monte-Carlo) and minimizing the KL diver-
gence of its approximate weight distribution q(ω) (5). More
specifically, 1. We sample a mini-batch of size T of exam-

ples from the training set. 2. For each example, weights
{Wemi,Wems,Wenc,Wdec} are sampled from q(ω) (8), by
sampling Bernoulli masks as in (9) and (10). 3. For each
example, the predicted means B̂f and variances σ̂ of the het-
eroscedastic models parameterized by ω are inferred. 4. The
KL divergence (5) can be equivalently minimized by (similar
to [6, 12]) the following loss,

( 1

4nN

N∑
i=1

n∑
j=1

‖b̂t+j
i − bt+j

i ‖
2
2 (Σ̂t

i)
−2
)

+ λ‖W‖2 + log σ̂2
i

where, | Bf |= n and N pedestrians. The left part is the
equivalent of the negative log likelihood term in (5). The
middle part is weight regularization parameterized by λ,
equivalent to the KL term in (5). The right part is additional
regularization as in [12], to ensure finite predicted variance.

The ADAM optimizer [14] is used during training. For
training sequences longer than |Bp|+ |Bf| (|Op + Of| respec-
tively) we use a sliding window to convert to multiple se-
quences. Moreover, as the sequences in the training set are of
varying lengths, we use a curriculum learning (CL) approach.
We fix the length of the conditioning sequence |Bp|, |Op| and
train for increasing longer time horizons |Bf|, |Of| (initializ-
ing the model parameters with those for shorter horizons).
This allows us to train on a larger part of the Cityscapes
training set (also on sequences shorter than |Bp|+ |Bf| of the
final model) and leads to faster convergence.
Inference. Given Bp and Op (and the visual observation),
the odometry prediction stream is first used to predict Of. We
sample from the predictive distribution (3) by, 1. Sampling T
samples of the weight matrices {Wemi,Wems,Wenc,Wdec}
of the Bayesian bounding box prediction stream from
the (learned) approximate distribution q(ω), by sampling
Bernoulli masks as in (9) and (10), 2. The RNNdec is un-
rolled to obtain a sample

{
B̂f, σ̂x, σ̂y

}
from each of the T

predicted Gaussian distributions. The associated uncertainty
is obtained using the T samples (6).

4. Experiments
We evaluate our model on real-world on-board street

scene data and show predictions over a 1 second time horizon
along with the associated uncertainty.
Dataset and Evaluation Metric. We evaluate on the
Cityscapes dataset [3] which contains 2975 training, 500 val-
idation and 1525 test video sequences of length 1.8 seconds
(30 frames). The video resolution is 2048×1024 pixels. The
sequences were recorded on-board a vehicle in inner cities.
Each sequence has associated odometry information. Pedes-
trian tracks were automatically extracted using the tracking
by detection method of [25]. Detections were obtained using
the Faster R-CNN based method of [30] (statistics in the
Appendix). This mimics real world autonomous/assisted



MSE L
|Bp| |Bp|

Method Odometry 4 6 8 4 6 8

Kalman Filter None 1938 1289 1098 x x x
LSTM None 692 663 650 8.11 7.99 7.77

LSTM-Aleatoric None 772 758 750 5.92 5.81 5.54
LSTM-Bayesian None 647 624 618 4.31 4.26 4.13

LSTM-Bayesian Ground-truth 374 358 343 3.94 3.93 3.88

Table 1: Bounding box prediction error with varying |Bp|.

Method MSE L
Social LSTM [1] 1514 5.63
LSTM-Bayesian 695 3.97

LSTM-Bayesian (centers) 648 x

Table 2: Bounding box center prediction
error.

driving systems where detections/tracks are obtained with
a state-of-the-art detector/tracker and we have to deal with
noise introduced by the detector and on rare occasions detec-
tor false positives and tracker failures. We use as evaluation
metric MSE in pixels (of the mean of the predictive distri-
bution) and the negative log-likelihood L. The L metric
measures the probability assigned to the true sequence by
our predictive distribution. We report these metrics aver-
aged across all time-steps and plots per time-step. We use a
dropout rate of 0.35, λ = 10−4 (tuned on validation set) and
use 50 Monte-Carlo samples across all Bayesian models.

Evaluation of Bounding Box Prediction. We indepen-
dently evaluate the first Bayesian LSTM stream of our two
stream model, without conditioning it on predicted odome-
try. We predict 15 time-steps into the future and report the
results in Table 1. We compare its performance with, 1. A
linear Kalman filter baseline. 2. A homoscedastic LSTM en-
coder-decoder model (LSTM). 3. A heteroscedastic LSTM
encoder-decoder (LSTM-Aleatoric). Finally, as an Oracle
case, we compare against a Bayesian version in which the
LSTM encoder can see the past odometry and the LSTM
decoder can see the true future odometry at every time-step.
We also vary the length of the conditioning sequence |Bp|
(training/test sets constant across varying |Bp|). In Table 1,
we see that the homoscedastic LSTM model (2nd row) out-
performs the linear Kalman filter (1st row). This shows that
many bounding box sequences have a complex motion and
therefore cannot be modelled by a Kalman filter. We see
that the heteroscedastic LSTM (LSTM-Aleatoric, 3rd row)
outperforms the homoscedastic LSTM (2nd row) with re-
spect to the L metric. This means that the heteroscedastic
LSTM learns to capture uncertainty and assigns higher prob-
ability to the true bounding box sequence. However, when
epistemic uncertainty is not modelled, aleatoric uncertainty
tried to compensate (as in [12]) and this leads to poorer MSE.
Finally, our Bayesian LSTM (4th row) outperforms all other
methods. This can be attributed to two factors, 1. The richer
Gaussian mixture model fitted by the Bayesian LSTM can
capture aleatoric and epistemic uncertainty and fits the data
distribution better (evidenced by L metric). 2. Additional

Method Visual Speed (m/sec) Angle (degrees)

Constant None 1.62 26.85
Kalman Filter None 0.053 2.44

LSTM None 0.056 0.94
LSTM RGB 0.048 0.88

Table 3: Odometry prediction error (MSE), |Op| = {8}.

introduced regularization (dropout and weight). Further-
more, we see that increasing the length of the conditioning
sequence improves model performance. However, the per-
formance gain saturates at |Bp| = 8. Henceforth, we will
report results using |Bp| = {4, 8} in the following. Finally,
the odometry oracle case outperforms our Bayesian LSTM
by a large margin. This shows that knowledge of vehicle
odometry is crucial for good performance.
Comparison with Social LSTM [1]. We compare our
Bayesian LSTM model with the vanilla LSTM 1 model of [1]
(with 128 neurons) that predicts trajectories independently
in Table 2. Both models are trained to predict sequences of
bounding box centers (length 15, given 8). Our Bayesian
LSTM model performs better as it is more robust to mistakes
during recursive prediction. The model of [1] observes true
past pedestrian coordinates during training. However, during
prediction it observes its own predictions causing errors to be
propagated though multiple steps of prediction. Furthermore,
we compare both methods to the centers obtained from the
predictions of our Bayesian LSTM (second row of Table 1).
The results show that we can improve upon bounding box
center prediction by predicting bounding boxes.
Evaluation of Odometry Prediction. We train our odom-
etry prediction LSTM encoder-decoder on the visual and
odometry data of the Cityscapes training set. As many se-
quences have close to zero steering angle, we augment the
training set to improve prediction performance. We reflect
the steering angle and flip last observed image left to right
of sequences with non-zero average steering angle. This

1The version with social pooling did not converge on our dataset.



MSE L
|Bp| |Bp|

Method Streams Visual 4 8 4 8

Kalman Filter x None 1938 1098 x x
LSTM-Bayesian One None 572 546 4.03 3.97
LSTM-Bayesian Two RGB 532 505 3.99 3.92

Table 4: Evaluation of our Bayesian two stream model (Figure 2).
Table 5: MSE per time-step of models in
Table 1 row 1, 4, 5 and Table 4 row 3.

Figure 3: Quality of our uncertainty metric: plots 1 and 2 - uncertainty versus squared error, plots 3 and 4 - uncertainty versus
maximum observed squared error.

increases the training data with non-zero steering angles by
a factor of two. We use MSE between the predicted future
vehicle velocity and steering angles as evaluation metric.
The velocity is in meters per second and angle in degrees.
We include as baselines: 1. A constant steering predictor
that predicts the last observed odometry. 2. A linear Kalman
filter. 3. Our LSTM encoder-decoder without visual ob-
servation (v = {vodo}). The third baseline is an ablation
study. We observe no significant performance difference
between |Op| = {4} and |Op| = {8}. We evaluate 15 time-
steps into the future and report the results in Table 3. We
observe that the constant angle predictor performs signifi-
cantly worse compared to the other baselines. This shows
that the Cityscapes test set includes a significant number of
non-trivial sequences with complex vehicle trajectories. We
observe that the Kalman filter is able to quite accurately pre-
dict the vehicle speed. This is because in most vehicles are
travelling with constant speed or accelerating/decelerating
smoothly. However, the performance of the linear Kalman
filter is worse compared to the LSTM models with respect
to steering angle. This means that many sequences have
non-linear vehicle trajectories. The superior performance of
our model compared to the RNN baseline without visual ob-
servations, especially in the long-term shows that our CNN
encoder extracts information useful for long-term prediction.
We also show visual examples in the Appendix.
Evaluation of our Two-Stream model. We perform an
ablation study of our two-stream model (Figure 2) and com-
pare with a single-stream Bayesian LSTM encoder-decoder
model where the encoder observes the concatenated past

bounding box and velocity sequence {Bp,Op} and the de-
coder predicts the future bounding box sequence Bf. This
model does not see predicted future odometry. We evaluate
the models and report the results in Table 4 and plot the
MSE per time-step Table 5. The results show that jointly pre-
dicting odometry with pedestrian bounding boxes (3rd row)
significantly improves performance (2nd row). The predicted
odometry helps our two-stream model recover a significant
fraction of the performance of the Oracle case in Table 1 row
5. The limiting factor here is that the odometry is difficult
to predict in certain situations e.g. at T-intersections. Apart
from cases with inaccurate odometry prediction, the residual
error of our two-stream (and the Oracle case) on a large part
is due to the noise of the pedestrian detector and tracker
failures. We show qualitative examples in Figure 4. Row 1
shows point estimates under linear vehicle ego-motion and
Rows 2, 3 non-linear vehicle ego-motion. Our two-stream
model (mean of predictive distribution) outperforms other
methods in the second case. Rows 4-5 shows the predictive
distributions of the two-stream model under linear vehicle
and pedestrian motion. The distribution is symmetric and
has high aleatoric uncertainty which captures detection noise
and possible pedestrian motion. Row 6 shows a case of a
skewed distribution with high epistemic uncertainty which
captures uncertainty in vehicle motion.
Quality of our Uncertainty Metric. We evaluate our un-
certainty metric in Figure 3. The first two plots show the
aleatoric and epistemic uncertainty to the squared error of
the mean of the predictive distribution of our two-stream
model. We use log-log plots for better visualization as most



Last Observation: t Prediction: t + 5 Prediction: t + 10 Prediction: t + 15

Figure 4: Rows 1-3: Point estimates. Blue: Ground-truth, Red: Kalman Filter (Table 1 row 1), Yellow: One-stream model
(Table 1 row 4), Green: Two-stream model (mean of predictive distribution, Table 4 row 3). Rows 4-6: Predictive distributions
of our two-stream model as heat maps. (Link to video results in the Appendix).

sequences have low error (note, log(530) ≈ 6.22 the MSE
of our two stream model, Table 4). We see that the epis-
temic and aleatoric uncertainties are correlates well with
the squared error. This means that for sequences where the
mean of our predictive distribution is far from the true fu-
ture sequence, our predictive distribution has a high variance
(and vice versa). Therefore, for sequences with multiple
likely futures, where the mean estimate would have high
error, our model learns to predict diverse futures. In the
third plot of Figure 3, we plot the maximum log squared
error (of the mean of the predictive distribution) observed at
a certain predicted uncertainty level (sum of aleatoric and
epistemic) in the test test. In the fourth plot, we plot the
uncertainty with the maximum observed squared error at
time-steps t + {5, 10, 15}. In both cases, uncertainty and
observed maximum error is well correlated. This shows

that, the predicted uncertainty upper bounds the error of the
mean of the predictive distribution. Therefore, the predicted
uncertainty helps us express trust in predictions and has the
potential to serve as a basis for better decision making.

5. Conclusion
We highlight the importance of anticipation for practi-

cal and safe driving in inner cities. We contribute to this
important research direction the first model for long term
prediction of pedestrians from on-board observations. We
show predictions over a time horizon of 1 second. Predic-
tions of our model are enriched by theoretically grounded
uncertainty estimates. Key to our success is a Bayesian ap-
proach and long term prediction of odometry. We evaluate
and compare several different architecture choices and arrive
at a novel two-stream Bayesian LSTM encoder-decoder.
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Appendix

A. Additional Details of Training Objective

As derived in [6, 5], in Bayesian Regression, the KL diver-
gence between a approximate variational posterior q(ω) and
the true posterior p(ω|X,Y ) distribution of models likely to
have generated our data is given by,

KL(q(ω) || p(ω|X,Y )) ∝ KL(q(ω) || p(ω))

−
∫
q(ω) log p(Y |X,ω)dω.

(A1)

In our case, as we train our model to predict future bounding
box sequences given the past bounding box sequence, past
and future vehiche odometry, we have X = {Bp,Of,Op}
and Y = {Bf}. Therefore, the KL divergence is given by,

KL(q(ω) || p(ω|X,Y )) ∝ KL(q(ω) || p(ω))

−
∫
q(ω) log p(Bf|Bp,Of,Op, ω)dω.

(A2)

As the bounding box at time t+ n in Bf is predicted condi-
tioned on the bounding box at time t + n − 1 and the past
bounding box sequence, past and future vehiche odometry,
by our Bayesian RNN Encoder-Decoder, the KL divergence
is given by,

KL(q(ω) || p(ω|X,Y )) ∝ KL(q(ω) || p(ω))

−
∑
t

∫
q(ω) log p(bt+n

t |bt+n−1
t ,Bp,Op,Of, ω)dω.

(A3)

During training (as mentioned in subsection 3.5 of the main
paper), we use Monte-Carlo integration to estimate the inte-
gral in (5) (using N samples),

KL(q(ω) || p(ω|X,Y )) ∝ KL(q(ω) || p(ω))

− 1

N

∑
t

N∑
i=0

log p(bt+n
t |bt+n−1

t ,Bp,Op,Of, ω̂i),

ω̂i ∼ q(ω).

(A4)

The probability term p(bt+n
t |bt+n−1

t ,Bp,Op,Of, ω̂i) takes
the form e−‖b̂

t+j
i −bt+j

i ‖22 (Σ̂t
i)

−2

. Therefore, replacing the log
probability term with the exponential squared error term and
introducing additional regularization as mentioned in sub-
section 3.5 of the main paper leads to the training objective
used,

( 1

4nN

N∑
i=1

n∑
j=1

‖b̂t+j
i − bt+j

i ‖
2
2 (Σ̂t

i)
−2
)

+ λ‖W‖2 + log σ̂2
i

B. Additional Details of Two Stream Model
Here, we include details of each layer of our Two Stream

Model. We refer to fully connected layers as Dense and Size
refers to the number of neurons in the layer.
Bayesian Bounding Box Prediction Stream. We provide
the details of the Bayesian Bounding Box prediction stream
in Table 6.

Layer Type Size Activation Input Output

In1 Input Bpast EMB1

In2 Input Opast EMB1

EMB1 Dense 64 ReLU {In1, In2} LSTMenc1

LSTMenc1 LSTM 128 tanh EMB1 EMB2

EMB2 Dense 64 ReLU
{

LSTMenc1, Ôf

}
LSTMdec1

LSTMdec1 LSTM 128 tanh EMB2 Out1
Out1 Dense 4 LSTMdec B̂f

Table 6: Details of the Bounding Box Prediction Stream.
Note that, the weights of all the layers are sampled from the
approximate posterior q(ω).

Odometry Prediction Stream. We provide the details of
the odometry prediction stream in Table 7. We then provide
details of the CNN encoder.

Layer Type Size Activation Input Output

In3 Input Opast LSTMenc2

LSTMenc2 LSTM 128 tanh In3 LSTMdec2

LSTMdec2 LSTM 128 tanh {LSTMenc1,FC3} Out1
Out2 Dense 2 LSTMdec2 Ôf

Table 7: Details of the Odometry Prediction Stream. Details
of the CNN encoder (with output FC3) follows in Table 8

C. Database Statistics

Figure 5: Length of recovered pedestrian tracks in
Cityscapes.

In Figure 5 we plot the number of pedestrian tracks of



Layer Type Filters Size Activation Input Output

In4 Input C1

C1 Conv 32 3×3 ReLU In2 C2

C2 Conv 32 3×3 ReLU C1 P1

P1 MaxPool 2×2 C2 C3

C3 Conv 64 3×3 ReLU P1 C4

C4 Conv 64 3×3 ReLU C4 P2

P2 MaxPool 2×2 C4 C5

C5 Conv 128 3×3 ReLU P2 C6

C6 Conv 128 3×3 ReLU C5 P3

P3 MaxPool 2×2 C6 C7

C7 Conv 256 3×3 ReLU P3 C8

C8 Conv 256 3×3 ReLU C7 C8

P4 MaxPool 2×2 C8 C9

C9 Conv 512 3×3 ReLU P4 C10

C10 Conv 512 3×3 ReLU C9 P5

P5 MaxPool 2×2 C10 FC1

FC1 Dense 1024 ReLU P5 FC2

FC2 Dense 256 ReLU FC1 FC3

FC3 Dense 128 tanh FC2 LSTMdec2

Table 8: Details of the CNN encoder used to condition the
output of the Odometry prediction stream. Conv stands for
2D convolution, MaxPool stands for 2D max pooling and
UpSample stands for 2D upsampling operations.

lengths from 6 to 30. The track length distribution is consis-
tent across training and test sets. We observe that there are
many long tracks which stretch over the entire length (30) of
the sequence.

D. Evaluation with Varying Size of LSTM

Method LSTM size Odometry MSE L
LSTM 128 None 650 7.77
LSTM 512 None 705 8.15

LSTM-Bayesian 128 None 618 4.13
LSTM-Bayesian 512 None 619 4.16

Table 9: Evaluation with varying size of LSTM (|Bp| = 8).

In the main paper, we evaluate all models constant LSTM
vector size of 128. Here, we report results for the (uncondi-
tioned) one stream homoscedastic LSTM encoder-decoder
model and the one stream Bayesian LSTM encoder-decoder
model using a vector size of 512 In Table 9. We see that
the homoscedastic version with 512 neurons performs worse
than the version with 128 neurons. This is because the larger
LSTM over-fits to the bounding box estimation noise in
dataset. However, the Bayesian versions have comparable
performance, due to dropout which prevents overfitting.

E. Visualization of Odometry Prediction
Visual examples of odometry prediction in Figure 6.

Please refer to section 4 for more details.

F. Additional Evaluation of our Two-stream
Model

Method Streams Visual MSE L
LSTM Two RGB 516 5.15

LSTM-Aleatoric Two RGB 618 4.92
LSTM-Bayesian Two RGB 505 3.92

Table 10: Evaluation of Two-stream models (|Bp|, |Op| = 8).

Here, we compare our Bayesian Two-stream model (Fig-
ure 2, of main paper) to, 1. A homoscedastic Two-stream
LSTM encoder-decoder model (LSTM). 2. A heteroscedas-
tic Two-stream LSTM encoder-decoder (LSTM-Aleatoric).
Note that, both models have the same odometry prediction
stream as our Bayesian Two-stream LSTM model (LSTM-
Bayesian). The results mirror the evaluation of only the
bounding box prediction stream. We see that the het-
eroscedastic LSTM (LSTM-Aleatoric, 2nd row) outperforms
the homoscedastic LSTM (2nd row) with respect to the L
metric. This means that the heteroscedastic Two-stream
LSTM learns to capture uncertainty and assigns higher prob-
ability to the true bounding box sequence. However, when
epistemic uncertainty is not modelled, aleatoric uncertainty
tried to compensate and this leads to poorer MSE. Finally,
our Bayesian Two-stream LSTM (3rd row) outperforms all
other methods.

G. Additional Analysis of the Quality of our
Uncertainty Metric

We compare the quality of the uncertainty metric obtained
with our Two-stream LSTM-Bayesian model (Figure 3, of
main paper) to that of the Two-stream LSTM-Aleatoric (the
heteroscedastic Two-stream LSTM encoder-decoder in the
previous section, which models only aleatoric uncertainty).
In plot 1 of Figure 7 the aleatoric uncertainty to the log
squared error of the mean of the predictive distribution of
the Two-stream LSTM-Aleatoric model is shown. We see
that the distribution is more spread-out with more outliers
compared to our Two-stream LSTM-Bayesian model (plot 1,
Figure 3, of main paper). In plot 2 of Figure 7 the maximum
log squared error (of the mean of the predictive distribution)
observed at a certain predicted uncertainty in the test test is
shown for both our Two-stream Bayesian model and Two-
stream LSTM-Aleatoric. We see that the correlation is poor
compared to our Two-stream LSTM-Bayesian model (also in
plot 3, Figure 3, of main paper). In particular, the maximum



Figure 6: Odometry prediction: We show predicted odometry for 15 time-steps as points (bottom to top) over-layed on the last
visual observation. The distance and angle between subsequent points is the predicted (proportional) speed and steering angle.
Color codes: Blue: Ground-truth, Red: Kalman Filter, Yellow: Our LSTM without visual input, Green: Our LSTM with visual
input.

Figure 7: Plot 1 - uncertainty versus squared error, plot 3 -
uncertainty versus maximum observed squared error.

observed log squared error rises very sharply. Therefore, for
a robust error bound it is essential to model both epistemic
and aleatoric uncertainty.

H. Additional Video Results
We include video results of prediction in video.mp4

(click here). We include examples of both point estimates
and predictive distributions. We include point estimates
for comparison against the Kalman Filter and One-stream
baselines. The examples show accurate prediction by our
Two-stream model over 15 time-steps into the future.

http://transfer.d2.mpi-inf.mpg.de/ped_uncer/video.mp4
http://transfer.d2.mpi-inf.mpg.de/ped_uncer/video.mp4
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