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Abstract

We present a security proof for establishing private entanglement by means of recurrence-type
entanglement distillation protocols over noisy quantum channels. We consider protocols where the
local devices are imperfect, and show that nonetheless a confidential quantum channel can be
established, and used to e.g. perform distributed quantum computation in a secure manner. While
our results are not fully device independent (which we argue to be unachievable in settings with
quantum outputs), our proof holds for arbitrary channel noise and noisy local operations, and even in
the case where the eavesdropper learns the noise. Our approach relies on non-trivial properties of
distillation protocols which are used in conjunction with de-Finetti and post-selection-type
techniques to reduce a general quantum attack in a non-asymptotic scenario to an i.i.d. setting. Asa
side result, we also provide entanglement distillation protocols for non-i.i.d. input states.

1. Introduction

Entanglement is a key resource in quantum information processing. Entanglement can be used to teleport
quantum information [1], to implement remote quantum gates [2], or for distributed quantum computation
[3]. Itallows one to perform tasks that are not possible by classical means, such as secret key expansion vital for
secure classical communication. The latter is achieved through the famous and extensively studied quantum key
distribution (QKD) protocols [4-10]. In these works, security was proven in a variety of ever more general
scenarios, considering noisy channels, imperfect devices and device-independent (DI) settings, where even the
local quantum devices are untrusted [11-13].

In contrast, the perhaps equally important task of establishing private entanglement, and the closely related
problem of establishing secure quantum channels, has not been resolved in equal generality. The latter has,
historically, received significantly less attention [14], until the very recent increase of interest [ 15—18] in security
under ideal settings. The task of establishing private entanglement has been considered in the context of noisy
channels and both perfect [19] operations, and operations with local depolarizing noise [20, 21]. In these works,
either initial states that are identical and independently distributed (i.i.d.), or asymptotic scenarios are assumed.

Here, we present a comprehensive treatment for the security of distillation protocols. To make our results
broadly applicable, we generalize the security model (i.e. powers of the adversary) over standard settings for
protocols with quantum outputs. Furthermore, we remove the need for asymptotic, or i.i.d. assumptions, allow
for more general noise models, and formulate and prove security criteria which ensure composability—i.e. the
security of the protocols when they are used in arbitrary contexts, e.g. as sub-routines of larger protocols.

More specifically, we consider arbitrary attacks employed by an adversary (Eve, the distributer of noisy or corrupt
Bell-pairs) and assume noisy communication channels and noisy local operations—essentially arbitrary noise
describing imperfect single- and two-qubit gates. We also extend adversarial powers beyond standard: the noisy
apparatus may leak all the information about the noise processes which occurred in a run of the protocol to Eve.

Our scenario, by necessity, falls short from full DI, as security under such weakest assumptions is not
attainable for protocols with a quantum output—any device used in any protocol with which a client can
interact classically, perhaps to test its performance, but which eventually outputs a quantum system, can always
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deviate from honest behavior when the final quantum output is eventually demanded (independent of how
elaborate the testing may have been). This raises the questions of how DI assumptions can be relaxed such that
security becomes possible also for quantum output protocols, or how standard security models can be further
extended.

DI assumptions can be understood as an extreme noisy scenario, where Eve has absolute control over the
noise processes. Our model relaxes this: Eve’s control is not exact (deterministic), but rather probabilistic,
however still perfectly heralded—while Eve may fail in her interventions, she still learns the noise realized. In this
sense, generalizing the types of noise the protocol is provably secure under in our model, corresponds to
scenarios which are ever closer to DI. Naturally, other generalizations of DI settings which make sense for
protocols with quantum outputs may be possible”.

We proceed by first providing a security analysis for i.i.d. inputs, and then generalize to non-i.i.d. states. This
is done by employing de-Finetti and post-selection symmetrization-based techniques. However, since we are
interested in security in arbitrary contexts, we must go beyond standard scenarios considered in entanglement
distillation works [19-21] and explicitly consider the adversarial quantum systems (containing e.g. purifications
of all quantum states) as well. Therefore the symmetrization-based techniques cannot be straightforwardly
applied, but need to be adapted. We present and discuss the required additional steps of preprocessing, and
provide entanglement distillation protocols that are not restricted to i.i.d. inputs, but are capable of dealing with
general inputs. The latter is related to recent results in [22-24].

2. Structure of the paper

The paper is organized as follows. In section 3 we introduce the basic concepts, specify the overall setting and
define the confidentiality of entanglement distillation protocols. Next, we summarize our main contribution in
section 4. In section 5 we show confidentiality of recurrence-type entanglement distillation protocols by proving
confidentiality for i.i.d. inputs in section 5.1 and we extend this results to arbitrary initial states in sections 5.2
and 5.3. Finally we prove confidentiality whenever the noise transcripts leak to Eve in section 5.4. We summarize
and discuss our results in section 6.

3. The model and security guarantees

Entanglement distillation is modeled by considering three players, Alice and Bob, who wish to generate a shared
Bell pair, and Eve, who provides the initial pairs. Thus, Eve is connected to Alice and to Bob via a (generally
noisy) quantum channel which may be completely under her control. Alice and Bob are connected by a classical
authenticated, but not confidential, channel. In entanglement distillation protocols Alice and Bob applylocal, in
general noisy, quantum operations to their pairs. To model this noise, we extend the approach of [20], where a
noise register, referred to as the ‘lab demon’ (L) register L is used to store classical information about the local
noise history, is appended to Alice and Bob’s pairs. In this work, the L register is a quantum register, attached to
Alice and Bob. We represent the noisy maps of the entanglement distillation process as unitaries acting on an
enlarged Hilbert space. L thereby coherently applies Pauli operators onto the registers of Alice and Bob. Due to
the symmetry of Bell states | Bgg) = 1/+/2 (]00) + |11)), it suffices to consider the case when the noise is applied
on Alice’s register only. To model the setting where Eve acquires information about the noise transcript during
the execution of the protocol, we assume that L informs Eve which noise operator was applied at each step. The
setting is illustrated in figure 1. In the remainder of this paper we elaborate further on the full quantum
treatment of L and Eve in terms of purifications, going beyond the setting of [20].

The proposed overall protocol under i.i.d. assumption involves several steps. First, Eve distributes # pairs
(the initial states), to Alice and Bob who apply local ‘twirl’ operations (random, correlated local operations).
Next, Alice and Bob sacrifice some m = /n pairs to check whether the fidelity, given with
F(p, 0) = try/ p'/?ap'/? for density operators p and o, of the pairs is sufficient for entanglement distillation, via
local oy and o, measurements. If the fidelity Frelative to | Byo) is insufficient, they abort. Otherwise they proceed
with a recurrence-type entanglement distillation protocol to produce a high fidelity Bell-pair from the
remaining initial states, which may also be aborted. Finally, Alice and Bob output their final state. For i.i.d.
inputs, the twirl ensures thatlocal o, and o, correlation measurements can be used to estimate the fidelity of
individual pairs. This estimate is crucial for ensuring entanglement distillation via recurrence-type
entanglement distillation protocols. Later, we will generalize to non-i.i.d. settings by prepending the protocol
with symmetrization (permuting of the pairs) and tracing-out steps.

E.g., we assume very primitive, but trusted, quantum devices, such as a device which can either forward an input quantum system, or
measure it in one basis. Already such a simple device invalidates our no-go observation.
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Eve

Authentic channel

Figure 1. [llustration of the overall setting: Eve provides the initial pairs to Alice and Bob, who run the entanglement distillation
protocol. The noisy apparatus may leak the specification of the realized noise map to Eve after every step of the protocol.

To formalize the security requirements, we define the ideal map F/, mapping the initial states of Alice and
Bob to a single Bell-pair, where « (abstractly) characterizes the noise levels in the channels connecting Eve to
Alice and Bob, and also the noise of the local devices, and / indicates that the noise transcripts leak to Eve. The
ideal map can intuitively be thought of as a map which simulates a real protocol as follows. In the case of an
abort, it replaces the final state with a fixed state 5. In the non-aborting case, however, it replaces the actual
output with a special state %;12', which corresponds to the output of a real protocol where the noise transcripts
leak to Eve, utilizing distillation protocol P, that was successfully run with asymptotically many high-fidelity
i.i.d. initial pairs. This is the best the noisy entanglement distillation protocol P could ever do. As we show later,
ol is a well-defined state for the entanglement distillation protocols and noise parameters considered here.
That s, it depends on the local noise parameters only, and not the initial states. Formally, we have for a given real

map (that is, the map realized by the execution of a real protocol)
(&' @ idp) (|19) (¥ |ase) = p,0apE ® |ok) (ok|r + (1 — Pp)UﬁBE ® |fail) (fail | (1

a corresponding ideal map
(F' @ ide) (19) (¢1ae) = B,0%8E © 0k) (okly + (1 — p,)oige @ |fail) (failly, @)

where |¢))4pE is a purification of the initial #n-partite ensemble p(/:’l); provided by Eve, p, is the success probability

depending on the initial state p%, and o5, is a fixed state output if the protocol is aborted. Observe that the
corresponding success probabilities p), per definition, are identical for the real and ideal maps & @land F*!in
(1) and (2) respectively. The two-level flag system f distinguishes the accepting and aborting branches. The state

o2l is the asymptotic state of the entanglement distillation protocol P and is of the form

1

o = | Y- wia, P)IByj) (Bijlas ® ;) (njile | © o (3
i,j=0

where |nij) are the leaked noise transcripts of Eve, | Bjj) = (id ® l.0)| Byo) the Bell-basis states, and wij(a, P) are

probabilities which depend on the noise level of the local devices and the entanglement distillation protocol P. For

instance, if the local devices are perfect, then wj =1 ifand onlyif i = j = 0, hence AB contains a perfect Bell-pair.

Finally, the states |7);;) specify the sequences of noise operations, and are orthogonal for different 7, j. If the noise

transcripts are not leaked to Eve, we denote the ideal protocol by F. In that case, |nij> in (3) is not accessible to Eve,

hence we replace %22’ by 0% = (3 i wii (o P) |Bij) (Bjjlap) ® og in(2). Observe that the ideal map F* 1, which

mathematically defines the type of process we wish to realize, is a global operation beyond LOCC (local operations

and classical communication) which can be decomposed by concatenating the real protocol £%! and a replacement

map S (which replaces the final state only if the real protocol succeeds according to the system fin (2)),

ie. Fol = So g0,

An entanglement distillation protocol (together with the noise maps), given asa CPTP map £*0), is
confidential if it is close to the ideal map:

Definition 1. The protocol £%? is e-confidential, if
[0 @ idp — FoO @ idp) (1¢) (¢lasp) b < € 4

holds for all initial states | /)45, where || p|l; = try/pp’ is the operator 1-norm for a density operators p.
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The system E above may contain any purification of the initial states Eve provided.

In this work, we use the term security in a generic sense, and the precise meaning depends on the context. For
instance, in QKD applications, security means that Alice and Bob establish a perfectly random and secret key
which the adversary has negligible information about [5, 6, 9, 35-37]. In recent times, composable security
definitions have become commonplace, in which, roughly speaking, security is defined via an ideal process, and
security level via the amount by which the process realized by the protocol deviates from the ideal process. In the
context of QKD, this distance reduces to the distance on the generated final states of the ideal versus realized
protocol. The ideal protocol outputs a completely mixed state on Alice and Bobs system which is in tensor
product with Eve. More formally, see also [9], a QKD protocol Q is said to be e-secure for initial state p, . if

los,ssceE — 0ss @ ocelh < e (5)

holds where o, 5,cr = (Q ® idp)(p455)> Sa and S denote the output systems of Alice and Bob (corresponding
the generated key), C denotes the classical communication and ogs = 1/|S|>",c4ls) (s| @ [s) (s|for orthogonal
states s. The state ogs ® o corresponds to the output of the ideal protocol.

The confidentiality criterion which we introduce here follows the distance-on-maps approach introduced in
the context of QKD like in e.g. [8]. Observe that such an approach is especially tailored to compose different
protocols, as the confidentiality definition concerns the distance of the real process with respect to an ideal
process. Therefore the real and ideal maps £ and F®® respectively are motivated by abstracting the protocol
in terms of processes. It is straightforward to abstract and define the ideal map in terms of input and output
relations, reflecting an ideal entanglement distillation process. As we discuss above, the ideal protocol has an ok-
and fail-branch. The fail-branch corresponds to the case whenever Alice and Bob abort the procedure,
outputting the state o ;. However, if the procedure succeeds then we might think of the ideal map as running
the entanglement distillation protocol for infinitely many initial states, ending up in the fixed state %2’ of the
entanglement distillation protocol P for noise level . We observe two important facts regarding that particular
state: first, its the best the entanglement distillation protocol P can do in the presence of noise oflevel o, and
second, as Eve is disentangled from Alice and Bob, this state is useful for applications like quantum teleportation.
Hence we refer to this state also as a private state, or equivalently, Alice and Bob share private entanglement. In
contrast to (5), the target state o7 in the ok-branch is only in tensor product with respect to Eve if the noise
transcripts do not leak to the adversary. In that case a secure quantum channel is feasible in terms of quantum
teleportation. Otherwise, that is if the noise transcripts |77ij> leak to Eve, she is in a separable state with respect to
Alice and Bob, but still enabling for confidential applications. By confidential we mean here that when the final
state is used for quantum teleportation no information about the teleported state is leaked, but the final state
does not guarantee that Eve cannot change the teleported state. This observation motivates the term
confidentiality rather than security.

The classical communication is not correlated to the output of the real protocol, thus it can be ignored, see
appendix A for details. The robustness of the protocol” is considered in appendix E, which enables us to assume
for the subsequent analysis that all basic distillation steps succeed.

4, Main contribution

We summarize the main findings of our paper as follows: recurrence-type entanglement distillation protocols
prepended by a symmetrization and a system discarding step enable confidentiality, provided that the noise
transcripts do notleak to the adversary for all noise levels « for which distillation would be possible in thei.i.d.
case. We also show that this alone implies that the final state in the accepting branch, is close to a tensor product
state—Eve is factored out. The results regarding the BBPSSW protocol [28] are analytic whereas for the DEJMPS
protocol [19] the results rely on strong numerical evidence. For low noise rates, we achieve better results via the
post-selection-based reduction. In that case, no system discarding step is necessary. Finally we find that if an
entanglement distillation protocol is confidential when the noise transcripts do not leak, then it also confidential
if they do leak to the adversary. In particular, even in the case that Eve picks up information about all the realized
noise processes during the protocol, the final output system still enables confidential quantum applications like
e.g. quantum teleportation. The paper proceeds as follows. We establish necessary conditions to guarantee
confidentiality for recurrence-type entanglement distillation protocols restricted to i.i.d. inputs whenever the
noise transcripts are not leaked to Eve. Then, we generalize this to arbitrary initial states via the de-Finetti
theorem [25]. Next, we use them to prove the confidentiality criterion (4) for entanglement distillation protocols
where the noise transcripts are not leaked. Finally, this will be used to derive the confidentiality bound whenever
the noise transcripts are leaked.

> The robustness is quantified by the abort probability in the all-honest, but noisy setting.
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5. Confidentiality of entanglement distillation protocols

5.1. Entanglement distillation for i.i.d inputs

The basic step of a recurrence-type entanglement distillation protocol is summarized as follows: Alice and Bob
share two noisy Bell-pairs, i.e. both have two qubits, each representing a ‘half’ of a noisy Bell pair, and they first
apply local operations to their respective parts of the Bell-pairs; next, they measure one Bell-pair and classically
communicate their outcomes. Depending on the entanglement distillation protocol and the outcomes they
either keep or discard the unmeasured pair. The basic step is applied to all pairs of the initial states, which
comprises one distillation round. This distillation round is iterated where output states of the previous round are
used as inputs for the next round. In the limit, a noiseless entanglement distillation protocol outputs a perfect
Bell-pair (implying that Eve is factored out).

Here, we allow for any type of noise acting (independently) on the single- and two-qubit gates appearing in
the protocol®. Using the results of [26], by utilizing random basis changes and adding additional noise, any such
general noise can be brought to a standard form: depolarizing noise for imperfect single- and two-qubit CNOT-
type operations, see appendix A. Thus, it is sufficient to address noise in such standard form.

For such noise, one can analytically show [27] that for the BBPSSW protocol [28], there exists a unique
attracting fixed point of the protocol which only depends on the noise parameters. That is, whenever the fidelity
of the initial states is above some minimum fidelity F;,, depending on the noise parameters, the protocol

converges towards that unique fixed point which we denote by %£. Observe that ¢% is related to o' of (3)

byletting P = B and tracing out Eves system, i.e. 0%5F = trz[0% ¢ ]. In particular, we mean by P = B that the
BBPSSW protocol is used for entanglement distillation. We find that the output state o', where N = log, n
denotes the number of successfully completed distillation layers, satisfies |}y — 045 || < e, where egisa
function of N, and it holds that e < F(n) € O(n~?®)and 0 < bg(a) < log,3 — 1.

For the entanglement distillation protocol of Deutsch et al [19] (referred to as the DEJMPS protocol) the
fixed point analysis is more complicated. In the noiseless case, DEJMPS was proven to have a unique attracting
fixed point [29]. For the noisy case, we can only provide extensive numerical evidence that there exists a unique

attracting fixed point, depending on the noise parameters only which we denote by 0%, see A.1. Again, observe

that o' is related to 0523’ of (3) by setting P = D and tracing out Eves system, i.e. 05y = trz[oGas']. We
numerically find that for the state o' ; obtained after successfully completing N = log, 1 layers of distillation
that||o’\y — 045 |l < ep where ep is a function of N, and it holds that ep, < F(n) € O(n @), by(a)isa
positive function. We note that a similar analysis, but also with analytic findings for the noiseless DEJMPS
protocol was first performed in [29].

We reiterate that we assume for our analysis that all basic distillation steps succeed, since we deal with failures
due to the entanglement distillation protocol with a quadratic overhead in terms of initial states, see appendix E.

The final state of the entanglement distillation protocol P in the ok-branch, o45, depends on whether the
parameter estimation on /7 initial states was accurate or not. The latter occurs with an exponentially small
probability in terms of initial states, see the discussion of the robustness of the protocol in appendix E. This in
turn implies that the parameter estimation was accurate with probability exponentially close to unity. Therefore
the results regarding n i.i.d. initial states as input to the distillation protocol P above imply that

Pp||UAB — o5 |l < ep(n) + 2ppy < €p(n) = ep(n + V1), 6)

where p,; € O(exp(—+/n))forallii.d.inputs p%*ﬁ. This equation attains exactly the same form for both
protocols with the difference in the labels, so if we substitute P with B (by writing, for example eg (1)) we refer to
the BBPSSW protocol, where substituting P with D refers to the DEJMPS protocol. In similar fashion we refer
from now by ep (1) to €’ (1) for the sake of clarity. So to summarize, the distance for n + /7 i.i.d. initial states
in the ok-branch of the protocol is bounded by ep (n + n).

Since, in the abort case, the outputs of the overall protocol £ and the ideal protocol F¢ are identical we
obtain that

[E€> = FYpalh = plloas — o b < ep(n), (7

where the probability p, depends on the initial state p for both protocols and corresponds to the probability of

parameter estimation succeeding and completing log,(n — /n) distillation layers successfully for initial state p.
Hence, in both cases, the final distance to the respective fixed points scales polynomial in terms of n.

The functions bg () and bp (<) of the local noise level « govern the rate of convergence of the real protocol
to the ideal protocol in the i.i.d case for entanglement distillation protocols. We numerically found that these
functions monotonically increase as the local noise rate « tends to zero appendix A. Thus, increasing the fidelity

6 . e
We assume that the noise characteristics of the quantum gates are constant throughout the protocol.
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oflocal devices (through e.g. fault tolerance) directly influences the rate of convergence, which in turn governs
the confidentiality level.

In contrast to by (), the function bp («) is not upper bounded, which implies that for certain noise
parameters o the DEJMPS protocol needs to perform fewer distillation rounds than the BBPSSW protocol to
achieve the required confidentiality levels. This fast convergence is crucial for the powerful post-selection
technique [8] for non i.i.d. initial states, which is not applicable for the BBPSSW protocol.

Now we use the established fixed point properties of entanglement distillation protocols for i.i.d. initial states
to show that similar results hold for arbitrary initial states.

5.2. Entanglement distillation for arbitrary inputs
In generalizing the previous results to arbitrary initial states we make use of the de Finetti theorem [25]. The basic
de-Finetti results guarantee that the reduced state tr,, _4( p(”)) of a permutation-invariant n-partite state p(") is

close to ani.i.d state f o4 do, with distance which scales as O (k/#). This enables the following lemma.

Lemma2. Let n, k € N where k < n. Furthermore, let £ be the real protocol and F*&' the ideal protocol
including symmetrization and the tracing out of n — k pairs. Moreover, let p, be a bipartite mixed state of n systems
shared by Alice and Bob and let € and F denote the real and ideal protocol after symmetrization and tracing out

n — k pairs. Then

64k
€% as) = P opa)lh < == + max |G — Fplh ®
Fap

Proof. Let p, ;, be a mixed state. After Alice and Bob apply a symmetrization they share a permutation invariant
state p, 5. Thus we can apply theorem I1.7 of [25] and have for 511(43 = tr,_[p, 5] the inequality
Hé;g - f,u(fg dm(uyp)lh < 32k/n for some probability measure m on the set of mixed states on AB. Moreover

we note that £ and F are CPTP maps. We define 7, := f ui@g dm (). A straightforward computation shows

1€ (pap) — F*& (pup)lh = 1EEL ) — F(EpIh < NEESD — E@IL + 1E@) — FE DI
<[ EEE D — E@ + 1E@ — Falh + | Fm) — FEE DI

64k \
<27 — fZBHl + |Em) — Flmolh < - + ’ (€ — f)(f uf’gdm(,uAB))
1
64k
— + max [|(€ — F)(usp) b
Hap
which completes the proof. O

Therefore the application of the de-Finetti theorem introduces an additive term *% when reducing arbitrary
initial states to i.i.d. initial states. As the right hand side of (8) is independent of the 1n1t1a1 state p, g, (8) holds for
allinitial states p, 5.

In (8) we have omitted the superscript v characterizing the noise level, and we will use it only if it is
specifically needed. Inequality (8) implies that the properties of the fixed point (uniqueness, attractivity, noise-
dependence) also hold for arbitrary initial states, if the protocol is prepended by symmetrization and a trace-out
step. This enables us to prove the confidentiality criterion of definition 1 for entanglement distillation protocols,
where the noise transcripts of L are not leaked, which will, in turn, imply the confidentiality criterion (4)
whenever the noise transcripts are leaked.

5.3. Confidentiality of entanglement distillation protocols
The inequality in (7) establishes the local properties of the protocol, and is more-or-less typical for studies of the
convergence of entanglement distillation protocols in the i.i.d. case. However, it falls short of the complete
characterization captured by the confidentiality criterion (4) in two ways: first, the input states are restricted
(i.i.d.); second, it fails to consider the purifying system of Eve’, vital in cryptographic contexts. While the prior
issue is the subject of de-Finetti and post-selection-type reductions, the latter issue can be a problem in general,
as small distance of corresponding subsystems does not imply a small distance of the total systems.

However, we can resolve this issue by using the fixed point properties of entanglement distillation protocols.
More precisely, we relate the two distances by the following general lemma, proven in the appendix B. 1.

Technically, inequality (7) is a statement about the operator norm-induced distance on maps, where expression of (4) is the completely
bounded diamond norm, relevant for security statements.

6
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Lemma 3. Let p be an arbitrary mixed state shared by Alice and Bob and let |1)) g be a purification thereof held by
Eve. Furthermore, let P correspond to a (distillation-type) real protocol and P, correspond to the associated
(distillation-type) ideal protocol, i.e.

Pi(p) = p,oas @ |ok) (ok| + (1 — pp)aﬁB ® |fail) (fail],
Pap) = p,0%5 © |ok) (ok| + (1 — p) o @ |fail) (fail],

where o characterizes the level of the noise, 0, and o are two fixed two qubit states. Furthermore, let P, and P,
satisfy the following properties:

(1) The noise transcripts do not leak to Eve.

(2) The protocol P, guarantees to converge towards some state oy within the ok-branch of the protocol
and max,, . ||(P1 - PZ)(NAB)Hl <e

Then it holds that
[(P1 ® ide — P, @ idp)(|19) (¥ |ase) h < (34 - 4° + De. ©)]

The factor 34 - 4% + 1arises as an upper bound on the distance of the given states from states in product form
based on the notion of non-steerability we introduce (see appendix B.1 for details). In our computations we
managed to prove the key lemma in a manner which is proportional to the dimension of the systems, more
precisely, the overall size of the corresponding density matrix. It may be the case that the bound oflemma 3
could hold without the dependence on the system size (and indeed, with smaller constants), however this was
not necessary for our purposes.

Lemma 3 is vital as it allows us to employ the de-Finetti theorem [25]. Hence, for the protocols £% and
F&! by combining lemma 2 with lemma 3, we obtain the following theorem.

Theorem 4 (de-Finetti-based reduction technique). Let £ be the real protocol and F& the ideal protocol
including symmetrization and the tracing out of n — k pairs, taking n input pairsand k < n and utilizing
entanglement distillation protocol P. Then we have

. . 64k
max (£ @ ide)(4) (01) — P i) Dl < 04+ + (2 ). a0
Y )ABE

where ep (k) denotes the maximum distance of the real and ideal protocol without symmetrization and tracing out

step using entanglement distillation protocol P in the ok-branch for k i.i.d. initial states, i.e. equation (7).

Proof. Suppose Eve prepares a purification | )45 of the state p, , shared by Alice and Bob. Recall that the real
and ideal protocol including symmetrization and the tracing out of n — k pairs applied to initial state p,; read as

E8(pyp) = p,oap @ |ok) (k| + (1 — p,)oyp ® |fail) (fail],
F& (pyp) = p,0% © lok) (ok| + (1 — p,)oip @ |fail) (fail|
and observe that we have for the initial state p, ; by lemma 2 that

. 64k
(€5t = FE5(pup)lh = plloas — o5 b < (T + max [|(€ — f)(ﬂfg)ﬂl)» €3))

Hap

where £ and F denote the real and ideal protocol after symmetrization and tracing out n — k pairs. Since the
right-hand side of (11) is independent of the initial state p, ; it holds for all initial states of the protocol.
Therefore, the properties of the fixed point (unique, attracting and depending on the noise parameters only)
translate from i.i.d. initial states to arbitrary initial states. Hence the protocol guarantees that it converges
towards the fixed point of the entanglement distillation protocol.

Additionally, by inserting (7) in (11) we find

5 — FE) (o)l < (6i—k + EP(’O)- 12

This implies that the real protocol indeed converges towards the fixed point, and, thus we can apply lemma 3 to
the protocols &% and F&" for the purification |1))4p of p, and we find by using (12) that

1€ @ idp) (1Y) (¥]) — (F** @ idp) (1) (¥ DI < (34 - 4° + 1)(% + €7>(k)). (13)

Taking the maximum in (13) completes the proof. O
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Thus, we can reach arbitrary confidentiality levels, however at the cost of wasting some pairs. The scaling of
the confidentiality parameter, i.e. the right-hand side of (10), is linear in the number of initial states n, due to the
use of the ‘basic’ de Finetti approach.

If the local noise is low, we can do better in terms of scaling and efficiency, using the post-selection technique
[8]. For that purpose, we first establish a result similar to (9) by using the fact that the resulting state of the
protocol, including L, is pure, see appendix A. More precisely, we have the following lemma, proven in the
appendix B.2.

Lemma 5. Let £ be the real protocol which guarantees to converge towards a unique and attracting fixed point
depending on the noise parameter only and let F be the ideal protocol. Furthermore let p be a mixed state (consisting
of n systems) shared by Alice and Bob. If the extension of £ and F to the system of L satisfies

1&(p) — Fr(p)|h < e(n), then
1€ @ ide) (|19) (Y lager) — (F @ ide) (19) (¢ |agen) | < 44/e(n)
for all purifications | 1) apg’ of p.

This lemma allows us to prove the closeness on any purification from the closeness of the reduced systems,
and finally to derive confidentiality from the performance of the ideal protocol via the following theorem.

Theorem 6 (Post-selection-based reduction technique). Let £° be the real protocol and F* the ideal protocol
preceded by a symmetrization step operating on n input pairs. Furthermore let

max,, ||€(,u%) — f(u%)”l < ep(n), see (7), where € and F denote the sub-protocols after symmetrization (i.e.
the protocols without the symmetrization step) and P the entanglement distillation protocol. Then we have

max [|(£° @ ide) (1) (1) — (F* @ idp) (1) (WD) < 4328, ;/Erm) (14)

[¥)aBer

n415
where g, =( ; )

Proof. We observe that £° and JF* are permutation invariant maps due to the symmetrizazion step. Thus we can
apply the post-selection technique of [8] which implies
max [[(&° @ ide)(|¢) (Y1) — (F* @ idg) (19) (¥ Dl

KA

< 8,4 ll(E @ idp)(I7) (T |ager) — (F* @ idp) (I7) {7 |ase)]]i» (15)

where | 7),pp is a purification of the de-Finetti Hilbert-Schmidt state, hence
tep[|7) (T |aper] = f u% dn(u) =: 7/ where 7 is the measure induced by the Hilbert-Schmidt metric on
End(C*). Furthermore, we note that we have for the extensions of £¥and F* to L, i.e. the maps £ and 3, that

&) = Filh = € - Fo( [usadnun)

< max [|(& — F) () |- (16)
1 Hap

According to appendix A.1.1, which implies that the distance including L scales as the square root of the 1-norm
induced distance without L, i.e. Alice and Bob only, we find for (16) by using the assumption
max,, [|E(5n — F(uimlh < ep(n) that

1€ = FOGiEpIh < 2 1€ = Pyl < 2yep(m). 17
As | T)4pg is a purification of 7/ we can apply lemma 5 which gives, for (15),

max [[(€° @ ide)(14) (¢]) — (F* @ ide) (1) (LD} < 4g, 4 \/n;ax 1 — FDGi

[V)apEr
< 4gn)d \/2\/ ep(n)
= 4V2g, 44/ep (),

which completes the proof. O

Observe that ep (1), which governs the rate of convergence of the overall protocol, relates to the rate of
convergence of the entanglement distillation protocol P via ep(n) = ep(n — /n),as /1 initial states are used
for parameter estimation. We remind the reader that the preprocessing steps (symmetrization, tracing out) of
the entanglement distillation protocol and the lemmas of this section are non-trivial and crucial for the proof of
the de-Finetti-based and post-selection-based reduction technique.

8
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Furthermore we point out that the proof regarding the BBPSSW protocol is analytic and necessarily relies on
the de-Finetti-based reduction technique because of its slow convergence rate. The rate of convergence for the
BBPSSW protocol can easily be derived, see appendix A for details. For the DEJMPS protocol it turns out that we
have polynomial scaling depending on the noise parameter o i.e.
max,,, [|[(€ — F)(oip) |k <ep (1) < O(ntr@), see (7).

However, the protocol needs to converge sufficiently quickly, as the post-selection technique incurs a
multiplicative increase in the effective distance between real and ideal protocols, which scales as a (15 degree)
polynomial in 7, see (14). The resulting confidentiality level scales therefore as O (">~ t0(®)/4) which leads to an
acceptable noise level that is rather low, e.g. about 10~ *° for the DEJMPS protocol in the setting of binary pairsx,
see appendix A.1.1. This very low rate is due to the polynomial factor introduced by applying the post-selection
technique, i.e. g, ;in(14) withd = 4. Observe that these small rates are determined by properties of recurrence-
type entanglement distillation protocols, i.e. b(«) for the recurrence-type entanglement distillation protocols
studied here, and may be improved by either considering hashing-type protocols [30] or through fault-tolerant
constructions. Indeed, the noise threshold for fault-tolerant quantum computation also applies to this case,
yielding a tolerable noise level of about 10 %, We reiterate that the post-selection technique is not applicable to
the BBPSSW protocol, due to its slow convergence.

5.4. Confidentiality of entanglement distillation protocols when the noise transcripts leak

Finally, we provide confidentiality guarantees for entanglement distillation protocols when the noise transcripts
are leaked to Eve. For that purpose, we relate the confidentiality criterion (4) for protocols where the noise
transcripts are leaked to the earlier results. More formally, we have the following theorem.

Theorem 7. Let £ be the real protocol and F be the ideal protocol satisfying the assumptions of lemma 3.
Furthermore, let E' denote the real and F' the ideal protocol when the noise transcripts leak to Eve. Then

(€ ®idg — F @ idp)(|19) (¥ D[y < e(n), implies (18)
(€' ® ide — F' @ idp) (|9) (D[l < 24/e(n)

for all purifications |\)4pE of initial state p,, consisting of n systems.

The proof, see appendix C, uses the unitary equivalence of purifications. Theorem 7 establishes via (18) that
ifan entanglement distillation protocol is e-confidential according to definition 1 then the protocol is
2./€ -confidential if the noisy apparatus leaks the noise transcripts.

6. Discussion

We have shown that recurrence-type entanglement distillation protocols ensure private entanglement without
referring to the asymptotic limit. This holds true even when the local devices are noisy, and when the potential
eavesdropper is able to completely monitor the operation of these devices in run-time (i.e., the noisy apparatus
leaks information about the realized noise processes). If the noise transcripts are not leaked, Eve is ‘factored
out’—in tensor product with Alice and Bob, and only classically correlated otherwise. Our protocol can, for
instance, be used to realize confidential quantum channels by means of teleportation—the only information
that may leak to Eve after teleportation is which noise map was applied to the sent state, but nothing about the
state itself (see appendix F for details). More generally, our results imply the confidentiality of the protocols in
arbitrary settings (beyond the application to quantum channels), thus opening the way for the confidential
realization of various quantum tasks: from establishing quantum channels and quantum networks, to
applications such as distributed quantum computation. Aside from cryptographic aspects, the proposed
protocol can be used to generate high quality entanglement from non-i.i.d. sources.
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Appendix A. Entanglement distillation for i.i.d. inputs

A.1. The DEJMPS protocol
We first provide an overview of the DEJMPS protocol [19] and then extend the description incrementally to our
proposed setting (including L and Eve).

The DEJMPS protocol is a recurrence-type entanglement distillation protocol which combines several noisy
copies of a mixed state p to distill a state arbitrarily close to the maximally entangled state | Byo), where
|Bjj) = (id ® ofcaiz)(|00> + |1 1>)/\/7 fori € {0, 1}and j € {0, 1}, provided that the fidelity
F = (Byo| p|Boo) satisfies F > 1/2 for the noiseless case. If the apparatus is noisy, then the minimal required
fidelity Fneeds to satisfy F > Fy;, (where Fy;, depends on the noise level of the apparatus) to achieve
distillation. For more details on recurrence-type entanglement distillation protocols in general we refer the
interested reader to [31]. A basic step of the DEJMPS protocol is as follows:

Protocol 1. Basic step of the DEJMPS protocol

Require: Input state of Alice and Bob: p@-t0 © pla2b2)
(b1

1: Alice and Bob apply the local basis change U, = e/ @ in/100V @ —in/10{? ) gin/40l?;

Ue(p@h) @ plaxbdyyr,
2: Alice and Bob apply a bilateral CNOT (BCNOT):

(CNOT,, .y ® CNOT,, ) pla¥) © @22 (CNOT,, ., @ CNOT,, s,

3: Aliceand Bob applya ¢ = ¢, ® id anda 0 = id ® ¢, measurement

4: Alice and Bob communicate their measurement outcomes, z, and z;, respectively, over a classical authentic channel
5: if z, = z, then

6: Alice and Bob keep the subsystems a; and b; of step 2

7: Alice and Bob discard the measured subsystems a, and b,

8: else

9: Alice and Bob discard both pairs

10: end if

Hence, we can write one basic distillation step of the DEJMPS protocol as the linear map
Oy pp(p @ p) = O5_ppp(p ® p)O'_ppp where

O;_gpp = (idg p, ® P @ PY))(CNOT,, ., @ CNOT, 5,) Uy

modulo a normalization factor and where B, = |z) (z], z € {0, 1} denotes the respective outcome of step 3 of
protocol 1.

The basic step is applied to all initial pairs, which comprises one distillation round. This distillation round is
iterated where output states of the previous round are used as inputs for the next round. So we summarize the
DEJMPS protocol as follows:

Protocol 2. DEJMPS protocol

Require: Input state of Alice and Bob: ®,zll PP where F = (Byg| p®|Byo) > 1/2foralli € {1, ..,2"}
1: whilePairs left for distillation do
2: Apply protocol 1 to all pairs
3: Use the outputs of the previous step as input for the next distillation round
4: end while

We remind the reader that the recurrence relations of the protocol (i.e. update functions of the coefficients of an
ensemble) are central for the convergence analysis of the DEJMPS protocol. For Bell-diagonal states, i.e. states of
the form

P = PoolBoo) (Bool + py;IBi1) (Buil + po;1Bor) (Boil + pyolBio) (Biol»

where 37 p; = 1, p; > 0,astraightforward computation yields the recurrence relations for the DEJ]MPS
protocol to be

10



10P Publishing

NewJ. Phys. 19 (2017) 113012 A Pirker et al
0
_5 -
_1 O -
=
<
I -15F
g
=
w  —20f
<
_25 -
_30 -
_35 -
_40 L L 1
0 5 10 15 20
n
Figure Al. The figure illustrates log || ps, — p, |1 for different noise parameters f = 0.97 (blue), f = 0.98 (green) and f = 0.99 (red).
The fixed point pg, was evaluated for 500 iterations of the DEJMPS protocol.
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= — = —, A.l
Por N Do N (A1)

where N = (py, + p;1)* + (o + Pyo)% seee.g. [19].

In [29] it has been shown analytically that the recurrence relations (A.1) converge towards a unique and
attracting fixed point provided the initial fidelity with | Byg), poo, is above 1/2.

The recurrence relations of the DEJMPS protocol taking independent single qubit white noise, i.e. noise of
theform Np = fp + (1 — ) /4(p + oxpoy + o0,po, + o, po,) acting on each qubit of Alice into account, read
far more complex. In the presence of noise we have strong numerical evidence that the DEJMPS protocol
converges towards a unique and attracting fixed point depending on the noise level fonly.

From figure A1 we suggest a linear relationship between log || pg, — p, |l (Where pg;, and p, denote the fixed
point and the state after successfully completing » distillation rounds respectively) and the number of successful
distillation rounds n. We immediately observe that the slope only depends on the noise parameter f, i.e. we have
that

logllpg, — pulh = a(f) — nb(f).

Using log, N = n, where N denotes the number of input pairs, this implies
o — Pl = e?De tDleN — g/(FYN-V'U) e || ps, — p, |l scalesas F(N) € O(N-"()) as mentioned in
the main text. Furthermore we numerically find that the function ’( f) monotonically grows for f — 1.

For two qubit correlated noise, we refer the reader to the analysis including L, as the fixed point and the
scaling can be recovered from that analysis by tracing out the system of L.

A.1.1. Detailed analysis including L. We outline the remainder of this section as follows: first we derive the
recurrence relations of the DEJMPS protocol in the most general setting, taking the noise applied by L into
account as well as assuming that Eve receives the leaked noise transcripts of L. We use those recurrence relations
in the next subsection to provide analytical results regarding the fixed point of the recurrence relations, where
the inputs are binary pairs and L only applies either id or o, operators. We close the section with numerical
results for general i.i.d. Bell-diagonal pairs and the most general noise maps of L.

The recurrence relations

For i.i.d. input states the state of each system subject to distillation at an intermediate distillation round of the
DEJMPS protocol is of the form | ) g = >k it | Bij )as|kl). |ijkl), where Pjj; are probability amplitudes, if
we assume the noise is leaked to Eve after every distillation round. The system AB models the pair of Alice and
Bob, L the system of L (where the content of the register corresponds to the effective noise introduced to AB) and

11
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E the system of Eve. L applies the noise processes before a basic protocol step to the systems of Alice. Moreover, L
keeps track of the effective noise introduced using its system in a sense we clarify later.
In the following we use the notation

oo =1id, og1=o0r O0=0; o= Oy

for the four Pauli-operators. Furthermore we denote by superscripts in brackets particle labels and by
superscripts without brackets the power of an operator.

L introduces the noise maps Uy, 3, 0,3, = Uc(fl ® U(“2 _ where U(“g = UE{Z% ® ((69) @ (o). We
observe that applying the noise map U, 3, 0,3, mlght flip the contents of the registers L; and L, depending on the
values of ay, ), o, and 3,. This enables L to keep track of the noise introduced to a pair.

There are two approaches how L can apply the noise maps U, 3, a,, 3, Stochastically in terms of CPTP maps,
or coherently in terms of unitaries acting on an enlarged Hilbert space. Here we assume the latter approach, but
provide the analysis of the noisy DEJMPS protocol in terms of CPTP maps and purifications.

To show that these are equivalent, first suppose that L owns a register H set to the state
> B o fab Buans, 11510232 )er where fab 5,003, aT€ the probabilities of applying the respective noise map
Ua,, 8,008, L Uses the register H to apply the noise maps U, g, o,,3, coherently controlled to the input state
| W)4pEL. We observe that tracing out H after applying all the noise maps U,, 3, a,,3, i @ controlled fashion yields

52 B, ﬁyl)ﬂlvaz’ﬁz (Jal’ﬂl’az’a (|\II> <\III ® |\II> <\I/|) an B0z
ay, By, ,

On the other hand, assume that L applies the noise process in terms of a CPTP map N, i.e.

Np = Z fal,ﬂl,az,ﬂz Ual Bz, (l\Ij> <\Ij| ® |\I/> <\Ij|) oq,d ,a2,0,°

ay,B,02,3,

We observe that Np will be, in general, a mixed state, thus there exists a purification on a larger Hilbert space. As
all purifications are unitarily equivalent, see e.g. [32], we choose the purification

®) = > fm,ﬂl,az,ﬂz Uny, B0, V) @ V) @ |11z f2)m-

ay,B,00,3,

Hence try[|®) (®|] = Np. Furthermore, we observe that the pure state | ®) can be generated by applying the
unitaries U, 3, a,,3,» coherently controlled by the register H,
o |V) @ W) @ (Lo, s000 o suans, [01B10252)m)-

This equivalence allows us to assume that L introduces the noise as a CPTP map, applying Uy, 3, a,,3, With
respective probabilities f, ; . , and purifying the state after the basic distillation step is executed by Alice
and Bob.

Since the noise of L is applied before the basic distillation step is executed by Alice and Bob, the result of one
noisy distillation step reads as

Pr= 20 fanpans, UsOrpep (UL @ UL )(1W) (W] @ [W) (W)U © U0 U, (A2)

ay,B,00,3,

which needs finally to be purified.
In order to evaluate (A.2), we proceed as follows:

+ Step 1: We first compute
Oz/—EPP(U(aI ® U(a233)|‘1’> ® |9),

which corresponds to the state after the noise map Uc(w?lzil ® Ué‘%z is applied by L and the basic distillation step
of the entanglement distillation protocol is executed by Alice and Bob.

+ Step 2: We apply the unitary U,,, which acts only on L’s systems and whose purpose we clarify later, to the
previous equality.

+ Step 3: We have to determine the purification held by Eve if the noise is leaked to her. In doing so, we trace out
Eve and then provide her with the purification of the resulting state (which corresponds to leaking the noise
transcripts to Eve).

12
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Step 1:We observe that applying the noise map U((flg) to | U) yields

USDIW) = UL S Py | By as Kl lifkD)e

i,,k,1
= > Py |Biovayjos aslk ® a)( & B))|ijkl)g
ikl
=" Pisay(opkeates 1Bk & a)(j & Bk & o) & B))e. (A.3)
ikl

This observation suggests the following notational simplifications:
ng Pica)joskoayies and Ie,]kl E=10®)G® Bk )1 D P))E.

Using this notation we rewrite (A.3) as U (“l) L) =3 ik ZPI;;(“? |Bij )al kD)L | eljk 9)g. This is the state of Alice, Bob, L,
and Eve after the noise map U(“ i 1s applled by L to the first pair. In order to compute (A.2) we define

|\I/”a|,‘@],02,‘62> — (U(“l? U(azz3 )|\I/> |\If>

_ B B,
=2 > flx]llk:ll ,(j]zzkzzz [Bij, ) aB,|Biyj, ) a, [Kih) 1, ko o) 1,
i ]1 iy ]2 kil ko, L

o f B,
® | 11]1 kill >E1| lzlzkzlz >E2’

which corresponds to the state after the noise map U(i‘f‘) U(“Z) is applied and
|\I/0¥1 Bpan,f > =U, OZ*EPquﬂ/al,ﬁl,az,ﬁ): (A.4)

which is the state after the noise map U((f:l 5 ® U("2 2 » one basic distillation step and the update of L’s noise

register by U,,. Thus we rewrite (A.2) as

/

_ ! !
P= 2 s Vosians) (Yensans,- (A.5)

B0, 3,

According to (A.4) Alice and Bob apply one basic distillation step of the DEJMPS protocol to the state
[W?, 50,5, ) Recall that step 1 of protocol 1 maps | Bj;) to | By j)) and that step 2 maps | B;;) | Byjr) to

ay,

| Biwinj) | Bir je:jy)- Thus we conclude that after step 1 and 2 of protocol 1 the state of Alice, Bob, L, and Eve is

a o B, B,
> zullklll 12]2k212 1Biioinioi) ) 4B Biriios oinoiy ) as )L ke b) ey Delen 2y, e (A6)
i) ]1 iy ]2 kil ko 1y

Following protocol 1, a g,-measurement of the target pair of the BCNOT, i.e. the subsystem AB,, is applied to
(A.6). Next Alice and Bob communicate their respective measurement outcomes over a classic authentic
channel. If the measurement outcomes coincide, Alice and Bob keep the source pair, i.e. subsystem AB; of step 2,
else they discard both subsystems AB; and AB,. We assume that both measurements yield the outcome 1. If both
measurement outcomes yield 0, no phase factor (— 1) would be required in the expression (A.7). The coinciding
measurement outcomes imply i; @ j; ® i, @ j, = 0. To summarize, the state post-selected on the measure-
ment outcomes 1 of Alice and Bob is

Dtlﬂ a3 ﬂ]ﬂ af
Z Z (= l)lzplu k:ll Plz(ll%Jlulz)kzlz |B (il®i2)(i1®jl)>ABllkl ll>L1|k2 ) >L2 |€i1j1 k:ll >E1 |ei2(i1éj1$i2)kzlz >E2' (A7)
injing, knhoko b

Step 2: Recall that L stores in its register attached to the pair of Alice and Bob the effective noise introduced. For
that purpose we introduce the unitary U, as well as an ancilla system Lj set to the state |00); .. Applying U, to all
three registers of Lyields U,|00) |3)| ) [i') | j") = |u(, 7, ', )19} |7)|i') |7} where u is the so called flag update
function defined in [20]. The function u returns the effective noise introduced on the source pair of step 2 of
protocol 1. Applying U, to (A.7) gives

a3, e
W0 ans) = Do D (ZDRPIY P,Zfll@h@,z)kzlz |Biieinaieip)as kh)nkh),uk, b, k, b)),
injp>ing; kil kel

041/31 a2/32
®|el]] kil >E‘| iz(il@j1®i2)kzlz >E2

We remind the reader that |\Iffyh ) 18 the state after the application of (i) the noise map ((f’%l U(“z > (i)a
basic distillation step, and (iii) the update of L’s noise register by U,,.

Step 3: Since the noise transcripts—by assumption for this analysis—leak to Eve, we attribute the systems L,
and L, to Eve. In order to treat the most general situation, we assume that Eve holds a purification of
try, 1,5, 5,[p']- We determine this purification by computing p; = try, 1,[p'land p}, = trg, g,[p;] and attribute the
purification of p’, to Eve.
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By the linearity of the partial trace we have
/ n — 7 l l
P = trLl,Lz[p] - Z fﬂ]yﬂpazyﬂztr]“l’Lz[l\Ilal,ﬂwﬂz,ﬂz> <\IIO‘1’31’“2’32|]'
ay,f,02,0,

It is useful to define p’ = try, 1, [|V] ) (¥, 5,a,5,|1which evaluates to

apfBpanB, ay, B1,00, 3,
/

Poy,Bpond, — trLl,Lz[lll’m,Bl,az B, ) <\Ijal)/3p02:ﬂ2|]
_ _ 1\i®is puf paaf3 af af IR . ... o
- Z( 1) : ZPllhk:ll P1z(11£i11%12)k212 (Pi{j1/}<llll iz/(il/éjl/@iz/)kzlz) |B(ll@ll)(ll$}l)> <B(11/®’2/)(’1’€B.71,)|
L‘tlﬂl D‘2/32
@ luks, by ko l2)> <u(kl’ by ko, bl @ |ell] klll> <el/]/k111| @ le lz(ll@JltBlz)kzlz> <ei2’(i{@j{@i2’)kzl2 l-

In the previous expression we neglected the indices appearing in the sum for simplicity, but it is understood that
the sum ranges over all indices except oy, 51, a; and (3.

In order to determine the state of Alice, Bob, and L which Eve finally purifies we have to compute
p'2 = trg, gl pi]. Again, the linearity of the partial trace yields

/ / s /
pz = trEl,Ez[pl] = Z fabﬂp‘lbﬂztrE"Ez[pa’l,ﬂ,,(Yz,ﬁz]' (AS)
(Vl,ﬁp()éz,ﬂz

We remind the reader that |el]kl e =10 ® (@ Bk ® a)( @ B))g. Hence, for fixed o and 3y, we have

3 . . . Y Y
tr|el‘l’]1%h> (el?]‘,kll | = 0 ]] ', which implies that i = 7and j| = j,. Thus, we also have

./
12(1169]]@12)’(212) < 12(11%]16312)k212 = trle 12yt

O-Zﬂz
trle 12(11@11@12)k212> <ei2’(i163j1®i2’)k2l2 |

Hence

/
thl,Ez[Pab Branf, ]

al uzﬂz a B, paf, *
- Z Z iy klll 7z(i1@jlﬂ9iz)kzlz (Piljl kil Piz(il@jlﬁﬂiz)kzlz)
iy kihskal
X|Bgeiyaei) (Basiaei| @ lultk, b, k, b)) (ulk, b, k, bl
_ Z Z alﬂ ‘12332 o |2
11]1k111 12(1169]1%912)’@12
11,72,]1 [SRINSNA

X|Bgoiyaoj)) (Baoiaoi| @ [ulk, by, k, b)) (ulk, b, k, b)|. (A9)
By inserting (A.9) in (A.8) we get
plz = trElaEZ[pi]

= E tre, 5l p) ]
) a, 3,00, 3, Ey,E, pal,ﬁl,az,[iz
ahﬂl,az,ﬂz

alﬂl Oéz 23 2
Z 041 Bpaa,6, Z Z 11] kih lz(ll@Jl@iz)kzb |

apB,a2,0, ining; kihoko b

X |Biainaai)) (Baeiaeipl © lulks, by k, b)) (ulk, b, k, b

— o R E /‘ E : 7 af f, 2

= § IB(11®12)(11@]|)> <B(11€B12)(11$]1)| & P f;n,ﬂl,azﬁz |P11]1k111 Plz(11®]1®i2)kzlzl
s s s a1,01,02,02,K1,11,K2,12

wh 107wtk ok )=o)

X oy (Yol

Rearranging the sum over 7, i, and j; in the previous equation gives

I}
Z |B5o<51> <Bl§o51| ® Z Z Z fal,ﬂl,uz,ﬁ | njlk:ll Pil;éléjl@iz)kzlz |2

s o0 anBponBaknlnkal
oo T 11—512—(50,116911_51 u(ky, ko, b)) = m)

17071 (Yol (A.10)
Using the definition
p — 7 15 B
|P6061%71|2 - Z Z fal,ﬂpazﬂz |Pi(|l]!1k1]ll Pg(zilgﬁjlﬂaiz)kzlz |2’ (Al 1)

by a1,81,02,0,k1,11,k2,12
1@i=060,1Dj; =61 ulky,li, ko, 1h)=(vp71)

where 6y, 01, 75> ¥ € {0, 1} and omitting the normalization factor for clarity, (A.10) simplifies to
Z |B50(51> <B50(51| ® Z Ipéob‘170w1|2|’70'7’1> <'70’71| >

80,61 YoN
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which is the state of Alice, Bob, and L after one noisy distillation step. Since this final state is purified by Eve with
the leaked noise transcripts and all purifications are unitarily equivalent, the state of Alice, Bob, L, and Eve after
one noisy distillation step can be written without loss of generality as

[YPEMPS) — N By suvom 1 Bonsr Jasl Y0 180617071 )E-
50>51»”:’0)”Y1

This also implies that (A.11) are the recurrence relations of the noisy DEJMPS protocol.

Fixed point and convergence—binary pairs

First we study the scaling of the systems of Alice, Bob, and L and extend those results then to the (possibly
leaked) noise transcripts of Eve in terms of purifications.

Suppose that the initial i.i.d. pairs of Alice and Bob are mixtures of | Byy) and | By;) and that L applies either the

identity or a o,-operator with respective probabilities fo and fl =1- fo independently to each pair. We remind
the reader that Eve purifies the state of Alice, Bob, and L with the leaked noise transcripts, i.e. each individual
state taking Eve into account at an intermediate round of the DEJMPS protocol reads as

>, Py | Boi Yap ® |77j ) ® |77i]- )g. Using py = |P;|% the recurrence relations (A.11) for the setting we are
concerned with here simplify to

Boo = VNG (0 + 200Per) + F (P2 + 2010P10) + 2y fi(Priboo + ProPoo + Prubor)s (A.12)
B = UNUy 2 + 2 Fpiobor + 1 p2)s (A.13)
Bio = VNG (02 + 200010 + 1 0 + 200200) + 2y fi Porbro + PooPro + Porbi)s (A.14)
B = 1/N,p2 + 2fy fipoobrr + F 92, (A1)

where N = (foz + flz)((Poo + po)? + (P + 21D + 4o fi(Poy + Por)(Py + Pyy)- Inthe following we

denote the recurrence relations (A.12)—(A.15) by the vector-valued mapping f, i.e. p AR P, where
P = (Poo> Por> Pro> P1y)- A simple computation yields the following fixed points of f:

P§§=1/2+v4ﬁ>—3/(4ﬁ)—2) b =Pp =0 pY=1-py> (A.16)
P£:1/2*V4ﬁ)*3/(4ﬁ)*2) b =P =0 pY=1-p3> (A.17)
Py =Py =1/2 py =p; =0. (A.18)

The parameter estimation phase guarantees that the fidelity Fwith | By) is sufficiently high for distillation. Hence
the fixed point of interested is (A.16), i.e.

p* = (1/2 + 4f, — 3/W4f, — 2),0,0, 1/2 — \J4f, — 3/(4f, — 2)). (A.19)

From (A.19) we observe that in the limit the ‘cross-probabilities’ py;, and p,, vanish, hence L is fully correlated
to AB.

Itis of central importance, regarding convergence that the fixed point p* is an attractor, as only this ensures
convergence towards that fixed point. Note that p™ is an attractor if and only if the largest eigenvalue A, of

' (p) satisfies Ao < 1. Weeasily find that A, = (foa / 4f0 -3 - f~0)/(2f0 — 1) < 1for0.78 < J;o <L
The fixed point p™ enables us to determine the rate of convergence. For that purpose, we expand f in terms

of its Taylor series around the fixed point p*, i.e. p = f(p) ~ f(p>) + f'(p>)(p — p>). Hence by defining

e = p — p>®wefind & = f'(p™)e, providing an estimate of the error propagation for one successful distillation

round. The state of Alice, Bob, and L after n successful distillation rounds and at the fixpoint read as

P = 2 pij(,”) | Boi) {(Boilag ® Inj> <77]- lpand pg, = 3=, p:°|Boi) (Boilas @ |n;) (m; | respectively, which implies for

their distance induced by the 1-norm

&n =1, — paxlh =

Do = pEOBoi) (Boilas @ Iny)(mile|| = D01 — 1 < @™ lllealhse
ij 1 ij

llenlhsy

(A.20)

where ||x|,, = 3% |x;| denotes the 1-norm of vectors in C¥.

Equation (A.20) only concerns the systems of Alice, Bob, and L. To complete the analysis we recall that Eve
purifies p, and p;; with the leaked noise transcripts of L. If we take this purifying system, E, into account, i.e.
consider [[|¢") (" |aper — 19*) (¥ |aper |1 where p, = trg[|9") (" | aper ],

[0 aper = 3 Py~ [BoiJas @ |m) ® |y )p with [P = p* and pg, = trg[|) (¢ |appL ], we find
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Figure A2. The figure illustrates log ||f' (p>°)"|| (blue) and —41log g, ; (vellow) for the binary pairs and f,=1-10"".

1™ (0" [ager — [0 (0 |apee i < Vén (A.21)

since purifications scale with a square root.

In order to apply the post-selection-based reduction, we need to relate the previously obtained results for
i.i.d. input pairs to general ensembles. As stated in the main text, we exclude the parameter estimation step on
/# initial states for simplicity. We remind the reader, as we have stated in the main text, that for all purifications
[1))apE of a n-partite input state p, , we have

(€ ® ide) (1Y) (¥]ape) — (F @ ide)(|9) (¥ ]ase) |l < 4gn,d\/max & — F)eSlh (A.22)
TAB
where g, ; = (" - ‘f ~ ). Thus, inserting the previous result for 2" i.i.d. input states (necessary to achieve n

rounds of distillation) in (A.22) yields

1€ @ iden (19) (Y 1ager) — (F @ idg) (190) (Y] agen)|h < 4g2n,d6}1/4-

One square root in the expression above arises from inequality (A.21) and the other square root appears from
inequality (A.22).

Hence, for confidentiality we necessarily need g, ; €l/* — 0for n — oc. Thus ¢'/* should decay faster
than g,, ; grows in n. Numerical simulations suggest that, for fo = 1 — 107!, this turns out to be true, i.e. the
post-selection-based reduction is applicable (see figure A2). As stated in the main text such rates are unlikely to
be achievable on the physical level, but they are, at least in principle, possible through fault-tolerant
constructions.

Fixed point and convergence—general pairs

In the following we show that the previous established results also hold true for the general i.i.d. setting
where L applies all four Pauli operators and each individual pair is arbitrary. We remind the reader that the
recurrence relations for states ik Bk |Bij)ap @ |ny) ® Inijkl )e (i.e. Eve purifies
P = Ciik, Pl |Bij) (Bijlap © |my) (1| with the leaked noise transcripts) read (by denoting | Pjyl* = Pija)as

pﬁoélvg”rl = ; s u2;q kol fabﬂpflz»”zp(il@(l'l)(]'lEBﬁl)(k169&1)(ll®[’1)p(izﬂiaz)(i1®jleiz@ﬁz)(kzﬁﬂaz)(lz@ﬂz)
N anBLazApkLlLk,
i1©1y=00,i1Df, =61 u(k,l,ky,1)=(vpm)

modulo the normalization factor 37 5. - Py, s+
01

i For simplicity we assume independent single qubit white noise, i.e. ful, BoomBys = fal, 4 fuz’ 5, aswellas
fa], 5 = fifa; = B = 0and (1 — f)/3 otherwise. Furthermore, we assume that the initial fidelity F with | Byy)
is sufficiently high for distillation. Numerically iterating the recurrence relations (which we again denote by
f . . . ; dee o
p — P)reveal that, for a sufficiently large number of iterations, the ‘cross-probabilities’ vanish, i.e.
p;ckl =0 < i = kor j = l. Hence, to obtain a fixed point p> = (Rf;ﬁ)},j,k,z _ oof f,itis reasonable to assume

thatp;,fl:O@iikorjxl.
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Figure A3. The figureillustrates po~ - as a function of f. The fidelity with | Byg) of the asymptotic state is equal to unity for a perfect
apparatus.

Thus the fixed point p* is determined by four equations in four unknowns, namely the equations

1 - .
Poysisss = 3y ) > o8 S8, Pisson iy Gman o6

i1,12,]] L anBpazf
111y =00,11Dj, =61 ulinj;>ini®], Biz)=(60,61)

Plis® ) (10, 26 5 (128 02) (115, Bir® 8,)°

where ép, 6; € {0, 1}and N = 375 5 p Sob16061" Figure A3 illustrates the numerical estimate of p;, asafunction
off.

Similar to the case of binary pairs, we can write the recurrence relations f in terms of its Taylor series
expansion around the fixed point p*,i.e. p = f(p) ~ f(p>) + f'(p>)(p — p>). Hence by defining
e = p — p>®wehave & = f'(p™)e, i.e. as for binary pairs, the error induced by the 1-norm of the state of Alice,
Bob, and L after n successful distillation rounds satisfies

> (P;'Zz) — )1 Bij) (Bijlas @ 1) (ny e

< 1o — el < IF@)" ey
ikl

ikl

||pn - pﬁx”l =

1
(A.23)

Figure A4 suggests a linear relationship between the number of successful distillation rounds n and
log ||f' (p*°)"~!|| for each noiselevel f,i.e. b(f)n + a(f) = log|f'(p>)"~!||. As the number N of pairs
necessary to achieve n distillation roundsis N = 2" (<&n = log, N) we have
b(f)log,N + a(f) = log||f' (p>°)*~!|, which is equivalent to

£ (oY1 = e®eb(PDlowN — g/( FYNV'),

Hence, ||f (p>)"~!||scalesas F(N) € O(N(")where b’(f) < 0and b'(f) decays for f — 1.

What is left to show, is that the fixed point p® is an attracting fixed point. For that purpose we numerically
compute the largest eigenvalue of f'(p), see figure A5, and observe that, for noise below 10~ Uie.
1 — f < 107}, the largest eigenvalue A, of £ (p*) fulfills A\p,.x < 1, proving that p* is an attracting fixed point.

This implies that, if the initial fidelity Fwith | Byo) is sufficiently large for distillation, the DEJMPS protocol
necessarily converges towards the fixed point p> where the ‘cross-probabilities’ vanish.

The analysis so far still lacks Eve’s system E for the leaked noise transcripts. Suppose |¢")aggr and |/ )apgr
are purifications of p, and p;_, i.e. p, = tre[|1") (¢"|]and pg, = tie[|¥f) (4hf]] respectively. This implies
& = ||| ("] — |9 (]|} < JE(N),ie. €, € ONY/2)whichwe also confirmed with our numeric
results.

Itis straightforward to extend the analysis above to two-qubit correlated noise introduced by L on the system
of Alice and Bob. For that purpose we assume that fal,ﬁl,az,ﬂz = f + (1 — f) /16ifay=0i=a,=06,=0
and (1 — f)/16 otherwise. Also in that case we numerically observe that Rjolfl =0<i= korj= l.Henceitis

reasonable to assume that pi]?"]fl =0 < i= korj= linorder to obtaina fixed point p*™ = ( g;?o,d)},j,k,l _ goff.
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Figure A4. The figure illustrates the value of log || f' (p>)"|| as a function of successful distillation rounds for single qubit white noise
102 (blue), 10 (yellow) and 107 (green).
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Figure A5. The figure shows the largest eigenvalue of f'(p™) (y-axis) for single qubit white noise (x-axis).

The fixed point p™ is determined by four equations in four unknowns, namely the equations

1
Pogsisots = 3y ; lqlzzqz JonBoan 8, Pidan G ®8) a0 &6
i o obipe2)
11®iy=060,1Bj, =06y ulinjy>inn®f; Si2)=(60,61)

Pl o) (105, 012D B,) (120 a2) (4B, 2 5,)°

where &y, 6, € {0, 1}and N = 32, 5 p Sb16061° Figure A6 illustrates the numerical estimate of p - asa function
of f.

Furthermore we numerically compute the largest eigenvalue of f (p>) and observe that if f > 0.8284, the
largest eigenvalue A, of f'(p™) fulfills Ay < 1, hence p™ is an attracting fixed point, see figure A7.

Finally, we obtain again a linear relationship between the number of successful distillation rounds n and
log ||f (p>°)"~!||for each noiselevel f,i.e. by(f)n + a;(f) = log ||f (p>°)"~! ||, see figure A8. This implies,
similar to the case of single qubit white noise, that the right-hand side of (A.23) converges polynomial fast
towards zero in terms of initial states. The rate of convergence is governed by f,i.e.||p, — p, I < F2(N) where
F(N) € ONE:Dyand by(f) < 0with by(f) decays for f — 1.

Taking the system of leaking noise transcripts into account,this implies that
0 = 107 (6] — 1671 (0T |y < Vo), e 6 € OB/,

To conclude the analysis, we now show that the noise model of two-qubit depolarizing noise is actually
sufficient to cover any noise process for two-qubit operations. This is the case because for any CNOT-type gate
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Figure A6. The figure illustrates p asafunction of f for two qubit correlated noise. The fidelity with | Byo) of the asymptotic state is
equal to unity for a perfect apparatus.
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Figure A7. The figure shows the largest eigenvalue of f'(p™) (y-axis) for correlated two qubit noise (x-axis).

(which we need to apply in the case of both recurrence-type entanglement distillation protocols we consider),
one can depolarize these gates to a standard form [26]. This is done by randomly applying single-qubit
operations before and after the application of the gate, which allows one to reduce any noise characteristics to a
specific form with 8 parameters without altering the fidelity of the gate. A further simplification is possible if the
noise characteristic of the apparatus is known [26], which could in some cases be achieved through quantum
process tomography. In this case, one can add additional (local) noise by randomly choosing to apply the gate, or
some other (separable) operation. This allows one to bring any CNOT-type gate (i.e. any two-qubit gate that is
equivalent to a CNOT gate up to single qubit unitary operations that are applied before and after the gate) to the
standard form

~ 1—f 1
5(,0) :fUpUT + —f Z Ual,ﬁlUaz,ﬂszal,ﬁIUaz,ﬁz- (A-24)
o, 31,02, 3,=0

As outlined in [26] this depolarization procedure causes a change in the gate fidelity of the utilized quantum
gates. More precisely, if the fidelity of the quantum gate before the depolarization was F, = 1 — x then the gate
fidelity after the depolarization is Fé > 1 — 17x. Thus one reduces the quality of the gate by about an order of
magnitude in the worst case by depolarizing to this standard form.

19



10P Publishing

NewJ. Phys. 19 (2017) 113012

APirker et al

n
° \ \ \ \ \ \
$ss5., 10 15 20 25 30
e o ® o °
20 cre e e, oo
PP Y ° o
e o ° o
_ ° o .. °., .
£ -40 ° o ° o LY
8 ° o ® o ¢
e .. .
= 60 ® e ° o
0 LI} ® e
< .. o
-80 .. .
® e
-100 o
-120 ¢
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We observe that (A.24) can be rewritten as

&p) = fUpUT +

=U|fp+

1

=U Z

1-f
16

1-f !
16 2

01)51,02)52:0

1

Z O-al»ﬂl O’“Z;ﬂz paal)ﬂ] O-abﬂz U-§

al,ﬁl,az,ﬁZ:O

Oy, 8, Oz, 3, POo, 3, O, B,

¥
fal,ﬁl,az,ﬁzO-al»ﬂla.abﬁzpo-@l:ﬁlo-abﬁz U >
al;ﬂpaz)ﬁzzo

(A.25)

where fo,o,o,o =f +@0—f)/16and fab Boamp, = (1 — ) /16 otherwise. Recall, that one noisy distillation step
of the DEJMPS protocol including L is given by (A.2). By introducing Op = U, O, _ppp we rewrite (A.2) as
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Pr=" 30 farpans,Op(UL @ US)(W) (W] @ W) (W) (US, © UL, YO, (A.26)

2
ai, 81,00, 0,

We observe that the noise maps U;?lf}l ® U((li%z in (A.26) act on Alice’s part of the systems only. But this is
sufficient due to the symmetry of Bell-states—noise on Bobs side can be moved to the other side. Furthermore
the additional o, -flips introduced on the system(s) of L by the unitaries Uéf%l ® Ué‘;%z are used to keep track of
the noise map applied. Because Alice and Bob apply the depolarization procedure as described in [26] and L
keeps track of the effective error introduced, we can safely assume that the additional o,-flips will be introduced
after Alice and Bob complete the depolarization procedure, hence it is sufficient to consider two qubit correlated

noise introduced at Alice’s part of the systems.

A.2. The BBPSSW protocol
The protocol proposed in [28] (also referred to as BBPSSW protocol) is very similar to the DEJMPS protocol.
Instead of step 1 of protocol 1 Alice and Bob apply a correlated depolarization procedure (twirl) to their input
states which brings them to Werner form.

For the subsequent analysis, suppose that each pair of Alice and Bob is of the form
p(p) = p|Boo) (Boo| + (1 — p) iid. We assume that the apparatus applies independent and identical noise of
theform Np(p) = fp(p) + (1 — f)/4(p(p) + oxp(p)ox + o,p(p)o, + o, p(p)o,) before each distillation
step. In similar fashion to the DEJMPS protocol one easily obtains the recurrence relation for the noisy BBPSSW
protocol:

P*fP +2pf

b(p).
3p*f* 43 @

ﬁ =
The fixed point p* of the protocol is obtained by solving the equation b(p>°) = p*. A straightforward

computation gives the fixed point p> = 2 / 3+1 / 34 — 9/f? + 6/f (which depends on the noise parameter
f). It was shown in [27] that this fixed point is an attractor assuming sufficiently high initial fidelity with | Byg) per
input pair. Expressing the recurrence relation b in terms of its Taylor series around p* leads to

P = b(p) = b(p™) + b'(p™)(p — p™). (A.27)

Hence, (A.27) provides an approximation of the error in terms of fidelity with | Byy) after n + 1 successful
distillation rounds, i.e. €,1.1 = (b'(p™))" €1, see also the plots of figure A9. Moreover, we compute the first
derivative of b by

2f (1 + 4fp — f?p?)

b(p) =
) 303 )

Evaluating b’ at p> yields
9 — 3f
FG 422+ J4—9/f7+6/1)f)

From this we conclude that, if the apparatus is perfect, i.e. f = 1in (A.28), the error in terms of fidelity with
| Boo) after n + 1successful distillation rounds scales as ¢,1 = (2/3)" €.
Using log, N = n, where N denotes the number of initial states, we infer for ¢, that

b(p™) = (A.28)

€ni1 = flb/(poc)logzN —_ 61(2]og2b’(p°°))logzN — quogzb'(pm).

This implies that ¢, ; scalesas F(N) € O(N™&" (™) and thus || pz, — p, 1> where p; and p, denote the fixed
point and the state after n successful distillation rounds respectively, scales alsoas F(N) € O (N'08:¢"(?™)) as
mentioned in the main text.

For the analysis of two qubit correlated noise we assume that the noisy operations used by the BBPSSW
protocol are of the form

0ip = F0i p + 2L iri) ® i, (A.29)

where pis a two qubit density operator and O/$"! denotes the ideal two qubit quantum gate. Observe that (A.29)
coincides with the standard form of [26]. If the noisy quantum gates are not of the form (A.29) we bring them to
that standard form via the same depolarization procedure mentioned in the analysis of the DEJMPS protocol.
Hence the following anaylsis is not restricted to this specific noise model, but actually applies to arbitrary noise
processes describing noisy two qubit gates.

It has been shown in [27] that the BBPSSW protocol converges for noisy CNOT gates of the form (A.29) to a
unique and attracting fixed point if f is sufficiently high. The recurrence relation for the fidelity relative to | Byo)
obtained in [27] is given by the formula
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~ _F\2 _7

f2<F2 + (%) ) + %

F = Iy — Ny e (A.30)
f (F +f+5(7))+ 3

Hence one obtains as in [27] the respective fixed points of (A.30) to be

34+ 410 — 9/F
—_——

For F € (Epin, Fnax) wehavethat F/ > F which shows that F,,, is an attracting fixed point. By replacing F' in
(A.30) with b(F) we observe similar to (A.27) that the error after n + 1 successful distillation rounds scales for
two qubit correlated noise as F(N) € O (N0 Er(Fmax)) where N denotes the number of initial states.

Finally we provide a worst case analysis of the BBPSSW protocol. For that purpose assume the following
scenario: the noisy apparatus performs with probability f; the ideal distillation step & and introduces with
probability 1 — f; anarbitrary noise map &, . More precisely, we decompose the distillation step taken by Alice
and Bob before the measurement of the target system as the CP map

Ep) = fi&p) + A = &),

where pis a four qubit density operator. Notice that one can always decompose a noisy map in this form, where
both maps are completely positive and trace preserving. We remark, however, that the map & denotes the ideal
protocol which includes an abort option, i.e. we only keep the first pair if the results of the measurements on the
second pair coincide. The map £, may similarly contain such an abort branch. The noise parameter f; describes
the quality of the overall map’, i.e. one can think of the process that with probability f; the desired procedure
(including gates and measurements) is performed, while with probability (1 — f;) something else happens
(described by the map &) ).

We will now consider the worst case for the map £, w.r.t. entanglement distillation. The worst case for the
BBPSSW protocol is that the apparatus introduces a state orthogonal to | Byg) on the source system and the state
| Bgo) on the target system as this will always contribute to the overall success probability of a distillation step of
the BBPSSW protocol but lead at the same time to a lower fidelity relative to | By) after the measurement of the
target system compared to the ideal distillation step. One example for such a map is given by
E1(p) = |Boy) (Bo1| ® |Boo) {Boo|- Any other map will lead to alarger fidelity after the distillation step followed
by depolarization to Werner form. We thus have

A7+ (1))
fI(F2+ 2D 4 5(%)2) +1-f

for the fidelity relative to | By). This formula can be understood as follows: the ideal protocol is applied with
probability f;, and succeeds with probability f, , thereby producing a fidelity F.Themap &, isapplied with
probability (1 — f,), does never abort and does not contribute to the final fidelity (which is clearly the worst
case). We thushave F' > f, f. 15/[]‘1]‘Suc +a-fHL

We now analyze the worst case scenario, i.e. assuming equality in (A.31). Since we know that at each step the
actual noise map produces an output density operator with a larger fidelity than the worst-case map, we can
conclude that the resulting fidelity of any noise map will be larger than the fixed point which is achieved by the
worst-case map. We remark, however, that this does not constitute a full confidentiality proof for arbitrary noise
maps, as it is not evident from this analysis that for any fixed noise map a unique fixed point is reached.
Assuming equality in (A.31), one can compute that the fixed points of the noisy BBPSSW protocol are in this case
given by the solutions of

min,max —

F' >

(A31)

~fi + (9 — 2f)E, — 14f F2 + 8f,F2 =0 (A.32)

which only depend on the noise parameter f,. Wedefine g, (x, f;)) = —f; + (9 — 2f)x — 14f;x* + 8fx?
which implies that (A.32) reads as g; _(F, f;) = 0. The question how many solutions of (A.32) are real we easily
answer by the discriminant of g . We obtain for the discriminant of g,

A(f) = —36(648f, — 873f] — 212f + 436f"). (A.33)

Henceif A(f;) > 0 then all three solutions of (A.32) are real. We numerically estimate that A( fl‘m) = 0 for
fIcril ~ 0.9641, hence for f; > fIcril there exist three real solutions of (A.32) because A(f;) > 0 for f> flcm’ see
figure A10. Thus, for f; > f; ,we compute the fixed points of the noisy BBPSSW protocol via solving (A.32).
Figure A11 shows the function g for different values of f;. From figures A10 and A11 we infer that we have
three possible fixed points for f; > f; . Hence we need to show that the fixed point with the highest fidelity

? We remark that a similar analysis can be performed by modeling local operations of Alice and Bob sepearetely in this way.
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Figure A10. The figure illustrates the discriminant A(f;) of (A.32). For f; > 0.9641 we have A(f}) > 0.
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Figure A11. The figure illustrates the function g for f; = 0.97 (blue), f; = 0.98 (yellow), f; = 0.99 (green)and f;, = 1(red). The
fixed points of the BBPSSW protocol correspond to the zero’s of g _(F, f;).

relative to | Byg) obtained via (A.32) is an attracting fixed point. We solve this issue by showing that F' > F for
F € (Enin> Fnax) (Where Ey, denotes the second, and F,,« the third fixed pointin figure A11). From figure A12
we find that F* — F > O for f; > fiohence F " > F which shows that Fy,,, is an attracting fixed point whenever
starting with initial fidelity F > Ep;,.

Furthermore, by assuming equality in (A.31) and replacing F’ with b, (F), we observe similar to (A.27) that
the error after n 4+ 1 successful distillation rounds scales in this worst case analysis as F(N) € O(N log, bl (Fnax) )
where N denotes the number of initial states.

Appendix B. Confidentiality of entanglement distillation protocols

In this section we provide the proofs of lemmas 3 and 5 of the main text, crucial for the de-Finetti-based and
post-selection-based reduction techniques. Both proofs require only one specific property of the real protocol
E: after passing the parameter estimation phase the entanglement distillation protocol always converges to one
fixed point, i.e. the fixed point is unique, an attractor for all the states which pass the parameter estimation and
depends on the noise parameters only, as this implies that the distance with respect to the 1-norm within the ok-
branch of the protocol is bounded and converges towards zero.
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Figure A12. The figure illustrates F/ — F for f; = 0.97 (blue), f; = 0.98 (yellow), f; = 0.99 (green) and f; = 1(red).

B.1.Proof of lemma 3
We first state the following lemma which establishes a connection between measurements on one subsystem of a
bipartite state and tensor product states.

Lemma 8 (Steering of local states). Let p, , be a bipartite (in general, mixed) state and let p, = trg[p,z] and
pp = tiulpyp). Furthermore let p‘g be defined as

tra[(19) (@] @ D pypl

¢ _
p =
! £4(9)
where|¢) € Haand p,(¢) = tr(|9) (d] py)-If|1p5 — pplh < € forall|p) € Ha, then
loas — P4 @ pplh < 2Ce, (B.1)

where C only depends on the dimensions of A and B. In particular, if we fix the number of qubits of A and B to 2
respectively, then we have C = 48,

Proof. In the following we denote the four Pauli operators by
op=1id, =0 o=o0, 03=0.

First we decompose p, , in the Pauli basis, i.e. we have
1
Pap = W Z Q;j0; ® 0j, (B.2)
ij

where nand m denote the number of qubits of A and B respectively and we use the notations i = (i}, .., ,) and
i = (jj> -»Ji,) where each iy andjiarein {0, .., 3} aswellas o = Q}_, 0;, and 05 = Q- 0;,- Recall that
tr(op) = 2and tr(oy) = tr(oy) = tr(os) = 0.From this one easily computes p, and pg, by

1 1
pa = trp[pypl = prren Z ayjoitr(oj) = > Z Qg 03y (B.3)
1) 1
1 1
pp = ttalpupl = W Z ajtr(oy) oy = 2_’” Z j O (B.4)
1) )

Using (B.2)—(B.4) we obtain for (B.1)

1 1
a5 — P4 @ pplh < qu(aﬁ — Qiog)0i ® djll = S > lasg — aioal - [loi @ a5k
ij ij
ontm
= i Yol — aagl = D las; — apagl = [la = al|,ce, (B.5)

ij ij
. +
where a = (ap, .., 33m), @’ = (o Qlgps --» 39 Qp3) and ||+ ||, cor+ denotes the 1-norm of vectorsin C*".

Hence in order to prove (B.1) itis sufficient to prove la — a'[|,,c#+» < 2Ce. By assumption we have for p¢
where |¢) € H,and p,(¢) = tr((|¢) (&] ® I)pyp) that||pﬁ — pplh < eforall|¢) € Hy. Moreover,
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according to theorem 9.1 in [32] we have forall |£) € Hp
1 1 ‘
5|PB(€|¢) —qp| = Eltr(|§><f| P — tr(1§) (€1 pp)l
1
< H;:aXEZhr(Empﬁ) — tr(Empp)| = ||pq§ - pB”l <6 (B.6)

where p; (£|¢) denotes the conditional probability of obtaining the outcome ¢ on system A and the outcome §
onsystem Band {E,,} denotes a POVM on the subsystem of B. Suppose we perform a projective measurement
on the systems of A and Bdenoted by {|¢x)ag} = {|dp)a @ |& )5} wherek € {1, ..,4""™}on p,pand p, ® p.
This yields for the respective probabilities p, ,(1x) and g, 5 (¢x) of observing outcome k for p,; and p, @ pp

pAB('(/)k) = tr(|1/)k> <7/)k| pAB) = tr(|¢k> <¢k|A & |§k> <€k |BPAB) = tr(|£k> <§k|BtrA[(|¢k> <¢k|A ® I)pAB])

= tr(1&,) (&l82s (D095 = Py (@ (1E0) (SelspF) = Py (DP5 (&S,
445 (0) = r([Pi) (il pa @ pp) = () (Sl p)r(1€0) (Ekl pB) = 44 (D) q5(ER)

where p;(&|¢;) denotes the conditional probability of obtaining outcome ¢, on system A first and obtaining
outcome &, on system B. We observe p, (¢,) = q,(¢,). Thus we obtain

14 (W0) — 4up@W)| = P4 (D) P (Exl D) — a5 (€] < 2epy (@)

using (B.6). In order to compute a bound for (B.5) we use quantum state tomography, see e.g. [33]. For that
purpose we perform an informationally complete POVM induced by different separable bases on Hy ® Hp.
More precisely, we choose that many POVMs such that we have in total 4"+ different outcomes. We observe

for |1 )ap = |Pp)a ® 1§ )p that

1
PAB(i/Jk) = S Z<¢k| Ui|¢k><fk| Uj|§k>04ij and qAB(wk) = S Z<¢k| Ui|¢k><§k| Uj|§k>01i0060j-
ij ij
(B.7)
Enumerating (B.7) for 1 < k < 4" "™ yields 4" "™ equations for a, i.e.
1
(W) = S Z<¢1| Ui|¢1> <§1| Uj|fl>o‘ij’ (B.8)
ij
1
pAB(¢4n Fm) = Py Z <¢4n+m| Ui|¢4n+m> <§4ﬂ+m| 0'j|€4n+m>aij (B.9)
ij
aswell as 4" 7™ equations for a’
qAB(%) = 2n+m Z<¢1| O—i|¢1> <§1| 0—j|51>ai0040j) (BlO)
ij
1
qAB(¢4n+m) = 2n+m Z<¢4n+m| O'i|¢)4n+m> <£4n+m| O'jlé-4n+m>05i0a0j, (B,ll)
ij
We can rewrite the systems of equations (B.8), (B.9) and (B.10), (B.11) using
<¢1| JO|¢1> <£1| J0|§1> <¢1| J3“|¢1> <§1| US"’|€1>
(G gin| Goldpin) (Egen| GolEgim) oo (Pyen| Tl grom) (Egrom| o3| Eprom)
and P= (PAB(il)l): --7PAB(1/14"+’”)) and q-= (qAB(wl)7 o qAB(¢4”+"’)) as
— — 1 !/
p= o Ta and q= g a
respectively. Hence 2"*™"(p — q) = T'(a — a’). Moreover we observe that T'is invertible if the POVM is
informationally complete, see [33] for details. Thus, inverting T'and taking norms on both sides yields
la = @[lycorsm <27 TP = @lhyerer = 2T R (V) — 4401
k
< 2n+m||T71||Z 2€pA(¢k) S 2HT71||4n+m2n+m€’
k
which completes the proof for the general case with C = || T~!||47+m2n+m,
Before we complete the lemma we need to determine C for the case of n = m = 2. We choose
|¢43(j1—1)+42(j2—1)+4(j3—1)+j4> = |¢;l> ® |¢;2> ® |¢;4> ® |¢;4>where Juv Js J3o Jy € {1, 2, 3, 4}and
l61) = (10) + 1)) /2, (B.12)
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165) = (10) + 1)) /2, (B.13)
l#5) = 10), (B.14)
lgh) = (10) — [1))/V2, (B.15)

which is informationally complete and thus a valid choice. This choice of | qS;) corresponds to a Pauli tomography
on asingle qubit. We observe that the matrix T'is invertible and compute || T~!|| = 16. Thus C = 43 which
completes the proof. O

Roughly speaking lemma 8 states that if all post-selected reduced states of a bipartite state, where each
partition consists of two qubits, are 7-close then the overall stateis 2 - 4% close to a product state.

We gave the lemma in a more general form as it may have utility beyond the scope of this paper. However for
our purposes we need a stronger, but more specific result. In the following lemma we will show that we can
achieve the same result even if the measurements must succeed above a threshold, which is important in the
application of the lemma.

Lemma 9. In the situation of lemma 8 for n = m = 2 it suffice to consider measurements on the subsystem A which
have a probability greater than or equal to 1/16.

Moreprecisely, for every state p, , there exists a unitary U acting on system A and a state
Py = (U @ Ip) pp(U @ Ip)', such that if the state p', , meets the conditions of lemma 8, i.e. subsystem B is e-non-
steerable via measurements on subsystem A for all measurements with probability greater than or equal to 1/16, then

pap — P4 @ pplh < 2Ce. (B.16)

Proof. First we construct the state p’, , associated with p, , and show that it suffice to consider measurements of
probability greater than or equal to 1/16. Recall the situation of lemma 8. Let p, , be a bipartite (in general,

mixed) state and let p, = tig[p,g]land py = tra[p, ] Furthermorelet pg be defined as

tra[(|9) (@] @ D pypl
24 (9)

where |¢) € Hyand p,(¢) = tr(|¢) (¢| p,)- Then the claim of lemma 8 was: if || p — p, [l < € forall
|®) € Hy,,then

py =

oA — P2 ® pplh < 2Ce (B.17)

where Conly depends on the dimensions of A and B. In particular, if we fix the number of qubits of A and Bto 2
respectively, then we have C = 48.

Further recall that the set | §.p;, 1y, -1y 14, 1+5,) = |9;) © 16]) ® 1) @ |¢; ) where
Jp» Jas J3o Jy € {1, 2, 3, 4} oflemma 8, i.e. (B.12)—(B.15), is informationally complete and thus suffice to
reconstruct any 4 qubit quantum state where

[0 = (10) + 11))/V2, (B.18)
|95 = (10) + il1)) /2, (B.19)

l¢3) = 10), (B.20)
lpl) = (10) — [1))/V2. (B.21)

In order to prove the claim, we use the following observation: the state p, = trg[p,]is a two qubit quantum
state, so it can be written as

3
pa = D AI) (9, (B.22)
=0

where the states | ) correspond to the (orthogonal) eigenstates of p, for the real non-negative eigenvalues \;.
Hence there exists at least one j' € {0, 1, 2, 3} such that A = 1/4, which corresponds to the maximum of the
eigenvalues \;. Now we choose alocal unitary Usuch that U|W;) = [0) ® |0). Applying this unitary to (B.22)
therefore leads to the state

3 3
o= U(ZAA\IJJ»M\IM]U* = 3/100) (001 + 3 Al (. (B.23)
j=0 j=i’

where | gpj) = Ul4;). We compute the probability for any projector applied on p;& which is taken from the set
(B.18)—(B.21) and of the form | ¢') (¢'| = |¢;{) <¢;c | ® |¢;) ((b; | by
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3
tr(19) (¢'] p) = tr(|dy) (D] @ 1)) (D] Up,UT) =D Njtr(1dy) (@4 ] @ |9y) (&7 UI;) (¥ UT)

j=0
> itr(|¢>’k><¢;| @ |op) (o1] Uy (G| UT) = i“('d’lkwk' @ |¢;) (¢;1100) (00])
1 Ny N, 111 1
= Ztr(|¢k> <¢k||0><0|)tr(|¢l> <¢1||0><0|) > ZEE = E’ (B.24)

where we have used that tr(AB) = tr(BA) for matrices A and B and that tr(| ¢;(> <¢;{ [10)(0]) > 1/2 for
allk € {0, 1, 2, 3}.

So we define the state p’AB as p’AB = (U ® Ip) p,3(U ® Ip)". Observe that the probabilities of all projectors
within the tomographic set (B.18)—(B.21) are greater than or equal to 1/16 for the state p’A.

Now suppose we perform a measurement from the tomographic set (B.18)—(B.21) on the subsystem A of
p', yielding outcome | ). The post-selected state conditioned on | ¢) reads as

o _ ml(0) (6] @ Do)yl
’ 7@

where p, (¢) > 1/16. Furthermore assume as inlemma 8 that || o'}, — pj || < € forallsuch|¢) € Hy. Then
lemma 8 implies that

1Pss — Pl ® pslh < 2Ce. (B.25)

The proof completes by observing that ', ,and p/, @ p; are related by the local unitary Uto p, and p, ® py
and the unitary equivalence of the trace distance, i.e.

1045 — P4 ® pglh = (U @ Is)(pap — ps © pp)(U @ Ip)|| (B.26)
= [lp)s — £y ® pslh < 2Ce. (B.27)
O

We observe that, due to the proof of lemma 9, which relies on the informationally complete set (B.18)—
(B.21), it suffices to be non-steerable with respect to the measurements within that set for a probability of
measurement above or equal to 1/16. We actually have proven a stronger result, as the actual choice of
measurements does not matter, provided the probability of success is above or equal to the threshold 1/16.

Lemma (Lemma 3 in main text—product form lemma). Let p be an arbitrary mixed state shared by Alice and
Bob and let |1))4pg be a purification thereof held by Eve. Furthermore, let P, correspond to a (distillation-type) real
protocol and P, correspond to the associated (distillation-type) ideal protocol, i.e.

Pu(p) = p,oap @ |ok) (ok| + (1 — p) oy @ [fail) (fail|,

Pop) = 0% ® oK) (k| + (1 — p)ors ® [fail) (fal,
where o characterizes the level of the noise, 0, and o5 are two fixed two qubit states. Furthermore, let P, and Py
satisfy the following properties:
(1) The noise transcripts do not leak to Eve.
(2) The protocol P, guarantees to converge towards some state o4y within the ok-branch of the protocol

and max,, ||(Py — P)(up)lh < e
Then itholds that
[(P1 @ idg — P> @ idp) (1Y) (Y lape)|h < (34 - 4 + De. (B.28)

Proof. The proof relies on lemmas 8 and 9. Suppose Eve prepares the pure state |))4pr and let
tig[|1) (¢ |1 = p,p be the state received by Alice and Bob. Then we have

(P @ idp) (1Y) (¥]) = b,0aBE @ |ok) (ok| + (1 — Pp)UﬁB ® op ® |fail) (fail|,

) ) ) (B.29)
(P> @ idp) (1) (¥ = p,0% ® 0 @ |ok) (ok| + (1 — pp)akB ® op ® |fail) (fail].
If we post-select equation (B.29) on the ok-branch we have after normalization
1. .
;(ldABE ® |ok) (ok])(Pr @ idp) (19) (¥ ]) = oupr ® |ok) (ok|. (B.30)

14
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Itis obvious from the fact that the protocol is performed by Alice and Bob per definition that any measurement
of Eve in the ok-branch can be commuted to the beginning of the protocol P, because Eve is not part of the
protocol. Hence her measurement only changes the input of the protocol P, and thus either cause an abort
or not.

We call the final state of Alice and Bob 7-Eve-non steerable if for all ¢ € Hy wehave ||0%; — ouslli < 7

where afi;B = trE[ﬁ (idap ® @) (@ 1g)oa BE]. We sketch the remainder of this proof as follows: we show, that
5 (g

the final state of Alice and Bob is Eve-non steerable in the sense of lemma 8 by making use of the bounded
distance of the protocols P, and P,. Furthermore, lemma 9 implies that it suffice to consider measurements of
Eve of having probability greater than or equal to 1/16. Therefore lemmas 8 and 9 completes the proof.

Because the output of Alice and Bob are 2 qubits the purifying system that Eve holds is without loss of
generality also a two-qubit system. Hence, according to lemma 9, there exists a state 0”5, which is unitarly
related to o4pg via an unitary U on Eve’s system only (which is not part of the protocol) and for which it suffice to
consider measurements of Eve having probability greater than or equal to 1/16. Furthermore observe that this
local unitary of Eve can not change the success probability of the overall protocol as unitaries are CPTP. In other
words, the success probabilities associated with 0455 and ¢, 5 are identical.

More formally, suppose Eve performs a projective measurement on this state o, - (which stems from a
purification |1)/)pg of p'A  Which is unitarly related to the purification |1)4¢ of p,; and both having the same
success probability, see paragraph above) and observes outcome |¢) € Hg having probability greater than or
equal to 1/16. Then the post-selected state of Alice, Bob, and Eve conditioned on that particular outcome ¢
reads as

L Gidus @ 16) (6]2) (0" @ [0k) (ok])
()

=L (idas ® [6) (d15)~(idags ® |ok) (okD) (P ® idg) (14') (/| ase)
(0 3

! (idape ® |ok) (ok|)(P; ® idE) idap ® 19){Ple

Py P (9)

—n?
=P ABE

[9) (¢ asE

1

(idage © |ok) (ok)(P) @ idg) (0% 5)

3

p
= 0%ipr @ |0K) (oK.

More importantly, we relate the probability of the protocol succeeding for initial state p/, B, and the probability

of measuring ¢ after the protocol, py.(¢), to the probability of the protocol succeeding for the initial state p9, .
(measurement of Eve commuted to the beginning of the protocol), p , and the probability of measuring ¢

before the protocol has started, pé (¢),via

p,Pe(9) = p opp(9). (B.31)
Observe that (B.31) is equivalent to
ppI,)E ©r_ Py (B.32)
P (@)

We note that the state 0, 5 is in the ok-branch of the protocol Py. The next step is to apply lemma 8 which
relates the distances || 0’y 3z — oup ® o |iand ||’z — 0% |li. In particular we show that for all measurements
of Eve with outcome |¢) € Hg having a probability greater than or equal to 1/16 we have that

llo's — %zl < 176/pp. This then implies usinglemma 9 that || 045 — oup ® op[li < 34Ce /p,. In detail,

using the triangle inequality we compute for the distance between o, and 0%

; 1 1
lohs — ohslh < llotas — ol + llohs — ohslh = ;II(R — PIplh + I [Py = P (piplh
b

z P

1 1
< =+ max [|(Py — P2) (pap) -
pp P[;” Hyp

(B.33)
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Now we employ (B.32) in (B.33) which yields

1. n@
b Bpe(@)

1 1
max ||[(P1 — P (p)|h < |— + max [|[(Py — P2) (iap) |
Hap pp PpP E (¢) Hap

lo'ss — o5 lh < [

1 1 1 17
= —[1 + JmaXH(Pl — P(uph < —@1 + 16)max ||(Py — P (p)lh < —¢
U pp@ p D

Hap » Hap b

(B.34)

because p,(¢) > 1/16 and max,, ||(P; — P»)(pp)|: is bounded by € by assumption. Hence we apply lemma 8

to oy g with € = 1775 which implies for the distance between o453z and 543 ® o' that

P
34 . 48

ospe — 04 @ ok |h < g, (B.35)

P

where the factor 4% is the constant C of lemma 8 depending on the dimensions of the systems of Alice/Bob and
Eve, for which we have n = m = 2. Furthermore, this implies vialemma 9 that

34 . 48

lloape — oup ® og|l < € (B.36)

14
because o4p; and 043 @ 0 are unitarly related to 0”45z and o4 ® o via the unitary U on Eve’s system. Finally,
employing (B.36) in (B.28) yields

(P @ idp)(|¥) () — (P, @ idp)(|1¥) (¥ D[ = ppHUABE — 0% ® gl
§Pp(||0ABE — oug ® gl + ||oug ® 08 — 0%z ® ox|h)

<3448 + =34 48+ 1e.

B.2.Proof oflemma 5

Now we turn to the proof of lemma 5 of the main text. For that purpose we remind the reader that the final state
after the distillation protocol including the system of L is pure. Thus, the following lemma will turn out to be very
useful.

Lemma 10. Let p, , and ¢, = @) (@la ® g betwo mixed states. Furthermore, assume that p, = trp[p,z]
satisfies || py — [¢) (@lalh < eand py = tralpspl = pip. Then [|pyp — 4plh < 4VE.

Proof. By assumption we have || p, — |¢) (¢]alli < €. Moreover, let |1)),pr be a purification of p, ;. According
tolemma A.2.7 in [9] there exists a purification | )4 & |€)gr of ¢, such that

¥)asr — [9)a @ [ Ilec < /llpa = 19) (@lalli = VE where|[[¥))|[vec = {211) and apr(¥lp)alE)pr is
real and non-negative. Moreover, lemma A.2.3 of [9] gives

[19) (¥ lasr — @) (@la @ 1€) (Elprlli < 2[l11P)asr — [9)a @ 18R [lvec < 2+/€.
We define &, = tix[|£) (£ |r]- As the 1-norm does not increase under the partial trace we have

lps — &l < llpag — 10) (@la @ &l <) (Wlasr — @) (@la @ 1) (Elrlh < 2+/€

by construction. Moreover, the assumption p, = p,implies||py — &l = |lpg — &l < 2+/€. This gives us
o) (ela @ pg — o) {(la @ &l = llpg — &l < 2+ If we combine these results we obtain

loag — easll = llpag — 190) (©@la @ pglh < [|pap
=) (pla @ &l + @) (@la ® & — 19) (@la @ pglh < 4VE,

which proves the claim. O
Lemma 10 enables us to prove lemma 5 of the main text.

Lemma (Lemma 5 of the main text). Let £ be the real protocol which guarantees to converge towards a unique and
attracting fixed point depending on the noise parameter only. Let JF be the ideal protocol as defined in the main text.
Furthermore let p be a mixed state (consisting of n systems) shared by Alice and Bob. Ifthe extension of € and F to the
system of L satisfies ||E(p) — Fr(p)|i < e(n), then

1€ @ ide) (|19) (Y lager) — (F @ ide) (19) (¢ |agen) | < 44/ (n)
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for all purifications | 1) apg’ of p.

Proof. As mentioned in the main text, we introduce a two-level flag system held by Alice which indicates whether
they aborted the protocol or not. So we observe

&(p) = p,oaper @ |0k) (ok| + (1 — p,)oype, @ |fail) (faill,
Fi(p) = p,1007) (1 aper ® |ok) (ok| + (1 = p)opy © |fail) (fail|,

where E denotes the system of leaked noise transcripts to Eve. By assumption we have | E.(p) — Fr(p)|h < e(n).
This is equivalent to pp||UABEL — |9y) (Urlagee | < €(n) since & (p) and Fi(p) are equal on the fail branch. This

we can rewrite to [|ouger — 19r) (Y laee i < €(n) /p,.
Moreover, applying the real and ideal protocol to the purification |¢) g results in

(€ ® idp) (19) (¢]ase) = p,oussr @ lok) (ok| + (1 — p,)oippp © [fail) (faill,
(F @ ide) (19) (¢ Lage) = 5,055 © pp @ |ok) (ok| + (I = p,)0ipeer @ |fail) (faill.
Again, both expression are equal in the fail branch, thus the 1-norm simplifies to
1€ @ ide) (1) (¥ laser) — (F @ ide) (10) (@ lapen)lh = plloasee — Thpe @ pprlh- (B.37)

Hence itis sufficient to show p[|osppr — ohpe @ ppll < 44/e(n). We observe that by introducing the system
Lheld by L that

plloases — g @ pplh < plloaserer — 19%) (Y aser @ pp - (B.38)

One easily verifies tip/[0upprr] = 0appr and teapp [0apprr’] = pp because the system E’ is not changed by the
protocol £. Moreover, by assumption we have || ouger, — [9) (U lagee|li < €(n) / b, Thus we apply lemma 10

t0 pypr = Oapere and @y = |Ur) (Yrlaper ® pp where A’ := ABEL and B := E’ which implies

loaerer — 14p) (Yrlager @ pplh < 4,/e(m) /p, . (B.39)
Employing (B.38) and (B.39) in (B.37) yields

1€ ® ide (1¥) (¥ lase) — (F @ ide)(19) (W lape)lh < p,4\/e() /b, = 4,[p,e(n) < 4e(n)

which completes the proof. O

Appendix C. Confidentiality of entanglement distillation protocols whenever the noise
transcripts leak

In this section we show how the confidentiality guarantees regarding an entanglement distillation protocol can
be extended to the case whenever the noise transcripts leak to Eve.

We remind the reader that it is not necessary to leak the noise transcripts to Eve after every single distillation
round. It is sufficient to copy all noise transcripts at the very end to Eve’s register, as L is not accessible and Eve is
not part of the protocol being executed by Alice and Bob.

Theorem (Theorem 7 in main text). Let £ be the real protocol and JF be the ideal protocol. Furthermore, let £' be
the real and F' be the ideal protocol when the noise transcripts leak to Eve. Then

1€ © idp) (19) (P lase) — (F @ idp)(19) (¢ ]ape) | < ()
implies that
(€' @ ide) (19} (¢ age) — (F' @ ide) (1) (¢ lape) b < 24/e(n) (C.1)

for all purifications |)apg of initial state p, , consisting of n systems.
Proof. We observe that

(€ ® idp)(|9) (Y1) = p,ouss @ |0k) (k| + (1 — p)osp ® o © [fail) (faill,

(F @ idp)(14) (¥ ) = p,0%5 ® 0k @ |ok) (ok| + (1 — p)oip @ op @ |fail) (fail.
So by assumption we have

1€ @ idp)(1¥) (¥]) — (F @ idp) (¥) (¥ DI = p)lloase — o4 ® o5 < (),

ie.[loage — 0%p ® or|| < e(n) /p,.
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As outlined in the main text we model L in terms of purifications. Because purifications are unitarly
equivalent we choose a particular purification of 043 ® 0. Thuswe fix |¥r ) apr, 1,5 = ¥ ), ® 1¢V")1,E
where |¢') ap, = Zi)jw,-j (@)|Bij)aglij)1,- The purifying systems L, and L, we attribute to the Lab Demon.
Moreover, according to lemma A.2.7 in [9] there exists a purification |1¢) of 04pE such that

1F)ari.e — [¥e)aprp,Ellvee < 1/5(”)/17# where|[|[¥)[lvec = /(¥1¥) and apr,1,p(¥F|¢e) aB1,1,E is real and

non-negative. Furthermore, lemma A.2.3 of [9] gives
e) (Velasrir.e — 10r) (Urlasnrelh < 2[|1¥e)apnie — [¥F)asLe vee < 2,/€(m) /P, (C.2)

When the noise transcripts leak to Eve, L effectively copies the noise transcripts | ij);, to Eve, resulting in the pure
state | @) apr,L,Err = (X, j1Bjj dasli)ni)E) @ |1)L, k. Hence we can model the leakage of the noise transcripts to
Eve by a unitary Uyssuch that Ups |97 ) apr,1,£10)r = |@) apr, 1,57 For the protocol when the noise transcripts
leak to Eve we have

(€' @ ide)(19) (¥]) = p,04pe @ lok) (ok| + (1 — p)oip ® op @ |fail) (fail
= ptrr, L[ Unlte) (Ye| Ufd @ Jok) (ok| + (1 — p)ois ® op @ |fail) (fail|
(F' @ idp) (19) (¥ ) = p,0"pe @ lok) (ok| + (1 — P,;)Ui{B ® op @ |fail) (faill
= p, 1, [Unlr) (Vr| Uyl @ ok) (ok| + (1 — p)osp ® op @ |fail) (faill.
Because the real and the ideal protocol are equal in the fail-branch we obtain by using (C.2)

(€' @ idp) (|9) (P lase) — (F' @ ide)(19) (¢ |ase) b
:P,;HUL\BE ® |ok) (ok| — o”"gp @ |ok) (ok][:

= p,lltrp,,[Unle) (ve| Uyl — trp, 1, [Unlebr) (| Ujdlh
<, || Ule) (e | Ufy — Unlor) (dr| Uiyl
= pll1ve) (el — 1vr) (Urllh < 2,/e(m)p, < 2yem),
which proves (C.1). O

Thus the confidentiality of a protocol where the noise transcripts leak to Eve is bounded by the
confidentiality of the same protocol when they do not.

Appendix D. Quantum one-time padding after the real protocol

In this section we show that a final secret twirl applied to the pair of Alice and Bob decouples Eve completely

from the remaining state. Keep in mind that for this Alice and Bob require two classical bits unknown to Eve.
Recall that the state of Alice, Bob, Eve, and L after n distillation rounds is pure and of the form

[y =% ij koDt | Bij Yas| Mg Ll ikl )g. Tracing over L yields the mixed state

pase = D 2 PijmPh wlBij) (Bij,l @ 10 ) (01l (D.1)
iz, kol

Suppose Alice and Bob apply a secret twirl 7 to (D.1), i.e. they apply stochastically the family of operators
{id, K}, K3, K1 K;} where K; = 0 ® oyand K; = 0, ® 0,. These are two stabilizers of the Bell state, i.e.,

K{'|Bij) = (=1)""|Bj;),
K?|Bjj) = (—=1)""[Bjj).
Hence, applying the secret twirl 7 to (D.1) gives

1
Toage = Y ZPiljlklP:jzlelr'Kzrz|Bi1jl> (Birj, | K" K3 @ 135 1) (i s

Tr2

b330k
. , . 1 N
= ; (—l)llrl(—l)]lrz(—l)lzf'l(—1)]2r2Zpiljlklpizjzklllejl> <BlZ]2| ® I'r]ll]]kl> <’r]12]2kl|
UREN AN
1 N . o
= > IBij)(Bij|l ® ZZPiljlklpizjzkl|77i1jlkz><77,~2jzk1|Z(—l)(””)”(—1)(]1+12)r2
iz, K _—

= > 1Bij) (Bij, | @ D 1Pl 1) (i -
k1

i,y
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Note that in the resulting state 3, ]-1|B,-1 jl> (B, il ® X lPij al? |ni1j1 ) <77i1j1 « | Eve decouples, i.e. Alice/Bob and
Eve have a separable state. The obtained resource state can be used to establish a confidential quantum channel
by means of quantum teleportation.

Appendix E. Robustness of recurrence-type entanglement distillation protocol

To complete the security characterization of entanglement distillation protocols we also consider the robustness
of an entanglement distillation protocol. To define this term precisely we first need the definition of a honest
eavesdropper.

Definition 11. We call an eavesdropper honest, if the states sent by the eavesdropper are of the form | Byy) %'

It is obvious that a honest eavesdropper is not entangled with the ensemble delivered to Alice and Bob via the
noisy quantum channel. Moreover we formally define the robustness of a protocol by:

Definition 12 (Robustness of a protocol). We call a protocol £% eg-robust, if for a honest eavesdropper the
probability of aborting the protocol is at most &.

Now we show that we can tune the robustness of a recurrence-type entanglement distillation protocol to be
exponentially small in terms of necessary number of input pairs.

Theorem 13. Let M € N such that Alice and Bob achieve € -confidentiality by succeeding M rounds of a recurrence-
type entanglement distillation protocol. Furthermore assume that Alice and Bob receive n pairs from a honest
eavesdropper over the quantum channel " (where ®(p) = Bp + (1 — ) /4(2 1,j0,iP03,)) such that, after the

parameter estimation step of the proposed protocol, k — Jk pairs (Where k — Jk = c2Mand ¢ = £2M+2) gre left
for entanglement distillation. Then, the robustness g of the protocol is bounded by

er < exp (—(3f — 4Bnin(a) — 1)>Vk/128) + M exp (—€).

Proof. The basic idea of the proof is to request sufficiently many pairs from Eve such that the probabilities of
abort during the protocol to be exponentially small while still having enough pairs left to achieve M rounds of a
recurrence-type entanglement distillation protocol. We divide the proof into two parts:

+ Part 1: We prove that the probability of aborting the recurrence-type entanglement distillation protocol due to
parameter estimation is exponentially small.

+ Part 2: We prove the same holds true for aborting the protocol during entanglement distillation.

Part 1: Suppose Eve sends the state | Byg) ®" through the noisy quantum channel ®®" to Alice and Bob. Applying
@ to | Boo) {Boo| yields

Pag = P(Boo) (Bool) = (38 + 1) /4|Bgo) (Bool + (1 — ) /4(|Bio) (Bio| + |Bo1) (Boil + |Bi1) (Buil). (E.1)

Thus the state Alice and Bob receive is p‘%. According to the preceding protocols proposed in the main text,
Alice and Bob apply a symmetrization to o7, and, depending on the noise level of the apparatus, they might
have to trace out n — k pairs or not. For the subsequent analysis we assume that this tracing out step is necessary,
i.e. the de-Finetti-based reduction needs to be applied. Hence, Alice and Bob continue by applying a twirl to each
remaining pair. Since p% is invariant under permutations and p,  is Bell-diagonal, the remaing state after
twirling is equal to p~.

Next, they apply to v/k of the remaining k pairs the parameter estimation for estimating the fidelity of each
pair. Necessary for convergence of all recurrence-type entanglement distillation protocols is that the fidelity F of
pap With | Boo) satisfies F > Fy;, («). Hence this step is crucial in order to guarantee successful distillation.

For that purpose, we measure | 'k | of k pairs by applying two-qubit measurements. To be more precise, we
applya o, ® oy tothefirstand o, ® 0, measurement to the second pair. We refer to this measurements by M;
and M, respectively. We observe that the state | Byg) is a common eigenstate of M, and M, with eigenvalue 1. We
define to each pair of pairs a random variable X;for i € {1, .., L\/E |/2} with X; = 1 whenever both
measurements M; and M, yield outcome 1 and X; = 0 else.

Furthermore we assume for the expected value E(X) of the fidelity with | By) that E(X) = Eu,(a) + 6,
where § > 0 will be fixed below. The protocol will be aborted if the estimate is below F;, (o) + 6.
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Layer 1 Layer 2 Layer M
N, N, = (1-d)pN, + 1 N,,
Figure E1. M rounds of entanglement distillation.

From (E.1) we observe that, whenever (35 + 1) /4 < FEyin (), the entanglement distillation protocol will
not distill any entanglement. This implies for the quantum channel ® that, if 3 < (4F;, (o) — 1) /3 the
parameter estimation step will abort, independent of the input provided by Eve. Thus we assume for the
subsequent analysis that 5 > (4F,;, (o) — 1) /3.

Moreover we define 7 = ¢/2. Hence we get by the Hoeffdings inequality [34] for the probability of an error
larger than 77in our measured estimate X for the fidelity the following expression:

P(BX) — X| = n) < exp(—=n*Vk/2) = P spore

Thus the probability of aborting the protocol due to an error in the parameter estimation is exponentially small
in number of necessary input pairs. In order to fix § we recognize that Alice and Bob abort the protocol whenever
(BB + 1)/4 < Eyn(a) 4+ 6. Thisisequivalentto § > (30 — 4Fu, () — 1) /4. Inserting the definition of
yieldsn > (38 — 4Fuin () — 1) /8and thus Ppe-abort < €XP(—(38 — 4Fnin(@) — 1?2 JVk /128).

Part 2: What remains to be shown is that the probability of aborting the protocol in the distillation phase is
also exponentially small in the number of input pairs. For that purpose, we assume that the noise level o of the
apparatus is such that distillation is feasible. In the following we show that we can force the probability of abort
due to entanglement distillation to be exponentially small in terms of requested input pairs.

We assume that Alice and Bob are left with c2M pairs after parameter estimation. Recall that the Chernoff
inequality for a sequence of independent Bernoulli random variables X,...,X, where P(X; = 1) = pand
d € [0, 1]readsas

}P’(Z X, <1 - d)pn) < exp(—%zpn).

Moreover, we observe that a basic distillation step can be modeled by a Bernoulli random variable X; where
P(X; = 1) = pisthe probability of succeeding (measurement outcomes coincide).

Suppose we perform m rounds of entanglement distillation. Let N,,, denote the number of input pairs to the
mthroundandlet d € [0, 1]. Then the Chernoff inequality implies that the probability that less than

(I — d)pN,, basic distillation steps at round m have succeeded is bounded by exp (f d?szm), Le.
42
pabort,m =P ZXI < (1 - d)me < exp(—;me). (EZ)
i

But this also implies that, with probability I — p,. .. ..»atleast (1 — d)pN, + Ibasicdistillation steps have
succeeded at round . Thus we may safely assume that N,,, ;1 = (1 — d)pN, + 1. Thesituation is summarized

in figure E1. Furthermore we have N; = ¢2M, Eliminating the recurrence relation yields
Ny =1 — d)y"pme2M + S 11 — d)’p'. This implies for (E.2)

m—2

2 2
Pabortm < €XP —d?p (1 —dymlpmleaM 4+ Y (1 — dyp' || < exp(—d?(l — d)mlmezM).
i—0
>0

Furthermore, we compute the probability of aborting the protocol at distillation round m (assuming that the
previousrounds 1, .., m — 1succeeded) by
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m—1

d? _ M

pabort at round m pabort,m H psucceed,k < pabort,m < exp(—7(1 - d)m 1me2 . (E3)
k=1

<1
The events of aborting the distillation protocol at two different rounds i and j are disjoint. Thus we have for the
probability of aborting in any of m rounds p.r in any of m rounds = 2-k—1Pabort at round k- A Simple consequence
thereofis

M M

d? k—14k A M

pabort in any of M rounds = Z pabort at round k g Z exp (_ 7(1 - d) p c2 > (E4)
k=1 k=1

where we have used (E.3). Inserting p = 1/2and d = 1/2in (E.4)yields

M M

1 M M—2k— M—-2M—

pabort in any of M rounds < Zexp(_g 22](_162 ) = ZCXP(—CZ : 2) < MeXP(_CZ 2 2)
k=1 k=1

= M exp (—c2-M+2), (E.5)
By assumption we have ¢ = 2M+2¢ which implies for (E.5)

pabort in any of M rounds < M exp (_£2M+22_(M+2)) =M exp (_5)

Thus, the probability of aborting the protocol satisfies
RS pPe—abort + 0 - ppe—abort)Pabort in any of Mrounds < eXp(_(?)ﬂ — 4Fnin(@) — 1)2 \/E/IZS) +M exp(_g)

which completes the proof. O

Appendix F. Establishing a confidential quantum channel

For illustration purposes, we show how confidential quantum channels can be realized using our proposal in
conjunction with standard teleportation. By our results, the joint state of Alice, Bob, and Eve after the distillation
protocol is € close to the output of the ideal protocol. The latter, since the register of L is not accessible to any of
the parties and thus is traced out, yields the state of the form (provided the protocol was not aborted)

Pina = D |wii (@) 1By) (Bijlas @ |m;) (1;le- (F.1)
i,j

The teleportation of any state p from Alice to Bob will yield the state

Y lwij(a)Pololpolol ® ;) (1 |- (F.2)
ij
Thus the only information Eve can obtain is what noise operator was applied on the teleported state, and nothing
more—thus, the channel is confidential. Moreover, the probabilities for the different noise processes are not
under Eve’s control, but depend on the local devices.
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