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We achieve an explicit construction of the lowest Landau level (LLL) projected wave functions
for composite fermions in the periodic (torus) geometry. To this end, we first demonstrate how the
vortex attachment of the composite fermion (CF) theory can be accomplished in the torus geometry
to produce the “unprojected” wave functions satisfying the correct (quasi-)periodic boundary con-
ditions. We then consider two methods for projecting these wave functions into the LLL. The direct
projection produces valid wave functions but can be implemented only for very small systems. The
more powerful and more useful projection method of Jain and Kamilla fails in the torus geometry
because it does not preserve the periodic boundary conditions and thus takes us out of the original
Hilbert space. We have succeeded in constructing a modified projection method that is consistent
with both the periodic boundary conditions and the general structure of the CF theory. This method
is valid for a large class of states of composite fermions, called “proper states,” which includes the
incompressible ground states at electron filling factors ν = n

2pn+1
, their charged and neutral excita-

tions, and also the quasidegenerate ground states at arbitrary filling factors of the form ν = ν∗

2pν∗+1
,

where n and p are integers and ν∗ is the CF filling factor. Comparison with exact results known for
small systems for the ground and excited states at filling factors ν = 1/3, 2/5 and 3/7 demonstrates
our LLL-projected wave functions to be extremely accurate representations of the actual Coulomb
eigenstates. Our construction enables the study of large systems of composite fermions on the torus,
thereby opening the possibility of investigating numerous interesting questions and phenomena.
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I. INTRODUCTION

The fractional quantum Hall effect (FQHE)1 is one of
the most wonderful collective states discovered in nature,
serving as a quintessential prototype for emergent topo-
logical order and triggering a wealth of novel physics
and concepts2–4. A central role in its explanation is
played by explicit microscopic wave functions, which re-
veal the underlying physics, allow an explicit confirma-
tion of this physics through comparisons to exact wave
functions known for small systems, and enable calcula-
tion of observables that can be compared quantitatively
with experimental measurements.

In 1983 Laughlin constructed wave functions for the
incompressible states at ν = 1/(2p+ 1), p integer, using
the symmetric gauge of the planer geometry5 in which
the vector potential is given by A = 1

2Br × ẑ. The

Laughlin wave function was generalized by Haldane6 to
the spherical geometry, in which electrons move on the
surface of a sphere subject to a radial magnetic field.
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Explicit wave functions for a broader class of fractional
quantum Hall (FQH) states and their excitations were
constructed within the composite fermion (CF) theory4,7.
Composite fermions are topological bound states of elec-
trons and an even number (2p) of quantized vortices,
often viewed as bound states of electrons and 2p mag-
netic flux quanta. They experience an effective mag-
netic field B∗ = B − 2pρφ0, where B is the external
magnetic field, ρ is the electron or the CF density, and
φ0 = hc/e is the flux quantum. Composite fermions
form Landau-like levels in the effective magnetic field,
called Λ levels (ΛLs), and have a filling factor ν∗ given
by ν = ν∗/(2pν∗±1). The CF theory provides a qualita-
tive explanation of the phenomenology of the FQHE in
the lowest Landau level (LLL). In particular, the FQHE
of electrons at ν = n/(2pn±1) is explained as the integer
quantum Hall effect (IQHE) of composite fermions at CF
filling factors ν∗ = n, with the + (−) sign corresponding
to the binding of positive (negative) vortices.

The Jain CF wave functions are constructed by
“composite-fermionizing” the known wave function of
IQHE states of noninteracting electrons at filling factor
ν∗. The construction proceeds by first binding vortices
to electrons to convert them into composite fermions,
and then projecting the resulting wave function into the
LLL. For this purpose Laughlin’s symmetric gauge of the
planer geometry is the most convenient, because it al-
lows a transparent definition for vortex attachment and
a straightforward prescription for LLL projection7–10.
However, the disk geometry is not very suitable for calcu-
lations of the bulk properties of the FQHE because of the
presence of edges, which necessitates going to very large
systems before the bulk behavior manifests itself, and
also because each LL has an infinite degeneracy, thus
making the definition of n filled LL states ambiguous.
Haldane’s spherical geometry6 has proved more useful
for practical calculations. Because of the compactness of
this geometry, each Landau level (LL) has a finite de-
generacy, and thus incompressible states are sharply de-
fined. The CF theory has been generalized to the spheri-
cal geometry9–12. Furthermore, a LLL projection method
has been developed by Jain and Kamilla (JK)9,10 that al-
lows calculations for large numbers of composite fermions
for both disk and spherical geometries. This has enabled
the study of many states and phenomena that are not
manifest in small systems, and also played an important
role in carrying out detailed quantitative comparisons be-
tween the CF theory and experiment4.

Another important geometry for the study of the
FQHE is the periodic, or the torus, geometry13, which
is the topic of this article. Already in 1985, Haldane
and Rezayi14 generalized the Laughlin wave function to
the torus geometry and showed that it has a 2p+ 1-fold
center-of-mass (CM) degeneracy. The periodic boundary
conditions of the torus geometry are widely used in con-
densed matter physics, and in the context of FQHE, this
geometry provides crucial information about the topolog-
ical content of various FQH states through their ground
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FIG. 1. Composite fermions on a torus.

state degeneracies. The torus geometry is also the most
natural geometry for the study of crystal and stripe
phases15, Hall viscosity16, the thin torus limit17–19, map-
ping into spin models20,21, entanglement properties22,
and edge structure23. This geometry is necessary for
studying FQHE for interacting particles on a Hofstadter
lattice24,25. In recent years, there has been interest in
the feasibility of “fractional Chern insulators,” which re-
fer to FQH states of interacting particles in Haldane-type
lattice models26 where the net magnetic field through
a unit cell is zero. Various articles have investigated
fractional Chern insulators by numerical diagonalization
in the torus geometry27–33, and wave functions for cer-
tain FQH states have been constructed34–36. Finally, the
torus geometry is very useful for studying competition
between different candidate states at a given filling fac-
tor. In the spherical geometry, such candidate states of-
ten occur at different Nφ for a finite system (although
ν = limN→∞N/Nφ is the same for all of them), making
it difficult to carry out a direct comparison or to study
the phase transition between them. (Here N is the num-
ber of electrons and Nφ is the number of flux quanta
φ0 = hc/e passing through the sample.)

It would therefore be extremely useful to have explicit
wave functions of composite fermions on a torus (Fig. 1)
for the investigation of general FQH states and their ex-
citations. A generalization of the CF theory to the torus
geometry has proved nontrivial, however. One of the
stumbling blocks appears to be that the natural gauge
for the torus geometry is the Landau gauge, whereas the
most natural gauge for composite fermionization is the
symmetric gauge. In the symmetric gauge, vortex at-
tachment is accomplished by multiplication by the factor∏
j<k(zj − zk) and LLL projection amounts, essentially,

to the replacement z̄ → 2∂/∂z, where z = x + iy de-
notes the electron coordinates; analogous simple forms
are not available in the Landau gauge. Additionally, it
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is not immediately clear how to represent derivatives in
the periodic geometry, which are an integral part of the
LLL-projected Jain wave functions.

One may wonder why it should be easier to construct,
in the torus geometry, the Laughlin wave function than to
construct the wave functions for other FQH states. The
reason is that the Laughlin wave function has a Jastrow
form with a simple analytic structure: In this wave func-
tion, all zeros of a given particle coordinate sit exactly
on other particles; i.e., there are no wasted zeros. The
Laughlin wave function is thus fully determined, with the
LLL restriction, by specifying the short distance behav-
ior as two particles are brought together. Ensuring the
short distance behavior along with the correct periodic
boundary conditions is sufficient to uniquely identify the
Jastrow form for the Laughlin wave function on the torus,
modulo the CM degree of freedom14. It is evident that
this principle cannot be extended for the construction of
wave functions for the general FQH states, because they
do not have a Jastrow form and are not uniquely de-
termined by their short distance behavior. For example,
with the exception of the ground state at ν = 1/3, all LLL
wave functions at filling factors of the form ν = n/(2n+1)
must vanish as a single power of the distance between
two particles as they are brought close. Thus there is
only one zero on each particle, with the remaining ze-
ros distributed in a very complex fashion37. Even the
wave function of a single quasiparticle of the 1/3 state
was left as an open problem in Ref. 14. The CF the-
ory circumvents this issue by approaching the problem
from a different paradigm, which shows that the seem-
ingly complex LLL wave functions are “adiabatically con-
nected to,” and LLL projections of, simpler wave func-
tions that reveal the physics of the more general states
in terms of composite fermions occupying ΛLs.

Significant progress has been made in writing wave
functions for general FQH states in the torus geometry
based on a conformal field theory (CFT) formulation of
composite fermions16,38–50 and an explicit construction of
their wave functions as CFT correlators51,52. Hermanns
et al.40 constructed wave functions for the ground states
at ν = n/(2pn+ 1) in the torus geometry. They demon-
strated that the resulting wave function for the 2/5 state
has a high overlap with the exact Coulomb wave function.
This construction was generalized to arbitrary fractions
by Bergholtz et al.41. Hansson et al.42,43 constructed
wave functions for the quasiparticles of both Abelian and
non-Abelian FQH states, again with guidance from CFT.
More recently, Hermanns48 constructed the ground state
wave functions for ν = n/(2pn+1) following the standard
approach4,7, and demonstrated, for small systems, that
projection into the LLL produces wave functions that
have very high overlap with the exact Coulomb eigen-
states. Quasiparticles of the Laughlin state were also
considered by Greiter et al.53. Fremling et al.54 have
developed an energy projection method to produce LLL
CF wave functions in the torus geometry. These advances
notwithstanding, exact diagonalization has remained the

primary method for studying the general FQH states in
the torus geometry, because the currently available wave
functions are not easy to work with and cannot be eval-
uated for systems larger than those accessible to exact
diagonalization studies.

We present in this work a different construction for
the LLL wave functions of composite fermions. The ad-
vantage of our method is that we can construct wave
functions for a large class of ground and excited states
at arbitrary filling factors of the form ν = ν∗/(2pν∗+ 1),
and also evaluate them on the computer for much larger
systems than possible in exact diagonalization studies.
We give here a brief outline of our method, which should
be useful for the reader who is not interested in the tech-
nical details. More complete derivations and explicit ex-
pressions can be found in the subsequent sections and
appendices.

We consider a torus defined by two edges of the par-
allelogram ξ1 = L1 and ξ2 = L1τ , where τ is a complex
number that specifies the geometry of the torus (see Fig.
1). The magnetic field must be chosen so that an integer
number Nφ flux quanta pass through the system. A cru-
cial step below is to express the single particle wave func-
tions in the torus geometry in the symmetric gauge53,
reviewed in Sec. II. The single-particle wave functions
are chosen to satisfy the boundary conditions

t(L1)ψ(z) = eiφ1ψ(z)

t(L1τ)ψ(z) = eiφτψ(z)
(1)

where t(L1) and t(L1τ) are magnetic translation opera-
tors. The phases φ1 and φτ define the Hilbert space. It
is convenient to write the single particle wave functions
as

ψ(z) = e
z2−|z|2

4l2 f(z) (2)

where l =
√
~c/eB is the magnetic length. The wave

function of n filled LLs is denoted as

Ψn ≡ e
∑
i

z2i−|zi|
2

4l2 χn(fi(zj)) (3)

where χn(fi(zj)) is a Slater determinant formed from the
single particle wave functions fi(zj), where the subscript
i denotes collectively the quantum numbers (LL index,
momentum) of the single-particle state. In particular, the
wave function of one filled LL, Ψ1, assumes the simple
form

Ψ1[zi, z̄i] ∼ e
∑
i

z2i−|zi|
2

4l2 F1(Z)
∏
j<k

θ

(
zj − zk
L1

|τ
)

(4)

where θ is the odd Jacobi theta function55 and

Z =

N∑
i=1

zi (5)

is the CM coordinate for a system of N electrons.
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In Sec. III A we show how a product of three single
particle wave functions produces, with an appropriate
choice of boundary conditions for each factor, a valid
wave function in our Hilbert space. The magnetic field
of the product is the sum of the magnetic fields of the
individual factors. It thus follows that the standard un-
projected Jain wave functions

Ψunproj
n

2pn+1
= ΨnΨ2p

1 (6)

are legitimate wave functions, where Ψn is wave function
of n filled LLs in an effective magnetic field corresponding
to magnetic flux

N∗φ = Nφ − 2pN (7)

where Nφ is the physical magnetic flux, and Ψ1 is con-

structed at magnetic flux N
(ν=1)
φ = N . The states

Ψunproj are in general not confined to the LLL, however,
and ought to be projected into the LLL to calculate quan-
tities appropriate for the large magnetic field limit where
admixture with higher LLs is negligible.

The use of symmetric gauge allows us to accomplish
the LLL projection exactly as in the disk geometry, i.e.,
by moving all z̄’s to the left and replacing z̄ → 2l2∂/∂z
with the understanding that the derivatives do not act

on the Gaussian factor e−|z|
2/4l2 . This produces the LLL

projected wave function

Ψ n
2pn+1

= e
∑
i

z2i−|zi|
2

4l2 χn[f̂i(∂/∂zj , zj)]F
2p
1 (Z)

∏
j<k

[
θ

(
zj − zk
L1

|τ
)]2p

(8)

where the operator f̂i(∂/∂zj , zj) is obtained from the sin-
gle particle wave function fi(z̄j , zj) by moving z̄j to the
left and making the replacement z̄j → 2l2∂/∂zj + zj .
This is analogous to the original method for projec-
tion, called “direct projection” in the disk and spheri-
cal geometries11,12,56, and the resulting wave functions
are equivalent, modulo gauge choice, to those obtained
by Hermanns48. The direct projection corresponds to
expanding the unprojected wave function in terms of
the Slater determinant basis functions and keeping only
the part residing in the LLL. This projection originally
played a crucial role in establishing the validity of the
CF theory, but is not useful for practical calculations, be-
cause it allows projection for only small systems11,12,56,57.
The reason is that one needs to keep track of all individ-
ual LLL Slater determinant basis functions, the number
of which grows exponentially with the system size and
soon becomes too large to store. A more useful form
for LLL projection was obtained by JK9,10, which can
be implemented for large systems of composite fermions,
allowing a determination of thermodynamic limits for
many quantities of interest. Both the direct and the JK
projection methods produce very accurate, though not
identical, LLL wave functions.

We implement the JK projection in the following fash-
ion. We show in Appendix E that in Eq. 8 the CM
part F 2p

1 (Z) can be commuted through χn. Then, in
the spirit of the JK projection method (briefly reviewed
in Sec. III E), we write

ΨJK
n

2pn+1
= e

∑
i

z2i−|zi|
2

4l2 F 2p
1 (Z)χn[f̂i(∂/∂zj , zj)J

p
j ] (9)

where

Jj =
∏

k(k 6=j)

θ

(
zj − zk
L1

|τ
)

(10)

In Sec. III F we show that the JK projection method
fails in the torus geometry, because it does not preserve
the periodic boundary conditions and thus takes us out
of our original Hilbert space.

The principal achievement of our work is to show that,
for the so-called “proper states” defined below, it is pos-
sible to construct a modified projection method that pro-
duces LLL wave functions that have the CF structure and
also satisfy the correct boundary conditions. In essence,
we derive a closely related operator ĝ such that

Ψ n
2pn+1

= e
∑
i

z2i−|zi|
2

4l2 F 2p
1 (Z)χn[ĝi(∂/∂zj , zj)J

p
j ] (11)

satisfies the correct boundary conditions. It is shown in
Sec. III G and Appendix F that ĝi(∂/∂zj , zj) is obtained

from f̂i(∂/∂zj , zj) by making the replacement ∂/∂zk →
2∂/∂zk for all derivatives acting on Jpj . We note that

F 2p
1 (Z) does not account for the entire CM coordinate

dependence of the wave function.
It is known from general considerations that there are

2pn+1 degenerate eigenstates at ν = n/(2pn+1), which
are related by CM translation operator. The natural
wave function obtained in the CF theory is in general
not an eigenstate of the CM translation operator, but is
a specific linear superposition of the 2pn + 1 degenerate
ground states. Appendix D shows how, within our ap-
proach, we can construct 2pn+ 1 eigenstates of the CM
translation operator.

We further show that our method provides legitimate
wave functions for a much broader class of states, which
we term “proper states.” A proper state is defined by
the condition that if the orbital of a given “momentum”
quantum number is occupied in the nth ΛL, then it is
occupied in all of the lower ΛLs. An example of a proper
state is shown in Fig. 2, along with a state that is not
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proper. Proper states include (i) the ground states at
ν = n/(2pn + 1); (ii) CF quasiholes, which contain n
ΛLs fully occupied except for a single hole in the nth
ΛL; (iii) CF quasiparticles, which contain a single com-
posite fermion in the (n+ 1)st ΛL with the lowest n ΛLs
fully occupied; (iv) neutral excitations, which contain a
CF-particle hole pair, provided that the particle is not di-
rectly above the hole. These are depicted in Fig. 3. In all
of these cases, we first construct the Slater determinant
χν∗ for the corresponding state at ν∗, and composite-
fermionize it to obtain

Ψ ν∗
2pν∗+1

= e
∑
i

z2i−z̄
2
i

4l2 F 2p
1 (Z)χν∗(ĝi(∂/∂zj , zj)J

p
j ) (12)

We show in Appendix B that the construction is also
valid for the Jain states at ν = ν∗/(2pν∗ − 1) requiring
negative vortex (or flux) attachment; however, we will
not consider these states explicitly because their evalu-
ation is much more complicated than that of the states
ν = ν∗/(2pν∗ + 1).

FIG. 2. (a) An example of a “proper state.” No composite
fermion in any Λ level has a hole directly underneath it in
any Λ level. (A composite fermion is depicted as an electron
bound to two flux quanta represented by vertical arrows.) (b)
An example of a state that is not proper.

FIG. 3. Examples of certain important types of proper states:
(a) the 2/5 ground state, (b) a CF quasihole at ν = 2/5, (c)
a CF quasiparticle at ν = 2/5, and (d) a neutral CF exciton
at ν = 2/5.

The evaluation of the wave functions in Eq. 12 does
not require expansion into Slater determinant basis func-
tions, and thus can be performed for very large systems.
For illustration, we show below results for up to N = 40
particles. We have not made any attempt to ascertain
the largest N for which calculations are possible.

The fact that we have constructed LLL wave functions
does not guarantee, by any means, that these wave func-
tions are accurate representations of the actual eigen-
states of electrons interacting via the repulsive Coulomb
interaction. That must be checked by explicit calcula-
tion. We demonstrate the quantitative accuracy of our
LLL-projected wave functions by comparison with exact
results known for small systems. In particular, in Sec.
IV we calculate the Coulomb energies of our wave func-
tions for the CF quasiparticle at 1/3 and for the ground
states, CF quasiparticles, and CF quasiholes at ν = 2/5
and 3/7. These energies are very close to the Coulomb
energies obtained from exact diagonalization, establish-
ing the quantitative validity of our torus wave functions.

A remark on units is in order. We will quote the ener-
gies in units of e2/εl, where l is the magnetic length and
ε is the dielectric function of the background material.
We will not use, as is the general practice, the magnetic
length l as the unit of length, but will explicitly display
it.

II. SINGLE PARTICLE WAVE FUNCTIONS ON
TORUS

A torus is topologically equivalent to a parallelogram
with periodic boundary conditions. We define the two
edges of the parallelogram to be ξ1 = L1, ξ2 = L1τ ,
where τ is a complex number that represents the aspect
ratio of the torus. The magnetic field is perpendicular
to the plane of parallelogram B = −Bẑ. We choose the
symmetric gauge A = 1

2Br × ẑ, which would be crucial
for accomplishing LLL projection. In this subsection we
describe the single particle wave functions following the
conventions in Ref. 53.

We use z = x + iy, z̄ = x − iy as the coordinates for
particles. To describe the cyclotron and guiding-center
variables, we define two sets of ladder operators:

a =
√

2l(∂z̄ +
1

4l2
z); a† =

√
2l(−∂z +

1

4l2
z̄)

b =
√

2l(∂z +
1

4l2
z̄); b† =

√
2l(−∂z̄ +

1

4l2
z)

(13)

These satisfy

[a, a†] = [b, b†] = 1 (14)

and all other commutators vanish. In terms of the ladder
operators, the single-particle Hamiltonian can be recast
as

H =
1

2M

(
p+

e

c
A
)2

= ~ωc
(
a†a+

1

2

)
(15)

where ωc = eB/Mc is the cyclotron frequency and M is
the electron mass.

On torus geometry, the wave functions are taken to
satisfy the (quasi)periodic boundary conditions:

t(L1)ψ(z) = eiφ1ψ(z)

t(L1τ)ψ(z) = eiφτψ(z)
(16)
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where the magnetic translation operator is defined as

t(ξ) = e−
i

2l2
ẑ·(ξ×r)T (ξ) = e

1√
2l

(ξb−ξ̄b†)
(17)

In our convention, t represents the magnetic translation
operator and T represents the usual translation operator

T (ξ) = exp
(
ξ∂z + ξ̄∂z̄

)
. (18)

The following relationship between t and T will be very
useful later:

t(αL1)e
z2−|z|2

4l2 = e
z2−|z|2

4l2 T (αL1) (19)

t(αL1τ)e
z2−|z|2

4l2 = e
z2−|z|2

4l2 eiαπNφ(2z/L1+ατ)T (αL1τ)
(20)

where α is a real number between 0 and 1. It is evident
from Eq. 17 that the magnetic translation operators com-
mute with the ladder operators a and a†:

[t, a] =
[
t, a†

]
= 0 (21)

The commutation relation [t(L1), t(L1τ)] = 0 imposes
the condition that the number of flux quanta through the
surface of the torus, i.e.,

Nφ =
L2

1Im(τ)B

φ0
(22)

is an integer. Here a flux quantum is defined as φ0 =
hc/e.

A. Lowest Landau level

We first review the construction of single-particle wave
functions in the LLL in the symmetric gauge, closely fol-
lowing Greiter et al.53. For this purpose it is convenient
to write

ψ1(z) = e
z2−|z|2

4l2 f1(z) (23)

where the subscript n = 1 refers to the LLL. (We stress
that our convention is different from most other litera-
ture, where the LLL is defined as n = 0.) Combining
Eq. 16 with Eq. 23, and making use of Eq. 19, we get the
periodic boundary conditions for f1(z):

T (L1)f1(z)

f1(z)
=
f1(z + L1)

f1(z)
= eiφ1

T (L1τ)f1(z)

f1(z)
=
f1(z + L1τ)

f1(z)
= ei(φτ−πNφ(2z/L1+τ))

(24)
The solutions for Eq. 24 are given by14:

f1(z) = eikz
Nφ∏
ν=1

θ(z/L1 − wν |τ) (25)

where θ(z|τ) is the odd Jacobi theta function55:

θ(z|τ) =

∞∑
n=−∞

eiπ(n+ 1
2 )

2
τei2π(n+ 1

2 )(z+ 1
2 ) (26)

The odd Jacobi theta function is variously denoted as
θ 1

2 ,
1
2
(z|τ) or θ1(z|τ) in the literature. For simplicity we

shall suppress the subscript and use θ(z|τ), because we
do not use other types of Jacobi theta functions in this
work.

The dimension of the Hilbert space in the LLL is Nφ.
To form a complete and orthogonal basis for this Hilbert

space, we make the following choice for ψ
(n)
1 (z):

ψ
(n)
1 (z) = e

z2−|z|2

4l2 f
(n)
1 (z)

f
(n)
1 (z) = eik

(n)z

Nφ∏
ν=1

θ(z/L1 − w(n)
ν |τ), n = 0, 1, . . . , Nφ − 1

k(n) =
φ1 − πNφ + 2πn

L1
,

w(n)
ν =

1

2πNφ
(φτ − φ1τ − πNφ(2− τ)− 2πnτ + π + 2π(ν − 1))

(27)
The relations

t

(
L1

Nφ

)
ψ

(n)
1 (z) = −ei

k(n)L1
Nφ ψ

(n)
1 (z)

t

(
L1τ

Nφ

)
ψ

(n)
1 (z) = e

iτ

(
π+

k(n)L1
Nφ

)
ψ

(n+1)
1 (z), n = 0 . . . Nφ − 2

t

(
L1τ

Nφ

)
ψ

(Nφ−1)
1 (z) = e

i

(
πτ+

k
(Nφ−1)

L1τ
Nφ

+φτ−φ1τ

)
ψ

(0)
1 (z), n = Nφ − 1

(28)

show that ψ
(n)
1 (z) are eigenfunctions of t

(
L1

Nφ

)
, and are

related to one another by application of t
(
L1τ
Nφ

)
. We will

call k(n) the “momentum” of ψ
(n)
1 (z).



7

B. Higher Landau levels

In the CF construction of the FQHE states, we need
wave functions for higher LLs. Using

a†e
z2−|z|2

4l2 = e
z2−|z|2

4l2
√

2l

(
z̄ − z
2l2

− ∂z
)
, (29)

the single particle wave function in the mth LL is given
by

ψ(n)
m (z, z̄) = e

z2−|z|2

4l2
(a†f )m−1√
(m− 1)!

f
(n)
1 (z) (30)

where

a†f ≡
√

2l

(
z̄ − z
2l2

− ∂z
)

(31)

For future reference, the single particle wave functions in
the second and third LLs are:

ψ
(n)
2 (z, z̄) = e

z2−|z|2

4l2
√

2l

(
z̄ − z
2l2

f
(n)
1 (z)− ∂f

(n)
1 (z)

∂z

)
(32)

ψ
(n)
3 (z, z̄) = e

z2−|z|2

4l2
√

2l2

[(
z̄ − z
2l2

)2

f
(n)
1 (z)

− z̄ − z
l2

∂f
(n)
1 (z)

∂z
+

1

2l2
f

(n)
1 (z) +

∂2f
(n)
1 (z)

∂z2

]
(33)

That ψ
(n)
m (z, z̄) satisfies periodic boundary conditions of

Eq. 16 follows because a† commutes with the magnetic

translation operators. For the same reason, ψ
(n)
m (z, z̄)

also satisfies Eq. 28, and thus is labeled by the momen-
tum k(n). It should be clear that the dimension of the
Hilbert space is Nφ in all LLs. (This should be contrasted
with the spherical geometry, for which the dimension in-
creases by two for each successive LL.)

In what follows below, we will omit the overall normal-
ization factors for various wave functions. These are not
important when we consider many-body wave functions
that are derived from a single Slater determinant, as will
be the case in this article.

With apologies, we note that the symbols n and m will
be used to label both the momentum and the LL or ΛL
indecies. In the wave function ψ

(n)
m or f

(n)
m , the lower

index refers to the LL or the ΛL index and the upper
to the momentum. We hope this will not lead to any
confusion.

C. Wave function for one filled LL

With the knowledge of the single-particle wave func-
tions we can construct many particle wave functions as

linear superpositions of Slater determinants. In partic-
ular, the ground state wave function Ψn[zi, z̄i] at filling
ν = n is a single Slater determinant. Of special relevance
below will be the wave function Ψ1 of one filled LL:

Ψ1[zi, z̄i] = e
∑
i

z2i−|z|
2
i

4l2 χ1[fi(zj)] (34)

χ1[fi(zj)] =

∣∣∣∣∣∣∣∣∣∣
f

(0)
1 (z1) . . . f

(0)
1 (zN )

f
(1)
1 (z1) . . . f

(1)
1 (zN )

...
...

...

f
(Nφ−1)
1 (z1) . . . f

(Nφ−1)
1 (zN )

∣∣∣∣∣∣∣∣∣∣
(35)

As shown in Appendix A, Ψ1 has the simple form

Ψ1[zi, z̄i] = N e
∑
i

z2i−|z|
2
i

4l2 F1(Z)
∏
j<k

θ

(
zj − zk
L1

|τ
)

(36)

where N is a normalization factor. In particular, χ1 is
a product of a factor that depends only on the CM co-
ordinate defined in Eq. 5 and a factor that contains only
the relative coordinates. The last expression in the above
equation follows because it is the only function that de-
pends only on zi’s, vanishes as a single power of the dis-
tance when two particles are brought together, and is
consistent with the periodic boundary conditions. Ap-
pendix A shows that the wave functions in Eqs. 35 and
36 have the same behavior under CM translation.

III. COMPOSITE FERMIONS

In this section, we construct wave functions for low
energy states at arbitrary filling factors of the form
ν = ν∗

2pν∗+1 in terms of composite fermions at filling

ν∗. Our construction is valid for all “proper” states de-
fined in the introduction, which include the incompress-
ible ground states at ν = n/(2pn+ 1), their charged and
neutral excitations (except the neutral exciton in which
the excited CF particle is directly above the CF hole left
behind), and the quasidegenerate ground states at arbi-
trary fillings. For this purpose, we first prove that the
product of single particle wave functions preserves the
periodic boundary conditions. Then we construct the
unprojected Jain wave functions and their Direct pro-
jection into the LLL. We finally show that the standard
JK projection method fails for the torus geometry, but a
modified projection method yields legitimate LLL wave
functions for all proper states. In the following section,
we explicitly evaluate the Coulomb energies of ground
and excited states at ν = 1

3 , ν = 2
5 , and ν = 3

7 and find
that they are extremely close to the corresponding exact
energies.

A. Products of single particle wave functions

The general wave functions for composite fermions are
the products of Slater determinants. Therefore, we begin
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by asking what periodic boundary conditions should be
imposed on each factor to ensure the product satisfies
the right periodic boundary conditions. To this end, we
consider products of single particle wave functions:

ψ(z, z̄) =
∏
i

ψ(i)(z, z̄)

=
∏
i

e
z2−|z|2

4l(i)2 f (i)(z, z̄)

= e
z2−|z|2

4l2

∏
i

f (i)(z, z̄) (37)

The magnetic length l of the product is related to the
magnetic lengths of the individual factors as

1

l2
=
∑
i

1

l(i)2
(38)

which implies that

Nφ =
∑
i

N
(i)
φ (39)

The boundary conditions for ψ(z, z̄) with phases φ1

and φτ translates into

T (L1)[
∏
f (i)(z)]

[
∏
f (i)(z)]

=
∏
i

eiφ
(i)
1 = eiφ1

T (L1τ)[
∏
f (i)(z)]

[
∏
f (i)(z)]

=
∏
i

ei[φ
(i)
τ −πN

(i)
φ (2z/L1+τ)] = ei[φτ−πNφ(2z/L1+τ)]

(40)

where φ
(i)
1 and φ

(i)
τ are the phases for the boundary con-

ditions on the individual factors f (i)(z). Equations 40
are satisfied provided we set

φ1 =
∑
i

φ
(i)
1

φτ =
∑
i

φ(i)
τ

(41)

and also make use of Eq. 39.

The above proof works for a product of any number of
single particle wave functions. As shown in Appendix B,
the product also satisfies the correct boundary conditions
if the first single particle wave function is evaluated at
a “negative” magnetic field, i.e., ψ(1)(z) is replaced by
its complex conjugate. (We thank Mikael Fremling for
pointing out that a similar construction works in the Lan-
dau or τ gauge, which helped us eliminate an error in an
earlier version of the manuscript.) We will consider only
the states at ν = ν∗/(2ν∗ + 1) in what follows because
the LLL projection for states at ν = ν∗/(2ν∗−1) is much
harder to evaluate.

B. Unprojected wave functions

A composite fermion is the bound state of an elec-
tron and even number 2p of quantized vortices. For the
ground states of ν = n

2pn+1 , we write the unprojected

wave functions:

Ψunproj
n

2pn+1
= ΨnΨ2p

1 (42)

where Ψn is the wave function of n filled LLs at the effec-
tive flux quanta N∗φ = N/n and Ψ1 is the wave function

of 1 filled LL at the effective flux quanta N
(1)
φ = N . The

product wave function Ψunproj
n

2pn+1
occurs at flux

Nφ = N∗φ + 2pN (43)

and thus corresponds to

ν =
N

Nφ
=

n

2pn+ 1
(44)

Recalling that the translation operators for different par-
ticles commute, the results of the previous section regard-
ing products of single particle wave functions imply that
Ψunproj

n
2pn+1

satisfies the correct boundary conditions. Be-

cause the number of states in each LL is precisely equal
to Nφ in the periodic geometry, the relation Eq. 44 has
no shift for small systems (in contrast to the spherical
geometry).

Ψn is a determinant composed of the appropriate
single-particle states. It is convenient to express the wave
function as

Ψunproj
n

2pn+1
[zi, z̄i] = e

∑
i(z

2
i−|zi|

2)

4l2 χn[fi(zj)](χ1[fi(zj)])
2p

(45)
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where

χn[fi(zj)] =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f
(1)
1 (z1) f

(1)
1 (z2) . . . f

(1)
1 (zN )

f
(2)
1 (z1) f

(2)
1 (z2) . . . f

(2)
1 (zN )

...
...

...

f
(Nφ)
1 (z1) f

(Nφ)
1 (z2) . . . f

(Nφ)
1 (zN )

f
(1)
2 (z1, z̄1) f

(1)
2 (z2, z̄2) . . . f

(1)
2 (zN , z̄N )

f
(2)
2 (z1, z̄1) f

(2)
2 (z2, z̄2) . . . f

(2)
2 (zN , z̄N )

...
...

...

f
(Nφ)
n (z1, z̄1) f

(Nφ)
n (z2, z̄2) . . . f

(Nφ)
n (zN , z̄N )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(46)

The single particle wave functions f
(i)
n (z1, z̄1) were given

in Eq. 29.
The wave function Ψ satisfies the periodic bound-

ary conditions given in Eq. 16 provided that the single-
particle wave functions in χn and χ1 satisfy Eq. 16, and
the various phases satisfy

φ1 = φ
(n)
1 + 2pφ

(1)
1

φτ = φ(n)
τ + 2pφ(1)

τ

(47)

We note that the wave function in Eq. 42 does not,
in general, have a well-defined CM momentum. To see
this, we recall that the CM momentum is defined by the
eigenvalue of the CM magnetic translation operator

tCM

(
L1

Nφ

)
=

N∏
i=1

t

(
L1

Nφ

)
(48)

where L1/Nφ is the smallest discrete value that preserves
the boundary conditions30,58. While Ψn is the eigenstate

of tCM

(
L1

N∗φ

)
and Ψ1 is the eigenstate of tCM

(
L1

N

)
, the

product Ψunproj
n

2pn+1
is not an eigenstate of tCM

(
L1

Nφ

)
, since

L1

Nφ
is smaller than both L1

N∗φ
and L1

N .

It is known from general considerations14,30,53,58 that
the ground state at ν = n/(2pn+ 1) has a degeneracy of
2pn + 1, with the different ground states related by the
CM magnetic translation. The wave function for ground
state at ν = n

2pn+1 obtained above is thus a superposition

of the 2pn + 1 CM eigenstates. That is not a problem
for the calculation of many observable quantities, such as
the energy or the pair correlation function, because they
do not depend on the CM part of the wave function.
Nonetheless, it would be important to derive explicitly
the correct degeneracy of the ground state. For Laugh-
lin’s wave function at ν = 1/(2p+1), the CM part factors
out which allows an explicit construction of the 2p + 1
wave functions that are eigenstates of the CM operator,
as shown in Appendix C. In Appendix D we show how,
starting from the wave function in Eq. 45, we can con-
struct 2pn+ 1 degenerate states at ν = n/(2pn+ 1) with
well-defined CM momenta.

C. LLL projection of products of single particle
wave functions

In the CF theory, we need to project the products
of wave functions to the LLL. An advantage of us-
ing the symmetric gauge is that in the torus geometry
the projection method is analogous to that in the disk
geometry4,9,10. However, we need to check that the pro-
jected wave functions satisfy the correct periodic bound-
ary conditions for individual particles.

In this section, we prove the following result:

PLLLψnψ
′
1ψ
′′
1 = e

z2−|z|2

4l2 f̂nf
′
1f
′′
1 (49)

where f̂n is an operator that does not act on the Gaussian
and exponential factors (which have been moved to the
left) and does not depend on the wave function (e.g.,
f ′1f
′′
1 ) on which it is acting (provided it is in the LLL).

Following the standard method of LLL projection, we
have

e
z2−|z|2

4l2 f̂n = e
−|z|2

4l2 fn(z̄ → 2l2∂/∂z, z)e
z2

4l2 (50)

It should be understood here and below that in fn(z̄ →
2l2∂/∂z, z), z̄ is moved to the far left before making the
replacement z̄ → 2l2∂/∂z.

Let us illustrate how to derive f̂n by taking an example
in the second LL. First, we write out the unprojected

wave function with the Gaussian factor e−
|z|2

4l2 on the far
left:

ψ(z, z̄) = ψ2(z, z̄)ψ′1(z, z̄)ψ′′1 (z, z̄)

= e
−|z|2

4l2

[ z̄

2l∗2
e
z2

4l2 f1(z)f ′1(z)f ′′1 (z)−
( z

2l∗2
f1(z) + ∂zf1(z)

)
e
z2

4l2 f ′1(z)f ′′1 (z)
]

(51)

Here l is the physical magnetic length and l∗ is the effec-
tive magnetic length for composite fermions satisfying

l∗2

l2
=

Nφ
|N∗φ |

(52)

Next, we replace z̄ with 2l2∂z and let it act on the rest
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of the wave function:

PLLLψ2(z, z̄)ψ′1(z, z̄)ψ′′1 (z, z̄)

= e
z2−|z|2

4l2

[
l2 − l∗2

l∗2
∂f1

∂z
f ′1f
′′
1 +

l2

l∗2
f1∂z(f

′
1f
′′
1 )

]
= e

z2−|z|2

4l2 f̂2f
′
1f
′′
1

≡ e
z2−|z|2

4l2 f(z) (53)

with

f̂
(n)
2 (z) =

l2 − l∗2

l∗2
∂f

(n)
1

∂z
+

l2

l∗2
f

(n)
1

∂

∂z
(54)

where we have now restored the momentum index n. (We
shall often suppress the dependence on z̄ or ∂/∂z to avoid

clutter.) The important point is that the form of f̂
(n)
2 (z)

does not depend on the wave function on which it acts,
so long as the wave function is in the LLL.

We need to check whether Eq. 53 satisfies the correct
periodic boundary conditions. From the periodic bound-
ary conditions on the product of unprojected single-
particle wave functions, we know the following:

N
(1)
φ +N

(2)
φ +N

(3)
φ = Nφ

φ
(1)
1 + φ

(2)
1 + φ

(3)
1 = φ1

φ(1)
τ + φ(2)

τ + φ(3)
τ = φτ

(55)

From algebra it follows that f(z) defined in Eq. 53 satis-
fies the first equation of Eq. 24:

T (L1)f(z)

f(z)
= eiφ1 (56)

To check that f(z) also satisfies the second equation of
Eq. 24, let us apply T (L1τ) on f(z):

T (L1τ)f(z) =
l2 − l∗2

l∗2

[
− i2π
L1

N
(1)
φ e

i
(
φτ−πNφ

(
2z
L1

+τ
))
f1f
′
1f
′′
1 + e

i
(
φτ−πNφ

(
2z
L1

+τ
))
∂f1

∂z
f ′1f
′′
1

]
+

l2

l∗2

[
− i2π
L1

(
N

(2)
φ +N

(3)
φ

)
e
i
(
φτ−πNφ

(
2z
L1

+τ
))
f1f
′
1f
′′
1 + e

i
(
φτ−πNφ

(
2z
L1

+τ
))
f1∂z (f ′1f

′′
1 )

]
(57)

The first terms inside both sets of large square brackets
cancel because

(l∗2 − l2)N
(1)
φ = l2(N

(2)
φ +N

(3)
φ ) (58)

Then we have

T (L1τ)f(z) = ei(φτ−πNφ( 2z
L1

+τ))f(z) (59)

The periodic boundary conditions are therefore indeed
preserved. Of course, that is expected from the fact that
the unprojected product wave function satisfies the cor-
rect periodic boundary conditions, and because its LLL
and higher LL components are orthogonal, they must
both separately satisfy the correct periodic boundary
conditions.

Similarly, it can be shown that the operator corre-
sponding to a single-particle wave function in the third
ΛL is (with the momentum index n)

f̂
(n)
3 (z) =

l∗2 − l2

2l∗4
f

(n)
1 (z) +

(l∗2 − l2)2

l∗4
∂2f

(n)
1 (z)

∂z2
+

2l2(l2 − l∗2)

l∗4
∂f

(n)
1 (z)

∂z

∂

∂z
+

l4

l∗4
f

(n)
1 (z)

∂2

∂z2
(60)

D. Direct projection

Using the results from the previous section, the LLL
projected wave function can be written as

ΨDirect
ν∗

2pν∗+1

[zi, z̄i] = e

∑
i(z

2
i−|zi|

2)

4l2 χν∗ [f̂i(∂/∂zj , zj)]χ
2p
1

= e

∑
i(z

2
i−|zi|

2)

4l2 χν∗ [f̂i(∂/∂zj , zj)]F
2p
1 (Z)

N∏
i<j

[
θ

(
zi − zj
L1

|τ
)]2p

(61)
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Even though Eq. 61 gives a LLL projected wave func-
tion with correct periodic boundary conditions, it is not
possible to explicitly evaluate it except for small sys-
tems. The reason is that the projection requires keep-
ing track of all Slater determinant basis functions, the
number of which grows exponentially with the number
of particles, N . This problem was circumvented in the
disk and spherical geometries through another projection
method, called the JK projection, to which we now come.

E. JK projection: review for disk geometry

Let us briefly review the JK projection for the disk
geometry. The notation in this subsection will be slightly
different from that in the rest of the paper, but should
be self-explanatory.

The unprojected wave functions in the disk geometry
have the form

Ψunproj
ν∗

2ν∗+1

= e−
∑
j

|zj |
2

4l2 χν∗ (fi(z̄j , zj))
∏
j<k

(zj − zk)2p (62)

where fi(z̄j , zj) are single particle wave functions, with
i collectively denoting the LL and momentum quantum
numbers. The Direct projection is obtained as

Ψ ν∗
2ν∗+1

= e−
∑
j

|zj |
2

4l2 χν∗
(
f̂i(∂/∂zj , zj)

)∏
j<k

(zj − zk)2p

(63)

where f̂i(∂/∂zj , zj) = fi(z̄j → 2l2∂/∂zj , zj). As dis-
cussed above, it is not possible to evaluate this wave
function for large N . To make further progress, we write,
following JK:

ΨJK
ν∗

2ν∗+1

= e−
∑
j

|zj |
2

4l2 χν∗
(
f̂i(∂/∂zj , zj)J

p
j

)
(64)

where

Ji =
∏
j(j 6=i)

(zi − zj) (65)

In the JK wave function, one projects each term of the
Slater determinant χ individually. One thus needs to
evaluate a single Slater determinant for the FQH ground
and excited states, which enables a study of very large
systems.

F. Failure of JK projection for the torus geometry

In this section, we show that if we directly apply the JK
projection method as it is implemented in disk and spher-
ical geometries, it does not produce a valid wave function
in the torus geometry, because the resulting wave func-
tion does not satisfy the correct periodic boundary con-
ditions.

Seeking to generalize the JK projection to the torus

geometry, we note that the factor
∏N
i<j

[
θ
(
zi−zj
L1
|τ
)]2p

is quite analogous to the Jastrow factor of the disk ge-
ometry, but the presence of the CM factor F 2

1 (Z) seems
to pose a difficulty. Fortunately, as shown in Appendix

E, the operator χν∗ [f̂i(∂/∂zj , zj)] commutes with F 2
1 (Z)

for all proper states. We can thus incorporate the Jas-

trow factor
∏N
i<j

[
θ
(
zi−zj
L1
|τ
)]2p

into χν∗ [f̂i(∂/∂zj , zj)]

as follows:

ΨJK
ν∗

2pν∗+1

[zi, z̄i] = e

∑
i(z

2
i−|zi|

2)

4l2 F 2
1 (Z)χJK

ν∗ [f̂i(∂/∂zj , zj)J
p
j ]

(66)
with

Ji =
∏
j(j 6=i)

θ

(
zi − zj
L1

|τ
)

(67)

This is not a valid wave function, however. To show that
it violates the periodic boundary conditions, we take the
ν = 2/5 state with N = 2, Nφ = 5 as an example. In this
case, we can write the determinant explicitly (note that
there is only one eigenstate in each Landau level, so we
suppress the superscript):

χJK
2 [f̂i(∂/∂zj , zj)Jj ] =

∣∣∣∣∣∣∣
f1(z1)θ

(
z1−z2
L1
|τ
)

f1(z2)θ
(
z2−z1
L1
|τ
)

− 4
5
∂f1(z1)
∂z1

θ
(
z1−z2
L1
|τ
)

+ 1
5f1(z1)

∂θ
(
z1−z2
L1
|τ
)

∂z1
− 4

5
∂f1(z2)
∂z2

θ
(
z2−z1
L1
|τ
)

+ 1
5f1(z2)

∂θ
(
z2−z1
L1
|τ
)

∂z2
)

∣∣∣∣∣∣∣
(68)

Here we have

f̂
(n)
2 (z, z̄) = −4

5

∂f
(n)
1 (z)

∂z
+

1

5
f

(n)
1 (z)

∂

∂z
(69)

which follows from Eq. 54 noting that at filling factor

ν = 2/5, we have l∗2

l2 = 5.

To satisfy the periodic boundary condition in the L1τ
direction, χJK

2 needs to satisfy (for a translation of the
particle 1)

T1(L1τ)χJK
2 = ei(2π(2Z/L1+τ)−πNφ(2z1/L1+τ))χJK

2 (70)

However, an explicit calculation gives
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T1(L1τ)χJK
2 = ei(2π(2Z/L1+τ)−πNφ(2z1/L1+τ))χJK

2 +

1

5

i2π

L1
ei(2π(2Z/L1+τ)−πNφ(2z1/L1+τ))f1(z1)f1(z2)θ

(
z1 − z2

L1
|τ
)
θ

(
z2 − z1

L1
|τ
)

(71)

indicating that the wave function does not satisfy the
periodic boundary conditions. This may seem to make
the JK projection method unimplementable in the torus
geometry, which would make it impractical to do calcu-
lations with the CF theory in the torus geometry. How-
ever, we show in the next section that, fortunately, it is
possible to modify the JK projection method to obtain
legitimate LLL wave functions.

G. Modified LLL projection method

The two particle problem considered in the previous
section gives us a clue that leads us to an elegant solution
for how the JK projection method can be modified to
produce legitimate wave functions. Let us first go back
to the direct projection of the system:

ΨDirect
2
5

[zi, z̄i] = e

∑
i(z

2
i−|zi|

2)

4l2 F 2
1 (Z)χ2(f̂i(∂/∂zj , zj))J

2

(72)

where J = θ
(
z1−z2
L1
|τ
)

. This of course satisfies

the correct periodic boundary conditions. The factor

χ2[f̂i(∂/∂zj , zj)]J
2 can be written as

χ2[f̂i(∂/∂zj , zj)]J
2 =

∣∣∣∣ f1(z1) f1(z2)

− 4
5
∂f1(z1)
∂z1

+ 1
5f1(z1) ∂

∂z1
− 4

5
∂f1(z2)
∂z2

+ 1
5f1(z2) ∂

∂z2

∣∣∣∣ J2

=

∣∣∣∣ f1(z1) f1(z2)

− 4
5
∂f1(z1)
∂z1

J2 + 1
5f1(z1)∂J

2

∂z1
− 4

5
∂f1(z2)
∂z2

J2 + 1
5f1(z2)∂J

2

∂z2

∣∣∣∣
=

∣∣∣∣ f1(z1)J f1(z2)J

− 4
5
∂f1(z1)
∂z1

J + 2
5f1(z1) ∂J∂z1 −

4
5
∂f1(z2)
∂z2

J + 2
5f1(z2) ∂J∂z2

∣∣∣∣ (73)

We notice that this form is almost the same as that in
Eq. 68, except that the coefficient of f1(zi)

∂J
∂zi

is 2
5 instead

of 1
5 . (The reader may notice that the second columns of

Eq. 68 and Eq. 73 have opposite signs, but that merely
contributes an unimportant −1 to the overall normaliza-
tion factor.)

This suggests a possible way to modify the JK projec-

tion. We ask whether replacing f̂
(m)
n by a related op-

erator ĝ
(m)
n could give a wave function with the correct

boundary conditions. Let us specialize to the second ΛL

and try the form for ĝ
(m)
2 :

ĝ
(n)
2 (z) = −

Nφ −N∗φ
Nφ

∂f
(n)
1 (z)

∂z
+ α

N∗φ
Nφ

f
(n)
1 (z)

∂

∂z
(74)

where α is an unknown coefficient. We now ask whether
a value for α can be found that produces a wave function
that satisfies correct boundary conditions.

We consider a general wave function of the type

ψ[zi, z̄i] = e

∑
i(z

2
i−|zi|

2)

4l2 F 2p
1 (Z)χ[ĝi(zj)J

p
j ] (75)

χ[ĝi(zj)J
p
j ] =

∣∣∣∣∣∣∣∣∣∣
ĝ1

(1)(z1)Jp1 . . . ĝ1
(1)(zN )JpN

...
...

...

ĝ2
(1)(z1)Jp1 . . . ĝ2

(1)(zN )JpN
...

...
...

∣∣∣∣∣∣∣∣∣∣
(76)

where we assume that in χ the LLL is fully occupied, the
second LL is arbitrarily occupied, and third and higher
LLs are unoccupied. This includes the 2/5 ground state
(χ has second LL fully occupied), a CF quasiparticle of
the 1/3 state (χ has only a single electron in the second
LL), a CF quasihole of 2/5 (χ has a single hole in the sec-
ond LL), and quasidegenerate ground states at arbitrary
fillings in the range 2/5 ≥ ν ≥ 1/3.

The wave function in Eq. 75 should satisfy the periodic
boundary conditions:

Ti(L1)F 2p
1 (Z)χ[ĝi(zj)J

p
j ]

F 2p
1 (Z)χ[ĝi(zj)J

p
j ]

= eiφ1

Ti(L1τ)F 2p
1 (Z)χ[ĝi(zj)J

p
j ]

F 2p
1 (Z)χ[ĝi(zj)J

p
j ]

= ei(φτ−πNφ(2zi/L1+τ))

(77)
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For convenience, we will take φ1 = 0, φτ = 0. Con-
sidering the periodic properties of F 2

1 (Z), the periodic
boundary conditions for χ[ĝi(zj)] are:

Ti(L1)χ[ĝi(zj)J
p
j ]

χ[ĝi(zj)J
p
j ]

= 1

Ti(L1τ)χ[ĝi(zj)J
p
j ]

χ[ĝi(zj)J
p
j ]

= ei(2pπ(2Z/L1+τ)−πNφ(2zi/L1+τ))

(78)
Explicit calculation shows that the first equation in

Eq. 78 is automatically satisfied for ĝ
(m)
2 with any value

of α. The key is the second equation in Eq. 78.
Translating zi by L1τ gives

Ti(L1τ)ĝ
(n)
1 (zj)J

p
j = e

ipπ
(

2(zj−zi)
L1

−τ+1
)
ĝ

(n)
1 (zj)J

p
j , j 6= i (79)

Ti(L1τ)ĝ
(n)
1 (zi)J

p
i = e

−iπN∗φ
(

2zi
L1

+τ
) ∏
j(j 6=i)

e
−ipπ

(
2(zi−zj)

L1
+τ+1

)
ĝ

(n)
1 (zi)J

p
i (80)

Ti(L1τ)ĝ
(n)
2 (zj)J

p
j = e

ipπ
(

2(zj−zi)
L1

−τ+1
)
ĝ

(n)
2 (zj)J

p
j + [pα]

i2πN∗φ
L1Nφ

e
ipπ
(

2(zj−zi)
L1

−τ+1
)
ĝ

(n)
1 (zj)J

p
j , j 6= i (81)

Ti(L1τ)ĝ
(n)
2 (zi)J

p
i = e

−iπN∗φ
(

2zi
L1

+τ
) ∏
j(j 6=i)

e
−ipπ

(
2(zi−zj)

L1
+τ+1

)
ĝ

(n)
2 (zi)J

p
i

+
[
Nφ −N∗φ − pαN + pα

] i2πN∗φ
L1Nφ

e
−iπN∗φ

(
2zi
L1

+τ
) ∏
j(j 6=i)

e
−ipπ

(
2(zi−zj)

L1
+τ+1

)
ĝ

(n)
1 (zi)J

p
i (82)

It is the second terms in Eqs. 81 and 82 that violate
the periodic boundary conditions. Without those terms,
it can be seen, by taking the product of the factors
from each column, that χ[ĝi(zj)J

p
j ] would satisfy the cor-

rect boundary conditions in Eq. 78. It turns out that
the second terms are eliminated if we choose the blue-
highlighted terms in the square brackets [. . .] in Eqs. 81
and 82 to be equal:

pα = Nφ −N∗φ − pαN + pα (83)

which, with Nφ = N∗φ+2pN , reduces to α = 2. With this

choice, the second terms in Eqs. 81 and 82 are expunged
from the Slater determinant χ of Eq. 76, because they
are proportional to the corresponding row in the LLL
containing the terms given in Eqs. 79 and 80.

Thus we have

ĝ
(n)
2 (z) = −

Nφ −N∗φ
Nφ

∂f
(n)
1 (z)

∂z
+
N∗φ
Nφ

f
(n)
1 (z)2

∂

∂z
(84)

A similar but more lengthy algebra (which we leave out)
shows that for the third LL, the choice

ĝ
(n)
3 (z) =

Nφ −N∗φ
2N2

φ

f
(n)
1 (z) +

(Nφ −N∗φ)2

N2
φ

∂2f
(n)
1 (z)

∂z2
−

2N∗φ(Nφ −N∗φ)

N2
φ

∂f
(n)
1 (z)

∂z
2
∂

∂z
+
N∗2φ
N2
φ

f
(n)
1 (z)

(
2
∂

∂z

)2

(85)

produces wave functions with the correct boundary con-
ditions, provided that the lowest two ΛLs are fully occu-

pied. The operators ĝ in Eqs. 84 and 85 differ from f̂ in
Eqs. 54 and 60 only through the factors highlighted in

red.

One may ask whether ĝ
(m)
n (zj) exists for yet higher

LLs. The answer is in the affirmative. The derivation
for ĝ

(m)
n (zj) for arbitrary LL is given in Appendix F. In-
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terestingly, the general rule is that we can go from f̂
to ĝ by making the replacement ∂/∂z → 2∂/∂z for the

derivatives acting on Ji; Eqs. 84 and 85 for ĝ
(m)
2 (zj) and

ĝ
(m)
3 (zj) are written so as to make this explicit.
The crucial aspect that renders the wave functions in

Eq. 75 valid is that the unwanted terms in each row are
eliminated by the rows corresponding to single-particle
states in lower levels with the same momentum quan-
tum numbers. This implies that the modified projec-
tion method produces valid wave functions for all proper
states defined in the introduction.

IV. TESTING THE ACCURACY OF THE LLL
PROJECTED SATES

In the previous section, we have shown how we can
modify the JK projection method in the torus geometry
to obtain LLL wave functions that satisfy the correct
boundary conditions. However, there is no guarantee
that they are accurate representations of the Coulomb
eigenstates. That must be ascertained by a direct com-
parison. In this section, we perform such comparisons for
the ground states, CF quasiparticles, and CF quasiholes
at ν = 1/3 and ν = 2/5. We also evaluate the pair cor-
relation function. The reader may refer to Appendix G
for the standard definition of the periodic Coulomb in-
teraction in the torus geometry, as well as certain other
technical details for our Monte Carlo calculations. In all
our numerical evaluations, we choose a square torus, i.e.
τ = i.

The ground state energies for ν = 1/3, 2/5, and 3/7 are
shown in Tables I, II, and III. The exact diagonalization
energies are also given wherever available. The thermo-
dynamic limits are shown in Fig. 4 (small systems not
used in the extrapolation are not shown) as well as in
Tables I-III.

Comparison with exact diagonalization results estab-
lishes that our wave functions are quantitatively ex-
tremely accurate. For example, for 12 particles the en-
ergies of the Jain wave functions for 2/5 and 3/7 are
within 0.07% and 0.05%, respectively, of the correspond-
ing exact Coulomb energies. This level of accuracy is
comparable to what has been found in the spherical ge-
ometry. Furthermore, our modified wave functions can
be evaluated for much larger systems than those available
to exact diagonalization. We have shown results for up
to 40 particles in this article, and much larger systems
should be accessible with our method.

An important property of a liquid state is its pair cor-
relation function, defined as

g(r) =
L1L2

N2

〈∑
i 6=j

δ(ri − rj − r)

〉
(86)

It gives us the probability of finding two particles at a
distance r, normalized so that it approaches unity for

N CF Exact
4 −0.41412± 0.00004 -0.41519
6 −0.41156± 0.00003 -0.41190
8 −0.41091± 0.00004 -0.41132
10 −0.41058± 0.00004 -0.41106
15 −0.41025± 0.00004
20 −0.41005± 0.00005
25 −0.40996± 0.00005
30 −0.40991± 0.00005
40 −0.40985± 0.00003
∞ −0.40956± 0.00002

TABLE I. The Coulomb energy per particle for the ground
state at ν = 1/3. The energy is quoted in units of e2/εl and
includes self-interaction.

N CF Exact
4 −0.43992± 0.00002 -0.44026
8 −0.43409± 0.00006 -0.43430
10 −0.43376± 0.00007 -0.43395
12 −0.43345± 0.00007 -0.43374
14 −0.4333± 0.0001
20 −0.43306± 0.00008
26 −0.4330± 0.0001
30 −0.43290± 0.00006
40 −0.4328± 0.0001
∞ −0.43245± 0.00004

TABLE II. The Coulomb energy per particle for the ground
state at ν = 2/5. The energy is quoted in units of e2/εl and
includes self-interaction.

N CF Exact
3 −0.4431± 0.0001 -0.4438
6 −0.4436± 0.0001 -0.4438
9 −0.4447± 0.0001 -0.4448
12 −0.44340± 0.00008 -0.44360
15 −0.44303± 0.00006
21 −0.44262± 0.00008
24 −0.44258± 0.00008
30 −0.44245± 0.00004
39 −0.44239± 0.00006
∞ −0.44188± 0.00006

TABLE III. The Coulomb energy per particle for the ground
state at ν = 3/7. The energy is quoted in units of e2/εl and
includes self-interaction.

|r| → ∞. The pair correlation function at ν = 2/5 for
N = 30 particles is shown in Fig. 5.

We have also evaluated at several filling factors the
energies of the CF quasiparticle, the CF quasihole,
and the excitation gap to creating a far separated CF-
quasiparticle CF-quasihole pair. (Because we create the
CF quasiparticle and CF quasihole separately, the sum
of their energies does not include the interaction between
them, and therefore corresponds to the limit of large sep-
aration.) This gap is to be identified with the activation
energy measured from the Arrhenius behavior of the lon-
gitudinal resistance at low temperatures. The CF quasi-
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FIG. 4. The Coulomb energy per particle for the ground
states at (a) ν = 1/3, (b) ν = 2/5 and (c) ν = 3/7. The
circles are the CF energies and the squares are the energies
from exact diagonalizations. The energy is quoted in units of
e2/εl and includes self-interaction.

hole and CF quasiparticle states for ν = 1/3 occur for
Nφ = 3N + 1 and Nφ = 3N − 1, respectively. The
Coulomb energies for these states are shown in Tables IV
and V. We define the gap at ν = 1/3 as

∆1/3(N) = E−(N,Nφ = 3N − 1) + E+(N,Nφ = 3N + 1)

−2E0(N,Nφ = 3N) (87)

where the first (second) term on the right-hand side is the
total Coulomb energy of the N particle state containing a
single CF quasiparticle (CF quasihole), and E0(N,Nφ =
3N) is the energy of theN particle incompressible ground
state. The gaps are shown in Table VI. The extrapolation

FIG. 5. The pair correlation functions for an N = 30 particle
system at ν = 2/5.

of the gap to the thermodynamic limit, 1
N → 0, is shown

in Fig. 6(a).
At ν = 2/5, the incompressible ground state has an

even particle number N , but the states containing a sin-
gle CF quasiparticle or CF quasihole have an odd number
of electrons. We define the gap as

∆2/5(N) = E−(N + 1, Nφ =
5N

2
+ 2)+

E+(N − 1, Nφ =
5N

2
− 2)− 2E0(N,Nφ =

5N

2
) (88)

Again, the first and second terms on the right-hand side
give the total Coulomb energies of states containing a
CF quasiparticle and a CF quasihole, and the last term
corresponds to the ground state. All of these correspond
to the same effective flux N∗φ = N/2. The total Coulomb
energies for these states are shown in Tables VII and VIII
and the gaps in Table IX and Fig. 6(b).

The gap energies are not as accurate as the per par-
ticle energies of the incompressible ground states, which
is expected because the gaps are O(1) energies obtained
by subtracting O(N) energies. Nonetheless, the gap en-
ergies are reasonably accurate. They can be further
improved, if needed, by modifying the method of CF
diagonalization59 to the torus wave functions, but that
is outside the scope of the current work where our goal
is to demonstrate how to construct accurate wave func-
tions for incompressible ground states, their excitations,
and other proper configurations of composite fermions.

We have also calculated the overlaps between our CF
wave functions and exact eigenstates of Coulomb inter-
action. For this purpose, we calculate the inner product
of the CF wave function with each Slater determinant
basis function. To deal with large dimensional Hilbert
spaces, we initially perform 2 × 105 iterations to obtain
all inner products, and then perform 1.5× 106 − 5× 106

iterations for those basis functions whose squared inner
product is larger than some number (0.001 for systems
whose dimension is smaller than 1000 and 0.0001 for sys-
tems whose dimension is over 1000). The resulting over-
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N CF Exact
4 −0.39552± 0.00008 -0.39750
6 −0.39873± 0.00003 -0.39943
8 −0.40097± 0.00002 -0.40170
10 −0.40248± 0.00005 -0.40319
15 −0.40467± 0.00005
20 −0.40575± 0.00004
25 −0.40648± 0.00003
30 −0.40699± 0.00005
40 −0.40761± 0.00007

TABLE IV. The Coulomb energy per particle for Nφ = 3N+
1, which corresponds to a single CF quasihole of the ν = 1/3
state. The energy is quoted in units of e2/εl and includes
self-interaction.

N CF Exact
4 −0.42050± 0.00005 -0.42190
6 −0.41415± 0.00007 -0.41467
8 −0.41241± 0.00005 -0.41303
10 −0.41157± 0.00006 -0.41216
15 −0.41068± 0.00006
20 −0.41024± 0.00004
25 −0.41005± 0.00008
30 −0.41000± 0.00005
40 −0.40988± 0.00009

TABLE V. The Coulomb energy per particle for Nφ = 3N−1,
which corresponds to a single CF quasiparticle of the ν = 1/3
state. The energy is quoted in units of e2/εl and includes
self-interaction.

N CF gap Exact gap
4 0.0489± 0.0005 0.0439
6 0.0614± 0.0006 0.0582
8 0.0675± 0.0007 0.0633
10 0.071± 0.001 0.0677
15 0.077± 0.002
20 0.082± 0.002
25 0.085± 0.003
30 0.085± 0.004
40 0.088± 0.005
∞ 0.095± 0.001

TABLE VI. The excitation gap for ν = 1/3 state in units of
e2/εl.

N Nφ CF Exact
5 12 −0.43868± 0.00007 -0.43882
9 22 −0.4354± 0.0001 -0.4361
11 27 −0.43450± 0.00006 -0.43482
15 37 −0.43393± 0.00006
21 52 −0.43340± 0.00009
31 77 −0.43307± 0.00003
41 102 −0.43295± 0.00009

TABLE VII. The Coulomb energy per particle for several sys-
tems containing a single CF quasiparticle of the ν = 2/5
state. The energy is quoted in units of e2/εl and includes
self-interaction.

N Nφ CF Exact
9 23 −0.42877± 0.00007 -0.42957
13 33 −0.42958± 0.00005
19 48 −0.43043± 0.00008
29 73 −0.43115± 0.00006
39 98 −0.43154± 0.00005

TABLE VIII. The Coulomb energy per particle for several
states containing a single CF quasihole of the ν = 2/5 state.
The energy is quoted in units of e2/εl and includes self-
interaction.

N CF Exact
10 0.037± 0.002 0.030
14 0.039± 0.003
20 0.043± 0.004
30 0.045± 0.004
40 0.043± 0.009
∞ 0.049± 0.002

TABLE IX. The excitation gap for ν = 2
5

in units of e2/εl.
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FIG. 6. The excitation gap for (a) ν = 1/3 and (b) ν = 2/5
in units of e2/εl.

laps for the incompressible ground states at ν = 2/5, 3/7
and the CF quasiholes and CF quasiparticles at ν = 2/5
are given in Table X, along with the statistical error in
the Monte Carlo evaluation of the overlap integral.
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N Nφ state overlap D
2 5 2/5 ground state 1.000000± 0.000000 2
4 10 2/5 ground state 0.99781± 0.00008 22
6 15 2/5 ground state 0.9967± 0.0002f 335
8 20 2/5 ground state 0.962± 0.002 6310
3 7 3/7 ground state 0.99532± 0.00006 5
6 14 3/7 ground state 0.9942± 0.0001 217
4 11 CF quasiparticle at 1/3 0.9825± 0.0003 30
5 14 CF quasiparticle at 1/3 0.9923± 0.0004 143
6 17 CF quasiparticle at 1/3 0.979± 0.001 728
3 8 CF quasihole at 2/5 0.99887± 0.00003 7
5 13 CF quasihole at 2/5 0.9912± 0.0004 99
7 18 CF quasihole at 2/5 0.987± 0.002 1768
5 12 CF quasiparticle at 2/5 0.9979± 0.0001 66
7 17 CF quasiparticle at 2/5 0.9852± 0.0005 1144

TABLE X. Overlaps of CF wave functions with exact
Coulomb eigenstates for several systems. The number D is
the Hilbert space dimension, i.e., the number of linearly in-
dependent basis states in the subspace with the relevant CM
momentum quantum number.

V. CONCLUSIONS AND FUTURE OUTLOOK

We have succeeded in constructing LLL wave functions
for composite fermions on a torus for a large class of
states called proper states. These include the ground
states and charged and neutral excitations at filling fac-
tors ν = n/(2pn + 1), as well as all quasidegenerate
ground states at arbitrary filling factors of the form
ν = ν∗/(2pν∗ + 1). These wave functions satisfy the
correct boundary conditions, and are demonstrated, by
explicit calculation, to be almost exact representations
of the actual Coulomb ground states. The construction
of these wave functions is complicated by the fact that
the standard JK projection does not produce valid wave
functions. The principal achievement of our work is to
come up with a modified projection method that does.
The resulting wave functions allow calculations for a large
number of composite fermions on a torus.

Our modified LLL projection method identifies an op-
erator ĝ(∂/∂z, z) corresponding to each single particle
state f(z̄, z) such that

Ψ = e
∑
i

z2i−|zi|
2

4l2 F 2p
1 (Z)χ[ĝi(∂/∂zj , zj)J

p
j ]

satisfies the correct boundary conditions for all proper
states χ(fi(z̄j , zj)). The rule for constructing ĝ(∂/∂z, z)
is to bring all z̄ to the left in f(z̄, z) and then make the

replacement z̄ → 2l2D̂, where D̂ = 2∂/∂z when it acts

on Jp and D̂ = ∂/∂z otherwise.
It would be appropriate to mention certain shortcom-

ings of our construction. As noted earlier, the LLL pro-
jection of the Jain states at ν = n/(2n − 1) is difficult
to evaluate. However, we expect the LLL projections
of these wave functions also to be accurate, in view of
the fact that the CF theory produces very accurate wave
functions for these states in the disk and the spherical

geometries12,60–62. As another point, we note that the
proper states do not span the full LLL Hilbert space, as
can be seen by simple counting for small systems. This
should be contrasted with the construction in the disk or
the spherical geometries where, by considering arbitrarily
high energy excitations, the wave functions for composite
fermions eventually span the entire LLL Hilbert space.
This limitation is not disastrous, however, because the
proper states do capture all low-energy states, including
states of immediate interest, such as the incompressible
FQH states and their charged and neutral excitations.

In addition to the topics mentioned in the introduc-
tion, our approach suggests a number of possible direc-
tions. One of the developments in the field of the FQHE
has been to seek a connection between the FQHE physics
and CFT, and, in particular, to express FQH wave func-
tions as correlators of CFTs, with particles represented
as primary fields51,52,63–67. As mentioned in the intro-
duction, the CFT approach has served as a guide for the
construction of wave functions for composite fermions on
a torus. It would be interesting to ask whether the wave
functions constructed in the present work have a natural
CFT representation.

Our approach can also be generalized to construct,
in the torus geometry, the unprojected parton wave
functions68 and also the wave functions for composite-
fermionized bosons in the lowest LL69–76.

Finally, we note that even though our wave functions
are already very accurate, it should be possible to im-
prove them further by allowing ΛL mixing, following sim-
ilar studies in the disk and spherical geometries4 that em-
ploy the method of CF diagonalization59. It would also
be interesting to investigate, as in the spherical geome-
try, whether certain excited states at the effective flux N∗φ
are annihilated by LLL projection during the process of
composite fermionization11,57,77, and perform a counting
of the remaining excited states78.

In conclusion, we expect that the ability to construct
explicit wave functions for a large class of FQH states
and their excitations on a torus will provide important
new insight into several interesting questions for which
the torus geometry is well suited.

VI. ACKNOWLEDGMENT

This work was supported in part by the U. S. National
Science Foundation, Grant No. DMR-1401636 (S.P and
J.K.J), and the DFG within the Cluster of Excellence
NIM (Y.H.W.). S.P. thanks Ajit Balram for numerous
helpful discussions and generous help with computer pro-
gramming, Bin Wang for help on special functions, and
Jie Wang for advice. We thank Ajit Balram, Mikael
Fremling and Hans Hansson for valuable comments on
the manuscript, and are grateful to the developers of the
DiagHam codes that were used to perform exact diago-
nalization. We thank Di Xiao for his expert help with
Fig. 1.



18

Appendix A CERTAIN PROPERTIES OF THE
LOWEST FILLED LANDAU LEVEL

It is clear that Laughlin’s Jastrow wave function for
ν = 1 given in Eq. 36 is equal to the Slater determinant
χ1[zi, z̄i] in Eq. 35, modulo a normalization factor. This
follows because the Laughlin wave function is the unique
wave function in the LLL in which each electron sees a
single zero at every other particle. In this appendix we
show that the two wave functions have the same behavior
under CM translation.

Let us first consider the Laughlin wave function at ν =
1/(2p+ 1) in the torus geometry constructed previously
by Haldane and Rezayi14,53,58. It is given by

Ψ[zi] = e
∑N
i=1

z2i−|zi|
2

4l2 χ[zi] (89)

with

χ[zi] = F (Z)

N∏
i<j

(
θ

(
zi − zj
L1

|τ
))2p+1

(90)

With the periodic boundary conditions of Eq. 16, F (Z)
should satisfy:

F (Z + L1)

F (Z)
= (−1)Nφ−(2p+1)eiφ1

F (Z + L1τ)

F (Z)
= (−1)Nφ−(2p+1)e−iπ(2p+1)(2Z/L1+τ)eiφτ

(91)
The factor F (n)(Z) is thus an eigenfunction of the CM
translation operator. The solutions for a complete and
orthogonal basis for F (Z) are53:

F (n)(Z) = eiK
(n)Z

(2p+1)∏
ν=1

θ(Z/L1 −W (n)
ν |τ)

K(n) = (φ1 − πNφ + 2πn)/L1

W (n)
ν =

1

2π(2p+ 1)
(φτ − φ1τ + πNφτ − πNφ − 2πnτ − 2pπ + (ν − 1)2π)

(92)

We now show that we can analyze the properties of
ψ1[zi, z̄i] under CM and relative translation without as-
suming the form of the relative part given in Eq. 90, but
by directly using the Slater determinant form in Eq. 35.

The CM translation operator, defined as TCM

(
L1

Nφ

)
=∏N

i=1 T
(
L1

Nφ

)
, translates every particle by L1/Nφ, which

is the smallest translation that preserves the boundary
condition:

TCM(
L1

Nφ
)F (n)(Z) = (−1)N+1ei

φ1+2πn
m F (n)(Z) (93)

First we can define the relative magnetic translation
operator58

treli (a) = ti(
N − 1

N
a)

∏
j(j 6=i)

tj(−
a

N
) (94)

The relative magnetic translation operators only trans-
late the relative part while keeping the CM part fixed.
By considering the translation operators acting on each
individual matrix element in χ1[fi(zj)] expressed as the
Slater determinant in Eq. 35 and making use of Eq. 28,
it is found that:

treli (L1)ψ1[zi, z̄i] = (−1)N−1ψ1[zi, z̄i]

treli (L1τ)ψ1[zi, z̄i] = (−1)N−1ψ1[zi, z̄i]
(95)

which means that ψ1[zi, z̄i] is the eigenstate of treli (L1)
and treli (L1τ), and the eigenvalue is independent of φ1

and φτ .
The CM magnetic translation operators are defined as:

tCM(a) =

N∏
i=1

ti(a) (96)

By applying tCM

(
L1

Nφ

)
and tCM(L1τ/Nφ) on ψ1[zi, z̄i]

and making use of Eq. 28, we find

tCM

(
L1

Nφ

)
ψ1[zi, z̄i] = (−1)N−1eiφ1ψ1[zi, z̄i]

tCM

(
L1τ

Nφ

)
ψ1[zi, z̄i] = (−1)N−1eiφτψ1[zi, z̄i]

(97)

Let us now assume that the CM part of χ1[fi(zj)] is
F1(Z). Its form can be derived from Eq. 97:
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F1(Z + L1)

F1(Z)
=
TCM

(
L1

Nφ

)
χ1

χ1
= (−1)N−1eiφ1

F1(Z + L1τ)

F1(Z)
=
TCM

(
L1τ
Nφ

)
χ1

χ1
= (−1)N−1ei(φτ−πτ−

2πZ
L1

)

(98)

This is exactly the same as Eq. 91 with p = 0. Hence the
CM component F1(Z) of the Slater determinant wave
function in Eq. 35 is the same as the CM component
F (Z) in the Laughlin wave function of Eq. 36.

Appendix B WAVE FUNCTIONS FOR FILLING
FACTORS ν = n

2pn−1

In the main body of this paper, we only discuss how to
construct wave functions for the filling factors ν = n

2pn+1 .

In this appendix, we show that we can construct the Jain
wave functions for the filling factors ν = n

2pn−1 . The

explicit evaluation of the LLL projection of these wave
functions is much more difficult, however.

For filling factors ν = n
2pn−1 , the effective magnetic

field for composite fermions is anti-parallel to the physical
magnetic field. The relation Eq. 43 does not change, but
N∗φ is a negative integer given by:

N∗φ = −L
2
1Im(τ)|B∗|

φ0
(99)

The single particle wave functions are obtained by com-
plex conjugation of the wave functions given in Eq. 23
and Eq. 25. Below we show that by simply taking the
complex conjugate of ψ1(z) and plugging it into Eq. 42,
we obtain a valid wave function satisfying the correct
periodic boundary conditions.

The complex conjugate of ψ1(z) is (note that l∗ is the
effective magnetic length defined in Eq. 52, which is a
real number)

ψ∗1(z) = e
z̄2−|z|2

4l∗2 f∗1 (z) (100)

where f∗1 (z) satisfies

T (L1)f∗1 (z)

f∗1 (z)
= e−iφ

∗
1

T (L1τ)f∗1 (z)

f∗1 (z)
= e−i(φ

∗
τ−π|Nφ|(2z̄/L1+τ̄))

(101)

As before, we consider the product

ψ(z, z̄) = ψ∗1(z, z̄)
∏
i

ψ(i)(z, z̄)

= e
z2−|z|2

4l2

[
e
z̄2+z2−2|z|2

4l∗2 f∗1 (z, z̄)
∏
i

f
(i)
1 (z, z̄)

]
(102)

in which we have used:

Nφ = −|N∗φ |+
∑
i

N
(i)
φ (103)

By making use of Eq. 101 and the translational properties

of e
z̄2+z2−2|z|2

4l∗2 , it can be shown that

h(z, z̄) ≡ e
z̄2+z2−2|z|2

4l∗2 f∗1 (z, z̄) (104)

satisfies:

T (L1)h(z, z̄)

h(z, z̄)
= e−iφ

∗
1 (105)

T (L1τ)h(z, z̄)

h(z, z̄)
= e−i(φ

∗
τ−π|Nφ|(2z/L1+τ)) (106)

Therefore, the product ψ(z, z̄) satisfies the correct peri-
odic boundary conditions provided we set

φ1 = −φ∗1 +
∑
i

φ
(i)
1 (107)

φτ = −φ∗τ +
∑
i

φ(i)
τ (108)

However, it is difficult to explicitly obtain the projected
states with negative flux attachment because z̄ appears
in the Jacobi theta functions.

Appendix C CM DEGENERACY OF THE
LAUGHLIN STATE DERIVED FROM CF

THEORY

It is known from general considerations that the
ground state at ν = n/(2pn + 1) has a (2pn + 1)-fold
degeneracy arising from the CM degree of freedom. The
CF theory naturally produces a single wave function at
these filling factors, namely the LLL projection of ΨnΨ2p

1 .
We show in the following Appendix how we can derive
the correct degeneracy within the CF approach. In this
Appendix we consider the special case of ν = 1

2p+1 , where

it is possible to display the CM degeneracy explicitly and
to construct all 2p+ 1 wave functions.

According to Eq. 42, the wave function for the ground
state at ν = 1

2p+1 is given by

Ψ1/(2p+1) = Ψ2p+1
1 (109)
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In Appendix A, we have shown that, apart from the fac-

tor e

∑
i(z

2
i−|zi|

2)

4l2 , it is possible to write the wave function
Ψ1 as a product of a CM term and a wave function that
depends only on relative coordinates:

Ψ1 = e

∑
i(z

2
i−|zi|

2)

4l2 F1(Z)

(
χ1

F1(Z)

)
(110)

where χ1/F1(Z) depends only on the relative coordinates
zi − zj .

We therefore write:

Ψ1/(2p+1)[zi] = e

∑
i(z

2
i−|zi|

2)

4l2 F1/(2p+1)(Z)

(
χ1

F1(Z)

)2p+1

(111)
where we have allowed for a general CM part. Since χ1

only contains single particle wave functions in the LLL,
there is no need for LLL projection. To solve for the
explicit form of F1/(2p+1)(Z), we need to use periodic
boundary conditions (setting all phase factors to be zero
for convenience):

ti(L1)Ψ1/(2p+1)[zi, z̄i]

Ψ1/(2p+1)[zi, z̄i]
=
Ti(L1)

[
F1/(2p+1)(Z)

F 2p+1
1 (Z)

χ2p+1
1

]
F1/(2p+1)(Z)

F 2p+1
1 (Z)

χ2p+1
1

=
F1/(2p+1)(Z + L1)

F1/(2p+1)(Z)

F 2p+1
1 (Z)

F 2p+1
1 (Z + L1)

= (−1)(2p+1)(N−1)F1/(2p+1)(Z + L1)

F1/(2p+1)(Z)

(112)

In the last line we have used the periodic property of
F1(Z) given in Eqs. 97 and 98.

Making use of the periodic boundary con-
ditions ti(L1)Ψ1/(2p+1)[zi] = Ψ1/(2p+1)[zi] and
ti(L1τ)Ψ1/(2p+1)[zi] = Ψ1/(2p+1)[zi], we have

F1/(2p+1)(Z + L1)

F1/(2p+1)(Z)
= (−1)(2p+1)(N−1)

F1/(2p+1)(Z + L1τ)

F1/(2p+1)(Z)
= (−1)(2p+1)(N−1)e−i(2p+1)π(τ+2Z/L1)

(113)
As shown by Haldane and Rezayi14 (also see Eq. 92),
there are 2p+1 solutions to Eq. 113, which demonstrates
a CM degeneracy of 2p+ 1.

Furthermore, using the equation

χ1[fi(zj)]

F1(Z)
=

N∏
i<j

θ

(
zi − zj
L1

|τ
)

(114)

it follows that

Ψ 1
2p+1

= e

∑
i(z

2
i−|zi|

2)

4l2 F 1
2p+1

(Z)

 N∏
i<j

θ

(
zi − zj
L1

|τ
)2p+1

(115)
which is precisely the form for the Laughlin wave function
derived previously14,53,58. The “natural” wave function
from the CF theory is that given in Eq. 109, which is
a specific linear combination of the 2p + 1 degenerate
ground state wave functions.

Appendix D CM DEGENERACY AND CM
MOMENTUM FOR GENERAL FQH STATES

It is well known14,30,58 that the ground state of ν = p
q

has a CM degeneracy of q (p and q are relatively prime).
The degenerate states can be distinguished by their CM

momenta, i.e. the eigenvalues of tCM

(
L1

Nφ

)
. On the other

hand, as noted in the main text, the wave functions of

Eq. 42 are, in general, not eigenstates of tCM

(
L1

Nφ

)
. In

this section we construct degenerate ground states that
have well-defined CM momenta, i.e., are eigenstates of

tCM

(
L1

Nφ

)
, by projecting the composite fermion wave

functions to corresponding momentum sectors. For sim-
plicity, we take φ1 = 0, φτ = 0; generalization to arbi-
trary boundary conditions is straightforward.

For ν = p
q , assume that Ψg is a ground state wave

function but does not have a well-defined CM momen-
tum. A ground state with a well-defined CM momentum
k (k is an integer between 0 and Nφ − 1, but it can-
not be any integer in this range, as will be explained
soon) can be obtained by projecting the wave function
into this momentum sector. This is accomplished most
elegantly by application of the projection operator Pk
(due to Fremling79):

Pk =
1
√
q

q−1∑
j=0

[
e
−i2π k

Nφ tCM

(
L1

Nφ

)]j
(116)

Consider the application of the CM translation operator
on PkΨg:

tCM

(
L1

Nφ

)
PkΨg = e

i2π k
Nφ

1
√
q

e−i2π kq
Nφ

[
tCM

(
L1

Nφ

)]q
+

q−1∑
j=1

[
e
−i2π k

Nφ tCM

(
L1

Nφ

)]jΨg (117)
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Provided we have

e
−i2π kq

Nφ

[
tCM

(
L1

Nφ

)]q
Ψg = Ψg (118)

PkΨg will have a well-defined CM momentum:

tCM

(
L1

Nφ

)
PkΨg = e

i2π k
Nφ PkΨg (119)

Let us now obtain the values of k for which Eq. 118 is
satisfied.

For this purpose, we need to use the fact that the

eigenvalue for the operator
[
tCM

(
L1

Nφ

)]q
is fixed to be

(−1)pq(N−1)eiqkr·L1/Nφ30,58. Here kr is the relative
momentum30,58:

treli (pLmn)Ψ = (−1)pq(N−1)e−i
p
Nkr·LmnΨ (120)

Lmn = mL1 + nL2 (121)

(Lmn = mL1 + nL2 m and n are integers while L1 and
L2 are the two edges of parallelogram) which satisfies

kr ·L1 = 2πr (122)

where r is an integer. (By directly applying the relative
translation operator on Eq. 42 it can be shown that r = 0
for ground states of ν = n

2pn+1 .) These equations fix the

acceptable values of k to be

k = r + jH; j = 0, 1, . . . q − 1, (123)

if (−1)pq(N−1) = 1, and

k = r +Nφ/2 + jH; j = −q − 1

2
,−q − 1

2
+ 1, . . .

q − 1

2
(124)

if (−1)pq(N−1) = −1. Here H = gcd(N,Nφ) and r is
the number defined in Eq. 122. Since this produces q
distinct values of k, we have exhausted all degenerate
wave functions.

If by coincidence the amplitude of Ψg in a certain mo-
mentum sector is zero, we can still construct the ground
state in that momentum sector. We first project Ψg to
some momentum sector in which its amplitude is nonzero.
Then we can boost that state to another momentum sec-

tor by application of tCM

(
L1τ
Nφ

)
, because

tCM

(
L1

Nφ

)
tCM

(
L1τ

Nφ

)
= ei

p
q tCM

(
L1τ

Nφ

)
tCM

(
L1

Nφ

)
(125)

Repeated applications of tCM

(
L1τ
Nφ

)
will produce states

at all possible k’s given in Eq. 123 and Eq. 124.
The same projection operator Pk can also be applied to

CF quasiparticles and CF quasiholes to obtain wave func-
tions with well-defined CM momenta. Since the eigen-

value for
[
tCM

(
L1

Nφ

)]q
is simply 1 when N and Nφ are

relatively prime (which means that p = N and q = Nφ),
the possible momenta for these ground states are

k = 0, 1, . . . Nφ − 1. (126)

Appendix E PROOF THAT χ[f̂i(∂/∂zj , zj)]
COMMUTES WITH THE CENTER-OF-MASS

WAVE FUNCTION F 2p
1 (Z)

In this appendix, we show that F 2p
1 (Z) commutes with

χ[f̂i(∂/∂zj , zj)] so long as the latter is a “proper state”
defined in the introduction. This is crucial, as it serves
as the starting point for the implementation of the JK
projection.

First, we transform the coordinates from
{z1, z2, . . . , zN} to {Z,w1, w2, . . . , wN−1} where Z
is defined in Eq. 5 and

wi ≡ zi −
Z

N
, i = 1, 2 . . . N − 1 (127)

What is the rule for LLL projection in the new coor-
dinates? Let us recall that to accomplish LLL projec-
tion in the old coordinates {z1, z2, . . . , zN}, we keep the

Gaussian factor exp
(
−
∑N
i=1

|zi|2
4l2

)
at the far left, and

perform the replacement z̄i → 2l2 ∂
∂zi

. With the factor

exp
(∑N

i=1
z2
i−|zi|

2

4l2

)
at the far left, the replacement is

z̄i → 2l2
∂

∂zi
+ zi (128)

In addition, we need the chain rule for the derivatives:

∂

∂zi
=

∂

∂Z
+

∂

∂wi
− 1

N

N−1∑
j=1

∂

∂wj
,

i = 1, 2 . . . N − 1 (129)

∂

∂zN
=

∂

∂Z
− 1

N

N−1∑
j=1

∂

∂wj
(130)

With Equations. 128, 129 and 130 we can now derive

the rule for projecting χ[f̂i(∂/∂zj , zj)]F
2p
1

∏
j J

p
j in the

new coordinates {Z,w1, w2, . . . , wN−1}. The LLL pro-
jection corresponds to the following replacements:

Z̄ =

N∑
i=1

z̄i

→ 2l2
N∑
i=1

∂

∂zi
+

N∑
i=1

zi

= 2Nl2
∂

∂Z
+ Z (131)

w̄i = z̄i −
Z̄

N

→ 2l2
∂

∂zi
+ zi −

1

N

(
2l2

N∑
i=1

∂

∂zi
+

N∑
i=1

zi

)

= 2l2
∂

∂wi
+ wi (132)
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Equations. 131 and 132 imply that if the unprojected
χ[fi(zj)] does not depend on Z̄, then the projected

χ[f̂i(∂/∂zj , zj)] will be independent of ∂/∂Z, and hence

commute with F 2p
1 (Z). Below we show that χ[fi(zj)] is

indeed independent of Z̄ for proper states.
Let us consider, for simplicity, a proper state involving

the lowest two LLs for illustration; the generalization to
higher LLs follows along the same lines. With the new

coordinates, the matrix elements in χ[f
(m)
n ] are (l∗ is the

effective magnetic length defined in Eq. 52):

f
(m)
1 (zi) = f

(m)
1 (Z/N + wi), i = 1, 2 . . . N − 1 (133)

f
(m)
1 (zN ) = f

(m)
1 (Z/N −

N−1∑
i=1

wi) (134)

f
(m)
2 (zi) =

Z̄ − Z√
2Nl∗

f
(m)
1 (Z/N+wi)+

w̄i − wi√
2l∗

f
(m)
1 (Z/N+wi)−

√
2l∗

 ∂

∂Z
+

∂

∂wi
− 1

N

N−1∑
j=1

∂

∂wj

 f
(m)
1 (Z/N + wi),

i = 1, 2 . . . N − 1 (135)

f
(m)
2 (zN ) =

Z̄ − Z√
2Nl∗

f
(m)
1 (Z/N −

N−1∑
i=1

wi)−
∑N−1
i=1 (w̄i − wi)√

2l∗
f

(m)
1 (Z/N −

N−1∑
i=1

wi)

−
√

2l∗

 ∂

∂Z
− 1

N

N−1∑
j=1

∂

∂wj

 f
(m)
1 (Z/N −

N−1∑
i=1

wi) (136)

The first terms on the right-hand side of Eqs. 135 and
136, which are the only terms containing Z̄, are elimi-
nated from the Slater determinant because they are pro-
portional to the corresponding rows in the LLL. For the

same reason, there is no Z̄ dependence in χ[f
(m)
n ] describ-

ing proper states.

Appendix F GENERAL DERIVATION FOR

ĝ
(m)
n (zj)

In this appendix we show that ĝ
(m)
n (zj) exists for arbi-

trary LL n, and derive its explicit form. We show that, in

general, ĝ
(m)
n (zj) can be obtained from f̂

(m)
n (zj) by mak-

ing the replacement ∂z → 2∂z for the derivatives acting
on the Jastrow factor Jj , where ∂z = ∂

∂z .

The unprojected wave function f
(m)
n (z) is:

f (m)
n (z) =

(
a†f

)n−1

f
(m)
1 (z) =

n−1∑
k1=0

(
n− 1

k1

)( z̄

2l∗2

)k1
[(
− z

2l∗2
− ∂z

)n−1−k1

f
(m)
1 (z)

]

The standard replacement z̄ → 2l2∂z + z for projection produces for f̂
(m)
n (z) the expression:

f̂ (m)
n (z) =

n−1∑
k1=0

(
n− 1

k1

)(
2l2∂z + z

2l∗2

)k1
[(
− z

2l∗2
− ∂z

)n−1−k1

f
(m)
1 (z)

]
(137)

We should bear in mind that
(

2l2∂z+z
2l∗2

)k1

acts on every- thing on its right while
(
− z

2l∗2 − ∂z
)n−1−k1

only acts on

f
(m)
1 (z).
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We know χ[f̂i(zj)J
p
j ] does not satisfy the periodic

boundary conditions. We seek a modified wave function

χ[ĝi(zj)J
p
j ] in which ĝ

(m)
n (z) is obtained from f̂

(m)
n (z) by

replacing all ∂z’s acting on Jastrow factors by α∂z’s, as
shown in Eq. 74 for n = 2. Let us define a new operator
D̂i:

D̂i ≡ α∂zi (138)

if D̂i acts on Jpi , and

D̂i ≡ ∂zi (139)

if it acts on anything else. Therefore, ĝ
(m)
n (zi) is

ĝ(m)
n (zi) ≡

n−1∑
k1=0

(
n− 1

k1

)(
2l2D̂i + zi

2l∗2

)k1 [(
− zi

2l∗2
− ∂zi

)n−1−k1

f
(m)
1 (zi)

]
(140)

Below we show that χ[ĝi(zj)J
p
j ] satisfies the periodic

boundary condition with α = 2 for arbitrary ΛL. For
convenience we take the phases φ1 = 0 and φτ = 0.

We first note how Jpj and f
(m)
1 (zi) change when zi is

translated by L1τ :

Ti(L1τ)Jpj = e
ipπ
(

2(zj−zi)
L1

−τ+1
)
Jpj , j 6= i (141)

Ti(L1τ)Jpi =
∏
j(j 6=i)

e
−ipπ

(
2(zi−zj)

L1
+τ+1

)
Jpi (142)

Ti(L1τ)f
(m)
1 (zi) = e

−iπN∗φ
(

2zi
L1

+τ
)
f

(m)
1 (zi) (143)

With Eq. 137, Eqs. 141-143, and our replacement rule,
we have:

Ti(L1τ)ĝ(m)
n (zj)J

p
j =

e
ipπ
(

2(zj−zi)
L1

−τ+1
) n−1∑
k′1=0

k′1∑
k′2=0

(
n− 1

k′1

)(
k′1
k′2

)
(

2l2D̂j + zj
2l∗2

)k′1−k′2 ( i2pπαN∗φ
L1Nφ

)k′2 [(
− zj

2l∗2
− ∂zj

)n−1−k′1
f

(m)
1 (zj)

]
Jpj

 , j 6= i

(144)

Here we have used(
2l2D̂j + zj

2l∗2

)k1

e
ipπ
(

2(zj−zi)
L1

−τ+1
)

= e
ipπ
(

2(zj−zi)
L1

−τ+1
)((

2l2D̂j + zj
2l∗2

)
+
i2pπαN∗φ
L1Nφ

)k1

(145)

where the exponential factor is a part of Ti(L1τ)Jpj . Similarly proceeding, we get

Ti(L1τ)ĝ(m)
n (zi)J

p
i = e

−iπN∗φ
(

2zi
L1

+τ
) ∏
j(j 6=i)

e
−ipπ

(
2(zi−zj)

L1
+τ+1

) n−1∑
k1=0

k1∑
k2=0

(
n− 1

k1

)(
k1

k2

)

(

2l2D̂i + zi
2l∗2

)k1−k2 [
i2πN∗φ
L1Nφ

(
Nφ
2
−N∗φ − αp(N − 1)− iNφRe(τ)

2Im(τ)

)]k2

[
n−1−k1∑
k3=0

(
n− 1− k1

k3

)(
− zi

2l∗2
− ∂zi

)n−1−k1−k3
[
i2πN∗φ
L1Nφ

(
Nφ
2

+
iNφRe(τ)

2Im(τ)

)]k3

f
(m)
1 (zi)

]
Jpi

}
(146)

In general, the Slater determinant wave function does
not satisfy the correct periodic boundary conditions. We

show below that for the proper states, and with the choice
α = 2, most of the terms in the above sum are eliminated
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inside the Slater determinant in precisely the same man-
ner as shown for n = 2 in Sec. III G. The only terms
that survive are the k′2 = 0 term in Eq. 144 and the
k2 = 0, k3 = 0 term in Eq. 146. With these terms the
full wave function satisfies the correct periodic boundary
conditions.

To prove this, let us consider the terms containing the
factors(

2l2D̂j + zj
2l∗2

)k′1−k′2 [(
− zj

2l∗2
− ∂zj

)n−1−k′1
f

(m)
1 (zj)

]
Jpj

in Eq. 144 and(
2l2D̂i + zi

2l∗2

)k1−k2 [(
− zi

2l∗2
− ∂zi

)n−1−k1−k3

f
(m)
1 (zi)

]
Jpi

in Eq. 146. If for k′1−k′2 = k1−k2 and n−1−k′1 = n−1−
k1 − k3 their coefficients are identical, then these terms
are eliminated from the Slater determinant, because they
are proportional to the corresponding rows in lower ΛLs.
Equality of their coefficients requires:

(
n− 1

k′1

)(
k′1
k′2

)
(pα)

k′2 =

k′2∑
k3=0

(
n− 1

k1

)(
k1

k2

)(
n− 1− k1

k3

)(
Nφ
2
−N∗φ − αp(N − 1)− iNφRe(τ)

2Im(τ)

)k′2−k3
(
Nφ
2

+
iNφRe(τ)

2Im(τ)

)k3

(147)

By making use of the identity(
n− 1

k1

)(
k1

k2

)(
n− 1− k1

k3

)
=

(
k′2
k3

)(
n− 1

k′1

)(
k′1
k′2

)
(148)

Eq. 147 becomes:

Nφ −N∗φ − αp(N − 1) = αp (149)

which is exactly Eq. 83, giving α = 2.
This completes the proof for the statement that by

making the replacement ∂zj → 2∂zj for operators acting

on Jj in f̂
(m)
n (zj), we generate a new projection oper-

ator ĝ
(m)
n (zj) such that χ[ĝi(zj)J

p
j ] satisfies the correct

periodic boundary conditions.

Appendix G INTERACTION ENERGY

We consider a rectangle for our numerical calculation,
i.e., Re(τ) = 0. The interaction energy must be periodic,
which amounts to considering an infinite periodic expan-
sion of the rectangle. The problem can be addressed in
the following way. The usual Coulomb potential in 2D is
given by

V (r) =
1

r
=

∫
dq

(2π)2

2π

q
eiq·r (150)

Not being periodic, this form is not appropriate for the
torus geometry. Here we use the periodic interaction13

V (r) =
∑
m,n

1

|r +mL1 + nL2|
(151)

=
2π

L1L2

∑
q

1

q
eiq·r (152)

with

q =

(
2πm

L1
,

2πn

L2

)
(153)

where L1 and L2 are the edges of the rectangle, and m
and n are integers. V (r) satisfies the correct periodic
boundary condition

V (r +mL1 + nL2) = V (r) (154)

Besides the pairwise interaction, we also need to in-
clude the self-interaction energy W , which represents the
interaction between a particle at r and its own images
at r + mL1 + nL2. The explicit expression for the self-
interaction energy is13,80

W = − e2

ε
√
L1L2

[2−
′∑
mn

ϕ− 1
2
(π(τm2 + τ−1n2))]

ϕn(z) ≡
∫ ∞

1

dte−zttn

(155)

where the prime on the summation excludes m = n = 0.
The interaction energy per particle for a system of N
particles is then given by

E = W +
1

N

2π

L1L2

∑
i<j

∑
q 6=0

1

q
eiq·(ri−rj ) (156)

The q = 0 term is omitted as it is exactly canceled by
the background-background and electron-background in-
teractions.

The infinite sum
∑
q 6=0 is convergent, as can be proven

by writing out the second quantization form of Eq. 151,
and finding that each term in the sum over q is pro-

portional to e−q
2l2 . In our Monte Carlo programs, we

truncate the sum in Eq. 153, keeping only the terms
with |m| ≤ cutoff, |n| ≤ cutoff. In Fig. 7 and Table XI
we show the cutoff dependence of the energy for vari-
ous systems. We find that the energies have converged,
within our Monte Carlo uncertainty, so long as the cutoff
is greater than 10. In practice, we take the value of the
cutoff to be 20.
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FIG. 7. The ground state energy for N = 10, Nφ = 25 as a
function of cutoff. The cutoff is the largest value of |m| and

|n|, where m and n are defined through q =
(

2πm
L1

, 2πn
L2

)
.

N Nφ cutoff = 20 cutoff = 40
10 25 −0.43376± 0.00007 −0.43376± 0.00007
20 50 −0.43306± 0.00008 −0.43304± 0.00008
20 60 −0.41005± 0.00005 −0.41007± 0.00006
40 120 −0.40983± 0.00006 −0.4098± 0.0001

TABLE XI. The ground state energies for several systems
with two different values of the cutoff.

We mention certain technical details that may be use-
ful for someone who wishes to implement our method.
For the evaluation of θ(z|τ), we use the code from
mymathlib modified to expand the range of z to
the entire complex plane. There are certain analyt-
ical formulas for the derivatives of the theta func-
tions, but we have found it more efficient to evaluate

them numerically, using f ′(x) = f(x+dx)−f(x−dx)
2dx and

f ′′(x) = f(x+dx)+f(x−dx)−2f(x)
dx2 , and determining the op-

timal value of dx by checking that Eq. 75 satisfies the pe-
riodic boundary conditions as accurately as possible. We
have found that the optimal value is dx ∼ 10−6l− 10−7l
when only the first derivatives are involved, and dx ∼
10−4l when second derivatives are also involved. (Here l
is the physical magnetic length.) We have run ∼ 5× 106

Monte Carlo iterations for most of our results.
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