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In a recent article [Phys. Rev. A 94, 052128 (2016)], the authors compute the predictions of two
collapse models on the transition probabilities of neutral mesons. Notably, they claim to find an
influence on the decay rates and attempt to prove that a new parameter θ(0) is required to fully
characterize the noise of standard collapse models. These two claims are incorrect and motivated
by flawed computations. This comment derives the correct transition probabilities exactly from the
master equation, explains how they could be computed perturbatively in a safe way and finally
shows where the main mistake of the authors of the original article was made.

I. INTRODUCTION

Spontaneous collapse models may have observable con-
sequences on mesonic systems and studying them in this
context is thus a respectable endeavour. In [1], the au-
thors attempt to probe the effects of the Quantum Me-
chanics with Universal Position Localization (QMUPL)
model and the Continuous Spontaneous Localization
model (CSL) on the oscillation and decay properties of
neutral mesons. Their analysis is unfortunately compro-
mised by serious technical errors and conceptual misun-
derstandings (also present in [2, 3]). The authors find
that collapse models modify the decay rates of neutral
mesons and that a new parameter θ(0) is needed to fully
characterize the physical content of the models. These
two claims are incorrect. Our objective is to redo the
computations of [1] in a safer framework and derive the
correct properties of neutral mesons in the presence of a
fundamental collapse mechanism.

The authors consider the general continuous collapse
equation:

d|φt〉 =

[

− iĤ dt +
√

λ

N
∑

i=1

(

Âi − 〈Âi〉t

)

dWi,t

− λ

2

N
∑

i=1

(

Âi − 〈Âi〉t

)2

dt

]

|φt〉,
(1)

where the Âi are Hermitian operators and Wi,t are in-
dependent Wiener processes. This stochastic differen-
tial equation (SDE) is understood in the Itô convention.
Once the stochastic integral convention is fixed, equation
(1) has a unique strong solution and the model is con-
sequently fully specified. There can be no ambiguity in
the form of new parameters appearing in quantities com-
puted from (1). This is actually a first hint that there is
an issue in [1].

The principal objective of [1] is to compute transition
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probabilities of the form:

Pin→out(t) = E

[

∣

∣〈φout|φt〉
∣

∣

2
]

, (2)

where |φ0〉 = |φin〉 and E[ · ] denotes the stochastic aver-
age. The value of such a probability is, again, unequiv-
ocally fixed by the SDE (1). The authors compute such
probabilities with a cumbersome and perilous perturba-
tive expansion which leaves an ambiguity (or new degree
of freedom) in the results. Such an ambiguity is man-
ifestly spurious as, again, (1) entirely fixes the model.
Before explaining where the error comes from in sec. IV,
let us first explain how such probabilities can easily be
computed with a safe perturbative expansion in sec. II
and even exactly in sec. III for the collapse models stud-
ied in [1].

II. GENERAL CASE

The transition probabilities Pin→out(t) can be com-
puted knowing only the average density matrix ρt =
E

[

|φt〉〈φt|
]

. At the risk of being overly explicit and re-
peating well known steps, we detail:

Pin→out(t) = E

[

tr
(

|φout〉〈φout| × |φt〉〈φt|
)

]

(3)

= tr
(

|φout〉〈φout| × E
[

|φt〉〈φt|
]

)

(4)

= 〈φout|ρt|φout〉. (5)

It is then well known that ρt obeys a linear master equa-
tion (ME) of the Lindblad form. The latter is simply
obtained by computing d

dtE
[

|φt〉〈φt|
]

using (1) and Itô’s
lemma. The resulting ME reads:

d

dt
ρt = −i[Ĥ, ρt] − λ

2

N
∑

i=1

[

Âi,
[

Âi, ρt

]

]

. (6)

It is a ME encoding decoherence without dissipation, as
the generators are Hermitian. In many cases of interest,
such as the QMUPL and CSL models (in the approxima-
tion the authors of [1] discuss) it can be solved exactly.
In the general case, one can find ρt and thus transition
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probabilities perturbatively. For that matter, one goes
to the interaction representation to get:

d

dt
ρ(t) = −λ

2

N
∑

i=1

[

Âi(t),
[

Âi(t), ρ(t)
]

]

, (7)

which is formally integrated in

ρ(t) = T exp

{

λ

N
∑

i=1

∫ t

0

dsAL
i (s)AR

i (s)

− 1

2
(AL

i (s)AL
i (s) + AR

i (s)AR
i (s)

}

· ρ(0),

(8)

where T is the time ordering operator and we have used
the standard left-right super-operator notations AL

i · ρ =

Âiρ and AR
i · ρ = ρÂi. The time-ordered exponential in

(8) can be Dyson expanded to compute all the possible
transition probabilities as power series in λ. This ap-
proach is applicable to all collapse models and yields un-
ambiguous expansions. One could use it to compute the
transition probabilities for the CSL and QMUPL models
even without neglecting the Hamiltonian kinetic term as
in [1].

III. COLLAPSE MODELS FOR NEUTRAL

MESONS

We now focus more specifically on the QMUPL and
CSL models with the approximations discussed in [1].
The authors consider a the simple two level system of
a neutral mesons |M0〉 and its anti-particle |M̄0〉. In
the following, we shall neglect the spontaneous decay of
these two states into others to simplify the presentation
(such a decay can be added by hand in the end anyways).
A meson can oscillate between the two aforementioned
states and is thus described by a wave-function living in
the Hilbert space H = L2(R3) ⊗ C2. The Hamiltonian
of the system is

Ĥ = 1 ⊗ (mL|ML〉〈ML| + mH |MH〉〈MH |) , (9)

where |ML〉 and |MH〉 are the mass eigenstates taken to
be orthogonal:

|M0〉 =
|MH〉 + |ML〉√

2
(10)

|M̄0〉 =
|MH〉 − |ML〉√

2
. (11)

Notice that as in [1], the kinetic part of the Hamiltonian
is neglected.

A. QMUPL model

The QMUPL model is obtained by fixing:

Âi = q̂i ⊗
[

mH

m0
|MH〉〈MH | +

mL

m0
|ML〉〈ML|

]

(12)

where i goes from 1 to 3 and q̂i is the measurement op-
erator for the space coordinate i. With this model, the
objective of [1] is to compute the transition probabili-
ties between mass-eigenstates and between particle and
anti-particule states.

The transition probabilities between mass-eigenstates
are actually trivial to compute from the very first equa-
tion (1). Indeed, it is immediate to see that the stochas-
tic evolution for pure states does not mix different mass
eigenstates (and is norm preserving by construction).
Equivalently, one sees that the ME (6) keeps states of
the form ρ = σ ⊗ |MH/L〉〈MH/L|. Hence, one has sim-
ply:

P QMUPL
MH/L→MH/L

= 1, (13)

P QMUPL
MH/L→ML/H

= 0. (14)

The preturbative results given in equations (16) and (17)
of [1] agree with this straightforward exact computation
for θ(0) = 1/2.

To compute the transition probabilities between par-
ticle and anti-particle states, we need to solve the ME
(6). We introduce the following decomposition of ρt in
position and mass basis:

ρt =
∑

µ,ν=H,L

∫

d3
x d3

y ρµ,ν
t (x, y)|x〉〈y|⊗|Mµ〉〈Mν |. (15)

For the choices (9) and (12), the ME (6) is diagonal:

d

dt
ρµν

t (x, y) =

[

−i(mµ− mν)−λ
|mµx−mνy|2

2m2
0

]

ρµν
t (x, y)

(16)
and we thus obtain immediately:

ρµν
t (x, y) = e

−i(mµ−mν ) t−λ
|mµx−mν y|2

2m2

0

t
ρµν

0 (x, y), (17)

where we see that there is manifestly a phase damping
term for different mass eigenstates.

The transition probability to a state |M0/M̄0〉 is sim-
ply:

P QMUPL

in→M0/M̄0
(t) = tr

[

1 ⊗ |M0/M̄0〉〈M0/M̄0| × ρt

]

(18)

=
1

2

∫

d3
x ρHH

t (x, x) + ρLL
t (x, x)

± ρHL
t (x, x) ± ρLH

t (x, x) (19)

with ρ0 = |φin〉〈φin|. In [1], the authors are interested in
initial states of the form |φin〉 = |Ψα〉 ⊗ |M0〉 where |Ψα〉
is a Gaussian wave-function of width

√
α in position. For

such a state:
∫

d3
x ρµν

t (x, x) =
e−i(mµ−mν)t

2
(

1 +
λα(mµ−mν)2

2m2

0

t
)3/2

. (20)

Hence finally:

P QMUPL

α,M0
→M0/M̄0

(t) =
1

2
± cos(∆m t)

2
(

1 + λα∆m2

2 m2

0

t
)3/2

. (21)
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Notice again that the total probability is naturally con-
served. This result is exact and the first two terms of the
perturbative expansion in λ computed in [1] are found
to be incorrect, even for θ(0) = 1/2 (which, as we shall
later argue, is the correct value to put in all the formu-
las in [1]). The first two terms in [1] agree with (21)
with an exponent 1/2 instead of 3/2 presumably because
the authors have inaccurately extrapolated from the 1-
dimensional case. Notice that the damping of the oscilla-
tions is algebraic, not exponential. However, the details
of the long time behavior of the oscillations should be
considered with care as the kinetic term of the Hamil-
tonian is neglected in this approach and the results are
heavily sensitive to the initial spreading of the wave func-
tion (we are in the “collapse” regime described e.g. in
[4, 5]).

B. CSL model

We now derive the correct results for the CSL model.
It is obtained by fixing:

Âx =

∫

d3
y g(x − y) |y〉〈y|

⊗
[

mH

m0
|MH〉〈MH | +

mL

m0
|ML〉〈ML|

] (22)

where x ∈ R3 is now a continuous index, g is a Gaussian
smearing function of width rC and we have kept the first
quantization notations for simplicity. For this model, λ
is traditionally replaced by γ.

For the same reason as before, the transition probabil-
ities between mass eigenstates are trivial as the ME does
not couple different mass states:

P CSL
MH/L→MH/L

= 1, (23)

P CSL
MH/L→ML/H

= 0. (24)

As before, the ME is diagonal in the position / mass
eigenstate operator basis:

d

dt
ρµν

t (x, y) =
{

− i(mµ− mν)

− γ

2m2
0

[

(m2
µ + m2

ν) g ∗ g(0)

−2 mµmν g ∗ g(x − y)
]

}

ρµν
t (x, y),

(25)

where g ∗ g is the convolution product of g with itself.
For a Gaussian, this simply multiplies the variance by
2 and g ∗ g(0) = (4πr2

C)−3/2. As before, we obtain the
transition probabilities:

P CSL
M0

→M0/M̄0 (t) =
1

2
± cos(∆m t)

2
exp

[

− γ∆m2 t

2m2
0(4πrc)3/2

]

,

(26)
probabilities which do not depend on the spatial profile
of the initial wave function. This time, the exact result
(26) agrees with the guess (23) of [1] (again provided
θ(0) = 1/2).

IV. UNDERSTANDING THE ERROR

As we have shown, using the ME (6) is a quick and
safe way to compute transition probabilities exactly or
perturbatively. Nonetheless, it is important to show what
went wrong in the computations made in [1]. The authors
first introduced a new linear SDE:

d|φt〉 =

[

− iĤ dt + i
√

λ

N
∑

i=1

ÂidWi,t − λ

2

N
∑

i=1

Â2
i dt

]

|φt〉.

(27)

This SDE gives the same ME (6) as the original SDE (1)
once averaged at the density matrix level (although, of
course, all the “collapse” properties are lost). Instead of
looking at the ME directly, the authors rewrite (27) in
Stratonovich form:

d|φt〉 =

[

− iĤ dt + i
√

λ

N
∑

i=1

Âi ◦ dWi,t

]

|φt〉, (28)

where
∫

· ◦ dW denotes the Stratonovich integral. The
authors then attempt to apply perturbation theory on
this SDE by replacing stochastic integrals with stan-
dard integrals. After astonishingly tedious computations,
their final results depend on the integral:

I =

∫ t

0

E
[

Ẇi,tẆi,s

]

ds, (29)

which is ambiguous if one only relies on the rule of thumb
that E

[

Ẇi,tẆi,s

]

≈ δ(t − s) implying I = 1 − θ(0). In
[1], θ(0) is taken as a new parameter, supposedly further
characterizing the noise of the collapse model.

However, as we have previously shown, the model is
fully specified by the initial SDE (1) and no ambiguity
can remain. As we have seen, the correct results (exclud-
ing the additional independent error made in [1] for the
QMUPL model) are obtained for θ(0) = 1/2. Let us see
why this is the case without using the ME. To make sure
that perturbation theory is well defined and that we can
use standard integrals, we can drive the SDE (28) with
regularized noise processes Ẇ ε

i,t:

Ẇ ε
i,t =

∫

R

δε(t − u) dWi,u, (30)

where δε is a smooth function converging to a Dirac delta
when ε → 0. By virtue of the Wong-Zakäı theorem [6],
the solutions of the ordinary differential equation:

d

dt
|φt〉 =

[

− iĤ + i
√

λ

N
∑

i=1

ÂiẆ
ε
i,t

]

|φt〉 (31)

converge to those of the SDE (28) in Stratonovich form

provided the mollifier δε is well behaved. A perturbation
expansion of |φt〉〈φt| using (31), followed by an averaging
term by term will then lead to integrals of the form:

Iε =

∫ t

0

E
[

Ẇ ε
i,tẆ

ε
i,s

]

ds. (32)
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The latter can be computed exactly with the help of the

Itô isometry
(∫

f(t)dWt

)2
=

∫

f(t)2dt to yield:

Iε =

∫ t

0

ds

∫

R

du δε(t − u)δε(s − u) (33)

=

∫ t

0

ds

∫

R

du δε(s + u)δε(u) (34)

=
1

2

∫ t

−t

ds

∫

R

du δε(s + u)δε(u) −→
ε→0

1/2. (35)

Consequently, θ(0) = 1/2 and it is the only value allowed.
Notice that this result requires no symmetry property of
the mollifier. Any other choice would correspond to a
different underlying SDE.

V. CONCLUSION

Spontaneous collapse models have interesting effects
on mesonic systems. They yield decoherence in the mass

basis which damps oscillations in the flavor basis. This
latter result had been previously preturbatively derived
(correctly) in [7, 8], albeit with the same perilous method
as in [1]. However spontaneous collapse model cannot
yield additional decay of neutral mesons beyond what
would be put by hand with a phenomenological non-
Hermitian Hamiltonian. Further, the SDE (1) fully char-
acterizes the model and there is no additional free pa-
rameter. We may conclude with a methodological com-
ment. When computing the influence of collapse models
on transition probabilities, it is safer to carry perturba-
tive expansions at the master equation level which is a
linear equation with regular solutions. Additionally, ex-
act solutions are often easier to find on averaged equa-
tions. Finally, if one insists in doing perturbative ex-
pansions directly on SDEs (which might be necessary for
more complicated theories), smoothing the noise starting
from the Stratonovich representation is a good way to lift
possible ambiguities.
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