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Zusammenfassung

Proteine sind für das Leben essentielle Moleküle, die eine Vielzahl von Funktionen
in Organismen ausüben. Dazu ändern sie ihre Konformation und binden an andere
Moleküle. Jedoch ist das Zusammenspiel zwischen Konformationsänderung und
Bindung nicht vollständig verstanden. In dieser Arbeit wird dieses Zusammenspiel
mit Molekulardynamik-Simulationen (MD) des Protein-Peptid-Systems Mdm2-PMI
und mit der Analyse von Daten aus Relaxationsexperimenten untersucht.
Die zentrale Aufgabe ist, den Bindungsmechanismus aufzudecken, welcher durch
die Reihenfolge von (partiellen) Bindungsereignissen und Konformationsänderungs-
ereignissen beschrieben wird, inklusive der Wahrscheinlichkeiten dieser Ereignisse.
Im einfachsten Fall lässt sich der Bindungsmechanismus durch ein Zwei-Schritt-
Modell beschreiben: erst Bindung, dann Konformationsänderung oder erst Kon-
formationsänderung und dann Bindung. Im allgemeinen Fall sind längere Schrittfol-
gen mit mehreren Konformationsänderungen und partiellen Bindungsereignissen
möglich, ebenso wie parallele Wege, die sich in ihrer Schrittfolge unterscheiden.
Die Theorie der Markow-Modelle (MSM) bildet den theoretischen Rahmen, in dem
alle diese Fälle modelliert werden können. Dazu werden in dieser Arbeit MSMs
aus MD-Daten geschätzt und Ratengleichungsmodelle, die mit MSMs verwandt
sind, aus experimentellen Relaxationsdaten abgeleitet.
Die MD-Simulation und Markow-Modellierung des PMI-Mdm2-Systems zeigt, dass
PMI und Mdm2 auf verschiedenen Wegen binden können. Ein Hauptergebnis
dieser Arbeit ist die durch Markow-Modellierung berechnete Dissoziationsrate
von der Größenordnung von einem Ereignis pro Sekunde in Übereinstimmung mit
experimentellen Daten. Dissoziations- und Übergangsraten in dieser Größenordnung
wurden bisher nur mit Methoden berechnet, die Übergänge beschleunigen, indem
mit zeitabhängigen, externen Kräften auf die Bindungspartner eingewirkt wird.
Die in dieser Arbeit entwickelte Simulationstechnik dagegen erlaubt die Schätzung
von Dissoziationsraten aus der Kombination von Freien-Energie-Rechnungen und
direkter MD-Simulation des schnellen Bindungsprozesses. Zwei neue statistische
Schätzer, TRAM und TRAMMBAR wurden entwickelt um ein MSM aus dem
Gesamtdatensatz aus beiden Simulationstypen zu schätzen.
Zudem wird in dieser Arbeit eine neue Analysetechnik für Zeitreihen aus chemischen
Relaxationsexperimenten entwickelt. Sie ermöglicht es einen der beiden oben erwäh-
nten Zwei-Schritt-Mechanismen als den den Daten zugrundeliegenden Mechanismus
zu identifizieren. Die neue Methode ist für einen größeren Konzentrationsbereich
gültig als frühere Methoden und erlaubt es daher, die Konzentrationen so zu wählen,
dass der Mechanismus eindeutig identifiziert werden kann. Sie wurde erfolgreich
mit Daten für die Bindung von Recoverin an ein Rhodopsinkinasenpeptid getestet.
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Abstract

Proteins are molecules that are essential for life and carry out an enormous number
of functions in organisms. To this end, they change their conformation and bind
to other molecules. However, the interplay between conformational change and
binding is not fully understood. In this work, this interplay is investigated with
molecular dynamics (MD) simulations of the protein-peptide system Mdm2-PMI
and by analysis of data from relaxation experiments.
The central task it to uncover the binding mechanism, which is described by the
sequence of (partial) binding events and conformational change events including
their probabilities. In the simplest case, the binding mechanism is described by
a two-step model: binding followed by conformational change or conformational
change followed by binding. In the general case, longer sequences with multiple
conformational changes and partial binding events are possible as well as parallel
pathways that differ in their sequences of events. The theory of Markov state
models (MSMs) provides the theoretical framework in which all these cases can be
modeled. For this purpose, MSMs are estimated in this work from MD data, and
rate equation models, which are related to MSMs, are inferred from experimental
relaxation data.
The MD simulation and Markov modeling of the PMI-Mdm2 system shows that
PMI and Mdm2 can bind via multiple pathways. A main result of this work is a
dissociation rate on the order of one event per second, which was calculated using
Markov modeling and is in agreement with experiment. So far, dissociation rates
and transition rates of this magnitude have only been calculated with methods that
speed up transitions by acting with time-dependent, external forces on the binding
partners. The simulation technique developed in this work, in contrast, allows the
estimation of dissociation rates from the combination of free energy calculation and
direct MD simulation of the fast binding process. Two new statistical estimators
TRAM and TRAMMBAR are developed to estimate a MSM from the joint data
of both simulation types.
In addition, a new analysis technique for time-series data from chemical relaxation
experiments is developed in this work. It allows to identify one of the above-
mentioned two-step mechanisms as the mechanism that underlays the data. The
new method is valid for a broader range of concentrations than previous methods
and therefore allows to choose the concentrations such that the mechanism can be
uniquely identified. It is successfully tested with data for the binding of recoverin
to a rhodopsin kinase peptide.
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1. Introduction

1.1. Proteins

Proteins are molecules that are essential for life by carrying out an enormous
number of functions in organisms, such as the catalysis of metabolic processes,
energy transfer, gene expression, transport of solutes across biological membranes,
cellular communication and information processing, molecular recognition, defense
against pathogens and formation of intracellular and extracellular structures. [2, 66]
The functions of many proteins can be understood via their structure, that is the
tree-dimensional spatial arrangement of the atoms. Proteins consist of one or a few
unbranched chains of amino acids. The sequence of amino acids in each chain is
unique for every type of protein and is called the primary structure. The atoms in the
chains interact via different non-bonded attractive and repulsive forces that cause
the chains to adopt a three-dimensional structure that is called the conformation
(of the protein). The conformation of a single chain can be described on two
organizational levels: secondary structure refers to the three-dimensional structure
of amino acids that are nearby in the sequence. The most common elements are
α-helices and β-sheets/β-stands. Loops are regions of irregular shape. Tertiary
structure refers to the global three-dimensional form formed by the polypeptide
chain that is stabilized by the interaction of the elements of secondary structure.
[27] The disruption of the tertiary structure renders many proteins biologically
inactive. [66] That’s why it is hypothesized that protein function is determined by
protein structure. This hypothesis is called the structure-function paradigm and
the biologically active tertiary structure is referred to as the native structure of a
protein. The native structure is thought to be uniquely determined by the primary
structure. This hypothesis is called Anfinsen’s dogma or the sequence-structure
paradigm. [4] In the sequence-structure-function paradigm, both the sequence-
structure and structure-function paradigms are assumed, that is protein function
follows from protein sequence.
Protein function often involves conformational changes. The most obvious example
are perhaps motor proteins that convert chemical energy into directed motion.
Other examples are lids or gates in enzymes that close over the chemical substrate to
shield it from the interaction with water during the catalytic reaction. In these cases
protein function can not be explained by the effect of a single conformation and
the structure-function paradigm was therefore extended to the structure-dynamics-
function paradigm. [66]
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1. Introduction

The most dynamic proteins where function can not be understood by the effect of
one or a few native conformations are the so-called intrinsically disordered proteins.
These proteins do not fold to a well-defined structure but exist as an ensemble of
widely different conformations. They often have signaling functions and adopt a
folded structure when they bind to another molecule. [130]

1.2. Conformational dynamics

To study the conformational changes that are necessary for function, proteins can
be investigated in vitro which allows much greater control over the experiment
compared to the in vivo situation. First indirect experimental evidence for confor-
mational changes was found in myoglobin [6]. Later more direct evidence was found
with X-ray diffraction and Mössbauer experiments [6, 45, 57, 65] and more recently
with Nuclear Magnetic Resonance (NMR) measurements [64, 94, 87, 16, 58, 79, 76]
and single-molecule experiments [86, 85, 115, 68]. These experiments show that
protein motions and conformational changes take place on a broad range of time
scales. Small scale movement like atomic bond vibrations take place on the fem-
tosecond scale, rotation of amino-acid side-chains and loop motions take place on
the picosecond to microsecond time scale and larger conformational changes take
place on the microsecond any beyond. [58]
The multi-scale conformational dynamics of proteins can be understood as random
motion on a high-dimensional energy landscape. [46, 33] In the energy landscape
model, every (high-dimensional) point in configuration space is mapped to an
energy level. The dynamics on this energy landscape is a random motion that
originates from thermal fluctuations.1 A key assumption is that the energy land-
scape of proteins is complex: it shows a very high number of minima, separated by
barriers of various height. The higher a barrier is, the more attempts it takes the
system to overcome it by thermal fluctuation. So protein motion is characterized
by a stop-and-go where the system appears to wait in one local minimum and
then quickly transitions to another local minimum. The time that the system
remains in one minimum is called the dwell time and the time it takes for the
actual transition between minima is called transition time. [26, 137] Due to the
complexity of the energy landscape, not all levels of detail can be observed in
one experiment. Especially in experiments that probe the slow, often large scale
motions, the individual minima of the finer scales are not resolved individually.
Under this condition the finer details are described with topographical metaphors
like "ruggedness" or "roughness" of the landscape.
In the special case when the energy landscape exhibits a few barriers that exceed

1The force field used for molecular dynamics simulations (see section 1.6) is an example of a
model for an energy landscape.
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1.3. Binding mechanisms

in height all other features of the energy landscape, a more simple description
of protein dynamics is possible. The conformations can then be grouped into a
small number of long-lived macro-states (or metastable states or just states) and
the kinetics of conformational change can be described with a more simple model
like low-dimensional Master equations, mass-action rate equations or Markov state
models with few states (see also section A.1.1). [137] For example it was shown
that the folding process of some proteins (that is the process of attaining the native
structure) can be well described with only two states: folded and unfolded. [23]

1.3. Binding mechanisms

Proteins typically form complexes with other molecules. Like conformational
change, binding is a dynamic process that can involve interconversion between
various bound and unbound conformations. Experiments have shown that there
exists an interplay of binding and conformational change. X-ray crystallography
experiments have shown for many proteins that alternative conformational states,
distinct from the ligand-free state, can be stabilized in the ligand-bound form.
Moreover NMR experiments show that the conformational state many proteins
assume in the ligand-bound (holo) situation can also be assumed in the ligand-free
(apo) situation, albeit with lower probability. [40, 10, 17, 59, 76, 68] This observation
is interpreted with the population shift model, which states that all states are
possible in the unbound and bound situations albeit with different probabilities
and that binding changes the probabilities of the conformational states. [80]
It is conceivable that bound and unbound conformations are separated by a single
free energy barrier that largely exceeds in height all smaller barriers. This is
equivalent to assume that the transition times for binding/unbinding are much
smaller than the dwell times in the bound and unbound state. The ligand then
appears to “hop” in/out of the binding site. If the bound/unbound states and the
conformational states too are separated by high barriers, the kinetics of coupled
binding and conformational change can be described by a simple Markov state
model (see e. g. figure 1.1). [137]
The four-state model of figure 1.1 shows a clear ordering of events. The conforma-
tional change can happen in the unbound state or in the bound state. This gives rise
to three different mechanisms: In the induced fit mechanism [80] the conformational
change (of the bound complex) happens after binding, hence the name that suggest
that binding induces the conformational change. In the conformational selection
mechanism [72], conformational change happens before the binding, so that one
of the conformations is selected for complex formation. A third possibility is that
both the induced fit pathway and the conformational selection pathway are taken
by the molecular system each with a given probability. [48, 138, 55, 50]

3



1. Introduction

Figure 1.1.: The minimal four-state model with parallel induced fit and conforma-
tional selections pathways. [137] Because all state transitions are rare
events, it is assumed that the binding/unbinding transition can not
coincide with the conformational state transition such that there are
no diagonal transitions from state 1 to 4 and from 2 to 3.

Under the conditions of a general, complex energy landscape that is not charac-
terized by a small number of towering barriers, the question about the order of
events becomes more involved. One of the subjects studied in this work is coupled
binding and folding of a peptide to a protein. The unfolded chain of the peptide
can assume a very large set of conformations and it is not clear a priori if (or
not) its conformational changes can be modeled with a low number of states. The
mechanism in general might not a be sequence of two steps. Also, there might be a
large variety of parallel pathways going from the unfolded and unbound state to
the folded and bound state, more than just the two pathways of the model figure
1.1. Parallel pathways were observed experimentally in protein binding to small
ligands [29] and in protein folding [82, 51].

1.4. Markov state models

In this thesis, coupled binding and coupled conformational change of protein is
studied in the theoretical framework of Markov state models (MSMs). In this
section, I will briefly introduce MSMs and argue why they are a method of choice.
In Markov state models of molecular systems, the long-timescale dynamics is
approximated by a Markov chain on a discrete partition of the configuration space.

4



1.4. Markov state models

A MSM consists of a set of microstates and transition probabilities. A microstate
is a structurally [105] or kinetically [96] related set of conformations. Together all
microstates partition the whole conformational space. Traditionally, microstates
were chosen to be metastable states. [31, 90] More recent results show that a
mixture of metastable and of non-metastable states that are introduced in the
transition regions (barriers) gives a more accurate model. [105] The kinetics is
modeled in discrete time, that is all quantities are only defined at times that are
an integer multiple of the lag time τ of the MSM. The stochastic, discrete-time
kinetics of a MSM are governed by the transition matrix T. Each element Tij of
the transition matrix is the probability that the system is in state i at time t+ τ
given that it was is state j at time t. Hence, the future evolution only depends on
the current microstate and not on the history of past state visits.
MSMs can be estimated from time series like molecular dynamics trajectories. The
estimation procedure consists of three steps: firstly, the microstates are defined
with a clustering algorithm and the input time series is converted to a time series
of microstate indices. Secondly, transitions between all pairs of microstates are
counted and tabulated into a count matrix. And finally, the transition matrix is
computed using maximum likelihood estimators.
MSMs have three key advantages over other methods:

1. MSMs can treat complex kinetics that are not well described by few states or
reaction coordinates. MSMs of molecular kinetics are routinely constructed
with hundreds to a few thousands of microstates and with up to hundred
metastable states [91, 114, 20, 102]. Markov modeling integrates well with
dimension reduction and clustering techniques [96, 112, 89] that can process
high-dimensional data.

2. If they are estimated from time series data, the time series do not have to
be in global equilibrium. Because only conditional transition probabilities
are estimated, the starting points of the time series does not have to be
drawn from the Boltzmann distribution. The time series can be short because
they do not need to reach the condition where they sample the Boltzmann
distribution. This property is used for distributed computing molecular
dynamics where many short trajectories that were initiated from different
starting conformations are combined in one MSM.

3. The transition matrix of the MSM can be used to extrapolate to arbitrary
long lag times, much longer than the length of the individual trajectories
from which the model was estimated, supposed that the transition matrix
fulfills the Markov property. Therefore MSMs mitigate the sampling problem
by extracting long-time kinetic information from short trajectories.
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1. Introduction

MSM have the disadvantage that they rely on the assumption of metastability.
Because a MSM is built only on a finite number of states, there is the underlying
assumption that the fast kinetics that correspond to motion inside a microstate can
be neglected. This is equivalent to the assumption of a spectral gap or separation
of time scales. Currently no method is known for testing for the separation of
time scales a priori. However the quality of a MSM can be checked a posteriori
with the implied time scales test and with the Chapman-Kolmogorov test that
have become standard tests accepted by the scientific community. [105] Moreover,
because MSMs with a large number of states can be estimated, it is possible to
explicitly model a large number of processes that take place on different time scales.
This thesis is organized as follows: Markov state models is the common method
that is used throughout the work to describe coupled binding and conformational
change. We2 study these processes by analyzing chemical relaxation experiments
and by performing molecular dynamics simulations of the binding process of the
12-mer peptide PMI and the protein Mdm2 as well as of the binding process of the
molecule benzamidine to the protein trypsin. In the study of chemical relaxation
experiments, we take a phenomenological approach and infer the model that agrees
the most with experimentally measured data. In the study of the PMI-Mdm2
system and the trypsin-benzamidine system, we take a reductionist approach by
simulating the systems microscopically with molecular dynamics (MD). The MD
data is then analyzed with Markov modeling methods. In the following sections 1.5
and 1.6, I will briefly introduce the techniques of chemical relaxation experiments
and MD simulation.
MD simulation of coupled binding and conformational change are at the extreme
forefront of what can be done with current technology and can only be accomplished
with newly developed methods. I will therefore sketch in section 1.7 the basic
principles of the new methods that are developed in this work.

1.5. Chemical relaxation

Chemical relaxation experiment are a powerful tool of biochemistry to gain insight
into conformational changes and binding mechanisms of macromolecules and to
measure transition rates. In a chemical relaxation experiment, the chemical system
is prepared in a non-equilibrium initial state and is observed during its relaxation
to its equilibrium state. The relaxation of the ensemble to equilibrium is recorded
as a time series by monitoring some spectroscopic observable (e. g. fluorescence
or absorption) over time. Stopped-flow mixing experiments are a specific type of

2In the following I will use “I” when referring to work done by me alone and “we” when referring
to joint work done by one or several of my coauthors and me. A detailed listing of my
contributions and those of my coauthors is given in appendix C.2.
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1.6. Molecular dynamics simulation

relaxation experiments where the initial non-equilibrium state is created by mixing
two or more solutions of different chemicals. [39]
By analyzing the time series, it is possible to infer the mechanism that the chemical
system goes through on its way to equilibrium. The instantaneous amplitude of
the spectroscopic signal typically represents the concentration of the bound or
the unbound species. However, the instantaneous populations of the individual
conformational states are typically not observed. Despite of this partial observation,
it is still possible to test for the presence of an induced fit step or a conformational
selection step in the mechanism. This is done by comparing the relaxation time
series to predictions from models for the induced fit and conformational selection
mechanisms. These models are formulated as mass-action rate equations that
describe the temporal evolution of all chemical concentrations. [11, 67]
To simplify the mathematical analysis, the rate equations are typically only solved
under the so-called pseudo-first-order conditions where it is assumed that one of
the binding partners is present in large excess over the other binding partner. This
mathematical simplification comes at the cost of restricting the experimentalist in
the choice of concentrations. Moreover, under pseudo-first-order conditions, induced
fit and conformational selection models can produce identical relaxation behavior,
which renders the identification of the mechanism impossible for some ligand-protein
systems if only chemical relaxation experiments are used. [137, 136, 22]
In this thesis, the model is investigated under a different condition where it is
assumed that all concentrations have relaxed and are close to their equilibrium
values.

1.6. Molecular dynamics simulation

With molecular dynamics we take a reductionist approach, as we seek to explain
structure, mechanism and function of macromolecules from the interaction of
their constituents (the atoms) and their interaction with the environment (solvent,
temperature and pressure). To predict phenomena on the macromolecular scale
that emerge from models formulated at the atomistic scale, computer simulations
are an indispensable tool. In particular for biomolecular processes, the approach
through atomistic computer simulations has been highly successful and helped to
understand transmembrane transport [62, 145, 13, 71], ligand binding and receptor
activation [36, 69, 93], and endocytosis [15, 5, 107] among others.
Molecular dynamics simulations are a model for dynamics and thermodynamics.
The molecule and its solvent are represented as the Cartesian coordinates x of
their atom centers (or nucleus positions). The dynamics of the system is modeled
by a set of differential equations that govern the motion of the atoms, typical
choices being Newton’s equations of motion, the Langevin equations, or Newton’s

7



1. Introduction

equations coupled to “thermostat” and “barostat” models. [47] The potential energy
function in these equations is specifically chosen to model atomistic/molecular
interactions and is called a “force field”. For the simulation of proteins, a variety of
well-established force fields exists, which are continuously validated and improved
by the scientific community. [77] Thermodynamic properties of the molecular
system are modeled by the Boltzmann distribution pB(x, p) = exp[βF −βH(x, p)]
where H(x, p) is the Hamiltonian as defined in the force field, p are the momenta,
β = kBT , T is the temperature, kB is the Boltzmann constant and F is the
Helmholtz free energy. The set of all possible conformations x, momenta p and
their probability density pB(x, p) for fixed H, β and atom count is called the
(canonical) thermodynamic ensemble.
In a MD simulation the equations of motion are integrated in time, which results in
MD trajectories. Because the initial conditions have random velocities or because
the model contains a random force like in the case of the Langevin equations, the
trajectories are random. Because of that randomness, MD simulation is typically
complemented with statistical analysis to compute averages and probabilities of
kinetic and thermodynamic quantities. The easiest way of estimating an equilibrium
expectation value is to compute the (empirical) mean from a MD trajectory that
is long enough to sample from the Boltzmann distribution. The easiest way to
compute kinetic properties is to estimate a MSM or rate model directly from the
MD trajectories. These two methods have some drawbacks as will be explained in
the next section. Advanced methods, that lead to a reduced error will be introduced
in this thesis.

1.7. Methodological developments

Time scales of many important biological processes are still out of reach for unbiased
MD simulation. For example, although downhill processes such as protein-ligand
association to the bound conformation can be spontaneously sampled [36, 102,
114, 20], the dissociation of stable inhibitory complexes can involve timescales of
hours or longer [129], which is beyond the scope of current MD methods. Biased
simulations (see section below) are used to speed up events that are rare in the
physical ensemble. However, they can not be directly used to compute kinetic
properties in the physical ensemble. Approximate methods to reweight kinetic
properties from a biased simulation exist, but they rely on a one- or two-dimensional
projection of the conformational space [12, 140] and are therefore not suited to
study the complicated multi-state kinetics that we expect in the case of coupled
folding and binding.
Therefore a larger part of this work is devoted to the development and testing of
new enhanced sampling methods. The necessity of that work became evident in
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1.7. Methodological developments

two recent studies about the p53-Mdm2 system, which is a peptide-protein system
very similar to the PMI-Mdm2 system studied in this thesis. In none of the studies
the authors were able to correctly simulate the unbinding process. [147, 144] In
[144], the dissociation rate is over-estimated by about five orders of magnitude. In
[147], no complex dissociation is reported.
Before describing the new developments in section 1.7.2 I will first briefly review
what is known about free energy calculation and its use for estimation of molecular
kinetics in the next section.

1.7.1. Free energy calculation

Stationary expectations for systems with rare events can be calculated with Boltz-
mann reweighting. For an ergodic system, the stationary (equilibrium) expectation
value of an observable can be approximated by computing the empirical mean of the
observable from all conformations generated by a sufficiently long MD simulation.
In the limit of long simulations, the mean will converge to the true expectation
value. If the system has too high free-energy barriers such that the states of the
system can not be sampled with available computing resources, a bias energy can
be introduced that is added to the physical model Hamiltonian of the system and
that reduces or removes the barriers in the system. Popular choices of bias are um-
brella sampling simulations [123, 116], multi-temperature simulations [81, 56, 117]
and others [54, 78, 73]. Expectation values can still be estimated as (weighted)
means from the trajectory data of the MD simulation that was run with the biased
Hamiltonian. The effect of the bias energy on the mean is corrected by multiplying
every term by a reweighting factor (see section A.2).
In principle, only one biased Hamiltonian is necessary for reweighting approaches.
However, in practice, multiple biased Hamiltonians (or multiple temperatures) are
defined and used to simulate many biased MD trajectories. [81, 118] The resulting
simulation data then have to be combined into one estimate of the observable of
interest. Standard algorithms that solve this problem are the weighted histogram
analysis method (WHAM) [43, 74] and binless WHAM, also known as multi-state
Bennett acceptance ratio (MBAR) [133, 8, 116, 70, 113]. These methods treat their
input data as uncorrelated samples of the ensemble distribution and are therefore
not suitable for simulation data with long correlation times in some variables,
as it is common for unbiased MD simulations and biased simulations with slow
unbiased coordinates [108, 63]. This disadvantage can be mitigated by replacing
the assumption of uncorrelated input samples by the less strong assumption that
the input data was generated by a MSM as will be explained in the next section.
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1. Introduction

1.7.2. Enhanced estimation of kinetics

Besides reliable estimation of free energies, the goal of this work is to compute
kinetic properties of protein-ligand systems. Still, kinetics of reversible systems are
inseparably connected to free energies. This can be easily seen for Markov state
models: MSMs can not only be used to model trajectories but also to describe
the time evolution of state occupancy probabilities (populations). Let pi(t) be the
population of microstate i at time t. Then the population of the microstates at time
t+ τ can be approximated with pj(t+ τ) = ∑

k Tijpi(t). In the limit of an infinitely
long lag time,3 any initial vector p(0) will converge to the stationary vector π. In
case of molecular systems π can be identified with a coarse-grained version of the
Boltzmann distribution, which establishes a direct connection between MSMs and
thermodynamic quantities. [111, 124]
MSM theory provides two equations that link kinetics and thermodynamics even
closer than that and that are of central importance for enhanced estimation of
kinetics:

1. The molecular systems in this work are studied in the absence of external
driving forces which implies microscopic reversibility of the dynamics. Under
these conditions, the detailed balance relation πiTij = πjTji holds for every
pair of microstates of the MSM. [111, 124] From this follows that every
transition matrix element Tij can be computed from the transition matrix
element of the reverse transition Tji and the stationary probabilities πi and
πj. We make use of this fact to omit sampling the rarest transitions that
correspond to the smallest Tij. For this purpose, the reverse transition
probability Tji has to estimated. Also πi needs to be known for all i, e. g.
from a previously conducted biased MD simulation / free energy calculation.

2. The transition matrix of the Markov model can be repeatedly applied to any
initial probability vector until the stationary vector is found. limk→∞ Tij(kτ) =
limk→∞

(
Tk(τ)

)
ij

= πj We estimate T(τ) from many short MD trajectories
that are shorter than the time required for the system to relax to equilibrium.
Thus we do not estimate π directly but extrapolate to it with the help of the
MSM.

It would be ideal to use these two properties of MSMs in one algorithm to estimate
the kinetics and stationary properties for molecular systems with rare events. A
sketch of such an ideal algorithm is shown in figure 1.2.

3One has to additionally assume irreducibility and positive recurrence of all Markov states. [92]
Practically, we work with a reduced set of Markov states defined such that the conditions are
always fulfilled.
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1.7. Methodological developments

Figure 1.2.: scheme for an algorithm for the enhanced estimation of kinetics that
leverages the principles of Boltzmann reweighting, detailed balance,
and the Markov property

From a set of short MD simulation trajectories (a in figure 1.2), a MSM (b) is
estimated. We use MSM property 2 (extrapolation) to compute the stationary
vector of the physical ensemble (c). The physical (unbiased) simulation alone might
not have sampled all microstates in both the forward and backward directions, so
there might be microstates i whose stationary weight πi can not be computed from
the MSM of the physical ensemble. This missing information is supplied by the
stationary vector of the biased ensemble (f) which can be reweighted towards the
physical ensemble via Boltzmann reweighting (see appendix A.2). Knowing the full
physical stationary vector (c), one can now use MSM property 1 (detailed balance)
to compute the missing transitions rates in the transition matrix (b).
Since MSMs are an integral part of this ideal algorithm, we can also permit that
the biased simulation data (d) to consist of short out-of-equilibrium trajectories.
The biased stationary vector (f) is computed from a MSM of the biased data (e).
How to systematically construct such an algorithm is the content of publications
[P2] and [P3] and is summarized and discussed in section 2.1. Precursor algorithms
that do not exploit all properties of MSMs and Boltzmann reweighting or are
restricted to the estimation of stationary probabilities were developed in references
[125, 141, 84, 128] by various authors.
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2. Summary and Discussion of the content of this
thesis

In this thesis, three aspects of macromolecular binding coupled to conformational
change are addressed.

1. The study of complicated binding kinetics with MD simulations requires
novel methods for rare-event sampling. Existing methods are either suitable
to study the kinetics of a) macromolecular systems with a very large number
of conformational states that can easily be sampled with MD simulations
or b) systems with few but with very stable states. However no method
is available for studying systems that have many states, part of them very
stable. This is exactly the setting in the binding of flexible ligands to proteins.
For this purpose, building on the groundwork done by Trendelkamp-Schroer,
Wu, and Mey [125, 141, 84] two new analysis methods named TRAM and
TRAMMBAR are developed and validated with conceptual models.

2. Equipped with these new analysis methods, we study coupled processes
of conformational change and binding in two molecular systems: a) the
interaction between the protein trypsin and the ligand benzamidine and b)
the interaction between the protein fragment 25−109Mdm2 and the peptide
PMI. While the trypsin-benzamidine system is to be seen as a benchmark
for the new TRAM method, we present novel results about the dissociation
rate and the binding mechanism for the PMI-Mdm2 interaction. For the
first time, a dissociation rate on the seconds time-scale is computed from
MD simulations without resorting to methods that speed up transitions by
externally forcing the system.

3. In the third part, we investigate processes of coupled conformational change
and binding by analyzing experimental data from stopped-flow (relaxation)
experiments. Typically these experiments are done under pseudo-first-order
conditions for the sake of a simple mathematical analysis (see introduction,
section 1.5). I generalize the kinetic models employed in the analysis from
pseudo-first-order to more general conditions. This allows to infer the binding
mechanism for molecular systems for which no such distinction was possible
in the past. We correctly identify the mechanism and determine transition
rates in the coupled binding and conformational change process between the
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2. Summary and Discussion of the content of this thesis

Figure 2.1.: Schematic free-energy landscape in which TRAM and TRAMMBAR
can be optimally applied. The exemplary landscape features many
small energy barriers that are small enough to be sampled with state-
of-the-art brute-force MD simulations and one large hill-slope that
is easy to cross in the downhill direction but difficult to cross in the
uphill direction. An effective simulation setup for sampling the whole
energy landscape would consist in a set of biased MD simulations that
sample only the steep hill-slope (orange umbrella potentials) and a
set of unbiased MD simulations that were started from many different
locations in the free-energy landscape. The biased MD simulations
allow to estimate the ratio of stationary weights π5/π6 and the unbiased
MD simulations allow to estimate the probability of transitioning
downhill T6,5. The probability of transitioning uphill T5,6 can be
calculated from the detailed balance condition π5T5,6 = π6T6,5.

protein recoverin and the rhodopsin kinase peptide fused to the B1 domain
of immunoglobulin protein G.

2.1. New methods for enhanced estimation of kinetics

The new methods presented in this thesis allow to estimate a MSM that encodes the
full multi-state kinetics and thermodynamics of the system. This idea was pioneered
in [142, 141, 84] and applied to simple molecular systems and is significantly
extended in this thesis.
We want to estimate full kinetics in a situation in which the free-energy landscape
exhibits multiple minima separated by barriers of different height (see figure 2.1 as
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2.1. New methods for enhanced estimation of kinetics

example). To this end we introduce Markov states, that partition the conformational
space. Conventional, unbiased MD simulations that are started from different states
are able to explore large parts of the energy landscape. However, some Markov state
transitions can only be sampled in one direction with the available computational
resources1.
To infer the probabilities of the missing transitions, the unbiased MD simulations
are complemented here by a series of biased MD simulations (see figure 2.1). These
biased simulations will be used to estimate the free energy differences between
the Markov states, which can be used to infer the missing transition rates via the
detailed balance relation. The Hamiltonians in the biased simulations have to be
chosen such that the biased simulations sample the transition regions between
the Markov states where bidirectional transitions are missing in the unbiased
simulations. To implement this idea in a practical algorithm, two tasks had to be
solved in this work:

1. A modeling / mathematical task that consists of (i) developing a probabilistic
model that describes the simulation data and (ii) deriving a maximum
likelihood estimator for the parameters of the model (transition rates and
free energies). This model should implement the principles of Markov state
modeling, microscopic reversibility, and Boltzmann reweighting as introduced
in sections 1.4 and 1.7.

2. A physical / applied task that consists of choosing the Hamiltonians for the
biased simulations for the molecular system at hand such that the relevant
transitions can be sampled.

In the following, I summarize and discuss results of mathematical modeling (task 1)
that lead to the TRAM and TRAMMBAR estimators. Both estimators are tested
with conceptual models and their efficiency is compared with other methods. Task
2 is more specific to the applications and will be addressed in sections 2.2 and 2.3.

2.1.1. TRAM

In this section, I assume that the reader is familiar with Markov state modeling,
free energy calculation and maximum-likelihood estimators. The non-expert reader
is referred to the introductory text in the appendix A.

1One could also imagine a situation, where the unbiased simulations are not long enough to
sample some state transition in any of the forward and backward directions. A conceivable
strategy then would be to start simulations from the transition state between the unconnected
states. This approach was explored for simple systems by Trendelkamp-Schroer. [124, 126]
Identifying the transition state for complicated molecules is a challenge in itself, which can be
addressed e. g. with path sampling methods [97].
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2. Summary and Discussion of the content of this thesis

Figure 2.2.: The doubly stochastic model used in TRAM for a single MD trajectory
from thermodynamic ensemble k. On the upper level the trajectory is
modeled as a discrete-time, discrete-space trajectory that jumps from
Markov state to Markov state. On the lower level each conformation
x(t) is modeled as being drawn from a local (conditional) equilibrium
distribution µ(k)

i (.) = µ(. | Si, k) that belongs to the Markov state Si
which is currently visited by the discrete trajectory.

In this thesis, we formulate a joint probabilistic model for MD trajectories from
multiple simulations with different Hamiltonians. This model uses ideas from
MSMs (see section A.1.1) and binless reweighting (MBAR, see section A.2.3).
The most important element in the model is a set of MSMs, one MSM for every
thermodynamic ensemble. We call this set of MSMs a Multi-Ensemble Markov
Model (MEMM). We call the estimator for the model parameters the Transition-
based Analysis Method (TRAM).
As detailed in the publication [P2], two mathematical components are needed to
formulate the model:

1. Transition matrices T(k) that model the kinetics in each thermodynamic
ensemble k (no conceptional difference is made between biased and unbiased
Hamiltonians)

2. Per-microstate reweighting factors µ(k)
i (x) that reweight a sampled confor-

mation x towards the Boltzmann distribution of ensemble k restricted to
microstate Si (towards the “local equilibrium distribution” of microstate Si).
µ

(k)
i (x) = µ(x | i, k) is defined similarly as the reweighting factor µ(k)(x) in

MBAR (see section A.2.3) with the difference that the probability µ(k)
i (x) is

conditioned on the fact that x is located in microstate Si.

Consider an MD trajectory from a simulation with HamiltonianH(k). The trajectory
{x(t)}t=0...T is first converted into a trajectory of microstate indices {s(t)}t=0...T
(defined such that x(t) ∈ Ss(t)) and then subsampled with a lag time τ to obtain the
discrete-space discrete-time sequence {s(nτ)}n=0...N . Using this discrete sequence
as an auxiliary quantity, {x(nτ)}n=0...N is modeled with a doubly stochastic process
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2.1. New methods for enhanced estimation of kinetics

as shown in figure 2.2. On the upper level of the process, the time evolution is
completely modeled as a Markov process between the discrete states visited at
different times. On the lower level, the probability of observing the conformation
x(nτ) given that the Markov state at time nτ is s(nτ) is modeled with the
reweighting factor µ(k)

s(nτ)(x(nτ)) = µ(x(nτ) | s(nτ), k).
This allows to factorize the probability of observing the complete sequences {x(nτ)}
and {s(nτ)} as

P({x(nτ)}, {s(nτ)} | k) = P({x(nτ)} | {s(nτ)}, k) · P({s(nτ)} | k) (2.1)

The probability of observing the sequence of Markov states is modeled following
the standard approach (A.5) as

P({s(nτ)} | k) = P(s(0) | k)
∏
n

T
(k)
s(nτ−τ),s(nτ) (2.2)

where P(s(0) | k) is the probability of starting the trajectory in Markov state with
index s(0). The probability of observing the sequence of conformations, given a
fixed sequence of Markov states is modeled as

P({x(nτ)} | {s(nτ)}, k) =
∏
n

µ(x(nτ) | s(nτ), k). (2.3)

The probability of observing many trajectories, possibly simulated in different
thermodynamic ensembles k is simply the product of the probabilities of the
individual trajectories (assuming independence of the simulations). This probability
of observing all trajectories is used as the likelihood function for the parameters of
the MEMM to construct a maximum-likelihood estimator. The likelihood can be
written in a more compact form by introducing a count matrix C(k) for the state
transitions in thermodynamic ensemble k like in equation (A.6)

LTRAM =
∏
k

∏
i,j

(
T

(k)
ij

)Ck
ij
∏
i

∏
x∈X(k)

i

µ
(k)
i (x) (2.4)

X
(k)
i denotes the set of conformations x contained in Markov state Si that have

been generated by the simulation run with Hamiltonian H(k).
The principles of Boltzmann reweighting and detailed balance are modeled as
constraints on the values of the model parameters and are enforced during the
likelihood maximization. To implement Boltzmann reweighting, we couple the
per-microstate reweighting factors µ(k)

i (x) of ensemble k to the global reweighting
factors µ(ref)(x) of an (arbitrarily chosen) reference ensemble. This can be done
by first expressing the per-microstate reweighting factors in terms of the global
reweighting factors µ(k)(x) (see equation (A.10)) and a normalization constant
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2. Summary and Discussion of the content of this thesis

e−f
(k)
i := P(x ∈ Si, k) by using the definition of the conditional probability and

then relating µ(k)(x) to µ(ref)(x) with the help of the bias energy2

µ(x | Si, k) =
exp

[
−βU (k)(x)

]
χi(x)

exp[−f (k)
i ]

=

=
µ(ref)(x) exp

[
−βU (k)(x) + βU (ref)(x)

]
χi(x)

exp[−f (k)
i ]

(2.5)

where χi is the indicator function for microstate Si. This allows to incorporate
all bias energies into the estimation of the model parameters, like in MBAR (see
section A.2.3). Coupling together the estimates for the reweighting factors µ(k)

i (x)
across different ensembles allows to infer the equilibrium distribution of an ensemble
that was not sampled (either not sampled completely or not sampled at all).
To implement detailed balance we couple the stationary probabilities to the transi-
tion probabilities:

e−f
(k)
i T

(k)
ij = P(s(t+ τ) = j | s(t) = i, k)P(s = i, k) =

= P(s(t+ τ) = i | s(t) = j, k)P(s = j, k) = e−f
(k)
j T

(k)
ji (2.6)

The algorithm for optimizing the likelihood under these constraints is given in [P2].
We validated TRAM with replica exchange simulations of a small molecule, the
alanine dipeptide and with a set of biased and unbiased simulations of diffusion
on a two-dimensional energy landscape. For both model systems, the trajectories
needed to reach convergence can be shorter for TRAM than for MBAR. This is
expected because MBAR requires that all conformations are drawn from the global
equilibrium (Boltzmann) distribution which is an assumption that is violated in
our test data. TRAM, in contrast, does not assume global equilibration of the data.
TRAM relies on the validity of the MSM approximation and uses the MSM to
extrapolate towards global equilibrium (see also section 1.7.2) instead of requiring
it from the distribution of the input data.
The analysis of the replica exchange simulation data of the alanine dipeptide with
TRAM produced results that agree with previous studies but relies on conditions
that are typical not fulfilled in replica exchange simulations of larger molecular
systems. (See next section for discussion and solution of that problem.)

2We assume that the zero of all energies have been shifted such that the partition function of
the reference ensemble is one. Alternatively one may interpret all probabilities e−f

(k)
i as being

implicitly normalized (divided) by the partition function of the reference ensemble.
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2.1. New methods for enhanced estimation of kinetics

2.1.2. TRAMMBAR

Coupling biased MD simulations with (Hamiltonian) replica exchange (HREMD)
helps in enhancing the exploration of the conformational space and helps to mitigate
sampling problems that arise from unfavorable interactions of the bias energy with
the underlying physical Hamiltonian (see A.2.4). Therefore, ideally all biased
simulations should be carried out with replica exchange. This raises the questions
whether HREMD simulations too can be analyzed with TRAM and which physical
quantities can be estimated from HREMD data.
When accepted, the replica exchange step interrupts the trajectories simulated with
a constant bias potential. Therefore the long-time kinetics of the replica exchange
simulations does not correspond to the kinetics of any of the ensembles individually.
Since the main interest in this work is to compute the kinetics of the possibly
slow conformational changes and unbinding events, it is necessary to find a way to
recover the long-time kinetics from HREMD simulations.
The first attempt to estimate kinetics from HREMD data was made in our publica-
tion [P2]. In our simulations of the alanine dipeptide, we first split the trajectories
into trajectory pieces that end whenever the Hamiltonian changed. We then esti-
mated a MEMM with TRAM from these pieces by treating them as independent
trajectories. We found that all transition matrices of the MEMM fulfill the Markov
condition (A.4) at a lag time that was shorter than the time interval between
exchange attempts. So, one way of using replica exchange data with TRAM is
to exchange Hamiltonians infrequently with an interval that is longer than the
shortest possible lag-time of the MSM. In general, this is not a useful strategy,
for the following reasons: HREMD simulations become more effective, the more
frequently exchanges are attempted. [101] In contrast, for the estimation of a MSM
for proteins, typically a long lag time between 10 ns and 100 ns is needed [83] which
is much longer than the recommended exchange interval for HREMD simulations
[101]. Moreover, the length of the HREMD exchange interval is chosen early in the
design/preparation stage of a simulation whereas the smallest lag time necessary
to estimate the MSM/MEMM can currently only be revealed after the simulation,
during the data analysis.
To solve the problem of estimating kinetics from HREMD data, we propose in [P3]
to split the computational effort into two types of simulations, called kinetic and
equilibrium simulations. The equilibrium simulations are run simultaneously and
coupled with replica exchange. The kinetic simulations are run independently from
the equilibrium simulations without exchange of Hamiltonian. Because of the good
mixing in the HREMD simulations, one can assume that the equilibrium simulations
quickly relax to a state where they sample from the Boltzmann distributions of
their respective ensembles. That is, conformations generated with the Hamiltonian
H(k) are assumed to be drawn from the corresponding Boltzmann distribution.
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2. Summary and Discussion of the content of this thesis

The equilibrium simulation data alone then fulfills the necessary assumptions to
be analyzed with MBAR3. The kinetic simulations, in contrast, are modeled with
a Markov model exactly like in TRAM. Because the kinetic simulations do not
participate in the exchange of Hamiltonians, relatively long trajectories are available
and the choice of lag time is not substantially restricted.
To analyze both data sets simultaneously, we propose a new maximum likelihood
estimator called TRAMMBAR that combines elements of the TRAM and MBAR
estimators. Let X(k)

MBAR denote the equilibrium data from ensemble k i. e. the
set of all conformations from the replica exchange simulation that was run with
Hamiltonian H(k). Let XMBAR = X

(1)
MBAR ∪ . . . ∪X

(K)
MBAR be the set of all confor-

mations from all replica exchange simulations. Let X(k)
TRAM be the conformations

sampled by the kinetic simulation that was run with Hamiltonian H(k) and let
XTRAM = X

(1)
TRAM ∪ . . . ∪ X

(K)
TRAM. Furthermore let C(k)(τ) be the count matrix

of the state-to-state transitions in the kinetic simulations conducted with Hamil-
tonian H(k). Because the equilibrium data and the kinetic data are generated
by independent simulations, the TRAMMBAR likelihood takes the form of the
product

LTRAMMBAR(XMBAR, XTRAM, {C(k)}k) = LTRAM(XTRAM, {C(k)}k)·LMBAR(XMBAR)
(2.7)

where LTRAM is defined in equation (2.4) and LMBAR is defined in equation (A.11).
The maximization of the TRAMMBAR likelihood is carried out under the same
constraints that are used for the maximization of the TRAM and MBAR likeli-
hoods. For all conformations in XTRAM, microstate-dependent reweighting factors
µ

(k)
i (x) are defined just like in TRAM. For all conformations in XMBAR microstate-

independent reweighting factors µ(k)(x) are defined just like for MBAR (see section
A.2.3). All reweighting factors can be coupled to the global reweighting factors
µ(ref)(x) of an arbitrarily chosen reference ensemble with the help of the bias ener-
gies. Furthermore the detailed balance constraint (2.6) is enforced in all ensembles
where kinetic simulation data is available.
The TRAMMBAR algorithm was tested with a 2-D conceptual model of protein-
ligand binding in [P3] and applied to the coupled folding and binding in the
PMI-Mdm2 system. The test shows that TRAMMBAR needs about 50 times less
simulations data than MSMs and than direct sampling for computing the binding
free energy and the dwell-time of the bound state. The improvement was expected

3MBAR’s assumption that simulations in different thermodynamic ensembles are independent is
still violated for HREMD data. However practical applications [1, 41] show that MBAR is
currently one of the best estimators for analyzing HREMD data. Modeling the dependence
between the different replicas would require a much more complicated stochastic model which
is beyond the scope of this thesis.
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2.2. Coupled binding and conformational change in the trypsin-benzamidine system

because TRAMMBAR is the only method in this comparison that can integrate the
biased simulation data into the estimation. A drastic reduction in simulation effort
is possible with TRAMMBAR, especially for the estimation of kinetic quantities
which is confirmed in the application to the PMI-Mdm2 system.

2.2. Coupled binding and conformational change in the
trypsin-benzamidine system

In [P2], we applied TRAM to the binding between the serine protease trypsin and
its inhibitory ligand benzamidine. Benzamidine binds to the Asp-189 side chain
of trypsin which is located at the bottom of a deep binding pocket. It was found
in [102] that benzamidine binding can involve a conformational change of trypsin.
The binding site is accessible via one of two channels, the S1 channel and the S1*
channel. Only one of the channels can be present at the same time [102]. Moreover,
the side chain of Trp-215, which is located on the protein surface, can flip and close
over the exit of the S1 channel. [20, 102]
We were interested in reliably determining the unbinding mechanism and computing
the dissociation rate in the trypsin conformation with open S1 channel. Even in
that case, the unbinding mechanism is relatively complicated and involves breaking
of salt bridges between Asp-189 and benzamidine, going through intermediates
with water-mediated interaction between Asp-189 and benzamidine [121, 102], and
benzamidine exiting the channel. The conformational flexibility of trypsin is not
restrained in our simulations, so it is expected to see conformational changes of
trypsin.
In the simulations, at least two slow processes can take place: binding/unbinding
and conformational change. We chose to enhance the sampling of the unbinding
with biased simulations (umbrella sampling) because dissociation is the slowest
process that takes place on the millisecond time-scale. We do not introduce biases
to enhance the conformational change (a) because it is probably faster [102] than
dissociation, so there is a chance of sampling it spontaneously and (b) because there
are multiple possibilities of conformational change. In addition to Trp-215 flipping
there is conformational variability in the Asp-189 loop [102] and isomerization of
a disulfide bond near the binding pocket among others [P2]. Biasing in multiple
dimensions quickly becomes computationally very expensive and is only possible
for two or three dimensions [9, 139]. Moreover to define biased Hamiltonians, some
initial knowledge about the expected conformational changes is needed, which is
not available for all conformational changes before running the simulations.
9.2µs of umbrella sampling simulations were run using a series of harmonic biasing
potentials that restrain benzamidine to different positions along the binding channel.
The first umbrella restrains benzamidine to the Aps-198 bound state, the last
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2. Summary and Discussion of the content of this thesis

umbrella restrains benzamidine to a state that encompasses a mixture of unbound
conformations and conformations with benzamidine loosely bound to the surface
of trypsin. We additionally included 49.1µs of unbiased MD simulation data taken
from reference [20]. In both the biased and the unbiased simulations, we see closing
of Trp-215 over the exit of the channel. This closing is a relatively rare event.
Despite the fact that we see a few opening and closing events, we can not assume
that the frequencies of observing the open/closed conformations in our simulation
data are representative for their true equilibrium probabilities. That is why analysis
with TRAM, which does not rely on global equilibration, is necessary in this setting
(see section 2.1.1).
We analyze the data with TRAM and find a dissociation rate of koff = 1170 s−1

with 95% confidence interval of [617 s−1, 2120 s−1]. The experimental rate is 600 s−1.
[52] Along the binding/unbinding pathway that we study, we find that Trp-215
closes over the binding channel either if benzamidine is fully bound or located at
the exit of the binding channel (see figure 5 in [P2] and figure 2.3). The closing
of Trp-215 while benzamidine is bound could be called an induced fit mechanism.
However, the complete binding mechanism is more complicated and involves more
conformational changes as was shown in reference [102].
The dissociation rate of benzamidine from trypsin with formed S1 channel was
studied by other groups either by using the hyperdynamics method [121], adap-
tive multilevel splitting [120], or MSMs [20]. The work in [121] is based on the
hyperdynamics approximation that requires a careful choice of a bias that does not
change the saddle points of the physical energy landscape. The adaptive multilevel
splitting method [120] is only efficient if there are no metastable intermediates
on the transition from strongly bound to unbound, a problem also found in early
versions of the transition interface sampling (TIS) method [131] that was solved by
running the TIS method in an adaptive fashion [37].4 In the simulation study in
reference [20], no complete dissociation of trypsin and benzamidine was observed
in a single trajectory but only steps in the unbinding direction distributed over
multiple trajectories. Under ideal conditions, a MSM can be estimated in this
situation and the unbinding rate can be estimated from the MSM. However this
requires that an accurate reaction coordinate was defined that exclusively describes
the binding/unbinding transition. If the reaction coordinate is contaminated with
random fluctuations that come from other degrees of freedom, not related to the
binding process, this noise could be mistaken for a motion in the unbinding/binding
direction and one could gain the impression of seeing partial unbinding while
actually no such event took place. Therefore, extra care is necessary in estimating
MSMs under these condition. [34, 100] In our work, we took a safer and more robust

4private communication on NAMD Developer’s Workshop, University of Chicago, May 26-27,
2016
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2.2. Coupled binding and conformational change in the trypsin-benzamidine system

Figure 2.3.: Figure modified from [P2]. a) Coarse-grained kinetic network of the
MEMM. The largest transition rates (where at least one direction
exceeds 1/ms) between these macrostates, the unbound state and two
alternatively bound states are shown as arrows. Units are events per
millisecond. b) Efficiency of TRAM in the estimation of unbinding
kinetics compared with a MSM built from the same unbiased data.
Shown is all all all the probability that koff calculated from a bootstrap
sample falls into the interval [0.5 log kall

off , 2 log kall
off ] off where kall

off is the
TRAM estimate calculated using all data.

23



2. Summary and Discussion of the content of this thesis

Figure 2.4.: co-crystal structure of the protein fragment 25−109Mdm2 and the pep-
tide PMI reproduced from the crystal structure 3eqs [95]. Missing
residues were remodeled with profix [143].

approach to the problem, because we have trajectories with full binding events
and a series of biased simulations that clearly connect the bound and unbound
state. The dissociation rate is computed with TRAM which relies on Markov
state modeling and on the undisputed physical principles of detailed balance and
Boltzmann reweighting.
A important limitation of this work is that we restricted all simulation and analysis
to the trypsin conformation with open S1 channel. Work by Plattner et al. [102]
indicates that this conformation is not the most probable conformation of trypsin in
solution. Therefore the experimental dissociation rate of benzamidine and trypsin
might be dominated by dissociation from other conformations and comparison
of our result for koff with the experimental value has to be taken with care. In
future work, additional umbrella sampling simulations of the binding/unbinding
process could be conducted with the different conformations that were identified
in reference [102]. These biased simulations could be added to simulation data
generated in this work and all data could be analyzed together with TRAM.

2.3. Coupled folding and binding in the PMI-Mdm2 system

In [P3] we studied the process of coupled folding of the peptide PMI during binding
to the protein fragment 25−109Mdm2 (from this point called Mdm2). This molecular
system is interesting for the following reasons:

1. The co-crystal structure of the Mdm2 fragment with the peptide PMI [95]
shows that PMI binds as a helix (figure 2.4). Our MD simulations of PMI in
solution without its binding partner show that PMI is at most 40% helical
when unbound. [P3] So the binding mechanism must involve folding. The
Mdm2 fragment does not show any large conformational changes and PMI is
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a small peptide that can fold quickly. Therefore PMI-Mdm2 is a relatively
simple example that allows to study coupled binding and folding with MD
simulations.

2. Mdm2 is a medically relevant protein [122] and the peptide PMI was engi-
neered to bind to Mdm2 and to block its binding site for the p53 protein. [95]
PMI binds very strongly to the Mdm2 fragment with a dissociation constant
Kd = 3.3 nM. [95] It is interesting to understand which PMI conformations
are relevant for this strong binding. Additionally the system is a hard test
case for the enhanced sampling methods developed in this thesis.

The interaction of the same Mdm2 fragment with the less strongly binding p53
peptide was studied by two other groups with MSMs [88] and with the weighted
ensemble method [147]. In both works, only unbiased simulations were used. In
none of the works, the dissociation rate could be estimated.
We ran 500µs of unbiased simulations divided in many short trajectories starting
from various bound and unbound conformation and approximately 100µs of biased
simulations that were coupled with HREMD (see section A.2.4). As the bias
potential, we selected the so-called boost potential [54]. The joint data set of biased
and unbiased simulations was analyzed with TRAMMBAR (see section 2.1.2 and
[P3]). We find a dissociation constant Kd,sim = 0.34 nM [0.22 nM, 0.44 nM]5 and
a complex residence time of k−1

off,sim = 883 ms [480 ms, 1328 ms]. To validate the
simulations, we performed binding competition experiments (see supplementary
information for [P3]). We found an experimental dissociation constant Kd,exp =
3.02±0.31 nM in agreement with literature data [95] and an experimental residence
time of k−1

off,exp = 26.8 s [24.7 s, 34.1 s], which is in good agreement with the simulation
results considering expected errors in the simulation force field.
We observe that the bound state is a conformationally very diverse ensemble of
structures that bind with different hydrophobic contact surfaces and interconvert
on the ten-microsecond timescale. Similar observations of a conformationally
diverse hydrophobic encounter complex were made in [7] for the coupled folding
and binding of a different molecular system consisting of S-peptide and S-protein.
The bound ensemble of PMI-Mdm2 is dominated by two metastable states. In the
most probable state, PMI adopts the same conformation as in the crystal structure
with protein data bank identifier 3eqs [95]. In the state with the second largest
probability, PMI binds to Mdm2 with a similar contact pattern and an unfolded
C-terminus.
The MSM estimated with TRAMMBAR shows that most of the binding/unbinding
happens directly without intermediates that have longer life times than 10µs. The
experimental results point in a similar direction. On the time scale of seconds,

5All error ranges are given as 95% confidence intervals.
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we see no biexponential behavior and no fast initial decay in the relaxation time
series (see figure 2f in [P3]), which suggests that there is no intermediate with a
life time of similar magnitude as k−1

off . The binding/unbinding mechanism features
parallel pathways (see figure 3 in [P3]). PMI is completely or predominantly folded
in the long-lived on-pathway intermediates. Judging from the secondary structure,
this could be called a predominant binding-after-folding mechanism. However the
binding sites and binding patterns differ drastically between the intermediates,
so a description of the binding mechanism in terms of binding patterns is more
adequate for this system than the order of binding and formation of secondary
structure (see figures 1 and 3 in [P3]).
Our simulations are good in exploring different conformation of the PMI-Mdm2
complex and their rearrangements. A weak point of our simulations is that they
are done with periodic boundary conditions (which are necessary for explicit water
models). In our simulations these boundary conditions lead to a small volume of
the dissociated state which then leads to fast association (≈ 10 ns) of the binding
partners. This makes it difficult to sample trajectories that follow a binding-after-
folding mechanism where PMI first folds in the unbound state and subsequently
binds to Mdm2. The fast binding might not leave enough time for unbound PMI to
change conformation in our simulations. We correct for the effect of finite simulation
volume in the estimation of the residence time (see supplementary information for
[P3]). In future work, simulations with a effectively larger box could be attempted by
using multi-scale modeling techniques like adaptive resolution molecular-dynamics
simulation that work on the atomistic level [103] or by combining MSMs with
Brownian dynamics simulations [44, 109, 18].

2.4. Distinguishing induced fit and conformational selection
using chemical relaxation rates6

Chemical relaxation experiments such as mixing experiments provide information
on the binding mechanism. In these experiments, a sequence of time series {Oi(t)}i
is measured where each time series Oi(t) is recorded from an experiment started
with different initial conditions. In mixing experiments, different initial conditions
are created by varying the initial concentrations of the reaction partners. In the
experiments considered in this thesis, the initial concentrations of unbound protein
[P]0 = [P](t = 0) and ligand [L]0 = [L](t = 0) are varied.

6Some passages have been quoted verbatim from [P1]
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Figure 2.5.: Flow chart for the analysis of relaxation data. For details see main
text and [P1].

To test whether the mechanism that underlays the time series data is induced fit
or conformational selection (see figure 2.6a and 2.6b), the data is compared to
predictions from rate equations that model one of these two mechanisms. Even
though a direct comparison between the relaxation time series and the solution of
the rate equation models is possible [75, 30], the standard in the field is to map
both the experimental observations and the models to the observed relaxation rate
kobs (see below for definition) and to compare these rates between experiment and
model (see figure 2.5). [11, 67] An important task, which is addressed in this thesis,
is to develop accurate and general methods to compute kobs from theoretical models
and from experimental data.
The observed relaxation rate kobs is defined as the smallest relaxation rate mini(ki)
in the set of relaxation rates {ki}i=1,...,n that parameterize the multiexponential
model

O(t) =
n∑
i=1

Aie
−kit + A0 (2.8)

The constants {Ai}i=0,...,n are the relaxation amplitudes. On the experimental side,
numerical values for kobs can be found by a numerical fit of the multiexponential
model to the data (see figure 2.5, left branch). kobs is often the only relaxation rate
that can be determined reliably. [P1] On the theoretical side, analytical expressions
for kobs for the induced fit model and the conformational selection model are derived
by first linearizing and then solving the rate equation models (see figure 2.5, right
branch). The linearization is necessary because the rate equation models involve
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2. Summary and Discussion of the content of this thesis

binding steps that are second-order reactions and therefore depend on the product
of the time-dependent concentrations of unbound proteins and unbound ligands.
The standard method of linearizing the equations is the pseudo-first-order approx-
imation, where it is assumed that the total ligand concentration greatly exceeds
the total protein concentration, so that the amount of ligand consumed during
binding is negligible compared to the total amount of ligand. The concentration of
the unbound ligand then can be taken to be constant, and the rate equations only
contain terms that are linear in the time-dependent concentration of the protein,
which makes them solvable. [P1]
In the more general approach that we propose in this thesis, a linearization of
the rate equations is achieved by a Taylor expansion around the equilibrium
concentrations of the bound and unbound proteins and ligands. This expansion
captures the final relaxation into equilibrium, which is governed by the smallest,
dominant relaxation rate kobs, for all concentrations of proteins and ligands, and
leads to general results for kobs that include the results from the pseudo-first-order
approximation in the limit of large ligand concentrations. [P1]
The standard approach based on the pseudo-first-order assumption has led to mixed
success in distinguishing conformational selection and induced fit. [138, 67, 135]
Under this assumption, kobs([L]0), regarded as a function of the initial ligand
concentration, is monotonic in [L]0 for both models. For the induced fit model,
kobs([L]0) is always an increasing function of [L]0. For the conformational selection
model, kobs([L]0) is either an increasing function or a decreasing function of [L]0,
depending on the numerical values of the rate constants (i. e. on the sign of k−−ke,
see figure 2.6). This monotony can sometimes be used to infer the mechanism. While
a decreasing kobs([L]0) points towards the conformational selection mechanism, no
statement can be make if kobs([L]0) is an increasing function. [137, 136, 22]
With our more general approach, we find that kobs can exhibit a local minimum. For
the induced fit model, the minimum is located at [L]min

0 = [P]0−Kd (for large enough
[P0]). For the conformational selection model, the minimum is approximately at
[L]min

0 ≈ [P]0(ke + k−)/(ke − k−) −Kd (for ke > k− and large enough [P0]). For
the induced fit model, kobs([L]0) is an even function symmetric about [L]min

0 . In
contrast, kobs([L]0) is in general not symmetric for the conformational selection
model. These properties can be used to infer the mechanism even for systems
where no distinction between induced fit and conformation selection can be made
under pseudo-first-order conditions. We therefore suggest to perform experiments
beyond first-order conditions.
To demonstrate the applicability of this suggestion, we tested the approach with
synthetic data that we generated by numerically integrating in time the full
differential equations of the induced fit model and the conformational selection
model and subsequently identifying the correct model and its parameters. In
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Figure 2.6.: Figure reproduced from [P1]. (a) In induced-fit binding, the change
between the conformations P1 and P2 of the protein occurs after
binding of the ligand L. The intermediate state P1L relaxes into
the bound ground state P2L with rate kr , and is excited from the
ground state with rate ke. (b) In conformational-selection binding, the
conformational change of the protein occurs prior to ligand binding.
The intermediate state P2 is excited from the unbound ground state
P1 with rate ke , and relaxes back into the ground state with rate kr .
(c) The dominant, smallest relaxation rate kobs as a function of [L]0.
See main text.

addition, we test the approach with experimentally measured data from Chakrabarti
et al. [21] for the interaction of the protein recoverin with a rhodopsin kinase peptide
fused to the B1 domain of immunoglobulin protein G. We confirm the conclusion of
reference [21] that the mechanism is conformational selection and obtain estimates
of the parameter values ke and k− that agree with the result from [21].
An additional benefit of our method is that we find general expressions for kobs that
depend on both [P]0 and [L]0 (see e. g. equation (46) in [P1]). Therefore the other
pseudo-first-order limit of [P]0 � [L]0 is contained in our equations, and it should
be interesting to perform experiments under these conditions. In an even more
general experimental approach, the initial concentrations of both species could be
varied and a 2-D grid of measured kobs values could be used to fit the models.
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In this work, we have developed novel methods for the simulation and analysis
of macromolecular binding coupled to conformational change and have applied
these methods to three molecular systems: trypsin-benzamidine, PMI-Mdm2, and
recoverin-rhodopsin kinase peptide. For these systems, binding intermediates were
identified and their equilibrium and kinetic properties were computed.
While atomistic simulations are currently the method that gives the most detailed
information about a molecular system, the use of MD is impeded by the fact that
biological interesting processes often are rare events that are hard to simulate.
Complete understanding of macromolecular binding processes in full atomistic
resolution would be desirable and can hopefully be achieved in the future by steady
but incremental improvements in experimental methods, computer technology,
simulation algorithms, and analysis methods. In this work, we developed the
TRAM and TRAMMBAR algorithms that allow to estimate Markov state models
for systems that exhibit very rare events. These algorithms are particularly efficient
in situations where the process to be studied is slow but the reverse process is fast.
Unbinding of ligands or peptides from proteins are examples for such processes, and
we were able to estimate complex residence times up to hundreds of milliseconds.
Future research could be directed at the problem on how TRAM and TRAMMBAR
can be applied to the study of transitions that are hard to sample in both the
forward and the backward directions. For very simple molecular systems, progress
in this direction has been made [126] by identifying the transitions states and using
these states as starting points for the unbiased simulations. However, finding the
transitions states in large molecules like proteins is a complicated problem in itself.
It may be possible to address this problem with path sampling methods [97] or the
string method [38].
Estimating the kinetics of strong binders from simulations might become a useful
tool for drug design. Optimizing the residence times of ligand-receptor complexes is
increasingly considered a promising strategy in drug design. To ensure contiguous
drug effect between subsequent deliveries, the drug’s residence time at the receptor
should be long enough. [53] Because this effect becomes only relevant for residence
times that are comparable to the biological half-life of drugs (hours) [28], it is worth
to mention that TRAM and TRAMMBAR can in principle also be used to predict
residence times that are much larger than seconds, depending on the efficiency of
the biased MD simulations. So, any progress made in method development for
biased simulations might directly translate into a corresponding progress in the
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estimation of kinetics.
The accurate prediction of kinetic properties with computer simulation relies on an
accurate force field. Currently, kinetic properties are often poorly reproduced by
MD simulations. This applies to quantitative properties like relaxation time scales
[134] and mechanistic properties like the order of events [99]. For protein-protein
interaction [98, 14] or natively disordered proteins [106], also free energies are
poorly reproduced by MD. In order to attempt a correction of the systematic error
of force fields, it is first required that kinetic and equilibrium properties can be
estimated with small statistical error. That’s where enhanced sampling methods
like the ones developed in this work can play an important role.
The simulations and analysis of the PMI-Mdm2 system conducted in this thesis
are not exhaustive. The high flexibility of PMI and its unspecific binding to Mdm2
results in a very large number of states that are metastable on a time scale that
is comparable to the length of our MD trajectories (1µs). In future research on
PMI-Mdm2 interaction or similar peptide-protein interactions, it would be helpful
to combine the approach taken in this work with methods for adaptive exploration
of phase space and adaptive restarting methods [104, 34, 146] for the reduction of
statistical errors.
Finally all the work in this thesis was done in the framework of MSMs and
therefore under the implicit assumption that the dynamics that takes place within
a microstate is unimportant. A disadvantage of this approach is e. g. that it
complicates the identification of transition states. This strong focus on states was
mostly taken for technical reasons, because a decomposition of the conformational
space into microstates is required to formulate TRAM and TRAMMBAR. Currently
many other approaches for estimating kinetic properties are being developed, which
describe a mechanism as an ensemble of trajectories and not as a sequence of
states (like MSMs). Therefore, these approaches provide a more resolved picture
of mechanisms. Among these methods are weighted ensemble [60], path sampling
[32, 131, 3, 120], path reweighting [24, 35], and milestoning [42]. Hopefully we
will see some convergence in the development of trajectory-based methods and
enhanced sampling methods that exploit biased simulations to discover the full
picture of macromolecular binding mechanisms.
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A. Methods appendix

A.1. Markov state models

A.1.1. Definition and metastability

The exposition of Markov state models in this section follows approximately
reference [105], see [110] and [124] for a more mathematically rigorous treatment.
Capital letters in this section denote vectors in phase space X = (x, p), where x
are the Cartesian configurational degrees of freedom and p are the corresponding
momenta.
The stochastic motion of molecules can not only be interpreted as trajectories in
phase space but can also seen from the perspective of ensemble probability densities
evolving in time. As the equations of motion used for MD are Markovian in the
full state space (this means that only the current phase-space coordinates R(t) are
needed to propagate the system in time and no other points R(t −∆τ) that lie
further in the past) one can define the transition probability density

p(X,Y, τ)dy ≡ P(R(t+ τ) ∈ Y + dY | R(t) = X) (A.1)

This is the probability that a trajectory that was initiated at time t in phase space
point X will be found in an infinitesimal region dY around the point Y at time
t + τ . Consider an ensemble of non-interacting copies of the molecular system
at time t distributed in phase space according to the probability density pt(X).
At time t+ τ all copies will have evolved according to the transition probability
density and will be distributed according to a new probability density pt+τ (X).
From Markovianity and basic identities of probability theory one can derive that

pt+τ (X) =
∫
pt(Y)p(Y,X, τ) dY (A.2)

The integration on the right hand side can be abbreviated with the symbol P that
stands for propagator. The propagator is an integral operator that maps pt(X) to
pt+τ (X).

P [pt(Y); τ ](X) ≡
∫
pt(Y)p(Y,X, τ) dY

Let pB(X) be the stationary distribution of the propagator pB = P [pB]. In the cases
studied in this thesis, the stationary distribution is the Boltzmann distribution. If
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the dynamics fulfills the condition of detailed balance1 then the following equation
holds

pB(X)p(X,Y, τ) = pB(Y)p(Y,X, τ)

An equivalent description of the dynamics is given by the transfer operator T .
Instead of operating on probability densities like the propagator, the transfer
operator operates on functions ut(X) that are related to probability densities by
the relation pt(X) = ut(X)pB(X). It is defined as

T [ut(Y); τ ](X) ≡ 1
pB(X)

∫
ut(Y)pB(Y)p(Y,X, τ) dY

If the molecular system under study shows the phenomenon of metastability, one
can discretize the transfer operator to arrive at a numerical method that can be
implemented on a computer. Metastability means that after a given lag time the
phase space points X in some set S (i. e. X ∈ S) are mostly redistributed within
the set S but the probability of leaving the set is low. It can be shown for systems
with metastability, that the transfer operator can be decomposed into a fast and a
slow part, based on the eigendecomposition

ut+τ (X) = Tslow[ut; τ ](X) + Tfast[ut; τ ](X).

Tfast models the fast motions within the metastable states that are usually not
interesting (e. g. because they are well below the time resolution of experiments).
Tslow can be expressed using the large eigenvalues λi of T and the corresponding
eigenfunctions ψi as

Tslow[ut; τ ](X) =
n∑
i=1

λi(τ)ψi(X)
∫
ψi(Y)pB(Y)ut(Y) dY.

The eigenvalues λi of Tslow are related to the autocorrelation times of the system
and decay exponentially with the lag time τ . The separation into Tfast and Tslow
and the eigendecomposition of Tslow reduce the complexity of the dynamic model by
replacing the infinite-dimensional operators by a finite-dimensional representation

1Hamilton’s equations of motion and the Langevin equations of motion fulfill the condition of
generalized or extended detailed balance which involves reversal of the momenta [132, 111]. That
is pB(x,p)p(x,p,x′,p′, τ) = pB(x,−p)p(x,−p,x′,−p′, τ). As we are eventually interested in
the dynamics projected to the configuration space alone (where the slowly-evolving dynamics
can be well described), we can integrate the extended detailed balance relation over the
momenta to obtain the conventional detailed balance relation in configuration space P(r(t+τ) ∈
x + dx and r(t) = x′ + dx′) = P(r(t+ τ) ∈ x′ + dx′ and r(t) = x + dx). See also [124] for a
more detailed discussion of this topic.
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that contains only the dominant eigenfunctions of Tslow. This provides a method to
approximating the dynamics numerically. The problem is even more simplified be
the fact that the eigenfunctions ψi of Tslow show a typical structure: they take an
approximately constant value on every metastable set and they show a sigmoidal
transition in the transition regions between metastable states. This motivates to
discretize the phase space into a collection of non-overlapping sets, the so-called
microstates Si. Because of the typical structure of the leading eigenfunctions, the
microstates can be relatively coarse in the metastable sets (the extreme case would
be to resolve every metastable set by a single microstate) and need a finer resolution
only in the transition regions. Also the momenta p are usually not used in the
definition of microstates, because their fast relaxation time makes them unsuitable
for describing long-lived states. This kind of discretization is referred to in the
literature under the names Galerkin-discretization of the transfer operator [110] or
simply as Markov state models with many states [105]2.
The transition matrix is defined as

Tij(τ) ≡
∫
χj(X)T [χi](X)pB(X) dX∫

χj(X)pB(X) dX =
∫
Sj

(∫
Si
pB(X)p(X,Y; τ) dX

)
dY∫

Si
pB(X) dX (A.3)

where Si are the microstates and χi(X) is the indicator function of microstate Si.
If the transfer operator admits a decomposition into Tslow + Tfast and for a proper
choice of microstates, it can be shown that Tij can be interpreted as the conditional
probability that the system is in microstate Sj at time t+ τ given that the system
was in microstate Si at the earlier time t. That means that the transition matrix
fulfills the Markov property as well

Tij(τ) ≈ P(X(t+ τ) ∈ Sj | X(t) ∈ Si).

If the Markov property holds, the matrix T can be used to extrapolate to arbitrary
long lag times, because the long-time kinetics can be written as

T(kτ) = (T(τ))k . (A.4)

This allows to infer the kinetics on long time scales without needing to simulate
them directly. If the propagator fulfills the condition of detailed balance with respect
to the stationary distribution pB(X), the transition matrix fulfills the condition of
detailed balance with respect to the stationary vector π with πi =

∫
Si
pB(X) dX.

2as opposed to Markov states models with few states where each metastable state is identical to
one microstate
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A.1.2. Estimation

The definition of the transition matrix as given by equation (A.3) can not be
used directly to compute numerical estimates, because p(X,Y, τ) is not available
as an (analytical or numerical) expression that can be directly evaluated on the
computer. The high-dimensional integral in equation (A.3) can only be solved using
Monte-Carlo methods. Practically, one runs a finite number of MD simulations and
records the sequence of microstates that the trajectories visit. From these random
realizations, the elements of the transition matrix Tij are estimated. Therefore
the transition matrix (and all derived quantities) must be thought of as random
variables that are characterized by some probability density function p(T). Often
one is not interested in the whole distribution of transition matrices, but only
in finding one representative T that stands for the distribution, especially if the
statistical errors of T are small. A standard procedure for achieving this are
maximum-likelihood methods. Maximum likelihood methods can be best explained
by starting from Bayes’ theorem. Bayes’ theorem is a general statement about
probabilities of two events M and D:

P(M | D) = P(M)
P(D) P(D |M)

The theorem can be used for parameter estimation and model selection if one
sets M to be a probabilistic model (in this case the transition matrix) and D
(for data) to a set of observations. The quantity P(M | D) is called the posterior
and according to the Bayesian interpretation of probabilities can be understood
as the (subjective) degree of belief in the model, given that one has observed D.
Bayes’ theorem relates this degree of belief to the likelihood P(D | M) which is
the probability that the data was generated by the fixed model M and which can
be expressed in an analytical form for many probabilistic models. Choosing the
“best” model then amounts to maximizing P(M | D) over all possible models. In
the optimization, P(D) can be ignored because it is a data-dependent constant.
P(M) is called the prior probability (or just prior) and is the degree of belief in a
model without having observed any data. The prior can for example be used to
exclude models that disagree with prior knowledge or with fundamental physical
principles like detailed balance, by setting their probabilities to zero.3 If no prior
knowledge is available, an uniform (also called uninformative) prior is chosen, that
assigns equal probabilities to all models. In that case, maximizing the posterior
P(M | D) is the same as maximizing the likelihood P(D | M) and the resulting
estimator is called the maximum-likelihood estimator of M .
In the case of Markov state models, the model is fully specified by the set of
microstates and the transition matrix T. The data are one or many trajectories

3See [105, 124] for a more in-depth discussion on the choice of priors for MSM estimation.
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(time series) of microstate labels Ξ = {sk}k=0,...N . The microstate label sk at time
t = τk is i if the conformation x(t) is in microstate Si. The likelihood P(D | M)
for a single trajectory is then given by

P(s0, s1, . . . sN | T) =
N∏
k=1

P(sk | sk−1)P(s0) (A.5)

= P(s0)
N∏
k=1

Tsksk−1 = P(s0)
n∏
i,j

(Tij)cij ∝
n∏
i,j

(Tij)cij

In the last identity, the count matrix c was introduced. Each element cij is the
total number of transitions from microstate Si to microstate Sj observed in a given
trajectory. P(s0) is the probability of observing the first state in a trajectory. Since
it is just a proportionality constant, that doesn’t affect the optimal choice of T, it
will be ignored in the following. For a collection of many trajectories {Ξi}i=1,...K ,
independence of trajectories and initial states is usually assumed such that the
probability of observing all trajectories can be expressed as the product

P(Ξ1,Ξ2, . . . ,ΞK | T) =
K∏
i=1

P(Ξi | T) ∝
n∏
i,j

(Tij)Cij ≡ LMSM (A.6)

where C is the sum of all the count matrices from the individual trajectories.
Maximizing LMSM under the constraints of non-negative probabilities Tij and
normalization ∑j Tij = 1 for all i, results in the well-known estimator

T̂ij = Cij∑
k Cik

(A.7)

This is an estimator for a non-reversible MSM, that is in general π̂iT̂ij 6= π̂jT̂ji where
π̂ is the stationary vector of T̂. A maximum-likelihood estimator for a reversible
MSM can be formulated analogously. [19] It cannot be expressed in closed form
like equation (A.7) but can be implemented on a computer using different variants
of numerical optimization algorithms. [19, 105, 127]

A.2. Free-energy calculation

A.2.1. Boltzmann reweighting

For ergodic dynamics the (equilibrium) expectation value of an observable O(x) in
the ensemble with equilibrium distribution p(x, p) can be computed by evaluating
an integral over the phase space Ω
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〈O〉 ≡
∫

Ω
O(x)p(x, p) dx dp

or by Monte-Carlo integration by computing the mean of a sequence of samples
{O(t)}Nt=1 sampled from p(x, p)

〈O〉 = lim
N→∞

1
N

N∑
t=1

O(t)

For molecular systems, the Metropolis Monte-Carlo algorithm and molecular
dynamics are popular algorithms for generating the samples {O(t)}t=1,...,T . Both
algorithms employ dynamic systems that evolve according to Markovian dynamics
and asymptotically sample from an equilibrium distribution. However they can
exhibit metastability, i. e. the Markov chain can get trapped in local minima of
the energy landscape and samples O(t) can be highly auto-correlated in time. To
reduce the redundancy of the samples and to speed up sampling of interesting
regions of phase space, it is possible to introduce a biased ensemble with the
equilibrium distribution p∗(x, p) where the energy landscape is modified such
that the metastability is reduced. It is possible to compute the expectation value
〈O〉 in the original unbiased ensemble by using only the samples {O∗(t)}t=1,...,N
drawn from p∗(x, p). However the samples O∗(t) must be corrected with a factor
p(t)/p∗(t). This can be seen from the identity

〈O〉 =
∫

Ω
O(x) p(x, p)

p∗(x, p)p
∗(x, p) dxdp = lim

N∗→∞

1
N∗

N∑
t=1

O∗(t) p(t)
p∗(t)

We call the ratio p(x, p)/(N∗p∗(x, p)) and its generalizations that are introduced
in sections A.2.3 and 2.1.1, the reweighting factor µ(x, p).
While these general statements hold for any equilibrium distribution, p(x, p) in
chemistry corresponds to the Boltzmann distribution exp[βF−βH(x, p)]. For these
case of a long equilibrium simulation in a single biased ensemble, the reweighting
factor can be given in closed form:

µ(t) = 1
N

p(t)
p∗(t) = 1

N
exp {βF − β∗F ∗ − βH [x(t), p(t)] + β∗H∗ [x(t), p(t)]}

Here, µ(t) can be computed from the force field definition H(x, p), H∗(x, p) up
to the constant factor exp[βF − β∗F ∗].4 If the temperatures in the biased and the
unbiased ensembles are identical β = β∗, the energy difference H∗(x, p)−H(x, p)

4For the simple case with one biased ensemble the missing constant can be found by normalizing
a posteriori, that is by using the identity 〈1〉 = 1. For the case of multiple ensembles, the
normalization constants can be found with the WHAM, MBAR, TRAM or TRAMMBAR
estimators among others (see below).

52



A.2. Free-energy calculation

is referred to as the bias energy ∆E(x, p). In many biased simulation types the
kinetic energies T (p) and T ∗(p) are identical, so the bias energy is a difference in
potential energy ∆U(x) = U∗(x)− U(x). For the case of identical kinetic energy
terms and identical temperatures β = β∗, the reweighting factor is independent
of the momenta and is only a function µ(x) of the configurational degrees of
freedom x of the samples. In this thesis, the simulations of the PMI-Mdm2 and
trypsin-benzamidine systems fall under this category (identical temperatures and
kinetic energy terms). Therefore the discussion is restricted to the case of the
purely configuration-dependent reweighting factor µ(x).

A.2.2. Umbrella sampling

An important question is how to chose the biased equilibrium distribution p∗(x, p)
for the specific molecular system under study. A popular way for constructing
this distribution is umbrella sampling. [123] One starts by defining a so-called
reaction coordinate or order parameter. An order parameter is a function of the
configurational degrees of freedom ξ(x). It is typically chosen based on two sets of
configurations A and B, that need to be (approximately) known in advance. The
order parameter describes the proximity of every configuration x to the two sets A
and B. The order parameter of configurations in A takes values ξ ≤ ξA where ξA is
some threshold and similarly ξ ≥ ξB for configurations in B. The transition region
between A and B is characterized by ξA < ξ < ξB. Typical choices for A and B
are the highly populated regions from two different metastable states (“free-energy
minima”). Once the order parameter has been defined, the objective is to sample
configurations rather uniformly along ξ, in particular in the transition region. A
bias potential that flattens the free energy landscape is approximated by a series
of localized bias potentials U (i)(ξ) centered at different values ξ(i) along the order
parameter. Typically a quadratic function of the order parameter is chosen for the
bias energy (harmonic spring in order parameter space). Then a series of molecular
dynamics simulations are run, each of them with a different bias potential U (i)(ξ).

A.2.3. The weighted histogram analysis method and the multi-state Bennet
acceptance ratio

If biased simulation of the same system were conducted with different biased
Hamiltonians, like in umbrella sampling or multi-temperature simulations, the
question arises how all this data should be combined such that an optimal estimate
of expectation values can be obtained. One of the earliest developments that can
handle the case of more than two biased Hamiltonians is the weighted histogram
analysis method (WHAM) [43, 8]. There the conformational space is discretized into
n sets {Si}i=1,...,n and the conformations from the simulations are grouped according
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to the set they fall into and the index of the biased Hamiltonian that generated the
conformation. The number of conformations in every group is N (k)

i where i stands
for the set index and k for the index of the temperature/Hamiltonian. In WHAM
a probabilistic model is proposed that describes the probability of observing a
given count matrix N

(k)
i . Let π(k)

i be the probability of observing exactly one
conformation that was sampled from Hamiltonian k inside set Si. The probability
of observing all counts N (k)

i is then

LWHAM ≡ P({N (k)
i }

k=1,...,K
i=1,...,n | {π

(k)
i }

k=1,...,K
i=1,...,n ) =

∏
k

∏
i

(
π

(k)
i

)N(k)
i (A.8)

Taking the product over i requires that all conformations were drawn independently
and the product over k requires that the simulations are independent. Especially
the independence of the conformations is hard to fulfill for conformations that come
from a typically auto-correlated MC or MD time series. [61, 25]
The likelihood LWHAM can then be optimized to find the optimal model parameters
π

(k)
i . Optimizing only equation (A.8) under the constraint that π(k)

i is normalized
would result in the maximizer π̂(k)

i = N
(k)
i /

∑
j N

(k)
j , from which nothing new could

be gained. A more informative estimate can be obtained by incorporating our
knowledge of the bias potential into the estimation. This can be done by linking
all probabilities π(k)

i in the higher ensembles k > 1 to the probabilities in the
(arbitrarily chosen) reference ensemble π(1)

i = π
(ref)
i by using Boltzmann reweighting

π
(k)
i = π

(ref)
i exp(−βU (k)

i + βU
(ref)
i )∑

j π
(ref)
j exp(−βU (k)

j + βU
(ref)
j )

(A.9)

where Ui is some potential energy value that is representative for the whole set
Si. Optimizing the likelihood LWHAM under the constraints of equation (A.9) and
normalization of π(k)

i results in the well-known WHAM equations. [8]
It is a disadvantage of WHAM, that representative energies Ui need to defined
for every set. For complicated forms of the bias energy, this is a nontrivial task.
However, it was repeatedly realized by various researchers that the discretization
step done in WHAM is not necessary. [133, 116, 1, 119] The resulting bin-less
estimator was later named multi-state Bennet acceptance ratio (MBAR). [113]
The main idea is that nowhere in the WHAM equations, the size (or phase-space
volume) of the sets needs to be known (very much like the size of microstates in
MSM estimation) and all sets can be of different sizes. This can be used to put
every sampled conformation xi in its own set Si. Then equation (A.9) becomes an
exact identity with U (k)

i = U (k)(xi). Mathematically the likelihood (A.8) is barely
changed. N (k)

i only takes the values 0 or 1 and usually all factors of the form (π(k)
i )0

are not written out. [133, 119] In our publication [P2] we introduce the new symbol
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µ(k)(x) that replaces π(k)
i and where x stands for one of the sampled conformations.

The µ(k)(x) of different ensembles k are related via Boltzmann reweighting, like
the π(k)

i in equation (A.9)

µ(k)(x) :=
µ(ref)(x) exp

[
−βU (k)(x) + βU (ref)(x)

]
∑

y µ(ref)(y) exp [−βU (k)(y) + βU (ref)(y)] (A.10)

The sum in the denominator runs over all sampled conformations. We introduce
the symbol X(k) for the set of all conformations generated with the potential energy
U (k) and inverse temperature β. Using these definitions, the likelihood for MBAR
is [119]

LMBAR =
∏
k

∏
x∈X(k)

µ(k)(x) (A.11)

Coming from the perspective of WHAM, µ(k)(x) can be thought of as the equilibrium
weight of a bin that surrounds x. It is not a density and it is not useful to think
about µ(k)(x) as a (scaled) Dirac delta function. However, one can introduce
an approximation to the Boltzmann distribution that is defined on the set of all
conformations X = X(1) ∪ . . . ∪X(k) sampled in all simulations:

p
(k)
B,approx.(y) =

∑
x∈X

δ(x− y)µ(k)(x)

Therefore µ(k)(x) can be interpreted as reweighting factors that reweight every
sampled conformation towards the Boltzmann distribution of the thermodynamic
ensemble k (ensemble with potential energy U (k)). Equilibrium expectation values
can then be expressed as

〈O〉(k) =
∫
O(y)p(k)

B,approx.(y) dy =
∑
x∈X

O(x)µ(k)(x)

Probabilities of a macroscopic state S (like the unbound state of a protein-ligand
system or a metastable state of a MSM) can be calculated by defining an indicator
function χ for the state that is 1 if x ∈ S and zero otherwise5

P(x ∈ S) = 〈χ〉(k) =
∑
x∈X

χ(x)µ(k)(x) =
∑
x∈S

µ(k)(x)

In this thesis, a generalization of MBAR is developed, that relaxes the assumption
under which MBAR was derived. In particular it is no longer required that the
conformations x are drawn independently but instead the time correlation between
successive frames is modeled explicitly with a MSM (see section 2.1).

5For the calculation of macroscopic probabilities, some discrete states have to be introduced.
The difference between these discrete states and the bins used in WHAM is, that in WHAM
the energy axis always has to be discretized in addition to the macroscopic states that one is
interested in.
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A.2.4. Replica exchange molecular dynamics simulations

Hamiltonian replica exchange molecular dynamics (HREMD) simulations are a
method for accelerating the sampling of the Boltzmann distribution by allowing
unphysical transitions between different biased Hamiltonians. [117, 49] HREMD
can potentially restore the ergodicity of a set of biased simulations that was broken
by a bad choice of bias. It comes at the expense of generating unphysical kinetics
that do not correspond to the kinetics of any of the Hamiltonians.

Figure A.1.: Schematic illustration of an HREMD simulation for the double-well
potential (unbiased double-well H(1) and biased double-well H(2) with
reduced barrier-height). HREMD consists of alternating phases of
parallel MD simulation of the all replicas (symbolized by the movie
strips) and exchange attempts between replicas (symbolized by the
bold arrows) which are accepted or rejected according to the acceptance
probability of the Metropolis-Monte-Carlo move.

The general idea of HREMD is to run multiple copies (the replicas) of the molecular
system in parallel, each with a different biased Hamiltonian. Every Nex integration
steps of the MD simulation, the different Hamiltonians are exchanged among the
replicas such that every replica is integrated in time with a new Hamiltonian after
the exchange. The exchange of Hamiltonians is a random event that occurs with
a probability that is given by the HREMD Metropolis criterion. That criterion
guarantees all the conformations generated with Hamiltonian H(i) are distributed
according to the Boltzmann distribution of that Hamiltonian for long run times.
The algorithm is illustrated in figure A.1: two particles are started in the left
well and are propagated with MD. Only with the biased Hamiltonian where the
barrier height is reduced, the particle can transition quickly to the right well. The
following replica exchange step is accepted and then the right well can be sampled
in the simulation with Hamiltonian H(1). The exchange step can also be rejected
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when the energy cost of swapping configurations between Hamiltonians is not
compatible with the Boltzmann distributions of the Hamiltonians (columns 4, 5 in
figure A.1). In general not only two Hamiltonians are used but a whole sequence
of Hamiltonians that interpolates between the least biased and the most biased
ensemble. These Hamiltonians have to be chosen such that replica exchange steps
are frequently accepted. [101]
Because the conformations generated by every Hamiltonian are asymptotically
distributed according to the Boltzmann distribution of the respective Hamiltonian,
one could in principle define one of the Hamiltonians to be the unbiased, physical
Hamiltonian of the system, collect all the conformations that it generated and use
them to directly estimate physical equilibrium expectation values. While this might
seem like a promising strategy for the system depicted in figure A.1 with two equally
deep wells, the situation changes for more asymmetric energy landscapes. If the
probability of observing a conformation in the right well in the physical ensemble
is sufficiently small (compared to the left well), practically no replica exchange step
that would deposit a conformation in the right well, will be accepted. Obeying the
physical Boltzmann distribution prevents improbable conformations from being
sampled. Therefore it is necessary to use not only conformations generated by the
physical Hamiltonian but conformations generated by all Hamiltonians, together
with an adequate reweighting algorithm to estimate equilibrium expectation values.
Until now the advantage of using HREMD has not been made clear. In particular
if all samples from all simulations are used anyway to estimate expectation values,
what is the benefit of the exchange step in the HREMD method? The advantage
of HREMD is to enhance the exploration of conformational space in situations
where an imperfect biasing Hamiltonian is being used. This is illustrated for the
case of Umbrella sampling simulations in figure A.2. There the unbinding of a
ligand from a protein surface is sampled by imposing a series of Umbrella potentials
centered at different values of the protein-ligand separation. The protein surface
is rough and shows multiple binding sites which should ideally all be explored by
the simulations (e. g. because they contribute both significantly to the free energy
of binding). However the simultaneous action of the Umbrella potential ∆U (1)

and steric interaction between the ligand and the protein prevents a transition
to binding site (B) if the simulations were initiated with the ligand located in
binding site (A). The simulation with the Umbrella potential ∆U (3) does not allow
the exploration of binding site (B) either because the ligand is confined to a too
large distance from the protein. In contrast, when the simulations are coupled
and exchanges between Umbrella potentials are accepted, the ligand is allowed to
freely climb and descend on the ladder of protein-ligand distances and explore both
binding sites. Similar problems can appear in many situations whenever there are
relevant degrees of freedom orthogonal to the Umbrella sampling order parameter
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Figure A.2.: Illustration of the necessity of replica exchange of for Umbrella sam-
pling simulations of protein-ligand binding. The red disk represents
a ligand molecule that can bind to the surface of a protein. The
order parameter ξ describes the distance of the ligand to the center
of the protein. The blue (orange) shaded area is the conformational
space that can be explored by the ligand if an Umbrella sampling bias
potential ∆U (1) (∆U (3)) centered at ξ(1) (ξ(3)) is active. None of the
simulations with fixed Hamiltonian allows the ligand to explore the
two binding sites (A) and (B) because the ligand is sterically confided
to (A) with active ∆U (1) and too far from the binding sites with active
∆U (3). Only Hamiltonian exchange allows full exploration of both
binding sites.

ξ. Conformational changes of the protein or the ligand or spatial rearrangement of
the ligand are examples for relevant orthogonal degrees of freedom.
In this thesis HREMD is applied to sample the coupled binding and folding process
for of the PMI-Mdm2 complex. A new analysis method for HREMD simulation
data called TRAMMBAR is developed that combines the benefits of MSMs and
the MBAR estimator.
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B. Acronyms

DNA doxyribonucleic acid

GPU graphics processing unit

HREMD Hamiltonian replica exchange molecular dynamics

MBAR multi-state Bennet acceptance ratio
MC Monte-Carlo
MD molecular dynamics
MDM2 mouse double minute 2 homolog (protein name)
MFPT mean first passage time
MSM Markov state model

NMR nuclear magnetic resonance

PMF potential of mean force
PMI potent MDM2 inhibitor (peptide name)

QSSA quasi-steady state approximation

RMSD root-mean-square deviation

TAD transactivation domain
TICA time-structure-based independent component analysis
TPT transition path theory
TRAM transition-based analysis method
TRAMMBAR transition-based analysis method with multi-state Bennet acceptance ratio

WHAM weighted histogram analysis method
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C.1. Full list of publications

First-author and shared first-author publications

These publications constitute this cumulative dissertation.
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PLOS Comput. Biol. 12 e1005067 (2016)
doi: 10.1371/journal.pcbi.1005067

[P2] Wu, Paul, Wehmeyer, Noé
Multiensemble Markov models of molecular thermodynamics and
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Proc. Natl. Acad. Sci. USA. 113 E3221 (2016)
doi: 10.1073/pnas.1525092113

[P3] Paul, Wehmeyer, Abualrous, Wu, Crabtree, Schöneberg, Clarke, Freund,
Weikl, Noé
Protein-peptide association kinetics beyond the seconds timescale
from atomistic simulations
Nat. Commun. 8 1095 (2017)
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[P6] Scherer, Trendelkamp-Schroer, Paul, Pérez-Hernández, Hoffmann, Plattner,
Wehmeyer, Prinz, Noé
PyEMMA 2: A Software Package for Estimation, Validation, and
Analysis of Markov Models
J. Chem. Theory Comput. 11 5525 (2015)

[P7] Trendelkamp-Schroer, Wu, Paul, Noé
Estimation and uncertainty of reversible Markov models
J. Chem. Phys. 143 174101 (2015)

[P8] Pinamonti, Zhao, Condon, Paul, Noé, Turner, Bussi Predicting the ki-
netics of RNA oligonucleotides using Markov state models J. Chem.
Theory Comput. 13 926 (2017)

[P9] Wu, Nüske, Paul, Klus, Koltai, Noé
Variational Koopman models: slow collective variables and molec-
ular kinetics from short off-equilibrium simulations
J. Chem. Phys., 146 154104 (2017)

[P10] Olsson, Wu, Paul, Clementi, Noé
Combining experimental and simulation data of molecular pro-
cesses via augmented Markov models
Proc. Natl. Acad. Sci. USA. 114 8265 (2017)

C.2. Author contributions

Clarification of the contributions of Fabian Paul to [P1] “How to
Distinguish Conformational Selection and Induced Fit Based on Chemical
Relaxation Rates”

Thomas Weikl proposed the project: to study the dependence of the dominant
relaxation rate of the initial ligand concentration kobs([L]0) for the “induced fit”
model and the “conformational selection” model. He proposed to search for curves
kobs([L]0) that show a local minimum.

Fabian Paul proposed to study the rate equation in the limit of equilibrium concen-
tration. He derived all mathematical equations and inequalities in this publication.

Fabian Paul chose all methods for data analysis: the choice of using a global
optimizer for fitting multi-exponential models, the choice of the AIC and the Bayes
factor for model comparison
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Together, Thomas Weikl and Fabian Paul selected the numerical examples in figures
2 and 3.

Fabian Paul proposed to analyze the data from [Chakrabarti et al, Cell Reports.
14, 32 (2016)].

Together, Thomas Weikl and Fabian Paul analyzed the numerical examples and
the data from Chakrabarti et al.

Together Thomas Weikl and Fabian Paul proposed to use the symmetry of kobs([L]0)
as a criterion to distinguish “induced fit” and the “conformational selection” mech-
anism.

Thomas Weikl proposed to use the mathematical models of kobs([L]0) for estimating
transition rates of the conformational selection model and the induced fit model.

Approved:
PD Dr. Thomas Weikl
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Clarification of the individual contributions of Fabian Paul and Hao Wu in
the shared first-author publication [P2] “Multiensemble Markov models of
molecular thermodynamics and kinetics”

Frank Noé proposed to use bin-less reweighting together with MSMs to estimate
stationary equilibrium observables.

Fabian Paul proposed to combine the MBAR (bin-less) reweighting method with
the maximum likelihood estimation of Markov state models for a given stationary
vector to compute the transition probabilities of rare events. Together with Frank
Noé, he derived equations [13], [16] and [18] of the publication for the more simple
case of MSM estimation with a given, fixed stationary vector. In sum, he proposed
the following suboptimal iterative equations for the estimation of a Multiensemble
Markov model:

vk,new
i := vki

∑
j

ckij + ckji

exp
[
fkj − fki

]
vkj + vki

fk,new
i := − ln

∑
x∈Xi

exp
[
−bk (x)

]
∑
l

∑
i
N l

j exp[−bl(x)]∑
j

exp[−f l
j]

This algorithm doesn’t use state transitions in the estimation of the thermodynamic
quantities fki .

Hao Wu lied out the mathematical framework to derive an estimator for Multi-
ensemble Markov models that uses all data in an optimal way. He formulated the
likelihood functions (equations [7], [8], [9]) and derived the dual Lagrangian func-
tion of the constrained optimization problem [9]-[12]. He derived the optimality
conditions and the iterative algorithm.

Hao Wu conducted the simulation and analysis of the Alanine dipeptide system
and the two-dimensional toy model.

Fabian Paul conducted the umbrella sampling simulation and analysis of the
Trypsin-Benzamidine protein-ligand system.

Hao Wu showed the asymptotic correctness of the TRAM estimator.

Together Fabian Paul and Hao Wu showed that dTRAM is a special case of TRAM
and derived the acceleration method given by equations [36]-[38].
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Fabian Paul gave an interpretation to the mathematical expression [15] for the
effective counts.

Christoph Wehmeyer, Hao Wu and Fabian Paul wrote computer implementations
of TRAM.

Hao Wu, Fabian Paul, and Frank Noé wrote the paper.

Approved:
PD Dr. Thomas Weikl

This publication has not been used as part of any other dissertation except for
the present dissertation "Markov State Modeling of Binding and Conformational
Changes of Proteins" by Fabian Paul.

Approved:
Fabian Paul

Approved:
PD Dr. Thomas Weikl
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Clarification of the contributions of Fabian Paul to [P3] “Protein-peptide
association kinetics beyond the seconds timescale from atomistic
simulations”

ThomasWeikl proposed to study coupled folding and binding in the PMI-25−109Mdm2
system.

Frank Noé proposed to address this problem with a mixture of unbiased MD
simulations and HREMD simulations and to analyze the data with MSMs.

Fabian Paul developed the TRAMMBAR algorithm with the help of Hao Wu.
Fabian Paul conducted all simulations and analyses of the PMI-25−109Mdm2 system.
He implemented all simulation and major analysis software: implementation of the
biasing potential in the MD software, the TRAMMBAR algorithm, the methods
from [F. Zeller, M. Zacharias, J. Comput. Chem. 35, 2256 (2014)] for the compu-
tation of differences in binding free energy upon alanine mutation and methods for
rate matrix estimation. He proposed to estimate probabilities of metastable states
upon alanine mutation. He proposed to estimate dissociation rates by estimat-
ing a continuous time MSM (rate matrix). Together with Frank Noé, Christoph
Wehmeyer and Esam T. Abualrous, Fabian Paul wrote the publication.

Johannes Schöneberg provided an expression vector for the 25−109Mdm2 protein
fragment.

Christoph Wehmeyer performed all modeling, simulations, analysis and necessary
computer programming for the conceptual model for ligand binding.

Esam T. Abualrous and Michael D. Crabtree conducted all lab experiments.

Hao Wu corrected an early version of the TRAMMBAR algorithm that was proposed
by Fabian Paul. He re-derived TRAMMBAR based on the likelihood formulation
given in the publication.

Approved:
PD Dr. Thomas Weikl
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Abstract
Protein binding often involves conformational changes. Important questions are whether a

conformational change occurs prior to a binding event (‘conformational selection’) or after a

binding event (‘induced fit’), and how conformational transition rates can be obtained from

experiments. In this article, we present general results for the chemical relaxation rates of

conformational-selection and induced-fit binding processes that hold for all concentrations

of proteins and ligands and, thus, go beyond the standard pseudo-first-order approximation

of large ligand concentration. These results allow to distinguish conformational-selection

from induced-fit processes—also in cases in which such a distinction is not possible under

pseudo-first-order conditions—and to extract conformational transition rates of proteins

from chemical relaxation data.

Author Summary

The function of proteins is affected by their conformational dynamics, i.e. by transitions
between lower-energy ground-state conformations and higher-energy excited-state con-
formations of the proteins. Advanced NMR and single-molecule experiments indicate that
higher-energy conformations in the unbound state of proteins can be similar to ground-
state conformations in the bound state, and vice versa. These experiments illustrate that
the conformational change of a protein during binding may occur before a binding event,
rather than being induced by this binding event. However, determining the temporal
order of conformational transitions and binding events typically requires additional infor-
mation from chemical relaxation experiments that probe the relaxation kinetics of a mix-
ture of proteins and ligands into binding equilibrium. These chemical relaxation
experiments are usually performed and analysed at ligand concentrations that are much
larger than the protein concentrations. At such high ligand concentrations, the temporal
order of conformational transitions and binding events can only be inferred in special
cases. In this article, we present general equations that describe the dominant chemical
relaxation kinetics for all protein and ligand concentrations. Our general equations allow
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to clearly infer from relaxation data whether a conformational transition occurs prior to a
binding event, or after the binding event.

Introduction
Protein function often involves conformational changes during the binding to ligand molecules
[1]. Advanced NMR experiments [2–7] and single-molecule spectroscopy [8–10] indicate that
these conformational changes can occur without ligand, or with bound ligand and thus point
to an intrinsic conformational dynamics of the proteins. An important question is how the
conformational dynamics is coupled to the binding events. Two mechanisms for this coupling
are ‘conformational selection’ [11] and ‘induced fit’ [12] (see Fig 1(a) and 1(b)). In conforma-
tional-selection binding, a conformational change occurs prior to the binding of a ligand mole-
cule, as a conformational excitation from the unbound-ground state conformation of the
protein. In this mechanism, the ligand seems to ‘select’ and stabilize a higher-energy conforma-
tion for binding. In induced-fit binding, the conformational change occurs after ligand binding
and is a conformational relaxation into the bound ground-state conformation that is appar-
ently ‘induced’ by the ligand. These two mechanisms are in particular plausible for small ligand
molecules that can quickly ‘hop’ in and out of the protein binding pocket, i.e. that can enter
and exit this binding pocket within transition times that are significantly smaller than the resi-
dence or dwell times of the proteins in the different conformations [13].

A central problem is to identify protein binding mechanisms based on experimental data
[13–24]. Advanced NMR experiments and single-molecule spectroscopy can reveal higher-
energy conformations that are necessary for conformational-selection or induced-fit binding,

Fig 1. Characteristic chemical relaxation of induced-fit and conformational-selection binding. (a) In induced-fit binding, the change between the
conformations P1 and P2 of the protein occurs after binding of the ligand L. The intermediate state P1L relaxes into the bound ground state P2L with rate kr,
and is excited from the ground state with rate ke. (b) In conformational-selection binding, the conformational change of the protein occurs prior to ligand
binding. The intermediate state P2 is excited from the unbound ground state P1 with rate ke, and relaxes back into the ground state with rate kr. (c) The
dominant, smallest relaxation rate kobs of induced-fit binding is minimal at the total ligand concentration ½L�min

0 ¼ ½P�0 � Kd where [P]0 is the total protein
concentration and Kd the overall dissociation constant. As a function of [L]0, the dominant rate kobs is symmetric with respect to this minimum. (d) The
dominant, smallest relaxation rate kobs of conformational-selection binding has a characteristic minimum as a function of [L]0 for ke > k

−

, but is not
symmetric with respect to this minimum. (e) The dominant rate kobs of conformational-selection binding decreases monotonically with [L]0 for ke < k

−

.

doi:10.1371/journal.pcbi.1005067.g001
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but do not directly indicate the binding mechanism because such higher-energy conformations
may exist both in the bound and unbound state of the protein [4, 8]. In principle, both confor-
mational-selection or induced-fit binding then are possible. Standard mixing or temperature-
jump experiments that probe the chemical relaxation into the binding equilibrium can provide
additional information that allows to identify the binding mechanism [22, 25–28]. Of particu-
lar interest is the dominant, slowest relaxation rate kobs observed in the experiments, and how
this rate depends on the total ligand concentration [L]0 [22, 25, 28]. The chemical relaxation
experiments are often performed and analysed under pseudo-first-oder conditions, i.e. at
ligand concentrations that greatly exceed the protein concentrations [22, 25, 29–36]. In the
case of induced-fit binding, the dominant relaxation rate kobs increasesmonotonically with the
ligand concentration [L]0 under pseudo-first-oder conditions. In the case of conformational-
selection binding, kobs decreasesmonotonically with increasing [L]0 for conformational excita-
tion rates ke < k−, and increasesmonotonically with [L]0 for ke > k− where k− is the unbinding
rate of the ligand from the bound ground-state conformation of the protein (see Fig 1(b)). A
decrease of the dominant relaxation rate kobs with increasing ligand concentration [L]0 thus
indicates conformational-selection binding [25]. However, an increase of kobs with [L]0 under
pseudo-first-order conditions is possible both for induced-fit binding and conformational-
selection binding and does not uniquely point towards a binding mechanism [22].

In this article, we present general analytical results for the dominant relaxation rate kobs of
induced-fit binding and conformational-selection binding processes that hold for all ligand and
protein concentrations. Our general results are based on an expansion of the rate equations for
these binding processes around the equilibrium concentrations of ligands and proteins, and
include the pseudo-first-order results in the limit of large ligand concentrations. In the case of
induced-fit binding, we find that kobs exhibits a minimum at the total ligand concentration

½L�min
0 ¼ ½P�0 � Kd for total protein concentrations [P]0 that are larger than the overall dissocia-

tion constant Kd of the binding process. As a characteristic feature, the function kobs([L]0) for
induced-fit binding is symmetric with respect to this minimum. At sufficiently large protein con-
centrations [P]0, the function kobs([L]0) tends to identical values for small ligand concentrations
[L]0� [P]0 and for large ligand concentrations [L]0� [P]0 because of its symmetry (see Fig 1
(c)). In the case of conformational-selection binding, we find that kobs exhibits a minimum for
conformational excitation rates ke> k− and sufficiently large protein concentrations [P]0 (see Fig

1(d)). The location ½L�min
0 of this minimum depends on [P]0, Kd, and the rates ke and k− (see Eq

(10) below). In contrast to induced-fit binding, the function kobs([L]0) for conformational-selec-
tion binding is not symmetric with respect to this minimum. At sufficiently large protein concen-
trations [P]0, the function kobs([L]0) attains values for small ligand concentrations [L]0� [P]0
that can greatly exceed the values for large ligand concentrations [L]0� [P]0 (see Fig 1(d)). For
excitation rates ke< k− of conformational-selection binding processes, the dominant relaxation
rate kobs decreases monotonically with increasing ligand concentration [L]0 (see Fig 1(e)). Our
general results for the dominant relaxation rate kobs of induced-fit and conformational-selection
binding processes allow to clearly distinguish between these two binding mechanisms for suffi-
ciently large protein concentrations [P]0 (see Figs 2 and 3 below for numerical examples).

Results
Solving the rate equations of the induced-fit and conformational-selection binding models
shown in Fig 1(a) and 1(b) is complicated by the fact that the binding steps in these models are
second-order reactions that depend on the product of the time-dependent concentrations of
unbound proteins and unbound ligands. In the standard pseudo-first-order approximation,
the rate equations are simplified by assuming that the total ligand concentration greatly
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exceeds the total protein concentration, so that the amount of ligand consumed during binding
is negligible compared to the total amount of ligand. The concentration of the unbound ligand
then can be taken to be constant, and the rate equations only contain terms that are linear in
the time-dependent concentration of the protein, which makes them solvable. In our more gen-
eral approach, a linearization of the rate equations is achieved by expanding around the equi-
librium concentrations of the bound and unbound proteins and ligands (see Methods). This
expansion captures the final relaxation into equilibrium, which is governed by the smallest,
dominant relaxation rate kobs, for all concentrations of proteins and ligands, and leads to gen-
eral results for kobs that include the results from the pseudo-first-order approximation in the
limit of large ligand concentrations.

Dominant relaxation rate of induced-fit binding
Expanding the rate equations of the induced-fit binding mechanism shown in Fig 1(a) around
the equilibrium concentrations of proteins and ligands leads to the dominant, smallest

Fig 2. Numerical example for conformational-selection binding with the rate constants ke = 10 s−1, kr = 100 s−1, k+ = 100 μM−1s−1, and k
−

= 1 s−1.
(a) Relaxation data for the bound complex obtained by numerical integration of the rate equations and subsequent addition of Gaussian noise with
amplitude 0.002 μM at the total protein concentration [P]0 = 0.5 μM and exemplary total ligand concentrations [L]0. The black lines represent multi-
exponential fits of the data points. (b) to (d) Comparison of kobs values obtained frommulti-exponential fits of numerical relaxation data (points) to our
theoretical results for kobs (lines) at the three different total protein concentrations [P]0 = 0.5 μM, 1.0 μM, and 1.5 μM and total ligand concentrations [L]0
between 0.1 μM and 10 μM. The full lines represent fits of Eq (6) for conformational-selection binding (blue) and of Eq (1) for induced-fit binding (orange),
with fit parameter values specified in the figure. In these fits, the dissociation constant Kd = 0.11 μM is assumed to be known from equilibrium data. The
dashed blue lines are obtained from Eq (6) for the ‘true’ rate constants of the numerical example.

doi:10.1371/journal.pcbi.1005067.g002
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relaxation rate (see Methods)

kobs ¼ ke þ kr þ
1

2
g� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ 4k�kr

p
ð1Þ

with

g ¼ �ke � kr þ k� þ kþ d� Kdð Þ ð2Þ

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½L�0 � ½P�0 þ Kd

� �2 þ 4½P�0Kd

q
ð3Þ

and with the overall dissociation constant

Kd ¼
k�ke

kþðke þ krÞ
ð4Þ

Fig 3. Numerical example for induced-fit binding with the rate constants k+ = 100 μM−1s−1, k
−

= 100 s−1, ke = 1 s−1, and kr = 10 s−1. (a) Relaxation
data for the bound complex obtained by numerical integration of the rate equations and subsequent addition of Gaussian noise with amplitude 0.004 μM
at the total protein concentration [P]0 = 1 μM and exemplary total ligand concentrations [L]0. The black lines represent multi-exponential fits of the data
points. (b) to (d) Comparison of kobs values obtained frommulti-exponential fits of numerical relaxation data (points) to our theoretical results for kobs
(lines) at the three different total protein concentrations [P]0 = 1 μM, 2 μM, and 3 μM and total ligand concentrations [L]0 between 0.1 μM and 10 μM. The
full lines represent fits of Eq (1) for induced-fit binding (blue) and of Eq (6) for conformational-selection binding (orange), with fit parameter values
specified in the figure. In these fits, the dissociation constant Kd = 1/11 μM is assumed to be known from equilibrium data. The dashed blue lines are
obtained from Eq (1) for the ‘true’ rate constants of the numerical example.

doi:10.1371/journal.pcbi.1005067.g003
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of induced-fit binding. This general result for kobs holds for all total ligand concentrations [L]0
and protein concentrations [P]0. In the limit of large ligand concentrations [L]0 � [P]0, we
obtain δ’ [L]0 + Kd and γ’ − ke − kr + k− + k+[L]0 from Eqs (2) and (3), which agrees with
results derived in pseudo-first-order approximation [21, 22].

As a function of the total ligand concentration [L]0, the dominant relaxation rate kobs exhib-
its a minimum at

½L�min
0 ¼ ½P�0 � Kd ð5Þ

for total protein concentrations [P]0 > Kd. The function kobs([L]0) is symmetric with respect to

½L�min
0 (see (Fig 1(c)). This symmetry and the location ½L�min

0 of the minimum result from the

fact that kobs depends on [L]0 only via the term δ, which is minimal at ½L�min
0 and symmetric

with respect to ½L�min
0 . The dominant relaxation rate kobs is minimal when δ is minimal. For

large ligand concentrations [L]0, kobs tends towards the maximum value ke + kr as in pseudo-

first-order approximation. The location ½L�min
0 of the minimum and the symmetry of the func-

tion kobs([L]0) with respect to this minimum are properties that the induced-fit binding model
appears to ‘inherit’ from the elementary binding model P + LÐ PL (see Eq (46) in Methods
section). However, the function kobs([L]0) of the elementary binding model is V-shaped and
does not tend to a constant maximum value for large ligand concentrations [L]0.

Dominant relaxation rate of conformational-selection binding
For the conformational-selection binding mechanism shown in Fig 1(b), an expansion of the
rate equations around the equilibrium concentrations of proteins and ligands leads to the dom-
inant, smallest relaxation rate (see Methods)

kobs ¼ ke þ
1

2
a� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b

p
ð6Þ

with

a ¼ kr � ke þ
k� ð2ke þ krÞdþ kr ½L�0 � ½P�0 � Kd

� �� �
2keKd

ð7Þ

b ¼ 2kr 2ke � k� � k� d� ½L�0 þ ½P�0
� �

Kd

� �
ð8Þ

and δ as in Eq (3), and with the overall dissociation constant

Kd ¼
k�ðke þ krÞ

kþke
ð9Þ

of conformational-selection binding. This general result for kobs holds for all total ligand con-
centrations [L]0 and protein concentrations [P]0. In the limit of large ligand concentrations
[L]0 � [P]0, we obtain α’ − ke + kr + k− + k+[L]0 and β’ 4kr(ke − k−) from Eqs (3), (7) and
(8), in agreement with results derived in pseudo-first-order approximation [21, 22].

For conformational-selection binding, the shape of the function kobs([L]0) depends on the
values of the conformational excitation rate ke and the unbinding rate k− (see Fig 1(d) and 1
(e)). For ke < k−, the dominant relaxation rate kobs decreases monotonically with increasing
total ligand concentration [L]0. For ke > k−, the dominant relaxation rate kobs exhibits a mini-
mum as a function of [L]0 at sufficiently large total protein concentrations [P]0. The minimum
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is located at (see Methods)

½L�min
0 ’ ke þ k�

ke � k�
½P�0 � Kd ð10Þ

if the conformational relaxation rate kr is much larger than the excitation rate ke, which typically
holds for the conformational exchange between ground-state and excited-state conformations
of proteins. In contrast to induced-fit binding, the function kobs([L]0) is not symmetric with
respect to this minimum. For large ligand concentrations, the limiting value of the dominant
relaxation rate is kobs(1) = ke as in pseudo-first-order approximation. For vanishing ligand con-
centrations [L]0! 0, the limiting value is kobs(0) = ke + kr for total protein concentrations
[P]0> Kd(ke + kr − k−)/k− and kobs(0) = k−([P]0 + Kd)/Kd for [P]0< Kd(ke + kr − k−)/k−.

Distinguishing induced fit and conformational selection
The general results for the dominant relaxation rate kobs presented in the previous sections
allow to clearly distinguish induced-fit from conformational-selection binding processes. In Fig
2, we consider a conformational-selection binding process with the rate constants ke = 10 s−1,
kr = 100 s−1, k+ = 100 μM−1s−1, and k− = 1 s−1 as a numerical example. The data points in Fig 2(a)
represent relaxation curves for the bound complex that have been generated by numerical inte-
gration of the rate equations and subsequent addition of Gaussian noise to mimic measurement
errors. The black lines in Fig 2(a) are multi-exponential fits of the data points. The number of
exponentials in these fits has been determined with the Akaike information criterion (AIC),
which is a standard criterion for the trade-off between quality of fit and number of fit parame-
ters, and ranges from 2 to 4. The data points in Fig 2(b) to 2(d) represent the dominant relaxa-
tion rates kobs that are obtained from multi-exponential fits of relaxation curves for different
total ligand concentrations [L]0 and total protein concentrations [P]0. The dominant relaxation
rate kobs here is identified as the smallest relaxation rate of a multi-exponential fit. The full blue
lines in Fig 2(b) to 2(d) result from fitting our general result Eq (6) for conformational-selection
binding to the kobs data points. The full orange lines represent fits of our general result Eq (1)
for induced-fit binding. For all fits, we assume that the dissociation constant Kd = 0.11 μM is
known from equilibrium data, and use ke, kr, and k− as fit parameters. Finally, the blue dashed
lines in Fig 2(b) to 2(d) are the kobs curves obtained from Eq (6) for the ‘true’ rate constants of
the conformational-selection binding process given above. These dashed lines agree with the
data points, which indicates that the kobs values frommulti-exponential fits as in Fig 2(a) are
identical to the values obtained from Eq (6) within the statistical errors of the numerical
example.

The fits in Fig 2(b) to 2(d) clearly identify conformational selection as the correct binding
mechanism in this example. The blue fit curves for conformational selection agree with the
data points within statistical errors, while the orange fit curves for induced fit deviate from the
data. For conformational-selection binding, the fit values of the conformational transition rates
ke and kr and of the unbinding rate k− specified in the figure agree with the correct values
ke = 10 s−1, kr = 100 s−1, and k− = 1 s−1 of the numerical example within statistical errors.

In Fig 3, we consider an induced-fit binding process with rate constants k+ = 100 μM−1s−1,
k− = 100 s−1, ke = 1 s−1, and kr = 10 s−1 as a second numerical example. The kobs data points in
Fig 3(b) to 3(d) are again obtained from multi-exponential fits of relaxation curves that have
been generated by numerical integration of the rate equations and subsequent addition of
Gaussian noise (see Fig 3(a)). The fits in Fig 3(b) to 3(d) clearly identify induced-fit binding as
the correct mechanism in this example. The full blue curves that represent fits of Eq (1) for
induced-fit binding are in overall agreement with the kobs points, while the orange fit curves of
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Eq (6) for conformational-selection binding deviate from the data. The fit values of the confor-
mational transition rates ke and kr for the induced-fit binding model are in good agreement
with the correct values ke = 1 s−1, and kr = 10 s−1 of the example. The dashed blue curves in Fig
3(b) to 3(d), which are obtained from Eq (1) for the ‘true’ rate constants of the induced-fit
binding process, are in overall agreement with the data points. Slight deviations result from the
fact that the amplitude of the slow relaxation mode with rate kobs is rather small compared to
the amplitude of the fast modes (see Fig 3(a)), which can lead to numerical inaccuracies.

In both numerical examples of Figs 2 and 3, the correct binding mechanism cannot be iden-
tified under pseudo-first-order conditions because kobs is monotonically increasing with [L]0
for ligand concentrations that greatly exceed the protein concentration [P]0 [22].

Analysis of chemical relaxation rates for recoverin binding
Chakrabarti et al. [28] have recently investigated the conformational dynamics and binding
kinetics of the protein recoverin with chemical relaxation and advanced NMR experiments.
Recoverin exhibits a conformational change during binding of its ligand, which is a rhodopsin
kinase peptide fused to the B1 domain of immunoglobulin protein G in the experiments of
Chakrabarti et al. [28]. The data points in Fig 4 represent the dominant relaxation rates kobs
obtained by Chakrabarti et al. from relaxation experiments at the temperatures 30°C and 10°C
for a recoverin concentration of 10μM. The lines in Fig 4 result from fitting our general results
Eqs (1) and (6) for the dominant relaxation rate kobs of induced-fit and conformational-selec-
tion binding processes. In these fits, we have used the values Kd = 1.0 ± 0.2 μM and
Kd = 1.8 ± 0.2 μM obtained by Chakrabarti et al. from isothermal titration calometry experi-
ments at 30°C and 10°C, which reduces the parameters to ke, kr, and k−. The fits of our general
result Eq (6) for conformational-selection binding are rather insensitive to the relaxation rate
kr, which is illustrated in Fig 4 by nearly identical fits for kr = 100 s−1 and kr = 1000 s−1

Fig 4. Analysis of experimentally determined relaxation rates kobs for the binding of recoverin to a rhodopsin kinase peptide ligand. The data
points represent results of Chakrabarti et al. [28] obtained from chemical relaxation experiments at the temperatures 30°C and 10°C for a recoverin
concentration of 10 μM. The blue lines result from fits of Eq (6) for conformational-selection binding with the values kr = 1000 s−1 (full) and kr = 100 s−1

(dashed) of the conformational relaxation rate. At 30°C, the parameter values obtained from fitting are ke = 31.5 ± 0.8 s−1 and k
−

= 5.1 ± 0.4 s−1 for
kr = 1000 s−1, and ke = 31.1 ± 0.8 s−1 and k

−

= 5.0 ± 0.4 s−1 for kr = 100 s−1. At 10°C, the fit parameter values are ke = 19.3 ± 1.4 s−1 and k
−

= 3.9 ± 0.7 s−1

for kr = 1000 s−1, and ke = 19.0 ± 1.3 s−1 and k
−

= 3.8 ± 0.7 s−1 for kr = 100s−1. The yellow lines represent fits of Eq (1) for induced-fit binding with
constraints on the conformational excitation and relaxation rates ke and kr. At 30°C, the obtained fit values for the conformational exchange rates are
ke = kr = 15 ± 10 s−1 for the constraint kr > ke, ke = 3.1 ± 1.9 s−1 and kr = 31 ± 4s−1 for the constraint kr > 10ke, and ke = 1.1 ± 0.8 s−1 and kr = 44 ± 8 s−1 for
kr > 40ke. At 10°C, the fit values are ke = 4.5 ± 4.0 s−1 and kr = 14 ± 10 s−1 for the constraint kr > ke, ke = 1.9 ± 1.5 s−1 and kr = 19 ± 5 s−1 for kr > 10ke, and
ke = 0.7 ± 0.5 s−1 and kr = 28 ± 11 s−1 for kr > 40ke. In all fits of Eq (1) for induced-fit binding, we obtain k

−

� kr, i.e. the fit values of the unbinding rate k
−

are
much larger than the conformational relaxation rate kr and cannot be specified.

doi:10.1371/journal.pcbi.1005067.g004
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(see dashed and full blue lines). Our fit values for the conformational excitation rate ke specified
in the figure caption agree with the values ke = 33 ± 5 s−1 and ke = 23 ± 5 s−1 obtained by Chak-
rabarti et al. from advanced NMR experiments at 30°C and 10°C, respectively. From these
experiments, Chakrabarti et al. obtain the values kr = 990 ± 100 s−1 and kr = 920 ± 200 s−1 at
30°C and 10°C, which cannot be deduced from our fits of the kobs data because these fits are
insensitive to kr. The NMR experiments indicate that the higher-energy conformation of
unbound recoverin resembles the ground-state conformation of bound recoverin [28] as
required for the conformational-selection binding mechanism illustrated in Fig 1(b), and that
the excited-state conformation of unbound recoverin has the equilibrium occupancy
Pe = ke/(kr + ke) = 3.2% ± 0.5% at 30°C and Pe = 2.4% ± 0.7% at 10°C, relative to the ground-
state conformation.

Fits of our general result Eq (1) for the dominant relaxation rate kobs of induced-fit binding
with unconstrained parameters ke, kr, and k− lead to fit values for the conformational exchange
rates ke and kr with ke � kr. For such values of ke and kr, the conformation 1 of the induced-fit
binding model illustrated in Fig 1(a) is the ground-state conformation both for the unbound
state and the bound state of recoverin, which contradicts the experimental observation that
recoverin changes its conformation during binding [28]. Distinct ground-state conformations
for the unbound and bound state of recoverin can be enforced by constraining kr to values
larger than ke. The yellow lines in Fig 4 result from fits with the constraints kr > ke, kr > 10ke,
and kr > 40ke. These constraints correspond to equilibrium occupancies Pe of the excited-state
conformation of bound recoverin with Pe < 50%, Pe < 9.1%, and Pe < 2.4%, respectively. The
fits of Eq (1) for induced-fit binding with the constraints kr > 10ke and kr > 40ke deviate rather
strongly from the two data points with the smallest ligand concentrations [L]0 = 3 μM and
5 μM, in contrast to fits of Eq (6) for conformational-selection binding (blue lines). A Bayesian
model comparison of conformational-selection binding and induced-fit binding based on Eqs
(1) and (6) leads to Bayes factors of 9.8 � 1013 and 1.5 � 1023 at 30°C for the constraints
kr > 10ke and kr > 40ke, and to Bayes factors of 4.2 � 103 and 9.6 � 109 at 10°C for kr > 10ke, and
kr > 40ke, respectively (see Methods for details). These Bayes factors indicate that the kobs data
of Fig 4 strongly point towards conformational-selection binding. Bayes factors larger than 102

are generally considered to be decisive [37]. For the bound recoverin complex, Chakrabarti
et al. did not observe an excited-state conformation in NMR experiments, which limits the
excited-state occupancy Pe to undetectable values smaller than 1% for a conformational
exchange that is fast compared to the NMR timescale as in the case of unbound recoverin. The
analysis of the experimental data for the dominant relaxation rate kobs of recoverin binding
based on our general results Eqs (1) and (6) thus indicates a conformational-selection binding
mechanism, in agreement with a numerical analysis of Chakrabarti et al. [28]. In this numerical
analysis, Chakrabarti et al. include the chemical relaxation data for recoverin binding, addi-
tional relaxation data from dilution experiments, the values for the conformational exchange
rates ke and kr obtained from NMR experiments, and the Kd values deduced from isothermal
titration calometry [28]. In contrast, our analysis of the kobs data in Fig 4 from the chemical
relaxation experiments of recoverin binding only includes the Kd values from isothermal titra-
tion calometry as additional input.

Discussion
We have shown here that the dominant rate kobs of chemical relaxation experiments with total
protein and ligand concentrations of comparable magnitude conveys information on the bind-
ing mechanism and conformational transition rates of proteins. For sufficiently large protein
concentrations [P]0, the function kobs([L]0) obtained from such experiments has characteristic
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features that are clearly distinct for induced-fit binding and conformational-selection binding.
The function kobs([L]0) of induced-fit binding exhibits a characteristic symmetry around a
minimum and tends to identical values for small and large ligand concentrations [L]0 as in Fig
1(c) if the protein concentration [P]0, which determines the location of the minimum, is suffi-
ciently large. In contrast, the function kobs([L]0) of conformational-selection binding is either
monotonically decreasing for ke < k−, or asymmetric around a minimum for ke > k−. In both
cases, kobs([L]0) tends for small ligand concentrations [L]0 to values that exceed the values for
large ligand concentrations as in Fig 1(d) and 1(e) if the protein concentration [P]0 is suffi-
ciently large.

Our general results for the dominant rate kobs of chemical relaxation experiments thus pro-
vide a transparent route to distinguish induced-fit binding from conformational-selection
binding based on the shape of the function kobs([L]0), and to infer conformational transition
rates from fitting. Alternatively, these binding mechanisms can be identified from a numerical
analysis of time-dependent relaxation curves [26–28], based on steric effects that may prohibit
ligand entry and exit in the bound ground-state conformation of the protein and, thus, rule out
conformational-selection binding [15], from a comparison of conformational excitation rates
to overall, effective binding and unbinding rates [4, 13], or from the effect of distal mutations
that mainly affect the conformational exchange, but not the binding kinetics in different pro-
tein conformations [13, 16, 21, 38]. Of particular interest is how such mutations change the
overall binding and unbinding rates. If both conformational-selection and induced-fit binding
are viable, increasing the ligand concentration may shift the binding mechanism from confor-
mational selection to induced fit [16, 18, 26, 39, 40].

Methods

Near-equilibrium relaxation of induced-fit binding
The induced-fit binding model of Fig 1(a) leads to the four rate equations

d
dt

½P1� ¼ �kþ½P1�½L� þ k�½P1L� ð11Þ

d
dt

½L� ¼ �kþ½P1�½L� þ k�½P1L� ð12Þ

d
dt

½P1L� ¼ kþ½P1�½L� � k�½P1L� þ ke½P2L� � kr½P1L� ð13Þ

d
dt

½P2L� ¼ kr½P1L� � ke½P2L� ð14Þ

that describe the time-dependent evolution of the concentration [P1] of the unbound protein,
the concentration [L] of the unbound ligand, and the concentrations [P1L] and [P2L] of the
bound complexes. These four rate equations are redundant because the total concentrations
[P]0 and [L]0 of proteins and ligands are conserved:

½P1L� þ ½P2L� þ ½P1� ¼ ½P�0 ð15Þ

½L� þ ½P1L� þ ½P2L� ¼ ½L�0 ð16Þ

With Eqs (15) and (16), the concentrations [P1] and [P1L] can be expressed in terms of [L] and

How to Distinguish Conformational Selection and Induced Fit Based on Chemical Relaxation Rates

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005067 September 16, 2016 10 / 17

78



[P2L], which results in the two non-redundant rate equations

d
dt

½L� ¼ �kþð½L� � ½L�0 þ ½P�0Þ½L� þ k�ð½L�0 � ½L� � ½P2L�Þ ð17Þ

d
dt

½P2L� ¼ krð½L�0 � ½L� � ½P2L�Þ � ke½P2L� ð18Þ

These rate equations can be written in the vectorial form

d
dt

c ¼ FðcÞ ð19Þ

with

cðtÞ � ½L�ðtÞ
½P2L�ðtÞ

 !
ð20Þ

The two components of the vector F(c) in Eq (19) are the right-hand sides of the Eqs (17) and
(18). The rate equations describe the temporal evolution of the concentrations [L] and [P2L]
towards equilibrium, and are nonlinear because of the quadratic term in [L] on the right-hand
side of Eq (17).

To obtain linearized versions of the rate equations that describe the slow processes corre-
sponding to the final relaxation into equilibrium, we expand the vector F(c) in Eq (19) around
the equilibrium concentrations ceq:

FðcÞ ¼ Fðceq þ DcÞ ’ FðceqÞ þ JðceqÞDc ¼ JðceqÞDc ð21Þ

Here, J is the Jacobian matrix of F with elements Jij = @Fi/@cj. The right-hand side of Eq (21)
follows from F(ceq) = 0. Inserting the expansion (21) into Eq (19) and making use of
d
dt
c ¼ d

dt
ðceq þ DcÞ ¼ d

dt
Dc leads to the linearized rate equations

d
dt

Dc ¼ JðceqÞDc ð22Þ

with

JðceqÞ ¼
kþ ½L�0 � 2½L�eq � ½P�0
� �

� k� �k�

�kr �ke � kr

0
@

1
A ð23Þ

and the equilibrium concentration of the unbound ligand

½L�eq ¼
1

2
½L�0 � ½P�0 � Kd þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½L�0 � ½P�0 þ Kd

� �2 þ 4½P�0Kd

q� �
ð24Þ

The overall dissociation constant Kd of the induced-fit binding process is given in Eq (4). The
relaxation rates of the linearized rate Eq (22) are the two eigenvalues of the matrix −J(ceq).
These eigenvalues are kobs given in Eq (1) and

k2 ¼ ke þ kr þ
1

2
gþ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ 4k�kr

p
ð25Þ

with γ and δ given in Eqs (2) and (3). The relaxation rate kobs is smaller than k2 and, thus, dom-
inates the final relaxation into equilibrium.
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Near-equilibrium relaxation of conformational-selection binding
The four rate equations of the conformational-selection binding model of Fig 1(b) are

d
dt

½P1� ¼ �ke½P1� þ kr½P2� ð26Þ

d
dt

½P2� ¼ ke½P1� � kr½P2� þ k�½P2L� � kþ½P2�½L� ð27Þ

d
dt

½L� ¼ k�½P2L� � kþ½P2�½L� ð28Þ

d
dt

½P2L� ¼ �k�½P2L� þ kþ½P2�½L� ð29Þ

The total concentrations [L]0 and [P]0 of the ligands and proteins are conserved:

½L� þ ½P2L� ¼ ½L�0 ð30Þ

½P1� þ ½P2� þ ½P2L� ¼ ½P�0 ð31Þ

With these equations, the concentrations [P1] and [P2L] can be expressed in terms of [L] and
[P2], which leads to the two rate equations

d
dt

½P2� ¼ ke ½P�0 � ½P2�
� �� ðkr þ kþ½L�Þ½P2� þ ðk� � keÞð½L�0 � ½L�Þ ð32Þ

d
dt

½L� ¼ k�ð½L�0 � ½L�Þ � kþ½P2�½L� ð33Þ

These rate equations can be written in the vectorial form of Eq (19) with

cðtÞ � ½P2�ðtÞ
½L�ðtÞ

 !
ð34Þ

and with a vector F(c) that contains the right-hand sides of the Eqs (32) and (33) as compo-
nents. An expansion of the vector F(c) around the equilibrium concentrations ceq leads to Eq
(22) with the Jacobian matrix

JðceqÞ ¼ �
kr þ ke þ kþ½L�eq �ke þ k� þ kþ½P2�eq

kþ½L�eq k� þ kþ½P2�eq

 !
ð35Þ

and the equilibrium concentrations

½P2�eq ¼
1

2Kd

k�
kþ

½P�0 � ½L�0 � Kd þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð½P�0 � ½L�0 � KdÞ2 þ 4Kd½P�0

q� �
ð36Þ

½L�eq ¼
1

2
½L�0 � ½P�0 � Kd þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð½P�0 � ½L�0 � KdÞ2 þ 4Kd½P�0

q� �
ð37Þ

The overall dissociation constant Kd of the conformational-selection binding process is given
in Eq (9). The relaxation rates of the linearized rate equations are the two eigenvalues of the
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matrix −J(ceq). These eigenvalues are kobs given in Eq (6) and

k2 ¼ ke þ
1

2
aþ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b

p
ð38Þ

with α and β given in Eqs (7) and (8). The relaxation rate kobs is smaller than k2 and therefore
dominates the final relaxation into equilibrium.

To derive Eq (10) for the location of the minimum of kobs as a function of the total ligand
concentration [L]0, we now consider the near-equilibrium relaxation of the conformational-
selection model in quasi-steady-state approximation (qssa), which assumes that the concentra-
tion of the intermediate [P2] does not change in time. The left-hand side of Eq (32) then is
equal to zero, and the two Eqs (32) and (33) reduce to the single equation

d
dt

½L� ¼ �kek�
½L� þ Kdð Þ ½L� � ½L�0

� �þ ½L�½P�0
k�½L� þ keKd

¼ f ð½L�Þ ð39Þ

An expansion of the function f([L]) around the equilibrium concentration [L]eq leads to the lin-

ear equation d½L�=dt ’ �kðqssaÞobs ð½L� � ½L�eqÞ with

kðqssaÞobs ¼ �df ð½L�Þ
d½L�

				
½L�¼½L�eq

¼ k�ked
keKd þ k�½L�eq

ð40Þ

and δ and [L]eq given in Eqs (3) and (37). The derivative of kðqssaÞobs is zero at ½L�0 ¼ ½L�min
0 with

½L�min
0 given in Eq (10). In general, the quasi-steady-state result kðqssaÞobs is a good approximation

of kobs if the rates for the transitions out of the intermediate state P2 of conformational-selec-
tion binding are much larger than the rates for the transitions to P2. A numerical analysis

shows that the location ½L�min
0 of the minimum of kðqssaÞobs ð½L�Þ is in good agreement with the loca-

tion of the minimum of kobs([L]) for conformational transitions rates with kr � ke.

Multi-exponential relaxation
In the numerical examples illustrated in Figs 2 and 3, chemical relaxation curves for conforma-
tional-selection and induced-fit binding are fitted with a multi-exponential model. Such multi-
exponential models are an adequate description for the time evolution of concentrations in
first-order chemical reactions. However, the binding steps of the induced-fit and conforma-
tional-selection models of Fig 1(a) and 1(b) are of second order. To justify that multi-exponen-
tial models can also be used to approximate the chemical relaxation of second-order reactions,
we consider here the elementary binding model

Pþ L Ð
kþ½P�½L�

k�
PL ð41Þ

of a protein P and ligand L. For the initial condition [PL](0) = 0, the rate equation of the ele-
mentary binding model can be written as

d
dt

½PL� ¼ kþ ½P�0 � ½PL�� � ½L�0 � ½PL�� �� k�½PL� ð42Þ

and has the analytical solution [38]

½PL�ðtÞ ¼ � l1 eðl1�l2Þt � 1ð Þ
kþ eðl1�l2Þt � l1=l2ð Þ ð43Þ
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with

l1;2 ¼ � 1

2
kþ ½P�0 þ ½L�0 þ Kd �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½P�0 þ ½L�0 þ Kd

� �2 � 4½P�0½L�0
q� �

ð44Þ

where Kd = k−/k+ is the dissociation constant of the elementary binding model.
We first show that λ2 − λ1 is identical to the dominant relaxation rate kobs obtained from a

linear expansion around equilibrium. An expansion of the right-hand side of Eq (42) around
the equilibrium concentration

½PL�eq ¼
1

2
½P�0 þ ½L�0 þ Kd �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð½L�0 � ½P�0 þ KdÞ2 þ 4Kd½P�0

q� �
ð45Þ

leads to the linear equation d[PL]/dt’ −kobs([PL] − [PL]eq) with

kobs ¼ kþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð½L�0 � ½P�0 þ KdÞ2 þ 4Kd½P�0

q
ð46Þ

This dominant relaxation rate kobs is identical to λ2 − λ1. As a function of [L]0, the dominant

rate kobs of the elementary binding model exhibits a minimum at ½L�min
0 ¼ ½P�0 � Kd and is sym-

metric with respect to this minimum.
We next use the limit of the geometric series

P1
n¼0 q

n ¼ 1=ð1� qÞ with q = e−kobs t λ2/λ1 to
rewrite Eq (43) as

½PL�ðtÞ / l2 þ l2 � l1ð Þ
X1
n¼1

e�nkobst

l1=l2ð Þn ð47Þ

which shows that the chemical relaxation of the elementary binding model can be described as
an infinite sum of exponential functions. The exponents of these functions are integer multiples
of kobs, which is reminiscent of the higher harmonics in oscillatory phenomena. The prefactors
(λ2/λ1)

n in Eq (47) decay exponentially with the order n of the harmonic because of λ2/λ1 < 1.
The infinite sum of Eq (47) therefore can be truncated in practical situations. Under pseudo-
first-order conditions, Eq (47) reduces to a single-exponential relaxation.

In analogy to the elementary binding model, we propose that the time evolution of the con-
centrations in the induced-fit and conformational-selection models can be represented as a
sum of exponentials where the exponents are integer combinations −ikobs − jk2 with i, j = 0, 1,
2, 3, . . . of the relaxation rates kobs and k2 obtained from a linear expansion around the equilib-
rium concentrations. Under pseudo-first-order conditions, the chemical relaxation reduces to
a double-exponential relaxation [16, 21, 22].

In the numerical examples of Figs 2 and 3, the chemical relaxation of the bound complexes
is fitted with a multi-exponential model

½bound�ðtÞ ¼ A0 þ
XN
n¼1

Ane
�knt ð48Þ

with kn > 0 for all n. We have used the routine NonlinearModelFit of the software Mathema-
tica [41] with the differential evolution algorithm [42], which was repeatedly run with different
values of its F parameter ranging from 0.1 to 1 for a given number of exponentials N. Among
different runs, we have selected fit results based on the residual sum of squares, after discarding
fits with singular results in which two rates kn coincide within 95% confidence intervals, or in
which one or more rates kn are identical to 0 within 95% confidence intervals. We have then
determined the number of exponentials N based on the small-sample-size corrected version of
Akaike’s information criterion (AIC) [43].
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Bayes factors
The Bayes factor K is as measure for how plausible one model is relatively to an alternative
model, given experimental data [44]. The Bayes factor for the plausibility of the conforma-
tional-selection binding model relative to induced-fit binding model is

K ¼
R
pðdata j conformational� selection binding; yÞpðyÞdyR

pðdata j induced � fit binding; yÞpðyÞdy ð49Þ

Here, p(data jM, θ) is the probability that the data were produced by the modelM with given
parameters θ, whereM either stands for conformational-selection binding or induced-fit bind-
ing, and p(θ) is the prior distribution on the parameter values, which encodes any prior knowl-
edge that we have about the parameters. The integrals of Eq (49) are taken over all parameter
values and result in the probability p(data jM) that the data were produced by the model,

regardless of specific parameter values. The data here consist of the slowest relaxation rates kðiÞobs
with i = 1, 2, . . ., N obtained from multi-exponential fits of the N time series with ligand con-

centrations ½L�ðiÞ0 , and the errors σi of these rates. Following standard approaches [44], the prob-
ability that the data were generated by the modelM with parameters θ = (ke, kr, k−, Kd, [P]0) is

pðdata j M; yÞ /
YN
i¼1

exp �
kðiÞobs � kMobs y; ½L�ðiÞ0

� �� �2

2s2
i

2
64

3
75 ð50Þ

for kr> nke, and 0 otherwise. The inequality kr> nke reflects constraints on the conformational
relaxation rate kr and excitation rate ke of the models (see section “Analysis of chemical relaxa-

tion rates for recoverin binding”). Eq (50) implies that the errors kðiÞobs � kMobsðy; ½L�ðiÞ0 Þ are inde-
pendently and normally distributed random variables with standard deviations σi. Depending

on the modelM, we either use Eqs (1) or (6) to determine kMobsðy; ½L�ðiÞ0 Þ. For simplicity, Kd and
[P]0 are kept fixed at the experimentally measured values. We choose a prior p(θ) that is uni-
form in the logarithm of the rates ke, kr, k−. Taking the logarithm of the rates is not crucial, as a
uniform prior on the rates gives similar results in the analysis of recoverin binding and, thus,
leads to the same conclusions. The prior p(θ) here can be chosen to be uniform because it is
identical for both the induced-fit and conformational-selection binding models due to the
equivalent parameters of the models [45].
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ABSTRACT

We introduce the general transition-based reweighting analysis method (TRAM), a statistically optimal approach
to integrate both unbiased and biased molecular dynamics simulations, such as umbrella sampling or replica ex-
change. TRAM estimates a multiensemble Markov model (MEMM) with full thermodynamic and kinetic informa-
tion at all ensembles. The approach combines the benefits of Markov state models—clustering of high-dimensional
spaces and modeling of complex many-state systems—with those of the multistate Bennett acceptance ratio of
exploiting biased or high-temperature ensembles to accelerate rare-event sampling. TRAM does not depend on any
rate model in addition to the widely used Markov state model approximation, but uses only fundamental relations
such as detailed balance and binless reweighting of configurations between ensembles. Previous methods, including
the multistate Bennett acceptance ratio, discrete TRAM, and Markov state models are special cases and can be
derived from the TRAM equations. TRAM is demonstrated by efficiently computing MEMMs in cases where other
estimators break down, including the full thermodynamics and rare-event kinetics from high-dimensional simulation
data of an all-atom protein–ligand binding model.

SIGNIFICANCE

Molecular dynamics simulations can provide mechanistic understanding of biomolecular processes. However,
direct simulation of slow transitions such as protein conformational transitions or protein–ligand dissociation are
unfeasible with commonly available computational resources. Two typical strategies are (i) conducting large en-
sembles of short simulations and estimating the long-term kinetics with a Markov state model, and (ii) speeding up
rare events by bias potentials or higher temperatures and estimating the unbiased thermodynamics with reweighting
estimators. In this work, we introduce the transition-based reweighting analysis method (TRAM), a statistically
optimal approach that combines the best of both worlds and estimates a multiensemble Markov model (MEMM)
with full thermodynamic and kinetic information at all simulated ensembles.
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Computer simulations have become important tools
in the investigation of biomolecular processes, includ-
ing transmembrane transport [1–4], ligand reception
and receptor activation [5–7], and endocytosis [8–10].
Unbiased atomistic molecular dynamics (MD) simula-
tions have recently reached the ability to extensively
sample biomolecular processes on timescales up to mil-
liseconds, including protein folding [11], conformational
changes [5, 12], and protein–ligand association and dis-
sociation [13–15]. In addition to breakthroughs in com-
puter hardware [16], simulation software [17–19], and
distributed computing [20, 21], a key technology to rec-
oncile swarms of individually short simulations to long-
time kinetics are kinetic models, such as Markov state
models (MSMs) [22–28]. A key advantage of Markov
state modeling over many other approaches is that it
integrates well with dimension reduction and clustering
techniques [29–31] that can process high-dimensional
data, and can thus treat complex kinetics that are not
well described by few states or reaction co-ordinates
[13, 32–34]. A limitation of MSMs is that they rely
on the rare events being reversibly sampled in the un-
derlying MD simulation data.

However, important biological processes are still out
of reach for unbiased MD simulation. For example, al-
though downhill processes such as protein–ligand associ-
ation to the bound pose can now be spontaneously sam-
pled [6, 13, 15, 34], the dissociation of stable inhibitory
complexes can involve timescales of hours or longer [35].
Enhanced sampling methods such as umbrella sampling
(US) [36, 37], parallel or simulated tempering [38–40],
metadynamics [41], and others [42–44] use simulations
at different ensembles in which bias potentials or higher
temperatures are used to speed up events that are rare
in the physical ensemble [45, 46]. Reweighting meth-
ods such as the weighted histogram analysis method
(WHAM) [37, 47, 48] and binless WHAM, also known as
multistate Bennett acceptance ratio (MBAR) [49–51],
can combine multiple-ensemble simulation data to esti-
mates of the unbiased thermodynamics (free energies or
probabilities). These methods treat their input data as
uncorrelated samples of the ensemble distribution and
are therefore not suitable for simulation data with long
correlation times in some variables, as it is common for
unbiased MD simulations and biased simulations with
slow unbiased coordinates [32, 52].

To overcome individual limitations of MSMs and en-
hanced sampling techniques, we propose to integrate
simulation data from multiple ensembles in a multi-
ensemble Markov model (MEMM) (Fig. 1), in such
a way as to (i) work with high-dimensional data and
coarse state-space discretizations, (ii) use unbiased MD
simulations from nonequilibrium starting points but
avoid rate models beyond MSMs, and (iii) optimally

combine data to full thermo- dynamics and kinetics at
all simulated ensembles.

Here, we develop the generic transition-based
reweighting analysis method (TRAM), an estimation
method for MEMMs that combines the above features
as follows. (i) Statistical weights of sampled configu-
rations are reweighted between ensembles in a binless
manner, a key property for working in high-dimensional
spaces. (ii) Conditional transition statistics are used
in an MSM-based likelihood, and thus simulations only
need to be in local but not in global equilibrium. TRAM
only relies on the MSM approximation and detailed bal-
ance relations to predict rare-event kinetics [53] and
avoids the use of additional rate models. (iii) TRAM
provides a maximum-likelihood MEMM with full ther-
modynamic and kinetic information at all ensembles. In
summary, TRAM goes significantly beyond previously
proposed transition-based reweighting methods [54–57]
and other methods to estimate thermodynamics and ki-
netics from multiensemble data [53, 58–61], which offer
some but not all of the above properties (for more de-
tailed discussion, see below). TRAM is a formal gen-
eralization to WHAM, MBAR, reversible MSMs, and
discrete TRAM that can all be derived from TRAM.

We apply TRAM on two benchmark systems and an
all-atom model of the trypsin protein with the benza-
midine inhibitor. We illustrate that TRAM can esti-
mate the thermodynamics at ensembles more accurately
and with less simulation data than previous estimation
methods, and that additionally unbiased models of the
kinetics can be built. We demonstrate that our MEMM
approach offers a systematic treatment of the common
problem of slow unbiased coordinates in US simulations
and provides efficient estimates of rare-event kinetics,
such as protein–ligand dissociation.

TRAM

Basics.

Let us consider a molecular system in a reference en-
semble with configuration x in a configuration space and
dimensionless potential function u (x). u (x) has units
of thermal energy kBT = β−1, where T is the tempera-
ture. u(x) is a sum of terms, including βU(x) with the
potential energy function U , and pressure–volume or
chemical potential terms, depending on the ensembles
under consideration [49]. The system has an equilibrium
distribution as follows:

µ (x) = ef−u(x), (1)
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Figure 1. Multiensemble Markov models (MEMMs) con-
tain thermodynamic (e.g., free energies) and kinetic (e.g.,
transition probabilities) information among all configura-
tion states (subscript index) and ensembles (superscript
index). TRAM estimates MEMMs by combining transi-
tions observed between configuration states, and the sta-
tistical weights/reduced energies of samples in all ensembles
(reweighting).

where the free energy f is the negative logarithm of the
partition function and has the role to normalize µ(x).

Suppose we are given simulations from K different
ensembles (indexed by the superscript k), which may
comprise an arbitrary combination of the unbiased en-
semble, simulations with biased energy functions, or dif-
ferent temperatures. We can formally relate any ensem-
ble with dimensionless potential uk(x) to the reference
ensemble by introducing a bias potential bk (x) such that
uk(x) = u (x) + bk (x). The corresponding equilibrium
distribution µk (x) of the kth ensemble can be expressed
as follows:

µk (x) = ef
k−bk(x)µ (x) (2)

where the relative free energy fk of ensemble k is chosen
such that µk(x) is normalized. Consider the following
examples to see how bk (x) must be chosen to model
commonly used enhanced sampling methods:

i) In US, the potential energy function of each simula-
tion is U (x) +Bk (x), where Bk (x) is the kth umbrella
potential. The bias potential is as follows:

bk (x) = βBk (x) . (3)

ii) Replica exchange or parallel tempering simulations
are performed at different temperatures T 1, . . . , TK , the
bias of the kth temperature with respect to the reference
ensemble (e.g., the lowest temperature) is as follows:

bk (x) = U (x)
(
βk − β

)
. (4)

MSMs for Molecular Kinetics.

An MSM at ensemble k consists of a partition of
the molecular configuration space into m discrete and
nonoverlapping configuration states S1, . . . , Sm and the
conditional transition probabilities pkij(τ) that a system
that is in state Si at time t will be found in state Sj at
time t+ τ .

We first define the local free energy fki of configura-
tion state Si in ensemble k. The exponential of fki is
proportional to the statistical weight of this state:

e−f
k
i = e−f

k

∫

Si

µk (x) dx (5)

where the integral evaluates to the equilibrium proba-
bility of the system to be in state Si when simulated in
ensemble k.

For given simulation data from ensemble k that con-
tains ckij transitions from state Si at time t and to state
Sj at time t+ τ , the likelihood of an MSM with transi-
tion matrix Pk =

[
pkij
]

is as follows:

LkMSM =

m∏

i=1

m∏

j=1

(
pkij
)ckij . (6)

When simulations are conducted at thermal equilib-
rium (i.e., without adding or removing energy to the
system) in ensemble k, equilibrium and transition prob-
abilities are related by the detailed balance equations

e−f
k
i pkij = e−f

k
j pkji, and the Markov model is said to be

reversible. With detailed balance constraints, the max-
imum likelihood of Eq. 6 has no closed-form solution
but can be iteratively solved [28, 62, 63].

Local Equilibrium Model.

If simulations sample from multiple ensembles, a cen-
tral problem is to infer the equilibrium distribution µ (x)
at a reference ensemble, given the simulation data at all
ensembles. The principle behind such inference is that
we can reweight the equilibrium probability of a sample
x between different ensembles by means of Eq. 2.

A widely used estimator is the binless WHAM
method, [50, 51], also called MBAR [49], which provides
an optimal estimate of µ (x) under the assumption that
at each ensemble k, the samples x are drawn indepen-
dently from their global equilibrium distribution µk (x).
MBAR can be derived by maximizing a likelihood that
is simply given by the product of µk (x) over all samples
x and all ensembles k [49–51].
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However, we do not want to depend on the global
equilibrium assumption. Hence we define the local equi-
librium distribution for each configuration state Si:

µki (x) =

{
ef

k
i −fk

µk(x) x ∈ Si
0 else.

(7)

We assume that simulations are sampling from these
local equilibrium distributions, but they do not need to
be in equilibrium between configuration states, which is
key for invoking the MSM framework. We obtain the
following likelihood of generating the simulation data
for a given sequence of discrete states:

LkLEQ =
m∏

i=1

∏

x∈Xk
i

µki (x) (8)

where Xk
i denotes the set of all samples generated from

the kth ensemble and in configuration state Si. As
µki (x) can be related to µ (x) via Eqs. 2 and 7, the local
equilibrium model is key to reweight samples between
different ensembles.

TRAM likelihood.

We develop the TRAM estimator. The TRAM likeli-
hood combines the MSM likelihood (6) and local equi-
librium likelihood (8). Inserting Eqs. 2 and 7, we obtain
the following:

LTRAM =
K∏

k=1


∏

i,j

(
pkij
)ckij



︸ ︷︷ ︸
Lk

MSM




m∏

i=1

∏

x∈Xk
i

µ (x) ef
k
i −bk(x)




︸ ︷︷ ︸
Lk

LEQ

.

(9)
This likelihood expresses the probability that a given
set of trajectories sampling from different ensembles has
visited a particular sequence of discrete states (LkMSM)
and has sampled the local configurations inside these
discrete states (LkLEQ). The structure of the TRAM
likelihood is similar to that of a hidden Markov model
[64].

The trajectory statistics include the bias potentials
bk (x) that are defined by the simulation protocol [e.g.,
US or replica exchange molecular dynamics (REMD)],
and the number of observed transitions ckij . The un-
known variables in the TRAM likelihood are the point
densities µ (x), the local free energies fki , and the tran-
sition probabilities pkij . The TRAM problem is to max-
imize the likelihood (9) in the variable space subject to

the following constraints:

e−f
k
i pkij = e−f

k
j pkji, for all i, j, k (10)

∑

j

pkij = 1, for all i, k (11)

∑

x∈X
µ (x) = 1. (12)

where (11) and (12) are simple normalization con-
straints, and µ(x) is considered as a discrete distribution
on the set of all samples, X. The detailed balance con-
dition (10) couples the dynamical (MSM) part to the
local equilibrium part. Unfortunately, the detailed bal-
ance constraints make the above problem very hard to
solve.

Maximum-Likelihood Solution.

The TRAM problem contains
(
m2K + |X|

)
un-

knowns, (mK + 1) linear equality constraints (normal-
ization), and Km (m− 1) /2 nonlinear equality con-
straints (detailed balance), so finding the optimal solu-
tion by directly using gradient- or Newton-type methods
is difficult even for systems with only few configuration
states or ensembles. Fortunately, we can transform the
TRAM problem into a more tractable system of non-
linear algebraic equations and solve the resulting sys-
tem by an iterative algorithm. By using the Lagrange
duality theory (Appendix), it can be proved that the
maximum of the TRAM likelihood satisfies the follow-
ing equations:

∑

j

ckij + ckji

exp
[
fkj − fki

]
vkj + vki

= 1, for all i, k (13)

∑

x∈Xi

exp
(
fki − bk (x)

)
∑
lR

l
i exp

[
f li − bl (x)

] = 1, for all i, k (14)

where vki are Lagrange multipliers that can be inter-
preted as counts (for infinite statistics vki =

∑
j c
k
ij , see

Appendix). Xi is the set of all samples in configuration
state Si, no matter from which ensemble. The factor Rli
is given by the following:

Rki =
∑

j

(
ckij + ckji

)
vkj

vkj + exp
[
fki − fkj

]
vki

+Nk
i −

∑

j

ckji (15)

where Nk
i is the number of samples in Xk

i . Rki are effec-
tive state counts (see below). When (9-12) are fulfilled
and in the limit of infinite statistics, Rki = Nk

i .
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In contrast to Eqs. 9-12, the formulation in (13) and
(14) only contains the 2mK unknowns vki and fki and
does not involve Pk and µ (x) explicitly. Given the so-
lution of Eqs. 13 and 14, we can compute all MSM
transition matrices by the following:

pkij =
ckij + ckji

exp
[
fkj − fki

]
vkj + vki

(16)

and the unbiased statistical weights of all samples by
the following:

µ (x) =
1

∑
k R

k
i(x) exp

[
fki(x) − bk (x)

] (17)

where we have defined i(x) such that i(x) = j when
x ∈ Xj . The TRAM estimator defined by Eqs. 13
and 14 is statistically optimal, asymptotically correct,
i.e., converges to the correct results of fki , pkij , and µ(x)
as the length or number of simulation trajectories in-
creases, and the most general multiensemble Markov
model estimator (see below and Appendix).

Eqs. 13 and 14 are reminiscent of other estimators:
Eq. 13 arises when optimizing an MSM transition ma-
trix with given stationary weights exp(−fki ) [63]. Eq. 14
has the same form as the self-consistent MBAR equation
[49] for the ensemble free energies fki of a single config-
uration state Si, but instead of the number of samples
in that state Nk

i , the modified counts Rki are used (de-
tailed interpretation in Appendix). The TRAM equa-
tions can therefore be thought of expressing two opti-
mization problems simultaneously: (i) at each ensemble
k, the optimization of the MSMs for given free energies,
fki for all configurations Si. (ii) At each configuration
Si, the optimization of the free energies, fki for all en-
sembles.

Optimization Algorithm.

The TRAM equations 13 and 14 are coupled and can
only be solved numerically. Here, we transform them
into a simple fixed-point problem, in which the following
equations need to be iterated until convergence:

vk,new
i := vki

∑

j

ckij + ckji

exp
[
fkj − fki

]
vkj + vki

(18)

fk,new
i := − ln

∑

x∈Xi

exp
[
−bk (x)

]
∑
lR

l
i exp

[
f li − bl (x)

] (19)

More implementation details of this algorithm, includ-
ing initialization, termination, and convergence acceler-
ation are given in Appendix. Note that, instead of a
fixed-point iteration, we could attempt a Newton-based
[65, 66] or stochastic optimization method [67, 68].

Thermodynamics and Kinetics from TRAM.

Thermodynamics. The correct calculation of sta-
tionary (thermodynamic) properties does not rely on
Markovianity, but only requires the unbiased estima-
tion of free energies fki or the stationary density µk (x)
at the chosen lag time τ . However, it is required that
the simulations are in local equilibrium within the con-
figuration states, and violations of local equilibrium can
be compensated by using longer lag times τ . The ro-
bustness of TRAM estimates should therefore be tested
as a function of lag time (see results, Fig. 3).

Kinetics. Asymptotic correctness of all pkij at the se-
lected lag time τ does not imply that powers of the ma-
trix Pk are a good prediction of the transition proba-
bilities at longer lag times. Whether the multiensemble
Markov model is able to predict long-term kinetics de-
pends on the quality of the discretization and on τ being
sufficiently large, as usual for MSMs [28, 56] (see results,
Fig. 3D). Note that this behavior does not change if a
rate matrix is used instead of a transition matrix.

Generality of TRAM.

TRAM is a generalization of discrete TRAM, binless
WHAM/MBAR, binned WHAM, and reversible MSMs
(Fig. 2). These specialized estimators can be derived
from TRAM by adding the specific assumptions made
by them. MBAR can be derived from TRAM by assum-
ing that samples are drawn from the global equilibrium
distribution of each ensemble. Discrete TRAM can be
derived by assuming that the bias energies are piecewise
constant and pointwise reweighting can be replaced by
histogram reweighting. WHAM is derived using a com-
bination of both assumptions. Finally, if we have only a
single ensemble, the TRAM solution is identical to the
reversible MSM estimator (derivations in Appendix).

TRAM has the Markovianity assumption in its likeli-
hood model, but otherwise only uses fundamental rela-
tions such as detailed balance and pointwise reweight-
ing. It is therefore the most general MSM-based es-
timator for simulation data from multiple ensembles.
Other transition-based reweighting methods are related
as follows: trajectory reweighting techniques [58–60] are
applicable without any state space discretization, but
assume the trajectory starting points to emerge from a
global equilibrium distribution. The dynamic weighted
histogram analysis method (DHAM) [57] uses a kinetic
reweighting scheme that can predict kinetics at ensem-
bles not simulated from, but is based on a rate model,
uses histogram binning and does not optimize with re-
spect to detailed balance. An advantage in not enforc-
ing the detailed balance constraint is that DHAM is a
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Figure 2. Relationship of different statistically optimal
reweighting estimators. TRAM is the most general method
considered here, it can be specialized to MBAR, discrete
TRAM, and WHAM by adding the assumption of global
equilibrium or performing a binning of sampled configura-
tions.

single-shot estimator, while TRAM and dTRAM are es-
timators that need to be iterated to solution. xTRAM
[55] is a bin-less TRAM method, but in contrast to the
present method not statistically optimal for finite data
(Applications).

APPLICATIONS

Multitemperature Replica-Exchange.

We compare the performance of MBAR and TRAM
for REMD simulations of solvated alanine dipeptide us-
ing 33 exponentially spaced temperatures in the range of
300–600 K (Fig. 3A) (see ref. [55] for simulation proto-
col). In multitemperature simulations, the bias poten-
tials between ensembles depend on the potential energy
(Eq. 4). To analyze such data with histogram-based
methods, one would have to bin the potential energy
axis in addition to the coordinate(s) of interest [69]. For
many-body systems such as solvated macromolecules,
the large range of potential energies sampled and the re-
quired resolution to approximate the bias energies (Eq.
4) disables binned estimators such as WHAM, discrete
TRAM, and DHAM, and instead require binless meth-
ods such as MBAR and TRAM.

The configuration space of alanine dipeptide is parti-
tioned into 20 discrete states using k -means clustering
in the space of the coordinates {cosφ, sinφ, cosψ, sinψ}
(Fig. 3A). The equilibrium probabilities on the sets I–IV
are compared between estimators. Within statistical er-
ror, both MBAR and TRAM converge to the same val-
ues, whereas TRAM converges significantly faster (Fig.
3B). TRAM outperforms MBAR because TRAM relies
only on local rather than global equilibria. As a re-
sult, TRAM does not suffer from the fact that initial
structures are not sampled from a global equilibrium

distribution, and the REMD simulation must first re-
lax to sample from global equilibrium. Even after this
relaxation phase, TRAM uses the data more effectively
because a smaller number of simulation steps is required
to generate an uncorrelated sample from local equilib-
rium compared with global equilibrium.

Next, we test the robustness of TRAM estimates as
a function of the lag time (Fig. 3 C and D). It is seen
that the stationary probabilities, and thus the results in
Fig. 3B, are independent of the lag time, demonstrating
that the Markov property is not required to get correct
estimates of the stationary properties. Unbiased esti-
mates of equilibrium properties only require that the
simulations are in local equilibrium. For REMD sim-
ulations with a good state space discretization, this is
fulfilled even at short lag times τ . In contrast, unbiased
estimates of the kinetic properties require sufficiently
long lag times for the Markov property to be valid. The
estimated relaxation timescale at temperature 366 K is
constant above τ = 10 ps (Fig. 3D), which was used
for all TRAM estimates in Fig. 3. Only trajectory seg-
ments in which no temperature swap was executed for
10 ps or longer were used for this estimate.

Fig. 3 E and F show thermodynamics and kinetics ob-
tained from the multiensemble Markov model as a func-
tion of the temperature. The probabilities of metastable
states become more similar with increasing tempera-
tures, but the temperature dependence is very weak, in-
dicating that entropy differences play a minor role (Fig.
3E). The mean first passage times (inverse transition
rates) from I/II to III/IV and back decrease strongly
with temperature (Fig. 3F). The decrease is exponen-
tial (Arrhenius-like) up to 450 K, but shows a weaker
temperature dependence for higher temperatures, indi-
cating that the kinetics are limited by diffusion rather
than barrier crossing in this range.

Biased Simulations with Slow Orthogonal Degrees
of Freedom.

Simulations in which sampling is enhanced along pre-
defined reaction coordinates (e.g., using bias potentials)
are often hampered by unforeseen rare transitions in
other coordinates [52]. For illustration, we use a patho-
logical 2D toy potential with three wells (Fig. 4A). US
simulations are conducted using only the x coordinate
as bias coordinate (details in Appendix).

As the potential wells I and III cannot be separated on
the x axis, it takes a long time to converge to the global
equilibrium when the simulations are confined to values
of x < 15. Especially simulations with the second um-
brella potential centered at x = 8.33 exhibit rare-event
transitions along the y axis (Fig. 4B), characterized by
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Figure 3. MBAR versus TRAM using REMD simulations of
alanine dipeptide; mean and SD over seven independent sim-
ulations are shown. (A) Histogram-based free-energy land-
scape in the backbone torsions φ, ψ at a temperature of
300 K. Thin lines: borders of 20 clusters used to partition the
space {cosφ, sinφ, cosψ, sinψ} (hence the nonlinear bound-
aries). Thick lines: borders of four metastable sets analyzed
in B. (B) Convergence of equilibrium probability estimates
of sets I–IV at 300 K, as a function of simulation length.
(C–F) TRAM estimates. (C) Equilibrium probabilities as a
function of the lag time τ . (D) Slowest relaxation timescale
at 366 K as a function of the lag time. (E) Equilibrium prob-
abilities of sets I–IV as a function of temperature. (F) Mean
first passage times at temperatures where transitions were
found.

an autocorrelation time of 500 steps (Fig. 4C) [70]. In
contrast, the largest value of the autocorrelation time
along the x axis is only about 22 steps.

Rare events in nonenhanced coordinates are a com-
mon problem in enhanced sampling simulations and
cause major problems in their analysis. For estimation
methods relying on global equilibrium sampling such as
MBAR, the statistically correlated samples should be
discarded before running the estimator [49]. In umbrella
simulation 2, this would result in retaining only one ef-
fective sample for each 500 samples in the simulation,
resulting in the loss of almost all data and requiring very
long simulation times.

TRAM does not require global equilibrium sampling
and can therefore use simulation data much more ef-
ficiently. We discretize the configuration space Ω into
20 states as shown in Fig. 4A, and then use TRAM
with lag time τ = 1 to estimate the unbiased equilib-
rium distribution from the US data. Fig. 4D summa-
rizes estimation errors of TRAM for different lengths
of each simulation trajectory and compares them with
those of MBAR and the previously described xTRAM
method [55]. Here, the error is evaluated as the Kull-
back–Leibler divergence between the estimated proba-
bility distributions of the three macrostates I, II, and III
and the true reference. In contrast to MBAR, TRAM
can effectively overcome the influence of the nonequi-
librium distribution of the data through Markov state
modeling and achieve accurate estimates even in the
case of trajectory length smaller than autocorrelation
times τess(y) of some biased simulations. Furthermore,
TRAM also significantly outperforms xTRAM, which is
a consistent estimator under the MSM assumption but
not statistically optimal for finite data.

Protein–Ligand Binding and Kinetics.

Finally, we demonstrate that TRAM can help to re-
solve the problem of rare events in orthogonal degrees
of freedom and provides efficient estimates of rare-event
kinetics in all-atom, explicit-solvent simulations of the
serine protease trypsin and its inhibitor benzamidine
(see ref. [34] for detailed setup). This illustrates the
usefulness of the estimator in high-dimensional spaces
where binning of all relevant coordinates is not an op-
tion.

We first analyze pure US simulations with 150 um-
brella windows used to sample the position of benzami-
dine between the bound pose and a prebinding site (Fig.
5A, structures i–iv ; details in Appendix).

To detect rare events in the unbiased coordinates,
time-lagged independent component analysis (TICA)
[29, 30] was used with the Cartesian coordinates of
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A B

C D

Figure 4. Comparison of MBAR, xTRAM, and TRAM for
estimating the equilibrium distribution of a three-well po-
tential from US data. (A) Potential function u(x, y), where
thin white lines represent the borders of 20 discrete states,
thick white lines represent the borders of the three poten-
tial wells, and the dashed black lines indicate the umbrella
centers. (B) A simulation trajectory with the bias poten-
tial centered at x = 8.33. (C) Autocorrelation times τess(x)
and τess(y) with respect to x axis and y axis for different
umbrella centers. (D) Average estimation errors and their
SDs of MBAR, xTRAM, and TRAM for different simulation
trajectory lengths over 30 independent realizations of US.

residues around the binding site. The first independent
component (IC) is strongly correlated with the US co-
ordinate. From the remaining ICs, two had timescales
implied by the TICA eigenvalues larger than the tra-
jectory length, indicating undesirable metastable transi-
tions orthogonal to the umbrella coordinate. The second
IC corresponds to closing of the binding pocket by the
Trp 215 side chain (Fig. 5D, structures i and iii). The
third IC corresponds to an isomerization of the disulfide
bond between Cys 191 and Cys 220. An analysis using
MBAR or WHAM is thus unfeasible or inefficient, as
the global equilibrium assumption is strongly violated.

One strategy to deal with this very common problem
is to restrain coordinates orthogonal to the umbrella co-
ordinate, to avoid undesirable degrees of freedom from
switching [45]. Although this approach is useful for com-
puting energy differences between end states, it may
change or restrain the transition mechanism and arti-
ficially increase free-energy barriers along the pathway.
With TICA and TRAM, we now have the possibility
to allow these orthogonal dynamics to happen, and to
treat these events explicitly.

The space spanned by the US coordinate and the sec-
ond IC was discretized into 100 Voronoi cells with the

k -means algorithm (Fig. 5A). This number of states
is far smaller than the number of bins that would be
required with a binned estimator such as WHAM or
discrete TRAM. A count matrix ckij was estimated for
every umbrella at a lag time of 11 ns, and the largest
strongly connected component S of the summed count
matrix cij =

∑
k c

k
ij was determined. The initial set

was strongly disconnected, and we therefore adaptively
started new umbrella simulations in nine rounds, to im-
prove the connectivity (Appendix). In the complete
dataset, some clusters are still disconnected (red clus-
ters in Fig. 5A).

In particular, these disconnected states include struc-
tures in which the binding site is occluded by a trypto-
phan side chain, while benzamidine is still inside, and
structures in which the binding site attempts to close
during the exit pathway. TRAM is applied on the con-
nected subset of states (white clusters in Fig. 5A). The
TRAM results show that the Trp-occluded conforma-
tion is a local minimum in the free-energy landscape
(Fig. 5C). This is confirmed by refs. [13] and [61]
where the Trp-occluded conformation is shown to be
a metastable conformation of the protein. In contrast,
this local minimum is not found by MBAR, and several
disconnected minima are spuriously estimated (boxes in
Fig. 5B).

To analyze the full high-dimensional binding mecha-
nism and estimate unbiased kinetics, we must go be-
yond US simulations. We therefore used TRAM to
combine the US data with up to 49.1µs of unbiased
MD data (details in Appendix). The unbiased trajecto-
ries started in the unbound state, such that many bind-
ing events are present. Individual steps of dissociation
events are found in some trajectories, but no complete
dissociation event is found in any single trajectory. By
combining the free-energy information inherent in the
biased trajectories with the binding kinetics from the
unbiased trajectories, the full unbinding kinetics can
be estimated with TRAM. TRAM gives the estimate
kTRAM

off = 1170 s−1, with 95% confidence intervals of
[617 s−1, 2120 s−1]. For comparison, the MSM estimated
from the unbiased simulation data only, using the same
state definition and lag time as for TRAM, provides an
estimate of kMSM

off = 1863 s−1 with a larger uncertainty
of [876 s−1, 4816 s−1] [all errors estimated using boot-
strap, experimental dissociation rate 600 s−1 [71]].

To assess the data efficiency of TRAM and the MSM,
we varied the amount of unbiased MD data that was
used for the estimation. With TRAM, only 5–10% of
the unbiased MD data are needed compared with an
MSM to reliably estimate koff (Fig. 5E).

Fig. 5D shows a kinetic network of the bind-
ing/dissociation events at the unbiased ensemble of the
multiensemble Markov model. The kinetic data include
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association to several secondary binding sites; two of
them are shown in Fig. 5D. At the lag time that we
chose (30 ns), the prebound states iii and iv are not
metastable and indirect transitions where these states
are skipped during binding/unbinding appear in the
transition matrix (not shown in the figure for clarity).

CONCLUSIONS

We have derived the TRAM for estimating MEMMs
from simulation data comprising arbitrary combinations
of unbiased MD, biased enhanced sampling simulations
such as US, or multitemperature simulations such as
REMD. TRAM does not require binning of the bias
energies and is therefore suitable for the analysis of
multitemperature simulations and of high-dimensional
state spaces. TRAM is a Markov modeling method
as it only requires local equilibrium and uses condi-
tional transition statistics to estimate the MEMM—i.e.,
it can use short trajectories whose starting points were
not sampled from global equilibrium. Even when just
being used for estimating thermodynamics, e.g., the
equilibrium distribution at the unbiased ensemble, or
temperature-dependent free energies, TRAM is superior
to global equilibrium-based estimators such as WHAM
or MBAR.

In an application to US simulations of protein–ligand
binding, we have used MSM concepts of finding slow
coordinates and detecting a connected set of states to
define a meaningful subspace for computing a ligand dis-
sociation pathway and its free-energy profile. We have
also sketched an approach to identify sampling bottle-
necks and extend simulations in nonconverged umbrella
windows to adaptively improve the convergence of the
umbrella simulation, in line with other adaptive ap-
proaches [52, 72]. In this example, combining US with
replica exchange simulations may also have improved
the sampling [73, 74].

We demonstrated that TRAM can be used to com-
pute an unbiased estimate of protein–ligand dissocia-
tion kinetics on the order of a millisecond by using only
a few microseconds of simulation data. Beyond the sim-
ple two-state rate, TRAM is ideally suited to estimate
the full multistate kinetics that was found in refs. [46]
and [13] with rate models or much more simulation data.
TRAM significantly expands the power of the MSM
framework by allowing to integrate the full power of
enhanced sampling simulations. The TRAM estimator
is included in PyEMMA [75] as of version 2.2. Tutorials
can be found under pyemma.org.

MATERIALS AND METHODS

Three-Well Potential Setup.

The potential shown in Fig. 4A is de-
fined by a sum of four Gaussians u(x, y) =

−∑4
i=1 aigh1,h2,σ1,σ2(x, y) with parameters

(8,15,15,10,10), (4.8,9,9,2.5,2.5), (8,9,21,2.5,2.5),
and (4,21,13,2.5,2.5), and gh1,h2,σ1,σ2(x, y) =

exp
[
− (x− h1)

2
/2σ2

1 − (y − h2)
2
/2σ2

1

]
on a square

[5, 25] × [5, 25] and ∞ outside. US simulations are
conducted using bias potentials bk (x, y) = (x − x̄k)2/5
for k = 1, ..., 7 with umbrella centers {x̄k} positioned
at x̄k = (10k + 5) /3. We generate 20 independent
simulation trajectories {(xkt , ykt )} for each biased po-
tential using the Metropolis sampling algorithm, where
xk0 = x̄k, yk0 is randomly drawn from [5, 25] and the
candidate sample follows the uniform distribution on
[xkt − 3, xkt + 3] × [ykt − 3, ykt + 3] for a given (xkt , y

k
t ).

The autocorrelation time of {(xkt , ykt )} in x is given by
τess = 1 + 2

∑∞
s=1 ρs(x), and likewise in y [70], where

ρs(h) denotes the autocorrelation at lag s of h. We
compute τess from a long trajectory with 106 steps as
described in ref. [76].

Trypsin–Benzamidine Setup.

US. The US coordinate is defined as the distance
from the center of mass of all backbone atoms of Asp 189
and Pro 161 to the center of mass of the benzamidine
ring atoms. The setup consists of 150 harmonic umbrel-

las with uniform force constant of 100 kcal mol−1 Å
−2

and umbrella centers positioned along the US coordinate
according to xrest,i = 10.5 Å + i · 0.05 Å for i = 0 . . . 149.
For each umbrella, multiple independent runs were gen-
erated all starting from the same initial conditions that
come from an unbiased binding trajectory. In total, 459
trajectories each having a length of 20 ns were generated
adaptively in nine rounds of restarts. After an initial ex-
ploratory round, eight additional rounds were started to
increase the overlap ok,k+1 =

∑
i∈S min(Nk

i , N
k+1
i ) be-

tween ensembles. Restarts were done in ensembles k,
k + 1 where ok,k+1 < 100. For the analysis, TICA [29]
was used at a lag time 5.5 ns on the Cartesian coordi-
nates of all heavy atoms within a 15 Å radius around
Asp 189 in the Protein Data Bank structure.

Molecular dynamics. A total of 491 unbiased MD
simulation trajectories of length 100 ns each (data from
ref. [34]) were discretized by selecting the nearest neigh-
bor heavy-atom contacts between benzamidine and all
trypsin residues as input features [75]. The features were
transformed by TICA (lag time, 5 ns) to a kinetic map
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Figure 5. Thermodynamics and kinetics of all-atom protein–ligand binding model for trypsin–benzamidine. (A–C) US
simulations. (D and E) MEMM using both unbiased and US simulations. (A) Trajectories projected on the space of the
umbrella sampling (US) coordinate and the second independent component (IC). The US coordinate describes a transition
from benzamidine bound to Asp-189 to benzamidine located outside the binding pocket on the surface of trypsin. The
second IC corresponds to concerted opening of loop (Trp-215-Gln-221) and flipping of Trp-215. The Voronoi centers of the
Markov states are shows as disks. Markov states that are irreversibly connected to the data set are shown as red disks and
are excluded from the MEMM. (B) Potential of mean force (PMF) in the same coordinate space computed with MBAR;
(C) PMF computed with TRAM. Besides a higher barrier along the US coordinate, the TRAM-PMF gives the Trp-occluded
conformation a lower free energy compared with the MBAR result. (D) Coarse-grained kinetic network of the MEMM.
Structures (i, ii, iii, and iv) are found in the four quadrants of A. The largest transition rates (where at least one direction
exceeds 1/ms) between these macrostates, the unbound state and two alternatively bound states are shown as arrows. Units
are events per millisecond. (E) Efficiency of TRAM in the estimation of unbinding kinetics compared with an MSM built
from the same unbiased data. Shown is the probability that log koff calculated from a bootstrap sample falls into the interval
[0.5 log kall

off , 2 log kall
off ] where kall

off is the TRAM estimate calculated using all data.

preserving 95% of the kinetic variance [31], resulting in
a 31-dimensional transformed space. Discretization of
all data in the joint space of 31 ICs and the two coor-
dinates shown in Fig. 5A was done with the k -means
algorithm, using k = 500. Microstates were grouped
into seven macrostates. Four macrostates correspond
to the quadrants of Fig. 5A, splitting microstates near
the binding site at the US coordinate 14.5 Å and the
TICA coordinate IC2 = 1. Nearness to the binding site
is defined by an US coordinate < 18.2 Å and being in-
side a binding funnel, defined by cos γ ≤ 0.74, where γ
measures the angle between the vectors connecting cen-
ters of mass of benzamidine with Pro 161 and Trp 215

with Pro 161. The remaining microstates were grouped
in three macrostates: the unbound state and two alter-
natively bound states where benzamidine binds to sec-
ondary binding sites of trypsin, found with PCCA++
[77].

Kinetics. Using TRAM, MEMMs were estimated
combining the US data and the unbiased MD data. The
MEMM lag times were chosen as 30 ns for the unbiased
data and as 10 ns for the US data (chosen from the in-
terval where koff appears to be independent of both lag
times). A transition matrix for the unbiased ensemble
was computed according to Eq. 16. koff was computed
as the reciprocal of the mean-first-passage time from
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the bound macrostates (US coordinate < 14.5 Å) to the
unbound state.

Bootstrapping: Errors bars for the different esti-
mates were obtained from a bootstrap. Every sample
of the bootstrap was generated by first partitioning the
trajectories by ensemble, and then independently for
every partition drawing whole trajectories and finally
merging the trajectories.

APPENDIX

Solution of the TRAM Problem.

Ignoring constants, the constrained optimization
problem of the TRAM log likelihood (9) can be writ-
ten as follows:

min
{µ(x)},{Pk}

−
∑

k,i,j

ckij ln pkij −
∑

k,i

Nk
i f

k
i −

∑

x∈X
lnµ (x)

s.t. e−f
k
i pkij = e−f

k
j pkji for all i, j, k

∑

j

pkij = 1 for all i, j (20)

with

fki = − ln
∑

x∈Xi

µ (x) e−b
k(x). (21)

We omit the normalization constraint (17), because the
normalization of µ (x) does not affect the optimality of
the solution of Eq. 20, and we can thus normalize µ (x)
a posteriori.

Using the Lagrange duality lemma of discrete TRAM
problem [56], it can be shown that Eq. 20 is equivalent
to the following unconstrained min-max optimization
problem:

min
{µ(x)}

max
{vk}

Ldual =
∑

k,i,j

ckij ln
(

e−f
k
i vkj + e−f

k
j vki

)

−
∑

k,i


Nk

i −
∑

j

ckji


 fki −

∑

i,k

vki −
∑

x∈X
lnµ (x) (22)

where vk = [vki ] are Lagrange multipliers. Equivalence
means that the optimal solution of Eq. 20 can be ob-
tained from that of Eq. 22 by using Eq. 16.

We now consider solving Eq. 22. Because Ldual is
a concave function of {vk} and a convex function of
{lnµ (x)}, the optimal solution of Eq. 22 can be char-
acterized as a saddle point with ∂Ldual/∂v

k
i = 0 and

∂Ldual/∂µ (x) = 0 for all i, k and x (see section 10.3.4
in ref. [78]). Because

∂Ldual

∂vki
=
∑

j

ckij + ckji

exp
(
fkj − fki

)
vkj + vki

− 1 (23)

∂Ldual

∂µ (x)
=
∑

k

Rki(x)e
fk
i(x)−bk(x) − µ (x)

−1
, for x ∈ Si (24)

where Rki is defined in Eq. 15, we can conclude that the
optimal solution of Eq. 22 should satisfy Eq. 13, and
Eq. 17 holds. Substituting Eq. 17 into Eq. 21, we can
get the optimality condition (14).

Asymptotic Correctness of TRAM.

We use b̄ to denote the exact value of an unknown
variable b without any statistical error, and denote by
cki =

∑
j c
k
ij the sum of row i in count matrix Ck = [ckij ],

and by Ni the number of samples in Si (cki is different
from Nk

i for finite statistics).

Now we show that the TRAM estimates of local parti-
tion functions, transition matrices, and reference distri-
bution converge to the correct ones under the condition
that the size of simulation data (either length or num-
ber of simulation trajectories) tends to infinity and the
ratio Nk

i /Ni tends to a constant wki for any i, k under
the assumption that the local equilibrium within each
configuration Si is achieved in simulations. In this limit,
the transition counts become the following:

ckij = cki p̄
k
ij (25)

Substituting Eq. 25 into Eqs. 16, 15 and 13, and re-
placing fki , v

k
i with f̄ki , c

k
i , we have pkij = p̄kij , R

k
i = Nk

i ,
and

∑

j

ckij + ckji

exp
[
f̄kj − f̄ki

]
ckj + cki

=
∑

j

p̄kij = 1 (26)

Define the average equilibrium distribution within Si
over multiple ensembles as µ̄′i (x) =

∑
k w

k
i µ̄

k
i (x). Ac-

cording to the law of large numbers, we can get

1

Ni

∑

x∈X∩Si

a (x) =

∫
a (x) µ̄′i (x) dx (27)

in the statistical limit for an arbitrary function a (x).
According to the above equation, we have the following:
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∑

x∈X∩Si

exp
[
f̄ki − bk (x)

]
∑
lN

l
i exp

[
f̄ li − bl (x)

]

=
1

Ni

∑

x∈X∩Si

exp
[
f̄ki − bk (x)

]
∑
l w

l
i exp

[
f̄ li − bl (x)

]

=

∫
exp

[
f̄ki − bk (x)

]
∑
l w

l
i exp

[
f̄ li − bl (x)

]
(∑

l

wliµ̄
l
i (x)

)
dx

=

∫

Si

exp
[
f̄ki − bk (x)

]
µ̄ (x) dx = 1 (28)

From the above, we can conclude that in the statis-
tical limit, the TRAM iterative algorithm converges to
vki = cki and fki = f̄ki , and the estimates of pkij given

by Eq. 16 are also equal to p̄kij in the limit. Moreover,
the corresponding estimated reference distribution is as
follows:

µ (x) =
1

∑
kN

k
i(x) exp

[
f̄ki(x) − bk (x)

] , for x ∈ Si

(29)
and it satisfies that

Eµ [a (x)] =
∑

i

∑

x∈X∩Si

a (x)∑
lN

l
i exp

[
f̄ li − bl (x)

]

=
∑

i

1

Ni

∑

x∈X∩Si

a (x)∑
l w

l
i exp

[
f̄ li − bl (x)

]

=
∑

i

∫

Si

a (x) µ̄ (x) dx = Eµ̄ [a (x)] (30)

for any function a (x) of the system configuration. So
the discrete distribution µ (x) given by the TRAM al-
gorithm is also a consistent estimate of the reference
distribution µ̄ (x).

Proofs That TRAM Is a Generalization of Discrete
TRAM, WHAM, MSMs, and MBAR.

MBAR/binless WHAM. Suppose that all simula-
tions are in global equilibrium and there is only one
configuration state S1 for the whole configuration space,
i.e., S1 = Ω. Then we can rewrite the TRAM equations
13 and 14 by dropping all of the subscripts as vk = ck

and

∑

x∈X

exp
[
fk − bk (x)

]
∑
lN

l exp [f l − bl (x)]
= 1 (31)

Eq. 31 is exactly the MBAR estimation equation for
free energies fk [49, 51, 66, 79].

Discrete (histogram-based) TRAM. Discrete
(histogram-based) TRAM [56] can be expressed in the
TRAM nomenclature by using bias potentials bk (x)
that are step functions with

e−b
k(x) ≡ γki , for x ∈ Si (32)

Then, µ (x) in Eq. 17 takes a constant value µi =(∑
k R

k
i exp

[
fki
]
γki
)−1

on Si, yielding the following es-
timate of the stationary probability of Si in the unbiased
ensemble:

πi = Niµi (33)

Substituting Eqs. 32, 33 and 17 into the TRAM equa-
tion (14), we can obtain exp

[
−fki

]
= γki πi and rewrite

Eq. 33 as follows:

Ni
πi

= µ−1
i =

∑

k,j

(
ckij + ckji

)
vkj γ

k
i

γki πiv
k
j + γkj πjv

k
i

+
Ni
πi
−
∑
k,j c

k
ji

πi

⇒
∑
k,j c

k
ji

πi
=
∑

k,j

(
ckij + ckji

)
vkj γ

k
i

γki πiv
k
j + γkj πjv

k
i

(34)

Eqs. 13 and 34 are identical to the self-consistent equa-
tions of discrete TRAM [56] with bias factors γki , which
means that discrete TRAM is a special case of TRAM
and applies if the bias energies can be discretized with-
out error.

WHAM. From the discrete TRAM equations (13)
and (34), we can further derive the WHAM equations
under the assumption that the global equilibrium is
achieved with pkij = πkj ∝ γkj πj and ckij = πkj

∑
j′ c

k
ij′ [56].

MSMs. If simulations are only performed at one
ensemble, the self-consistent equations for reversible
maximum-likelihood estimation of MSMs are a special
case of discrete TRAM [56].

Interpretation of the Effective Counts. Rk
i

Supposing that we apply MBAR only to the samples
in a given configuration state Si, the estimates of the
local free energies {fki } are given by the following:

∑

x∈Xi

exp
(
fki − bk (x)

)
∑
lN

l
i exp

(
f li − bl (x)

) = 1 (35)

This equation has the same form as the TRAM Eq. (14)
except that Rki is replaced by Nk

i . Thus, we can inter-
pret Rki as counts. By using Eqs. 15 and 16, we find
Rki = Nk

i −
∑
j c
k
ji +

∑
j v

k
j p
k
ji. N

k
i −

∑
j c
k
ji is the num-

ber of visits to Si in the initial frames of all trajectories.∑
j v

k
j p
k
ji can be interpreted as the corrected number of
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incoming transitions to Si: First,
∑
j v

k
j p
k
ji converges to∑

j c
k
ji in the limit of infinite statistics. Second, the term

Nk
i −
∑
j c
k
ji in Rki accounts for the first visit to Si (which

cannot be computed from the MSM alone). What re-
mains to be included into Rki is the effective number of
visits to Si after the first state transition has happened.
A suitable candidate would be the number of incom-
ing transitions to Si. What distinguishes

∑
j v

k
j p
k
ji from∑

j c
k
ji is that the transition matrix is used in the com-

putation of the former. Moreover, although
∑
j c
k
ji and∑

j c
k
ij in principle are two independent variables, the

quantities
∑
j v

k
j p
k
ji and vki (which can be interpreted as

the corrected number of outgoing transitions) are linked
by the equation

∑
j v

k
j p
k
ji+vki =

∑
j c
k
ji+

∑
j c
k
ij (which

can be derived from Eq. 16). So both
∑
j v

k
j p
k
ji and

vki are counts that are corrected by the Markov model,
which itself fulfills detailed balance.

Implementation Notes.

In applications of this paper, we initialize the TRAM
iteration with vki := 1 and fki := 1 as the conver-
gence of TRAM does not seem to depend on the choice
of initial point. We terminate the TRAM algorithm
when the maximum change in normalized free energies

maxi,k

∣∣∣fki − fk,new
i

∣∣∣ < tol with tol being a small number

(e.g., 10−10). Considering that the TRAM equations
are invariant with respect to a global shift fki → α+fki ,
we perform the normalization after every iteration such
that

∑
i exp

[
−fki

]
= 1 for the first ensemble k = 1 to

avoid an uncontrolled drift of the fki .
The bias factors exp

[
−bk(x)

]
can easily exceed the

maximum range of double-precision floating point num-
bers, so we perform most calculations in log-space to
avoid the numerical overflow or underflow. For all sum-

mations of the form log
∑
i exp[ai], we use the log-sum-

exp formula log
∑
i exp[ai] = â + log

∑
i exp[ai − â],

where â = maxi(ai).
In addition, according to our experience, the conver-

gence of the TRAM algorithm can be significantly sped
up by adding an extra update step to each iteration that
shifts local free energies fki by δi as follows:

fk,new
i = fki + δi (36)

with

δi = ln
∑

k,j

(
ckij + ckji

)
vkj

vkj + exp
[
fki − fkj

]
vki
− ln

∑

k,j

ckji (37)

Note that we can obtain from Eqs. 15 and 14 that

∑

k,j

(
ckij + ckji

)
vkj

vkj + exp
[
fki − fkj

]
vki
−
∑

k,j

ckji

=
∑

k

Rki ·
∑

x∈X∩Si

exp
[
fki − bk (x)

]
∑
lR

l
i exp

[
f li − bl (x)

] −
∑

k

Nk
i

=
∑

x∈X∩Si

1−
∑

k

Nk
i = 0 (38)

Hence δi = 0 is a necessary condition for the TRAM
equations, and the update step (36) does not influence
the optimality of the limit of the algorithm.
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[54] Wu H, Noé F (2014) Optimal estimation of free ener-
gies and stationary densities from multiple biased sim-
ulations. SIAM Multiscale Model. Simul. 12:25–54.
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Understanding and control of structures and rates involved in protein ligand binding are
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binding complexes. Here we exploit the recently developed multi-ensemble Markov model

framework to compute full protein-peptide kinetics of the oncoprotein fragment 25–109Mdm2

and the nano-molar inhibitor peptide PMI. Using this system, we report, for the first time,

direct estimates of kinetics beyond the seconds timescale using simulations of an all-atom

MD model, with high accuracy and precision. These results only require explicit simulations

on the sub-milliseconds timescale and are tested against existing mutagenesis data and our

own experimental measurements of the dissociation and association rates. The full kinetic
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overall strong binding arises from a variety of conformations with different hydrophobic
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In the past, drug design has primarily focused on finding
inhibitors with maximal binding affinity to the target.
Recently, there has been a growing interest in optimizing

target-drug kinetics1, 2. A direct strategy to exploit kinetics is the
maximization of the drug’s residence time at the receptor in order
to ensure contiguous drug effect between subsequent
deliveries3, 4. Protein–ligand kinetics may involve more than two
kinetically relevant states, either due to different ligand binding
poses, different protein conformations or their coupling5–10.
While this multi-state nature is not always apparent in ensemble
kinetic experiments11, accounting for it may help during multiple
stages of the drug design process12, 13. On the molecular scale,
targeting receptor binding pockets that open transiently can lead
to allosteric inhibitors14, 15. On the pharmacokinetic scale, a
complete assessment of protein–drug kinetics can provide more
accurate models and offer additional freedom to optimize the
drug delivery strategy2, 16. Multi-state kinetics are especially
relevant in multivalent binders, which are characterized by highly
non-exponential kinetics and nonlinear amplification of the
binding strength through multiple parallel binding
interfaces17, 18.
Simultaneous study of molecular structure and kinetics at high

resolution is possible with fully flexible all-atom molecular
dynamics (MD) simulation in explicit solvent. However, such
simulations are limited to lengths of few microseconds on pub-
licly available hardware. Few milliseconds can be reached on
specialized hardware19 or in aggregate times using distributed
computing20–23. These simulation times are short compared to
residence times of most high-affinity binders.

Calculating unbiased long-term kinetics for all-atom MD
models is one of the hardest problems in molecular simulation, as
it depends upon the solution of three difficult tasks simulta-
neously: (A) the ability to explore initially unknown states and
conformational changes, (B) the repeated sampling of the slowest
transitions, (C) the computation of unbiased transition rates from
such simulation data. Fortunately, tools have been established
that each excel at one or two of these tasks, and that can be
combined to a powerful framework.

Path sampling and milestoning-based methods24–27 enhance
the probability of transition pathways between a priori known
end-states and can be extended to compute transition rates (tasks
B, C), but offer only limited help in exploring the state space. In
contrast, unbiased MD simulations, especially high-throughput
MD simulations28, 29 can explore the state space without hin-
drance from constraints (task A). When analyzed with kinetic
models, such as Markov state models (MSMs)30–33, the unbiased
long-term kinetics can be approximated34, 35, without required
initial knowledge of relevant states, coordinates or a timescale
separation (task C). However, this approach relies on having
sampled the rare-event transitions in the data. While MSMs help
with parallelizing this problem and rare events can be sampled, in
particular when adaptive sampling strategies are combined with
high-throughput simulation23, the sampling of very rare events
such as protein-inhibitor dissociation can still be very inefficient.
In practice, this difficulty may result in not properly connected
models and underestimated or imprecisely estimated residence
times. While MSM analyses have the advantage of being able to
detect these problems with carefully conducted Markovianity
tests36 and by computing binding free energies as a function of
the MSM lag time37, 38, the typical solution involves running
more simulations, which is unpractical when computational
resources are limited. Enhanced sampling methods such as
umbrella sampling, flooding, metadynamics, or replica
exchange39–42 are specialized in rare-event sampling (task B), and
some of them can significantly help to explore states with low
populations (task A), however they rely on a priori knowledge of

good collective coordinates. Kinetic quantities cannot be directly
computed from such data and the data analysis relies on the
applicability of macroscopic rate theories43. This has been miti-
gated by recent progress in hyper-dynamics which allows to
predict transition rates between long-lived states when good
collective coordinates are known44–48.
In order to combine the advantages of enhanced sampling

methods and MSMs, we recently developed the concept of multi-
ensemble Markov models (MEMMs)49. MEMMs rely on the idea
of combining unbiased simulations of fast events (such as
rapid binding) with efficient sampling of the rare events in
biased ensembles (such as biased unbinding) within a reweighting
framework that can extract full and unbiased kinetics.
Several MEMM estimators have been developed50–52, including
the statistically optimal transition-based reweighting analysis
method (TRAM), which exploits detailed balance to extract
unbiased kinetics of the slow steps from equilibrium properties
harvested at biased ensembles49, 53. The recently introduced bin-
less TRAM version can compute complex multi-state kinetics
without requiring pre-defined collective variables49, which allows
kinetics in very high-dimensional and complex examples to be
studied.

Here we show how enhanced MD simulation techniques can be
combined to compute unbiased multi-state kinetics of the onco-
protein fragment 25–109Mdm2 with the nano-molar peptide
inhibitor PMI in all-atom resolution. MEMMs are the key tech-
nology for this achievement, and allow us to obtain the residence
time that is beyond the seconds timescale with high accuracy and
precision, from sub-millisecond simulations. Multiple inter-
mediates and mis-bound modes are found, the equilibrium
folding–binding pathways are computed. The simulations are
tested against previous mutagenesis experiments and
binding–unbinding kinetics experiments conducted here.

Results
Direct MD simulation of protein–ligand complex Mdm2–PMI.
Mdm2 is a major therapeutic target that antagonizes the tumor
suppressor p53 by ubiquitinating it or by binding the N-terminal
trans-activation domain (TAD) of p53. In certain cancers, Mdm2
is over-expressed leading to excessive inactivation of p5354.
Therefore the Mdm2–p53 interaction is a primary target for
inhibitor design55–57. The 12-amino-acid peptide PMI
(p53–Mdm2/MdmX inhibitor) is one of the strongest known
Mdm2 binders, with a dissociation constant of Kd= 3.3 nM57.
In the co-crystal structure of PMI with the protein
fragment 25–109Mdm2, PMI binds as a helix57 while our MD
simulations of PMI without its binding partner suggest that PMI
is at most 40% helical in isolation. Thus the binding mechanism
must involve PMI folding. The binding of PMI to the Mdm2
protein fragment is a particular challenging system for MD not
only because of the high affinity but also because of the abun-
dance of metastable states that act as traps on achievable simu-
lation lengths of microseconds. In Zwier et al.58, 120 μs of implicit
solvent simulations of the same Mdm2 fragment were conducted
with a different p53-peptide and only 10% of the simulations
reached the crystallographic binding pose.

We conducted 500 μs of unbiased atomistic MD simulations
of the protein fragment 25–109Mdm2 and the PMI peptide
from different initial structures, especially dissociated states.
A preliminary analysis showed that these trajectories contain five
complete binding events from dissociated to crystal-like states,
several tens of partial binding events via intermediates. A variety
of intermediates and trap states were found (Fig. 1). However,
not a single clear dissociation event was observed, and a MSM
constructed from the unbiased MD data contained many
disconnected states.
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Biased simulations predict the binding affinity. Consequently,
we added biased simulations with the aim of reversibly sampling
bound, unbound and intermediate states. MEMMs can in
principle be built using any biased sampling protocol, including
umbrella sampling39 or metadynamics41. Here, six independent
Hamiltonian replica-exchange simulations were conducted,
each about 1 μs long and with 14 replicas. The first Hamiltonian

is unbiased while the other Hamiltonians have gradually
reduced protein–ligand interaction strengths (see “Methods”).
In contrast to unbiased MD, these simulations do not
provide direct kinetic information, but sampled efficiently
different binding sites and binding modes. After discarding
the initial equilibration phase of 50 ns (Supplementary Note 3.3)
these data still contained six full binding and 26 full
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dissociation events, as well as many transitions between inter-
mediates (Fig. 1).

To test the enhanced sampling simulation, we determined the
dissociation constant between Mdm2 and PMI experimentally
using fluorescence anisotropy (see Supplementary Note 4.2 and
Supplementary Fig. 11), obtaining Kexp

d ¼ 3:02± 0:31nM, in
agreement with previous data59. Computationally, Ksim

d ¼
0:34nM (95% confidence interval: 0:22nM; 0:44nM½ �) was
determined by applying the PyEMMA implementation60 of the
MBAR estimator61, 62 on the replica-exchange data (Supplemen-
tary Note 3.6). The difference between the computational and the
experimental value corresponds to 1.3 kcal mol−1, which is in the
expected range of force field inaccuracies63, 64. As a more
comprehensive test, previously measured changes in binding free
energies (ΔΔG) upon mutation of PMI residues to alanine were
predicted using perturbation theory65, 66. We find good
agreement of the ΔΔG values between simulation and experi-
ment59 within statistical uncertainties, in particular for the amino
acids that are important for binding: Phe3, Trp7, and Leu10
(Fig. 2e and Supplementary Note 3.2).

Multi-ensemble Markov models reveal slow unbinding kinetics.
We developed an extension of the recent TRAM estimator49

called TRAMMBAR for combining unbiased MD simulations
with replica-exchange simulations (see “Methods”). While TRAM
requires all simulations to be longer than its lag time (often on the
order of tens to hundreds of nanoseconds), this is not the case for
replica-exchange simulations with rapid exchanges. TRAMMBAR
can employ such replica-exchange data, by assuming global
equilibrium for that part of the simulation, which is justified
when statistical tests indicate short correlation times62. The pre-
sent replica-exchange data has a correlation time of 40 ns,

compared to simulation lengths of about 1 μs (Supplementary
Note 3.3). Using TRAMMBAR, all unbiased and biased simula-
tion data were combined to a MEMM with 1056 states at a lag
time of 150 ns, and its self-consistency was validated using
standard tests35 (Supplementary Note 3.4 and Supplementary
Figs. 5 and 6). The kinetics of the unbiased ensemble was then
analyzed.

The association rate is predicted to be 3.3 × 109 M−1 s−1 (see
“Methods”, Supplementary Note 3.7) which is faster than the
association of similar p53-peptides to the full-length N-terminal
domain of Mdm2 (on the order of 107 M−1 s−1)67 and still faster
than the association of the 17–29p53 peptide to the 25–109Mdm2
fragment (kon= 7 × 107M−1 s−1)58. The majority of association
trajectories enter basin 13 that contains the crystallographic
complex and is correctly predicted as the most populous state
(Fig. 1).

Computing the residence time of the complex from the
transition matrix may lead to a systematic overestimate, because
the dissociated state lifetime is shorter than the lag time used to
estimate the transition matrix. To avoid this bias, we estimated
rate matrices. Rate matrix estimation is not unique and we
considered the maximum likelihood approach of Kalbfleisch and
Lawless68 which gives an estimate of the residence time of 0.88 s
(95% confidence interval 0:48s; 1:33s½ �, see Fig. 2b, d), and the
least-squares approach of Crommelin and Vanden-Eijnden69,
which gives an estimate of 8 s (confidence interval 1:5s; 40s½ �). To
test the predicted values from the simulations, we decided to
measure the binding kinetics of PMI to Mdm2 experimentally.
We performed a binding competition experiment with a
fluorescence anisotropy readout to measure the PMI dissociation
rate and stopped-flow kinetics experiments to measure the
association rate (see Supplementary Notes 4.1–4.3, Fig. 2f
and Supplementary Fig. 12). We measured a residence time of
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26.8 s (confidence interval 24:7s; 34:1s½ �) and an association
rate constant of 5.27 × 108M−1 s−1 (confidence interval
5:17; 5:37½ � ´ 108M�1 s�1). Interestingly, our simulation-based
predictions and the experimental estimate for the residence time
all lie in the range of seconds to tens of seconds, which is a good
agreement considering expected errors in the simulation force
field63, 64 and influence of the measurement by the fluorescence
label. About 50% of the simulation data, i.e., a total of 300 μs of
mixed unbiased and biased data, are sufficient to get estimates
that are statistically indistinguishable from the estimates using all
data (Fig. 2a, b and Supplementary Fig. 9a).

To assess the importance of the biased simulations for the
computation of the binding free energy and the residence time,
we varied the fraction of biased data used for the estimation
(Fig. 2c, d and Supplementary Fig. 9b). Both quantities converge
within statistical uncertainty if at least 50% of the biased data is
included in the estimation (i.e., 450 μs unbiased data and a total
of 50 μs biased data in all replicas). If no biased simulation data is
used and a conventional MSM is estimated (using 500 μs
unbiased data) the errors increase by a magnitude that makes
the estimate practically useless. Note that it is not easy to
determine whether a MSM is truly connected, and it is possible
that this large error actually indicates that the dissociation
pathway has not been sampled in the unbiased simulations alone.

Analysis of the full kinetic network. To obtain an overview of
structure-kinetics relationships, we analyzed the MEMM kinetics
between the dissociated state (protein-peptide distances larger
than 1 nm) and 14 metastable states that interchange on the
timescale of 10 μs or slower (Fig. 1 upper half). At this resolution,
the binding is overall downhill with fast direct association rates
on the order of 109 M−1 s−1 into the native basin 13 that dominate
the experimentally measurable on-rate. Association can also
occur to non-native intermediates (3, 4, 6, 12) with smaller rates
of 107 to 108 M−1 s−1 (Fig. 1).

In the most populous state 13, PMI is folded and anchored,
with a high probability, to the binding pocket with its
hydrophobic residues Phe3 and Trp7. In the second-most
populous state 12, PMI has the folded crystallographic N-
terminal conformation, but the C-terminus is unfolded and forms
a different contact pattern: while Leu9 forms multiple contacts

with Mdm2 helix 2 (Supplementary Fig. 4), Leu10 has no contact
to Leu54, Val93, and Ile99. Ser11 forms a contact with Tyr100
and Pro12 forms contacts with Arg97, His96, and Try100 of
Mdm2 (Supplementary Table 1).

To examine the importance of different PMI side chains for the
observed binding modes, we computed the change in binding free
energy upon mutation ΔΔG but with the free energy of the
associated state replaced by the free energy of macro-state Si (see
Supplementary Note 3.2 and Supplementary Table 2). We
observe that Phe3 and Trp7 are most important for stable
binding. The role of the other side chains depends on the binding
mode. For example, Thr1, Tyr6, Leu9, and Pro12 stabilize state 12
but not state 13. Alanine scanning experiments (Fig. 2e) have
revealed that the Tyr6Ala mutant shows a similar ΔΔG to that of
the Leu10Ala mutant even though the crystal structure shows no
binding of Tyr6 to the inside of the hydrophobic cleft of Mdm259.
Our results thus suggest that the higher Kd of the Tyr6Ala PMI
mutant is not due to a destabilization of the crystal-like state, but
may rather be explained by the destabilization of alternative
bound states.

Other binding modes that involve more flexible PMI config-
urations do not strongly contribute to the binding affinity, but are
relevant for the association process by “catching” PMI and
funneling it into state 13. In the non-native states, PMI binds in
different locations (3), in different orientations (5, 10, 11), or in
unfolded conformations that dissociate relatively easily, but
otherwise fold during the binding transition (4, 6, 8). The slowest
transitions occur between states 12 and 11 and between states 13
and 7 that happen on milliseconds to hundreds of milliseconds.
Non-native states that do not significantly contribute to binding
pathways are briefly denoted as “trap”. Trap states 5, 7, and 9 are
predominantly reachable from state 13. Additional traps with
lifetimes larger than 10 μs but not significant population were
found, in which PMI binds far away from the binding site
(structures not shown).

To resolve the dynamics inside the main binding pocket in
greater detail, we split state 13 into the sub-states A–H with
kinetics on time scales of a single microsecond or slower (Fig. 1
lower half and Supplementary Note 3.5). Sub-state A is
structurally well-defined and contains the crystal structure (pdb
code 3eqs), the crystallographically unresolved Pro12 forms
contacts with Mdm2 Tyr100. Many of the sub-states (B, C, E, I)

6%
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(B)

(E)

(3) (12)

Dissociated

Crystal-like (A)

3%

3%%92 %64%6%

6% 9% 23%
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Fig. 3 Binding mechanism comprised by the 60% most probable pathways. Structures of metastable (on-pathway) intermediates are shown, labels are as
in Fig. 1. Arrows indicate the direction and relative magnitude of the reactive flux from the dissociated state to the crystal-like bound state. PMI residues
that form PMI–Mdm2 contacts with at least a probability of 0.5 in a given macro-state are shown as sticks
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are intermediates in the binding process (Fig. 3). In the crystal-
like state (A) the Tyr6 side chain of PMI is not buried in the
binding cleft. However in many non-native states, Tyr6 can either
bind to the inner cleft together with Trp7 and Phe3 (D, B, H) or
take the role of Trp7/Phe3 by anchoring PMI to the cleft (C, G, F
and 5). Tyr6 can even take the place of Trp7 in a helically bound
conformation that is similar to the crystallographic mode (E).

With the simulations conducted here, we find that state A has a
stationary probability of 72%. Together states A and 12 have a
joint stationary probability of 86%. Thus a large fraction of the
strong affinity between PMI and Mdm2 is due to the two distinct
but individually well-defined conformations 12 and A that
interconvert directly on the timescale of 10 μs.

It is possible that the number of discovered non-natively bound
structures, and their combined equilibrium probability, would
continue to grow if the simulations would be extended. However,
almost all metastable states found here are already visited in the
first 60% of our simulation data (Supplementary Fig. 7) and the
estimate for the binding free energy is converged (Fig. 2a). These
indicators suggest that the non-natively bound structures with
significant probabilities have been found.

Binding mechanism. To investigate the binding mechanism, we
computed the reactive flux using transition path theory36, 70 from
the dissociated state to the crystal-like bound state (Supplemen-
tary Note 3.5). There are multiple parallel pathways and the
metastable states can be grouped into on-pathway intermediates
and off-pathway trap states—see Fig. 3 for an illustration of the
major 60% of binding pathways. The most populous pathway
(29%) goes through a partially folded state (C) that is anchored by
Leu10 and Tyr6 to the binding cleft, while Phe3 and Trp7 form
contacts with the outer surface of helix 2 of Mdm2. 15% of the
reactive binding flux goes through states where PMI binds to the
terminal region of the Mdm2 fragment that is located at the end
of the binding cleft. A similar pathway was found for the p53-
peptide in Ref. 71. The terminally bound states form a con-
formational ensemble with various unfolded (not shown) and
folded (3, I) PMI conformations. Among the terminally bound
states, the macro-states that carry most reactive flux exhibit fol-
ded PMI. The folded conformations differ in the (hydrophobic)
interface that they form with Mdm2 (3, I). Nine percent of the
flux go through states 12 and E where PMI is almost in the
crystal-like fold but the binding pattern is non-native. Inspection
of the MD trajectories shows that during the fast transition from
state E to the crystal-like state, the Tyr6 side chain leaves the
binding cleft first and is then replaced by the Trp7 side chain all
while Phe3 remains anchored to the cleft. In the transition
between state 12 and the crystal-like state, the flexible C-terminus
of PMI is rearranged such that Leu10 takes the place of Leu9 at
the binding interface.

Discussion
Multi-ensemble Markov models can be used to probe full multi-
state kinetics of strong binders by combining conventional MD
simulations of the binding process with biased MD simulations
that spontaneously sample bound and unbound states. While
standard analyses of enhanced sampling simulations do not
readily provide kinetic information, MEMM estimators provide
direct estimates of the kinetics without invoking macroscopic rate
models. Using the nano-molar complex PMI–25–109Mdm2 as an
example, we obtained robust estimates of residence times that
exceed the total amount of simulation data by three to four orders
of magnitude and the individual simulation lengths by six to
seven orders of magnitude.

Importantly, the inclusion of relatively little biased data enables
us to sample rare events such as the protein-inhibitor dissociation
steps, and drastically reduces the statistical error of rates and
binding free energies compared to a MSM of purely unbiased MD
data. In particular, we have demonstrated that MEMMs can
effectively mitigate the problem of trajectories getting trapped in
long-lived states. While direct estimation of MSMs requires that
the visited states are reversibly connected—a condition that is
difficult to test in high-dimensional systems—MEMMs only
require irreversible visits to metastable states if those states were
sampled reversibly in a biased simulation. On the other hand, in
contrast to standard analysis methods such as WHAM or MBAR,
MEMM estimators such as TRAM or TRAMMBAR do not
require the full simulation data to be sampled from global equi-
librium, thus greatly alleviating the sampling problem.

The binding/unbinding mechanism of PMI and Mdm2 was
elucidated in full atomistic detail. While the binding is overall
funnel-like, the detailed kinetics are quite complex. Rebinding
can occur via multiple non-native intermediates on multi-
milliseconds timescales. Another slow process is the inter-
conversion of the crystallographic PMI–Mdm2 state with a
newly identified state in which the C-terminus of PMI is
unraveled and forms a new interaction pattern with Mdm2.
Both states contribute significantly to the PMI–Mdm2 binding
affinity and will inhibit binding to p53. The identification of such
conformations gives us additional flexibility in optimizing the
inhibitor.

Some minor trap states were found that do not significantly
contribute to the binding affinity, but have lifetimes on the order
of microseconds. Although such states may be overrepresented by
current atomistic force fields63, their existence implies that even
for fast binders, around 100 μs of unbiased MD simulation are
needed in order to characterize the association kinetics with
statistical confidence.

The current study is a proof of principle—making optimal
choice of starting structures and amount of data in unbiased vs.
biased simulations depends on the molecular system, and a
logical next step would be to make these choices iteratively within
an adaptive sampling framework28, 37, 72. The present simulation
approach makes progress towards the routine computation of
residence times, and the identification of non-native or allosteric
binding sites for protein-inhibitor systems. Because the approach
does not require a priori knowledge of order parameters and
structures, it can potentially be fully automated. With ever
increasing computing power, this approach may become part of a
high-throughput framework to compute protein–drug kinetics
that may serve both pharmacological applications and the
improvement of force fields towards the more accurate prediction
of kinetics73, 74.

MEMMs combine methods of free energy calculation and
MSM estimation. Therefore any progress made in the develop-
ment of protocols for free energy calculation might directly
translate into a corresponding progress in the estimation of
kinetics. We are confident that the seconds timescale is not the
limit and that timescales comparable to the biological half-life of
drugs (hours)2, or the excessively long lifetimes of multivalent
binders17, 18 are, in principle, accessible. Equilibrium kinetic
models of protein binding kinetics harvested with MEMMs can
be embedded into particle-based reaction-diffusion simulations in
order to probe the kinetics emerging from non-equilibrium
conditions and the behavior of entire cellular signaling
pathways75.

Methods
MDM2–PMI simulation setup. MD simulations were conducted with the
Amber99SB-ILDN force field76 and TIP3P water model77 in the canonical
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ensemble at temperature T= 300 K. To generate a starting structure, we used the
heavy atom positions from the protein data bank (PDB) file 3eqs57 and moved the
peptide out of the binding pocket. Missing residues of the PDB structure (PMI
Pro12 and Mdm2 Glu25) were modeled in standard conformations. Hydrogen
atoms were added with AmberTools78, the complex was solvated in a cubic box of
edge length 7.62 nm with 13,698 water molecules, and five Cl− and one Na+

counter ions were added. The two histidine residues of Mdm2 were protonated at
the ϵ2 site. Simulations were performed with the ACEMD computer code79 using
the Langevin integrator using a damping constant γ= 0.1 ps−1, constraints on the
bonds that involve hydrogen atoms, and with heavy hydrogen atoms (four times
the natural mass) to allow for an integration time step of 4 fs. Electrostatics were
computed using Particle Mesh Ewald using a real-space cutoff of 0.9 nm.

Hamiltonian replica-exchange simulations. Since the relevant conformational
states were a priori unknown, we avoided choosing structure-based collective
variables but instead employed a so-called boost potential that was developed in the
context of accelerated MD80 and works by reducing the depth of the minima in the
potential energy landscape. As the interaction of Mdm2 with PMI and other
peptides is mostly hydrophobic57, 81, the boost potential was applied to the
Lennard-Jones interactions between the two chains and not the electrostatic
interactions (see Supplementary Note 3.1 for simulation details). Six independent
simulations starting from the crystallographic pose of about 1 μs length each were
carried out with replica exchange82 between 14 ensembles that interpolate between
unbiased and strongly boosted potentials (Supplementary Note 3.1). The simula-
tion took approximately 42×103 GPU hours.

Unbiased MD simulations. Short MD simulations of a total of 20 μs were used to
explore the conformational space. From these simulations and all replicas of the
replica-exchange simulations, starting conformations were uniformly sampled,
generating various bound and unbound structures. In total, 502.597 μs of unbiased
MD simulations were run. The initial structures were resolvated, energy minimized
with 100 steps of conjugate-gradient descent, temperature equilibrated for 100 ps
with harmonic constraints on protein and peptide atoms, followed by a 1 ns
pressure equilibration with the Berendsen barostat. Finally the box size was set to
the fixed cube with 7.62 nm edge length and an additional equilibration run of 1 ns
was performed with active harmonic constraints. The production run generated
481 trajectories with varying lengths (between 945 and 1211 ns per trajectory). The
simulation took approximately 115×103 GPU hours.

TRAMMBAR is a new estimator for MEMMs. Replica-exchange MD between
different bias potentials can be extremely effective in exploring complex molecular
state spaces82. Here we develop an extension of the bin-less TRAM method49 to
compute MEMMs in order to facilitate the integration of replica-exchange MD
with unbiased MD. TRAM’s ability to estimate unbiased kinetics relies on counting
transitions between states within each simulation ensemble, but the contiguous
simulation times between ensemble changes in a replica-exchange scheme are
usually too short for that. We address the problem by splitting the data into two
sets: (a) data from replica-exchange simulations for which we assume that it
samples the equilibrium distributions of the respective ensembles and is thus
analyzed with the MBAR framework61, 62; (b) data from unbiased MD simulations
that are not long enough to sample the equilibrium distribution of the respective
ensemble and are analyzed with bin-less TRAM. These two parts need to
be coupled, and we call the resulting hybrid analysis method TRAMMBAR.
Following Ref. 49, we denote the set of equilibrium samples (a) from ensemble k by
Xk
MBAR and the set of time-correlated samples (b) from ensemble k by Xk

TRAM. We
approximate the reference equilibrium distribution as a point-wise distribution on
all data by maximizing the likelihood

LTRAMMBAR ¼ LTRAM � LMBAR ð1Þ

where LTRAM is defined as in Ref. 49

LTRAM ¼
Y
k;i;j

pkij

� �ckij Y
x2Xk

TRAM\Si
μðxÞef ki �bkðxÞ ð2Þ

and LMBAR is the standard MBAR likelihood61

LMBAR ¼
Y
k

Y
x2Xk

MBAR

μ xð Þef k�bkðxÞ
ð3Þ

Here, bk(x) denotes the known unit-less bias energy of configuration x evaluated in
the kth ensemble that can be obtained from the MD software. ckij are the observed

transition counts from the time-correlated data Xk
TRAM, and e�f k :¼ P

i e
�f ki are the

ensemble free energies. The likelihood is optimized by varying: the unbiased
configuration weights μ(x), the joint equilibrium probabilities e�f ki to be in Markov
state Si and ensemble k, and the transition probabilities pkij , from which the kinetics
at every ensemble can be computed. The TRAMMBAR algorithm is equivalent to
the MBAR algorithm if XTRAM is empty, and equivalent to the TRAM algorithm

with empty XMBAR. The algorithm for maximizing the above likelihood is described
in Supplementary Notes 1.1 and 1.2.

In order to illustrate our approach for computing rare-event kinetics for strong
binders, consider the two-dimensional potential energy landscape in Fig. 4a. The
gray shape represents a protein to which a small molecule ligand can bind. The
protein has two shallow minima representing non-native binding sites on the
surface, and a deep energy minimum representing an internal binding pocket at the
end of a channel.

The mean dissociation time for this system is about 1.8×106 Monte Carlo steps
(vertical bar in Fig. 4b, c). To approximate this time with direct simulation,
multiple trajectories with lengths of at least 107 steps need to be launched from the
bound state (Supplementary Fig. 2). Using MSMs, still a total of 107 steps of
simulation time in shorter trajectories is needed to obtain accurate estimates of
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Fig. 4 Illustration of computing rare-event kinetics with TRAMMBAR using
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both thermodynamics and kinetics (Fig. 4b, c). Using a MEMM with the
TRAMMBAR estimator, we can get accurate estimates for both the binding free
energy and the dissociation time with a total of only 5×105 steps that include short
unbiased binding simulations and biased simulations on a flattened potential
(Fig. 4b, c, Supplementary Note 2 and Supplementary Figs. 1 and 3). In contrast to
most other enhanced sampling methods, a MEMM allows the computation of
unbiased kinetics despite the fact that biases are used in the simulation. Moreover,
MEMMs provide not only selected macroscopic rates, but full kinetics such as the
whole set of transition rates shown in Fig. 4a.

Multi-ensemble Markov model for Mdm2–PMI. A MEMM was build from the
MD and replica-exchange trajectories. To define MEMM states, we first chose the
following set of features: all 1086 nearest-neighbor heavy atom distances between
PMI residues and PMI residues (a) or Mdm2 residues (b) and the sine and cosine
of the χ1 dihedral angle of Mdm2 Tyr100 (c), which is a known “gate-keeper”
residue for ligand association83. The time-lagged independent component analysis
(TICA) algorithm84 with a lag time of 10 ns was used to obtain 20 independent
components containing the slow kinetics. To these, trajectories of the minimal
distance between PMI and Mdm2 were added to facilitate a clear definition of the
fully dissociated state. The resulting feature trajectories were clustered with k-
means (k= 1000). In total, 56 microstates discretizing the dissociated state were
defined based on the minimal heavy atom distance between PMI and Mdm2 and
added to the set of the 1000 k-means clusters. The dissociated states had to be
defined explicitly because of the low metastability of the dissociated state in the
simulation box which prevents that the TICA algorithm finds a dimension that
describes the full association/dissociation process of the binding partners (see
Supplementary Fig. 10 for the influence of the definition of the dissociated states on
the estimates of the binding free energy and of the residence time). Transition
counts were computed for TRAMMBAR and for the MSM. For TRAMMBAR the
initial 50 ns of the replica-exchange trajectories were discarded and the rest was
subsampled, taking only one frame every 0.1 ns. We picked a lag time of 150 ns for
TRAMMBAR based on the convergence of the implied time scales and mean-first-
passage-times (Supplementary Notes 3.4 and 3.7, Supplementary Figs. 5 and 8). All
analyses were done using PyEMMA60 and MDTraj85.

Experimental binding kinetics. The association and dissociation rate measure-
ments were performed in stopped-flow and competition fluorescence anisotropy
experiments. For the association measurements, FITC-PMI and Mdm2 were
rapidly mixed using an SX20 stopped-flow spectrometer (Applied Photophysics).
The temperature was maintained at 25 °C, and an excitation wavelength of 493 nm,
in conjunction with a 515 nm long-pass filter was utilized. For the dissociation
measurements, 10 nM FITC-PMI peptide was incubated with Mdm2, then excess
of the unlabeled PMI (10 μM) was added and the dissociation was followed with a
Multilabel 384-well plate reader (Tecan, Infinite M1000 PRO) with excitation at
494 nm and emission at 517 nm (see Supplementary Notes 4.1–4.3 and Supple-
mentary Figs. 11 and 12 for details).

Code availability. TRAMMBAR has been implemented in the PyEMMA software.
PyEMMA is available free of charge at http://pyemma.org.

Data availability. The molecular dynamics data that support the findings of this
study are available in the Edmond Open Access Data Repository with the identifier
doi:10.17617/3.x.86. All relevant data is available from the authors upon request.
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